
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

1987

Computing About Physical Objects Computing About Physical Objects

Chanderjit Bajaj

Christoph M. Hoffmann
Purdue University, cmh@cs.purdue.edu

Elias N. Houstis
Purdue University, enh@cs.purdue.edu

John T. Korb
Purdue University, jtk@cs.purdue.edu

John R. Rice
Purdue University, jrr@cs.purdue.edu

Report Number:
87-696

Bajaj, Chanderjit; Hoffmann, Christoph M.; Houstis, Elias N.; Korb, John T.; and Rice, John R., "Computing

About Physical Objects" (1987). Department of Computer Science Technical Reports. Paper 603.

https://docs.lib.purdue.edu/cstech/603

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

COMPUTING ABOUT PHYSICAL OBJECTS

Chanderjil Bajaj
Wayne R Dyksen

Christoph M Hoffmann

Elias N. Hausus
John T. Kerb
John R. Rice

CSD-TR-696
July 19B7

COMPUTING ABOUT PHYSICAL OBJECTS

Chanderjit Bajaj

Christoph M. Hoffmann

Elias N. Houstis

John T. Korb

John R. Rice

Computer Sciences Department

Purdue University

CSD-TR-696

July 1, 1987

Abstract

This report describes the technical aspects of the project Computing about Physi

cal Objects. This project has received equipment and infrastructure support for five

years from the National Science Foundation.

- 2-

Contents

I. Computing about Physical Objects

1.1 Overview

1.2 The Central Projects

1.3 Coordinated Research Foci

2. Project Equipment

2.1 Current department equipment

2.2 Description of Project Equipment

2.3 Rationale for Equipment

3. Project Newton

3.1 Introduction

3.2 Approach

3.3 The Modeling Subsystems

3.4 Initialization and Simulation

3.5 Interference Tests

3.6 Immediate and Long Tenn Plans

4. Geometric Modeling

4.1 Introduction

4.2 User Interface

4.3 Automatic User Assistance

4.4 The Curved Surface Domain

4.5 Immediate and Long Term Work

5. Mathematical Software Systems

5.1 High Level Environments for Scientific Computing

5.2 Expen System Technology Applied to Scientific Computing

5.3 Mathematical Software Infrastructure

6. Parallel Processing

6.1 Performance Analysis of Algorithm/Architecture Pairs

6.2 Parallel Algorithms

6.3 Partitioning and Mapping of Large Scale Engineering and Science Systems to

Parallel Machines

6.4 Heterogeneous Distributed Computing

6.5 Distributed Elliptic-Expert (DE2): A Problem Solving Environment (PSE)
for Elliptic PDEs

- 3-

1. COMPUTING ABOUT PHYSICAL OBJECTS

Many questions about physical objects become approachable through compu

tation. Questions such as: How do objects respond to heating? When sub
jected to forces and torques, how do they move? What happens to them
under stress and strain? Several research projects at Purdue develop tools for

posing and answering these and similar questions on the computer. Linking
these projects are many common problems: For example. how to create,
manipulate and archive suitable models of objects; how to structure algo
rithms to analyze and simulate physical processes; how to exploit and coordi

nate suitable hardware configurations to cope with the resource requirements

of these computations. We are beginning a coordinated research effort to
solve these common problems. Future scientific systems must integrate
design, manipulation and inspection of objects with simulation of their physi

cal behavior. Joint efforts are needed on many levels.

The design, manipulation and control of physical objects involves complex

computational models that are tightly coupled. To create and use such

models requires an environment that hides intricate details, that harnesses

tremendous complexities, and that is supported by powerful computers and

graphics. We will develop tools that integrate design and inspection of com

putational models of physical objects with simulation and analysis of their

behavior and interaction. These tools create and manipulate the geometric

shapes, simulate the physical processes, help control the power of multicom

puters, and provide a natural, uncluttered environment for the users.

1.1. Overview

We are developing the tools for computing with models of physical objects. In the

course of this work, we face problems of how to represent objects by suitable models,

how to manipulate and edit these models, how to analyze and simulate the behavior of

modeled objects. To see the varied nature of the work, and to gain a first impression of

how the projects interact, consider designing a small water cooled piston engine

diagram in Figure 1.1.

Imagine we are at a point where the piston and its linkage to the crank shaft have been

designed. Now we wish to design the block such that the engine is kept cool. strong, and

light. So, the exterior geometry of the block must be designed, the shape and location of

the water cooling lines must be determined, and a suitable material for the block must be

selected.

Having chosen the shapes, assisted by a geometric modeling interface, the user must

solve a system of partial differential equations (PDEs) to analyze the heat flow and stresses

associated with this geometry and choice of block material. He may wish to simulate run

ning the engine at different speeds which changes the strength of the heat source and the

stresses on the moving parts. Systems of ordinary differential equations (ODEs) describe

the acceleration and constraint forces on the piston linkage. With access to sufficient com

puting power. a user can quickly explore a wide range of shapes and materials preliminary

to a refined, optimized final design.

- 4-

aOOG

•

H I
1--_-1 1

I
I

Figure 1.1 Cross section of a piston

engine. The source of
heat and force is at H,

the coolant within the
block is shown with

bubbles. The honsing
of the linkage L to the
piston P is not shown.

What is involved in creating and simulating this scenario? First, complex object
models must be created and coordinated. The geometric modeling project provides tools
for this. The models are created through a user interface and require much automatic
design support from the system. For example, the geometric design of piston and linkage

requires a sophisticated solid modeling system. The ODEs describing the dynamic
behavior of the piston linkage can then be derived automatically by the system for the
geometry and material composition of the links. Project Newton builds such a system.
PDEs model the physical behavior such as heat flow, stresses and strains. They are

identified and numerical methods are selected that are well suited to the problem's nature

and the desired accuracy. The Mathematical Software Systems project does this. The user

should be allowed to specify a sacrifice some accuracy for the sake of speed or economy,

the system can then allocate the computation among the available resources to achieve this

objective - without detailed intervention by the user. The parallel processing project pro
vides tools for this.

Our research projects are involved in building complex interactive systems. Although

the projects differ, many problem domains are shared and the problems of communicating

with the user are similar. Geometric modeling is one common focus, as is the coordination

of different domain-specific models so that object behavior can be studied comprehensively.

All aspects of this work require very high powered workstations and sophisticated graphics

backed up by supercomputer power. Because of the scope of our effort, all projects use a

very high level approach to software development and integration that must be backed up
by powerful computing resources.

1.2. The Cenlral Projects

The relationship of the principal projects is shown in Figure 1.2. We summarize each
here.

- 5-

I Computing about Physical Objects

/ \
Project

Mathematical
Software

Newton
Systems

Geometric Parallel

Modeling Processing

\ I
j[ntegration of Geomettic, Numerical and Symbolic C o m p u t i n ~

I Computing Equipment I
Figure 1.2. The relationship of the central projects.

1.2.A. Project Newton

The goal of this research is to develop a higWy modularized and extensible system

that duplicates the precise behavior of physical objects from their models. The work is part

of a consortium effort involving groups both at Cornell and Purdue University. and should
have a major impact on computer-aided design and manufacturing.

Objects represented in this system are complex, ultimately involving thousands of
equations and constraining relationships. Objects are composed from many components
and are modeled in a spectrum of domains including their geometry. dynamics, and con

trolled behavior. The project is implementing a first prototype in which the motion equa

tions are derived from geometric models and are integrated numerically. Work is under

way that aims at expanding the physical coverage of modeling, developing flexible user

interfaces, and adding more intelligence to the automatic capabilities assisting the user in

defining and manipulating objects and assemblies. Future work includes an effort to distri

bute the system over a network of specializing processors, including parallel machines.

1.2.B. Geometric Modeling

Geometric and solid modeling has reached a plateau that cannot be elevated unless a

number of basic computational problems in mathematics are solved efficiently. This pro

ject focuses on these problems. Its results, as they mature, will impact the other projects

slgnificantly.

- 6-

The research is engaged in extending the geometric coverage of solid modelers to
algebraic surfaces of arbitraIy degree. Here, questions such as effective parameterization,
implicitization, and singularity resolution handling are addressed. Efficient computational

procedures are being developed that will eliminate traditional bottlenecks that presently

make modeling operations so expensive. The work also explores questions of representing

surfaces succinctly, of approximately representing complicated surfaces by simpler ones, of
approximating naturally occurring surfaces by mathematically defined ones, and of
automatically generating standardized surface areas. It seeks to merge results from algebra,

geometry, topology, and approximation theory into effective tools for a higher level of per
fonnance in geomettic modeling.

1.2.C. Mathematical Software Systems

A high level mathematical software system targeted toward elliptic partial differential

equations is already operational. Its principal components are an interactive, mathemati

cally based, graphically oriented interface and a broad range of problem solving modules.

This 100,000+ lines of code system is built using various software tools so that it can

readily evolve and be enhanced. It is an ideal vehicle to test approaches to future systems

for computations about physical objects.

The new work will greatly enhance the quality and performance of the user interface.

An expert system project is under way to provide users sophisticated guidance in using

tools and problem solving modules. Significant expansion in the domain of applicability

will be based on the following work on the algorithmic infrastructure: 1. The rectangular

3D geometry will be extended to general domains, 2. The single domain, single equation
operation will be replaced by a multiple domain, multiple equation operation, 3. Time

dependent and nonlinear problems will be allowed, 4. More extensive domain mapping

and grid adaptation capabilities will be incorporated.

These extensions involve a large number of specific projects, some very algorithmic in

nature, e.g., interfacing algebraic geometry with numerical methods and 3D numerical

methods. We will rely heavily on a high level software integration approach to gain many

of the desired capabilities. For example, a structural engineering software package, an

expert system, and MACSYMA will all be integrated, appearing to the user as though they

were really pan of one system.

1.2.D. Parallel Processing

Computing with physical models requires enormous computing power. This power
will come mostly from massive parallelism. Our work concentrates on three of the many

aspects of this problem area. First, we will be heavily involved in the algorithmic infras

tructure both for numeric and geometric computation. Beyond parallelizing existing

numerical methods, we will deeply explore new domain decomposition techniques as a

means of effectively using hundreds or thousands of processors for realistic applications. A

key ingredient of this work is to study how the numerical methods interact with the

geometry of physical objects. Ultimately, this use of parallelism will result in reaching true

interactive performance for complex geometric computations.

Second, we will study how to create an intelligent system for resource allocation

without significant user input or intervention. We will consider both tightly coupled

-7 -

computing environments where algorithm specific, synchronous approaches seem to be

most promising, and loosely coupled environments where we will concentrate on very gen
eral, heuristic approaches to resource allocation. In addition, our intelligent system will

handle the closely related problems of scheduling the computation in a heterogeneous com

puting environment.

Finally, we will monitor perfonnance issues continually. We give high priority to
providing reliable data and estimates for assessing the effective utilization that can be
obtained from massively parallel machines with thousands of processor nodes.

1.3. Coordinated Research Foci

Our research projects share two central thrusts. We must develop

(1) A high level computational interpretation of geometric, symbolic, and nwnerical

knowledge.

(2) Implementan"on tools for future application systems and their underlying s c i e n ~

tiflc theories.

Beyond these common concerns, a unified framework must be identified in which to com
bine the tools developed for different application domains, thereby laying the foundations
for a comprehensive system for representing, manipulating, analyzing, and simulating
models of physical objects. This system must be designed to allow ready incorporation of
different application domains, as well as easy upgrading of components that become super
ceded by alternative components based on superior techniques.

The comprehensive computational treatment of physical systems even of modest size
requires complex models and large computing resources. We cannot burden the user with

specifying these models in all detail and explicitly controlling the underlying computers.
What is needed is a concise and effective user interface. Geometric. textual, and mathemat
ical infonnation must be integrated into an intuitive and efficient language in which even

the nonspecialist can make himself understood and can absorb the infonnation revealed by
the system. Huge computing power must be brought to bear and needs to be harnessed
with as little explicit user control as possible. In a coordinated effort, we will develop such

interfaces. A valuable pool of initial concepts is provided by the experience of the indivi
dual projects. Our development work will be further enriched by contributions of other
researchers in our department, and should greatly benefit from the diversity of the domains
we consider.

Geometric models are an integral pan both of Project Newton and of the Mathemati
cal Software Systems project. They constitute a common focal point because they provide
a natural medium for channeling the interaction with other model domains. In the
Geometric Modeling project we push the available techniques and develop novel tools to be

incorporated by the other projects.

Devising a system for computing with realistic physical models is a software project
of very large scale. To lay its foundations, we must approach the task at a high enough
level, backed up by sophisticated development environments and a competent infrastructure

of technical staff'. We approximate the needed resources by three layers of hardware:

- 8 -

1. graphics and Lisp workstations.

2. super minicomputers with high bandwidth graphic connections,

3. supercomputer power through a massively parallel machine.

The first layer of workstations takes care of user interfaces and software development
environments. It also provides specialized processing such as for expert systems and sym

bolic mathematical computations. The second layer is needed for computations with
moderately complex physical models. Together with the first layer, it approximates the
next generation of work stations to be expected on the market in about five years. High
bandwidth graphic interfaces are needed for sophisticated animations whose data exchange

rates exceed the Ethernet bandwidth.

Larger experiments require parallel processing and supercomputer power. For
instance. real time animation of turbulent fluid flow exceeds the computational resources on

the second layer. Consequently, we plan to acquire a massively parallel machine. Since
our computations are specialized, we do not need to address all issues that arise in parallel

computation. The Parallel Processing project will lead the effort of developing

application-specific techniques for effectively utilizing parallel machines and for distribut

ing computations over the layers. Together, the three layers provide a perfect paradigm for

the next generation of supercomputer configurations and their utilization.

- 9-

2. PROJECT EQUIPMENT

2.1 Current Departmental Facilities

The main experimental research facility in the Department of Computer Science con

sists of a DEC VAX S600 and three VAX llnSo's. The existing research facilities are
listed in Tables 2.1 and 2.2 and placed in three groups: generally available, available to our

projects, dedicated to other projects.

TABLE 2.1: Computer Systems

Olv Vendor Description GroDD

1 DEC VAX S600 Computer System

General

1 DEC VAX IlnSO Computer System

1 FLEX Flex32 Multiprocessor with 7 processors

Our
1 Ridge Ridge32 RISC Architecture Computer System

Projects

6 TEK Workstations

2 Svmblics Lisp Machines

2 DEC VAX llnSO Computer Systems

Other
27 SUN Workstations with file servers

DEr ,n" Intel
Projects

10 DEC LSI 11 and Intel SOS6 microcomputer systems

TABLE 2.2: Network Services

Network

ARPANET

Ethernet

ProNET

Services

Numerous international services, including file transfer,

mail, remote login, etc.

Full communication between all departmental machines.

Full communication between most departmental VAXes,

including a fiber optic link to facilities provided

bv the Purdue Universitv Cornnuter Center.

The I/O equipment available includes a Megatek graphics processing system, Tektronix

4115 color graphics terminal, three Printronix line printers, 100+ conventional CRT termi

nals (Wyse and ADDS), and 6 QMS, HP and Apple laser printers. In addition, the

- 10-

department has access to facilities provided by the Purdue University Computing Center,
including a Cyber 205 and an IBM 3083.

2.2 Description of Project Equipment

The needed facilities should be able to simulate the workstation environment of the
1990's, provide support for the integration of graphics. symbolic and numerical computa

tion, and provide support for research on algorithms and software in a massively parallel

environment. We plan to acquire the equipment listed in Table 2.3. Table 2.4 gives the

schedule of acquiring the equipment.

TABLE 2.3: Summary of Equipment

O!y

2

2

10

6

1

1

1

DescriDtion

Alliant FX/l, extra disks

Graphics terminals and I/O equipment

(Rastertech one/380)

Color Graphics Workstations

Lisp machines

Multiprocessor system I
(NCUBE!seven with 32 processors)

Multiprocessor system II

(NCUBE!ten with 256 processors)

NCUBE/Supergraphics

Network Equipment

2.3 Rationale For Equipment

The design, manipulation and control of tightly connected computational models
requires a computational environment that

(a) supports high level interfaces,

(b) supports the integration of graphics, symbolic and numerical computing,

(c) provides computing power to support realistic simulation of 3D models and time

varying interactions.

These correspond to three levels of hardware, the first needs powerful workstations with

sophisticated graphics, the second needs local "cycle servers" for Lisp, Fortran, geometry,

etc., and the third needs supercomputer backup. We discuss the hardware/software require
ments of each project and then point out their common requirements.

- 11 -

TABLE 2.4: Schedule for acquiring the new equipment

. Otv DescriDtion

1987/88

1 Alliant FXlI

1 Graphics terminal and I/O equipment
3 Lisp machines

1 Multiprocessor System I
(NCUBE/seven with 32 processors)
Network equipment (ProNET ring)

1988/89

3 Scientific Workstations
1 Lisp machine

1 Multiprocessor system II

(NCUBE/,en with 256 processors)

1 Supergraphics system attached to NCUBE
Network equipment upgrades

1 Alliant FXlI disk upgrade

1989/90

1 Alliant FX/l

1 Graphics terminal and I/O equipment

1 Scientific Workstation

Network equipment upgrades

1990/91
3 Scientific Workstations

1 Lisp machine
Network equipment upgrades

1991f92

3 Scientific Workstations
1 Lisp machine

Network p..l1uinment unPTades

2.3.A Project Newton

Project Newton is at a stage where large programs are developed and must be inter

faced with existing Fortran code for scientific calculation. It already needs the first two lev

els of hardware support. Symbolics Lisp machines are a good choice because of the

software environment that provides a Fortran interface to the Alliant, the many sophisti

cated development tools, and the TCP/IP interface to the ethernet. Also of importance is

the company's continued commitment to its product line and the clever solutions to gar

bage collection and floating point handling. The Cornell group is also working on these

machines, so software can be exchanged with a minimum of effort. We have found no
competitor in overall performance given the project's specific needs.

By year 3. Project Newton will have matured to the point where we can attempt to

distribute larger simulations across a network of machines. We envisage an initial partition

where the geometry modeling and animation is done locally on a graphics workstation

- 12-

connected to a powerful cycle server such as the FX/l. Since the major traffic is exchange
of state variables and their update, there will be a moderate data traffic on the connection.
If real time animation is to be achieved for more complex scenes, high bandwidth inter
faces must be used to connect the machines. For thousand state variable exchanges at 30

times a second, an effective speed of 1.2Mb/sec must be sustained.

As Project Newton matures, we plan on two steps. First, we will move it to worksta
tions designed to "deliver" its capabilities rather than to support system development. These
will be workstations or small Lisp machines. Second, we will be ready to attempt ambi
tious, realistic applications that require supercomputer power for both geometric and
numerical processing. this will be the NeUBE.

2.3.B Geometric Modelling

The key requirement in geometric modeling is to support the basic research into alge
braic and numerical geometry. It is tedious and impractical to draw 3D objects adequately
by hand. So this project needs high resolution, excellent color facilities to provide the
visualizations. This is provided by the hardware on the first level that supports high level

interfaces. As the algorithm development advances, more complex situations and motion
studies will use the "cycle servers" on the second -or even the third- level as well as the
more sophisticated graphics on the Alliants or NCUBE.

2.2.C Mathematical Software Systems

The Mathematical Software Systems project has already matured to where it needs
facilities on all three levels. We visualize interactive model generation and graphical
evaluations of results done on a workstation with excellent graphics, these computations are
backed by the Alliant for modest problems and the NCUBE for more ambitious ones. Time
varying applications will use the powerful graphics directly connected to the Alliant and
NCUBE. The expert system will be run using a Lisp machine as a "cycle server".

2.3.D Parallel Processing

A major objective of this project is the development and evaluation of PDE algorithms
on massively parallel systems. Currently the NCUBE (256 processors) is the most cost
effective choice for a system with more than 128 processors. This facility will be used to
identify how effectively kernel PDE and geometric applications can be sped up.

Parallel programming requires the partition of each application and its allocation to
hardware resources. We are developing tools and interfaces to automatically solve this
problem at load time. High power graphics workstations (Iris 3030) are required to sup
port these interfaces. We also plan to explore a distributed mode of PDE computation. In
order to schedule such computation, an intelligent scheduler will be developed and incor
porated into PDE-expert system using the Lisp machines.

-13 -

3. PROJECT NEWTON

The goal of Project Newton is a highly modularized, extensible simulation sys

tem in which the precise behavior of physical objects is duplicated from their

models. There is an interface to an external programming language in which the
controlled behavior of certain objects can be programmed. The research contri

buting to this goal includes work on a definitional facility in which complex
objects are modeled in a multiplicity of domains, each capturing a different
category of physical characteristics and behavior. It includes development of an

analytic facility that is to simulate physical behavior from models. And it

includes a rule-based component inspecting solutions for exceptional events.
Since such events entail altered behavior, their presence requires editing object

models on the fly. Presently, the scope of the investigation is limited to simulat

ing Newtonian mechanics of possibly jointed rigid bodies from their geometric
model. We include at this time modeling of impact and friction, as well as of

simple control systems actuating some of the components. As the system
matures, extending its coverage will be explored.

3.1. Introduction

Model driven programming, where code for the automatic assembly of objects is
derived from a data base description of the assembly has long been a dream of researchers

in robotics. A first step towards this goal is a model driven simulation system. Such a sys
tem should integrate the following subsystems:

1. A solid modeler for defining the parts to be manufactured and the geometric features

of the environment in which they are to be assembled.

2. A simulation system knowledgeable about the laws of physics valid in the environ
ment simulated, as well as the physical characteristics of parts.

3. An off-line planning language for specifying the objects to be assembled from parts,
and expressing how to manipulate them, preferably in a generic and functional style.

4. A report generator capable of producing animation, graphical rendering of key events,

or summaries of selected properties during simulation according to user specification.

Implementing each of these major components is a daunting task in itself. It is therefore

crucial to achieve a system design minimally dependent on the specific internals of the

major components, for then these components can make use of existing software packages,

and can also be used in other contexts. Moreover, they may be modified in response to

advances in knowledge or equipment, and can be exchanged or extended with minimal

impact on the rest of the system. By working out clean interfaces between the components

and creating suitable layers of abstraction this goal can be achieved.

Since the system must have the capability to simulate the motion of objects under

external forces, it can be used to verify many aspects of off-line robot programming such as

gripping or moving mechanical parts. However, such a simulation system, driven from a

geometrical model, would have much wider applicability. It could be used to construct

electronic prototypes and to verify aspects of a design such as the removability of each

- 14-

board in a computer frame for servicing or the proper unfolding of an antenna on a satellite

in space. The potential for payoffs of such a system are errannous. It would allow design

changes much later in the development cycle since revalidation only involves rerunning the

validating algorithms. Furthermore, devices designed and developed to operate in unusual

conditions not easily approximated in the laboratory such as the deployment of an antenna

in space that will not support its weight under gravity can easily be prototyped and checked
electronically.

Previous work on simulation is extensive. However, most of the related work is either

limited to a specific domain such as modeling the control loop of a simplified robot mani

pulator. Dubowski and Kornbluh (1984). or fails to include the dynamic aspecls of the sys

tem, Latornbe et aI. (1984). Moreover, none of these simulations has the capacity to

respond to events necessitating a change of the quantitative model during the simulation.

This capacity is crucial when realistic simulation behavior is desired.

An exception is STEAMER, Hollan et al. (1984), a simulation system modeling tur

bine propulsion systems for training engineers. STEAMER attempts to separate different

levels of abstractions and incorporates some information hiding. Its chief limitations are

the specificity of the modeled domain that seems to tolerate no extension to new modeling

domains, and the restriction on possible automated support for abstracting complex objects.

What is needed is to incorporate certain aspects of each of these works into a single system

in which the simulation is driven from the system description itself, along with a program
globally directing the progression of events.

3.2. Approach

In collaboration with the robotics group at Cornell under John Hopcroft, we are
presently implementing an electronic prototyping system and its components by studying

the following situations:

1. A chain of hinged links is moved by prescribing a fixed trajectory for the top

link, modeling an idealized control and actuation system. The other links move

according to the induced forces on them, with or without additionally assuming
gravity.

2. A block is placed on top of an assembly of blocks that are not fastened to each

other. Specific possibilities include: the block to be placed collides with some of

the blocks in the assembly and knocks them over. or the block is placed in an

unstable configuration and the assembly topples. etc.

3. A simplified model of a human figure steps up on a curb. The model of the
figure contains a sensory based feedback model of balancing and stepping stra

tegies. The feedback model may compensate for stepping short or too high.

These examples develop different aspects that must be integrated, namely kinematic con

straints, dynamic editing of interrelated objects and impact, and the incorporation of sophis

ticated control and acruation schemes. Example (1) has been demonstrated at the 1986
Artificial Intelligence Convention.

In all cases, the sequence of activities is as follows:

- 15-

1. Complex objects have been defined in a language that is implemented by access

ing definitional facilities of modeling subsystems for specific domains (geometry.

dynamics, control systems, etc.).

2. The simulation scenario is initialized, possibly with the help of a graphical

interaction language. Moreover, a program expressing the various motion plans
and manipulator activities has been written and interfaced with the simulation.

3. The scenario is simulated observing the physical laws in effect and interpreting
the program directing the manipulator and other active agents in the simulation.

We describe how the major system components are structured. and interact.

3.3. The Modeling Suhsystems

Every object to be simulated is modeled in a number of domains. Presently, we

model the geometry, the dynamic behavior, and the controlled behavior of objects. We
foresee the need of modeling objects in different domains as well. For example, while at

present the impact of two objects is abstractly summarized by the notions of impulse and

coefficients of restitution, it may be desirable at a futllre time to extend the simulation into

a domain where elastic deformations and internal stresses of objects are modeled and simu

lated. Consequently, the system design has to permit a basic flexibility and extensibility.

An object is modeled by a definition language that is implemented by accessing a
number of separate subsystems, each in charge of modeling a specific domain. These sub

systems are at present the geometric modeler, the dynamic modeler, and the control

modeler. The subsystems are unaware of the fact that the model constructed by them is

coordinated on the next higher level with models from the other domain. This ensures
greater flexibility when adding new domains of modeling.

Geometric Modeling

Geometric models are built from primitive shapes and are combined in a CSG-like

manner into rigid bodies as outlined in Hoffmann and Hopcroft (1985). Briefly, shapes are

named and combined by the usual CSG operations of regularized union, intersection, and

difference. In addition, features on shapes, Le., surfaces, space curves and points, can be

defined and referenced by a sophisticated naming scheme. The advantage here is that it

permits the use of definitional operations that are intuitive rather than relying on the usual
tedious and error-prone coordinate calculations. For example, the attach primitive joins

two shapes by mating congruent features on the two component shapes.

Geometric coverage has been limited so that the technical difficulties that must be

addressed, e.g., volume and inertia calculations, do not distract from the central problem of

organizing the system in the right way. At a later time the geometric coverage will be
enlarged.

Automatic capabilities are implemented to compute volume and volumetric moments

of inertia, Le., to determine shape-dependent information needed by the other modeling sys

tems. Each resulting object is represented. relative to a body-specific local coordinate sys

tem. On the next higher level this coordinate system provides the means for connecting the

geometric model to the models in other domains, of the same object.

- 16-

Dynamic Modeling

The dynamic behavior of a primitive object is captured in its dynamic model. Each
object is modeled by a local coordinate frame and a set of state variables and equations

describing the dynamic response of the object under external forces and torques, irrespec

tive of whether these forces act over an extended period of time or are impulsive. The state

variables are position, orientation, velocity, mass and inertia. For nonimpulsive forces F

and torques T, the vectorial equations of motion (more precisely, the equation schemata)... .
are mr=F and J8+8x(J9)=T, where J is the inertia tensor. Similar schemata describe
instantaneous velocity changes due to impulsive forces and torques, e.g., Wittenburg
(1977).

A primitive object is a single rigid body. Other primitive objects could be added to

the modeling system, provided they can be viewed as local coordinate frames with a

dynamic behavior that can be expressed by the appropriate equations of motion. Although

unexplored as yet. this facility for adding primitives is ultimately a vehicle for abstracting

the dynamic behavior of more complex mechanisms: For instance, a pocket watch being

manipulated by a gripper can be abstracted as a rigid body since its internal dynamic

behavior is likely of no interest to the gripper motions. Thus, if we were to describe both

the internal working as well as the abstraction of the watch, then the simulation of time
keeping could be made independent from the simulation of the gripping device moving the

watch. Such partitioning may playa major role in eventual parallel versions of the system.

Control Models and Sensing

Control loops and sensors are modeled abstractly as functions depending on the state

variables and their rate of change, and on geometric properties. They may have additional

state variables of their own. For example, the control loop for a motorized ann approach
ing an object may express a relationship between a distance sensing variable, a voltage

regulator state variable, and a torque variable. At the primitive modeling level, the vari

ables have not been bound to the corresponding constructs in the other models involved.

The binding is effected at the object modeling level.

Control models also provide a natural interface with an external programming system.

More sophisticated schemes for intervention during the simulation and actuating selected

components can be expressed as control models some of whose state variables are com

municated to and modified by an external program that has been appropriately synchron
ized.

Object Definition Level

So far. no provisions have been described to construct complex objects with moving

pans. These provisions are made at the higher level which we call definition level. To

begin with, primitive objects are defined by accessing the lower level and defining the

relevant models. The different domains are then coordinated by relating the intrinsic coor

dinate frames on the one hand, and by binding the appropriate state variables on the other.

Complex objects are constructed from primitive objects by a sequence of coordinated

composition operations of the constituent primitive models. These compositions are drawn
from a set of primitive operations that, roughly speaking, connect objects by joints or

geometric adjacency, collectively called hinges. This concept of hinge is as in Wittenburg

- 17 -

(1977).

For the geometric model, compOSitIon implies merely a geometric relationship
between the coordinate systems of the constituent primitive components. For the dynamic

model, components are related by kinematic constraints that express, intuitively speaking,

the hinge geometry equivalently by constraints on the state variables, their derivatives, and

new constraint forces.

There are cases in which the imposed constraints have no direct geometric counter

part, i.e., there need not be a functionally complete geometric model realizing the kinematic

constraint imposed. For example, we might wish to join two objects by a fictitious pin
hinge that would have to interpenetrate a third object were it to be realized directly.
Designing such virtual hinges later "implemented" by a physical linkage of different
geometry is common practice in machine design and analysis.

Due to the fact that the component parts move relative to each other, the dynamic

model of a complex object is described as the union of the models of its constituent parts,

plus the set of constraint equations. Since hinges connect components. the resulting model

is a graph whose vertices are the dynamic models of the primitive components, and whose

edges correspond to the constraints imposed when placing the hinge. Since constraint

forces transmitted by these hinges may have to be known, for instance in the case of

modeling compliant motion, corresponding state variables are associated with the graph

edges. In the resulting model of the complex object, the constraint equations, along with

the equations of motion result in ordinary differential equations that form a system of linear

equations whose unknowns are the changes to the state variables and constraint forces. The
coefficients of these equations are (not necessarily linear) functions of the state variables

and the external forces and torques applied to the object. The system may need condition

ing to make it better suited to simulation, e.g., Hoffmann and Hopcroft (1987), and is

solved numerically.

Virtually all.kinematic hinge compositions can be reduced to a sequence of applying a

single composition primitive that constrains a point of an object I to coincide with a sur

face of an object 2. This is a significant fact, for it increases the ease of extending the
modeling coverage to new domains: The basic composition repertoire of the definition level

that must include cylindrical, revolute, prismatic joints, and others, can be defined without

awareness of the different modeling domains. Only the single composition primitive needs

to know the domains available.

3.4. Initialization and Simulation

Having defined the relevant objects as classes, instances are created under direction of

a simulation language, thereby initializing the simulation. Of course, the class definitions

are given interactively or retrieved from a data base or both. It is now also necessary to

relate the body specific coordinate systems to a world coordinate system. In addition, glo

bal rules such as "all objects are subject to gravity," have to be declared. A suitable

language for this is currently being developed, Hoffmann, Hopcroft and Whitesides (1986).

Simulation then commences with interpreting the command language directing the

various control loops and sensor models, along with simulating the physical forces in

effect. The simulator accesses the model instances to simulate a time step. For the

geometric model, this includes an interference test that ascertains that no two objects

- 18-

interpenetrate. For the dynamic model, all external forces must be determined, and from

them the new values of the state variables are obtained. Finally, the input variables for the
control and sensing models are determined, and from them the relevant control outputs are

found.

Before the models are updated, the results must be interpreted for exceptional condi

tions. These exceptional conditions include the following:

1. Two objects geometrically interpenetrate or come into contact.

2. A constraint force that should be positive vanishes or becomes negative.

3. The dynamic model may be indeterminate.

In response, an event handler must edit the models: Two objects coming into contact
implies impact. Using the impact behavior of the dynamic model, the effects of the impact

are instantaneous changes of certain velocities. IT the contact persists (inelastic impact or
due to friction), a new constraint force pair between the objects in contact must be modeled
as a composition with a hinge that sustains pressure but breaks under tension.

A vanishing or negative constraint force at a pressure-only hinge signals that the con
tacting bodies separate. In response, the dynamic model is updated by deleting the
corresponding graph edge and updating the equations of motion.

It is well-known that when a rigid body is supported at more than two points the
corresponding set of constraint forces is indeterminate. This is a model deficiency of
Newtonian mechanics. Different methods exist to handle the situation. One possibility is
to model infinitesimal penetration of the contacting bodies and detennine rebounding
forces. Other possibilities include modeling internal stress and elasticity characteristics,
i.e., adding a new modeling domain. The system is designed such that different methods of
handling this situation can be modeled and simulated.

3.5. Interference Tests

We need to ascertain rapidly whether two objects interfere in 3-space. A direct
approach is computationally too expensive, so the interference test is done hierarchically.
We are presently exploring techniques from computational geometry to design a suitable
polyhedral approximation sequence that is automatically derived by the system. Other pos
sibilities include a spherical approximation sequence exploiting the fact that spheres have
perfect rotational symmetry and that intersections among spheres can be found quickly,
Hopcroft, Schwartz and Sharir (1983).

In principle, the test should be structured as follows: On the top level, the object is a
single simple shape. Next, the object is the union of a number of smaller shapes enclosing
the object more precisely. Finally, the geometric model of the object is used. Note that it
is usually not necessary to intersect complete models. Only the spaces of intersection in
the next higher hierarchical level have to be examined, and many complex operations such
as the assembly of a model of the intersected volume are not needed.

Movable subassemblies may be known not to intersect. For instance, the wheels of a
cart do not touch the cart body. For this reason, certain components may be identified as
nonintersecting pairs. For complex objects, this infonnation is stored as a graph and is

- 19-

used to reject certain intersections as noncritical.

3.6. Immediate and Long Term Plans

We are completing a first version of the system designed as described in Hoffmann

and Hopcroft (1987). Primitive shapes are presently limited to cuboids, and at the time of
writing friction has not yet been incorporated. Extending the geometric modeling capabiliw

ties could have been done easily, but had been postponed in favor of developing the global

structure of the system more thoroughly. The work is conducted in cooperation with the

robotics group at Cornell and includes sharing software written in Common Lisp.

After the initial development phase, the project will branch out. On the one hand,

detail issues will be explored, e.g., how to speed up the interference test This work, and

the associated software development can be done on smaller Lisp machines. On the other

hand, we will explore effective ways to parallelize the system. Initially, we plan a conser

vative step as follows: The geometric model and the animation facility resides in a graphics

work station. that also contains the user interface. For simple wire frame animations, these
workstation have already sufficient power to locally update the screen in real time. The

dynamics and control model reside on a cycle server with powerful floating point capabili

ties. This server itself could be exploiting parallelism, and here we can take advantage of
the results of the parallel processing project.

In this system partition, only state variables are routinely exchanged. Occasionally,
e.g., upon impact, geometric information is communicated, but this will happen relatively

infrequently. Assuming each state variable requires on the order of 4 bytes and that the

screen is updated 30 times a second. each primitive object with its 6 state variables gen

erates a data traffic of approximately 5.8kb/sec, assuming that no constraint forces must be
communicated. Thus a simulation with more than 174 primitive objects will exceed Ether

net capacity. We expect that by the second half of the granting period further paralleliza

tion will become mandatory. At that time, we will explore ways to effectively distribute

the system over the NCUBE, thereby moving into a position where complex experiments

can be conducted with interactive performance. This involves further paralIelization,

perhaps partitioning by locality, and will apply the Insights of the Parallel Processing pro
ject.

We also plan to extend the coverage of the system, once a well developed prototype

has been implemented. Here we consider extending both the capability of the individual

submodeling systems, e.g., adding more sophisticated geometric models to our repertoire,

as well as extending the physical coverage by adding new domains of modeling and simu

lation, e.g., capabilities for vibration, elastic deformation. heat flow, etc. Such extensions

very naturally foster strong interactions among the central research programs described in

this proposal, and serve as integrating forces to the research and the needed infrastructure.

3.7. References

Ambler, A., (1984), "Robotics and Solid Modeling: A Discussion of Requirements Robotic

Applications put on Solid Modeling Systems". Robotics Research. 2M IntI.

Symp., Kyoto, 1984, MIT Press, 1985, 361--367

Dubowski, S. and R. Kombluh, (1984), "On the Development of High Performance Adap

tive Control Algorithms for Robotics". Robotics Research, 2M IntI. Symp.,

- 20-

Kyoto, 1984, MIT Press, 1985, 119--126.

Fishwick. P.A.• (1986), "Hierarchical Reasoning: Simulating Complex Processes over Mul

tiple Levels of Abstraction", Ph.D. Dissertation, Electr. Eng., University of
Pennsylvania

Hoffmann, C. and J. Hopcroft, (1985), "Automatic Surface Generation in Computer Aided
Design", The Visual Computer 1, 92--100.

Hoffmann, C., 1. Hopcroft, and S. Whitesides, (1986), "Constraint Based Placement of
Geometric Models", in preparation.

Hoffmann, C. and J. Hopcroft, (1987), "Simulation of Physical Systems from Geometric

Models", to appear, special issue of IEEE J. ofRobotics and Automation, 1987.

Hollan, J.D., E. L. Hutchins, and L. M. Weitzman, (1984), "STEAMER: An Interactive
Inspectable Simulation-Based Training System", AI Magazine 5, 15--28.

Hopcroft, J., J. Schwartz, and M. Sharir, (1983), "Efficient detection of Intersections among
Spheres", InrI. J. ofRobotics Res. 2, 77--80.

Latombe, J., C. Laugier, J. Lefebvre, E. Mazer, and J. Miribel, (1984), "The LM Rohat
Programming System", Robotics Research, 2"" Int!. Symp., Kyoto, 1984, MIT
Press, 1985, 377--391.

Lozano-Perez, T., (1983), "Spatiai Planning: A Confignration Space Approach", IEEE

Trans. on Compo C-32, 108--120.
Mason, M., (1984), "Mechanics of Pushing", Robotics Research, 2"" Int!. Symp., Kyoto,

1984, MIT Press, 1985,421--428.
Papadopoulos, 1., (1986), "Incrementai Deformation of an Irregnlar Assembly of Particles

in Compressive Contact", Ph. D. Dissertation, Dept. of Mech. Engr., Cornell
University

Peshkin, M., and A. Sanderson, (1985), "The Motion of a Pushed, Sliding Object; Part I:
Sliding Friction", Tech. Rept. CMU-RI-TR-85-18, Robotics Institute,
Carnegie-Mellon Voiv.

Wesley, M.A., T. Lozano-Perez, L. 1. Liberman, M. A. Lavin, and D. D. Grossman, (1980),

"A Geometrical Modeling System for Automated Mechanical Assembly", IBM

J. ofRes. and Devel. 24, 1980, 64--74.
Wittenburg, J., (1977), Dynamics of Systems of Rigid Bodies, B. G. Teubner, Stuttgart, W.

Germany, 1977, 244p.

- 21 -

4. GEOMETRIC MODELING

The project seeks to develop new techniques for representing and manipulating
the shape and structure of physical objects. On the one hand, it explores funda
mental mathematical properties of curved surfaces and develops new techniques

to analyze them with efficient methods. On the other, it develops the techniques
for assisting the user with automatic derivations and experiments with linguistic

concepts by which to direct this assistance.

4.1. Introduction

Geometric Modeling is the use of a collection of techniques to describe the shape and

structure of physical objects or dynamic processes. Its power stems from the ability to use
efficient algorithms for describing computer models of complex shaped objects as arrange

ments (e.g., boolean operations of union, intersection and difference) of simpler ones.
Research in geometric modeling requires a deep understanding of mathematical facts and
seeks to develop efficient tools that assist the naive user in a spatially intuitive manner. A
good geometric modeling system finds applications in engineering design, analysis and
simulation. Designed with sufficient generality, it can also be used in motion planning
Bajaj and Kim (1987d). Both Project Newton and the Mathematical Software project will

use the advances made by the Geometric Modeling project.

Many representations .have been developed for modeling the shape of physical objects
in computers. A popular representation is the wire frame model, e.g., Foley and Van Dam
(1983). Though it allows modeling complex objects with modest computational resources,
it is an ambiguous representation not completely defining the solid. Another representation
is through volume decomposition by ocfrees, Meagher (1982). It is primarily used in

image processing. Octree models cannot be rotated easily, since the volume decomposition
must respect the principal coordinate directions. It is also difficult to support finite element
methods with an octree representation. More general purpose solid modelers use one of

two representation methods, Requicha and Voelcker (1980). The first method. called con

structive solid geometry (CSG). represents an object by combining primitive solids using
Boolean operations. Primitive solids usually include cuboids, spheres, cylinders, tori, and
cones, but could be extended to more complex shapes. The modeled solid is stored as a
tree whose leaves are primitive solids and whose interior nodes are operations on them,
typically (regularized) union, intersection, and difference, as well as translation and rota
tion. For such a tree it is difficult to determine whether the represented solid is empty and
whether two solids are equal. The second method, called boundary representation,

represents a solid by the topological structure of its vertices, edges and faces, along with

their geometric description. In this representation, it is difficult to detennine whether two
solids are equal unless faces are defined in a canonical way.

We are investigating a spectrum of problems furthering the ability to represent and
manipulate geometric models Bajaj and Kim (1987e. I), Bajaj, Hoffmann and Hopcroft
(1987), Bajaj, Lui and Wu (1987). Using a boundary representation scheme has the advan
tage of direct applicability of the results to Project Newton, to path planning research. and

to solving partial differential equations (PDE) used by the Mathematical Software Systems
project. We describe now some of the research problems that need to be solved in this
effort.

- 22-

4.2. User Interfaces

The design of an effective user interface is a neglected. but important problem area in

geometric modeling. All too often the user has to penetrate complicated conventions for
describing the building blocks from which to construct objects, and has to master complex

and error-prone spatial transformations in positioning objects.

It is widely accepted that programming effon is related to the correct structuring of
the problem to be solved and the algorithms for solving it. Likewise, the design of physi

cal objects and systems of physical objects must be well structured. Even a simple object
such as the gate valve shown in the picture below requires defining a variety of component

shapes and interrelating them by position, orientation, and dimension. The problem quickly

magnifies when generic designs are done, which must be archived in a data base for future

use in deriving design variants.

Figure 4.1. Gate Valve: All blending surfaces can be derived automatically, Hoffmann and
Hopcroft (1985).

While an interactive, graphical component is very important, the specification

language must also include a complete textual component for documentation and archiving

purposes. In Hoffmann and Hopcroft (1985) we have given a preliminary textual language

design based on considerations we now describe. Various elements of our design have also

been advocated by others, e.g., Poppelstone et at. (1980).

Generic design requires the ability to dimension shapes symbolically and express

complex relationships between object features. One way to achieve this goal is to syntacti

cally define shape procedures with parameters. as well as express numerical relationships

between parameters by equations. As an example, consider the generic definition of pipe of
Hoffmann and Hopcroft (1985).

pipe(radius, thickness, /engrh) := (cyll - cy/2) n HI n H2 where

- 23-

begin

cyll := ycylinder(radius + thickness):

cyl2 := ycylinder(radius):

HI := {y "O}:
H2 := {y ,; leng/h}:

top := (cyll- cy12) n {y = length}:

bottom := (cyll - cy12) n {y = OJ:

outside := cyll.surjace n HI n H2;

top';n _edge := top n cy12;

bottom.in_edge := bottom n cy/2

end

Then pipe(3,],7) would refer to a pipe of (inside) radius 3, wall thickness I, and length 7.

Moreover, pipes with a wall thickness functionally dependent on the radius may be defined;
e.g.,

pipe2(radius,length):= pipe(radius, radiuslIO, length).

When two shapes are combined, the intrinsic coordinate frames in which the two shapes are

defined must be related. Traditionally, one must "move" one of the shapes relative to the

other's coordinate frame, e.g., Brown (1982). This is intuitive only in the simplest cases,

i.e., as long as no rotations are required, but in general this style of specification becomes

difficult and error-prone. We therefore make provisions to name features as body-specific
frames of reference. For example, in the pipe definition above, only the names

cyll, cy/2, HI, and H2 are part of the definition the shape. The remaining names define

features. For example, pipe.bottom.in_edge refers to the edge of intersection of the pipe's
inside with the "bottom" end of the pipe. In conjunction with a syntactic schema for inher

iting features of substructures, we can define and implement intuitive language constructs

like attach that combine objects by mating congruent features.

A rather difficult topic at present is how one best expresses functional dependency, for

very little systematic knowledge about it seems to exist Yet a clear understanding of func

tional dependency is a key to developing higher level modeling languages. For example, in

the design of objects for the purpose of simulation, it is clear that certain shape parameters
may be dependent on overall functional characteristics: In modeling a robot arm, the

intended pay load influences both the material as well as the structural aspects of the links.

Ideally, one would like to make a generic design and derive from it specific instances

suited to the application demands. While the knowledge to formulate and exploit such

dependencies to the fullest may not yet exist, it is not unreasonable to seek means of

expressing such dependency where recognized. In this regard, the modeling project will

benefit considerably from a coordinated effon with Project Newton.

4.3. Automatic User Assistance

A sophisticated user interface hides the mathematical complexity of many modeling

steps. To suppon this information hiding and to expose the essential information needed to

control complex steps easily and effectively, automatic facilities must be developed that
implement the interface language.

- 24-

Automatic Surface Derivation

Virtually all objects in engineering design possess blending surfaces, that is, surfaces
of rounded appearance that smoothly connect two primary surfaces; e.g., Rossignac and
Requicha (1984). These blending surfaces either round otherwise sharp edges, or else con

nect similar surfaces in a standardized manner. Frequently, blending surfaces are only
approximately specified and within limits their precise shape is not crucial.

Blending surfaces of an object may be difficult to describe. For example, consider the
picture of the valve shown above in Figure 4.1. Here the blending surfaces are shown in
blue. Deriving them explicitly is difficult because of the tangency requirement at the

seams, and significant mathematical knowledge is required to obtain them directly. This is
unacceptable to the user.

In Hoffmann and Hopcroft (1985), we have introduced a simple method for blending
lhat combines great simplicity of derivation with intuitiveness and flexibility. Given two

arbitrary algebraic surfaces, the method delivers a blending surface joining the two that is

of low algebraic degree. In fact, in Hoffmann and Hopcroft (1986) we show that for qua

drics in general the method delivers all low-degree blending surfaces. Complex corners

can be smoothly rounded by exploiting generic base configurations, as explained in
Hoffmann and Hopcroft (1987b). A few cases are illustrated in Figure 4.2 below.

Figure 4.2. Examples of blending complex comers using the algebraic method of----.
Hoffmann and Hopcroft (1987b).

We have extensively experimented with the mathematics of blending surfaces. Two

major tools proved invaluable: symbolic algebraic computation, giving us access to explore
different, often complex surface derivations, and graphical rendering of these surfaces,

allowing us to inspect their behavior visually. A number of theoretical results, e.g., the
completeness theorem for our method, are an outgrowth of this experimentation during
which it was observed that all quartic surfaces we ever found for blending two quadrics

- 25 -

were derivable by our method. [We later found the analytic proof of this observation in

Hoffmann and Hopcroft (1986)]. Now that our method for surface derivation has matured,
we can incorporate it into solid modeling by means of simple primitives. In Hoffmann and
Hopcroft (1985) we have made a first attempt at defining such a language primitive. i.e.,
the smooth_attach primitive. Like attach, smooth_attach combines two objects by mating
features on them. It also adds a blending surface of approximate radius of curvature. This
curvature radius is specified by the user who thinks of placing a surface of approximately
circular cross section with given radius.

Many problems in blending remain that require substantial experimentation. For
example, we have a flexible method for combining blending surfaces at corners without

degree penalty. This involves constructing certain base configurations, and reducing the
general problem to them. At this time, we can handle vertices incident to three edges. The
systematic treatment of vertices of higher valence is presently not available unless surfaces
of high algebraic degree are accepted Other situations such as blending across tangential
surface patches also require further research. In order to attack these problems, the theoret
ical work done with the help of symbolic algebraic manipulation systems has to be com

bined with experimental methods that explore visually by rendering the surfaces.

Automatic Path Planning

One way of automatically planning collision free paths for a single rigid object among
physical obstacles is by reducing it to planning paths for a mathematical point among
"grown" obstacles in configuration space (C-space). Path planning for a point is simple
since a point can be moved without restriction in any connected region of the C-space Bajaj
(1986, 1987a). However, the construction of C-space obstacles proves to be difficult in
general. In the case of polyhedral objects, efficient algorithms were given by Lozano-Perez
(1983) and Donald (1984). In Bajaj and Kim (1987a,b,c), algorithms were developed for
constructing the C-space obstacles for objects described by algebraic curves and surfaces.

----.A-collision-free-path-is-then-found-by-combining-straight-line-segments-in-free-space-with--
geodesic paths on obstacle surfaces.

Our algorithms for generating C-space obstacles can also be used to generate swept
surfaces. To see this, observe that for a moving sphere the surface of a C-space obstacle is
simply the offset surface of the original object. Although of high degree, such surfaces can
be used for blending. Rossignac and Requicha (1984), Farouki (1986) discuss ways to
approximate such surfaces from simpler ones.

If the movement of polyhedral objects is restricted to translations only, the C-space
obstacles are also polyhedral. In this case, shortest collision-free paths are relatively easy
to determine. In Bajaj (1985, 1986, 1987a) and Bajaj and Moh (1987), both algebraic and
numeric solutions to this problem have been given. Kantabutra and Kosaraju (1986) and
Kosaraju (1986) give efficient algorithms for moving multilinked anns in confined regions.

The solutions to these and similar path planning problems need to be incorporated into a
general system capable of generating paths automatically.

Automatic Mesh Generation

Meshes are a means of partitioning or discretizing space into small elements where
relatively simple, local models and analysis are sufficient. By far the most common

- 26-

instance of this occurs in solving partial differential equations (PDEs), for example the
finite element method; see Thompson et a1. (1984) for a survey. However, this approach
has much greater generality, examples of which include piecewise polynomial approxima

tion, domain splitting methods (sub-structuring and Schwarz splitting) for physical simula

tion, and multifrontal methods for large sparse problems. We believe that meshes will

eventually became a tool to provide efficiency in many geometric processing applications.

A key concern in mesh generations is obtain a fineness that is compatible with the

application's need. Thus. one needs a fine mesh where rapid oscillations occur and where
high accuracy is needed. Mesh construction is very tedious and error prone, so automatic

algorithms are essential. Recently, Ribbens (1986) has given a framework for creating
meshes compatible with general criteria for fineness. He has also developed new, efficient
algorithms for automatically computing well-conditioned meshes. Rice (1986), has shown
that certain regular meshes (tensor products) can handle singularities without a substantial
penalty in the number of elements. These algorithms provide the infrastructure for a sys
tem which automatically refines or creates meshes in response to either problem charac
teristics or user direction.

4.4. The Curved Surface Domain

A large part of our research effort aims at extending the types of surfaces a solid
modeler can handle to include algebraic surfaces of arbitrary degree. Current geometric
modeling systems_disallow curved surfaces outright, e.g., Laidlaw et al. (1986), or severely
limit the types of curved surfaces they can handle. For example PADL, e.g., Requicha and

Voelcker (1980). can represent only planar. spherical, cylindrical, conical, and toroidal
faces. Other systems use bicubic patches, Faux and Pratt (1981). The problems that must
be solved in extending the geometric coverage necessitate combining results from algebra,
geometry, topology, and numerical approximation theory.

----Represenlation--------------------------

No matter what surfaces are represented, basic foundational work is required that
yields the insights needed to assess whether the desired operations can be carried out, based
on the chosen representation scheme, and how to implement them correctly. Many model
ing systems are in use today that have neglected this issue, and in consequence, they fail
for certain object configurations that are frequently encountered in applied work.

As long as all faces are planar, the underlying theory is well understood. Work exists
that describes such modeling systems and convincingly argues that the system is complete
and correct, Paoluzzi et al. (1986). When extending the geometric coverage to curved sur
faces new difficulties are encountered. Both topological as well as with geometric ambigui
ties can be present in the chosen representation scheme. While possible topological ambi
guities are widely appreciated, Weiler (1985), possible geometric ambiguities are not. In
Hoffmann and Hopcroft (1987a), we have addressed this issue. showing that the natural
extension of boundary representations to the curved surface domain is geometrically ambi
guous. Figure 4.3 shows side by side two different interpretations of the same boundary
structure. The two interpretations differ in shape and in position. Representation schemes
that avoid such ambiguities can be devised and are discussed in that paper.

- 27-

Figure 4.3. Example of ambiguity. two different interpretation of the same boundary
structure are shown, Hoffmann and Hopcroft (1987a).

Geometric Coverage

We are extending the geometric coverage of solid modelers to algebraic surfaces of
arbitrary degree. This will enable us to design and represent more accurately the geometric

models of physical objects along with the environments in which to manipulate them.
Increased geometric coverage also permits the incorporation of blending surfaces into the
modeling system and allows more realistic mesh generation. _

Low degree surfaces (e.g. quadrics) pennit efficient use of exact algebraic techniques.

This is generally not the case for higher degree surfaces. and numerical techniques become

necessary. For example, bicubic patches are popular in computer graphics and engineering,

but are surfaces of degree 18 and so do not allow efficient exact techniques, Sederberg et.
al., (1985).

When algebraic surfaces of arbitrary degree are permitted, implementing the regular

ized intersection of two solids in boundary representation requires the solution to a number

of basic mathematical problems. Briefly, we must devise efficient methods for determining

the complete intersection curve of two algebraic surfaces, for analyzing its components and

singularities, and for linearly ordering intersection points along a regular segment of the

curve. Fortunately, these problems can be formulated and attacked separately.

Singularity Analysis

Self intersections of curved surfaces and space curves give rise to singularities. These
singularities occur frequently in practice. For example, when sweeping a shape along a

space curve singular surface points are easily generated. When intersecting two objects

with curved surfaces, the intersection curves may have singularities even though none of

the intersecting surfaces have singular points. Occurring singularities must he determined

- 28-

explicitly. for in the vicinity of a singularity most algorithms needed to implement model

ing operations will fail.

Singularities can be resolved by special techniques. The desingularization theorem for

plane curves says that any given algebraic plane curve can be transformed by a birationaI

transformation (i.e. by an almost one-ta-one algebraic transformation) into a curve devoid

of singularities. A similar theorem also holds for surfaces, in fact over fields of any
characteristic. Desingularization is useful for algebraic integration needed when computing

volumetric and inertial properties of physical objects in our geometric modeler. We are
currently implementing the desingularization method for algebraic plane curves given in
Abhyankar (1983) to robustly trace the curves with proper connectivity. Bajaj, Hoffmann,

and Hopcroft (1987).

Desingularization yields enough information so that all the singularities on the curve

or the surface can be found. For curves there can only exist a finite number of point singu

larities and these are systematically obtained together with the number of branches of the

curve at each singular point by the method of Abhyankar (1983). Surfaces may contain

both isolated singular points as well as curves of singular points. Obtaining them all is

more difficult, Giffiths and Harris (1978), and efficient computational methods are presently

notknoWD.

Parametric vs. Implicit Forms

The rational parametric fonn of representing a surface allows greater ease for transfor

mation and shape control. The implicit form is preferred for testing whether a point is

above, on, or below the surface, where above and below is determined relative to the direc

tion of the surface nonnal. As both forms have their inherent advantages it becomes cru

cial to be able to go efficiently from one fonn to the other. especially when surfaces of an

object are automatically generated in one of the two representations. The tool for convert

ing the parametric representation to the implicit one is called elimination. One computes
----polynomial-resultants;-Griffiths-antl-Harris-(1978);--Closeo-IoIlD solutions are Jrnown to·

exist for two polynomials in a single variable, (e.g. Sylvester's resultant). However no

satisfactory solution is known for three or more multivariate polynomials. Taking the

resultant for two polynomials at a time leads to extraneous factors that cannot be avoided.

In practice, this means that the resulting implicit form describes not only the parametric

surface but, in addition, other surfaces, Bajaj (1987b). For three polynomials in two vari

ables a satisfactory solution may exist, but it is unknown at this time. Finding a solution

would mean that affine parametric surfaces in three space can be efficiently implicitized.

We are currently exploring if such a method can be based on the invariant method of Grace
and Young (1902).

To go from the implicit to the parametric fonn is more difficult. For surfaces of

degree higher than three no rational parametric forms exist in general, although parameter

izable subclasses can be identified. For low degree curves and surfaces Abhyankar and

Bajaj (l987a,b) have developed and implemented procedures for parameterizing implicit

forms. The approach has been extended to parameterize planar curves of higher degree and

special space curves, Abhyankar and Bajaj (1987c). These methods can be specialized to

work over rational or real fields, and have been implemented in MACSYMA. Currently we

are trying to obtain explicit parameterizations of special families of quartic surfaces and

surfaces of higher degree which we plan to use for representing blending surfaces.

- 29-

Approximate Representations

The efficiency of almost all computational methods for problems dealing with CUIVes

and surfaces depend primarily on the algebraic degree of the equation being manipulated.

Using lower degree surface approximations for the higher degree surfaces generated, e.g.,

for complex blending surfaces, is therefore a very attractive possibility that must be

explored. In such an approach to modeling, one chooses a family of low degree rational

algebraic surfaces that give sufficient flexibility in controlling shape so as to enable close

approximations of high degree surfaces. Choosing a good family of approximating alge
braic surfaces requires extensive experimentation and good graphics tools. It also requires

research to find efficient computational methods for obtaining close approximations by

rational parametric patches. Rational parametric surfaces represent a wider class of a l g e ~

braic surfaces !.han those represented by polynomial parametric patches, Griffiths and Harris

(1978). Most of the work in the past has focussed on the approximation of functions, Rice

(1969) or the approximation of curves and surfaces by polynomial parametric patches, e.g.,

Barnhill (1977).

4.5. Immediate and Long Term Work

At this time we are completing the implementation of a polyhedral solid modeling

system, Hoffmann et a1. (1986). This system will be extended to model algebraic surfaces
of arbitrary degree. Both the global structure as well as the interfaces among the internal

components have been designed so as to reduce this extension to a number of w e l l ~ d e f i n e d ,

specific components, each addressing one of the problems discussed above. A similarly

conceived rendering algorithm already exists. Extending it to render the larger class of

algebraic surface objects requires components based on the same mathematical problems,

so both programs will be extended at the same time.

4.6 References

Abhyankar, S. S., (1983), DesIngularization of plane curves. In Proc. Symp. in Pure

Mathematics, 40, 1-45.
Abhyankar, S. S.• and C. Bajaj, (1987a), "Automatic rational parameterization of curves

and surfaces I: Conics and conicoids", Computer Aided Design, 19,1, 11-14.

Abhyankar, S. S., and C. Bajaj, (1987b), "Automatic rational parameterization of curves
and surfaces II: Cubics and cubicoids", Computer Aided Design, to appear.

Abhyankar, S. S.• and C. Bajaj, (1987c), "Automatic parameterization of rational curves

and surfaces III: Algebraic plane curves", CSD-TR-619, Computer Science,
Purdue University.

Atallah, M., and C. Bajaj, (1987), "Efficient algorithms for common transversals", Infor

mation Processing Letters, 25.2,87-91.

Bajaj, C., (1985), "The Algebraic complexity of shortest paths In polyhedral spaces". In

Proc. 23rd Annual Allerton Conference on Communication, Control and C o m ~

pUling, Dniv. of IllInois, 510-517.
Bajaj, C., (1986), "An efficient parallel solution for shortest paths in 3-dimensions". In

Proc. 1986 IEEE International Conference on Robotics and Automation, San
Fransisco, 1897-1900.

Bajaj, C.• (1987a). "Exact and approximate shortest path planning". In Path Planning, R.

- 30-

Franklin, ed., SIAM, to appear.
Bajaj, c., (1987b), "On algorithmic implicitization of rational algebralc cnrves and sur

faces", CSD-TR-681, Computer Science, Purdue University.

Bajaj, C. and M. Kim, (1987a), "Generation of configuration space obstacles I: The case of

a moving sphere". IEEE J. ofRobotics and Automation, to appear.

Bajaj, C. and M. Kim, (1987b), "Generation of configuration space obstacles 11: The case
of moving algebraic surfaces", CSD-TR-586. Computer Science, Purdue

University.

Bajaj, C. and M. Kim, (l987c), "Generation of configuration space obstacles ill: The case
of moving algebraic curves". Algorithmica, to appear.

Bajaj, C., and M. Kim, (1987d), "Compliant motion planning with geometric models",

Proc. of 3rd ACM Symposium on Computarion Geometry, 171-180.

Bajaj,C., and M. Kim, (1987e), "Convex decomposition of objects bounded by algebraic

curves". CSD-TR-677. Computer Science, Purdue University.
Bajaj, c., and M. Kim, (1987f), " Convex hull of objects bounded by algebraic curves",

CSD-TR-697. Computer Science, Purdue University.

Bajaj, C., C. Hoffmann and J. Hopcroft, (1987), "Tracing algebraic cnrves: Plane cnrves",
CSD-TR-637. Computer Science. Purdue University.

Bajaj, c., C. Liu, and M. Wu, (1987), "A face area evaluation algorithm for solids in CSG
representation", CSD-TR-682, Computer Science, Purdue University.

Bajaj, C., and T. Moh, (1987), "Generalized unfoldings for shortest paths", IntI. J. of

Robotics Research, to appear.

Brown, C.M., (1982), "PADL-2: A technical summary", IEEE Compo Graphics and

Applicarions 2, 69-84.
Donald, B., (1984), "Motion planning with six degrees of freedom", A.l. Tech Reporl791,

MIT.
Faux, 1, M., Pratt, (1981). "Computational geometry for design and manufacture", Ellis

Harwood, Chichester.
Farouki, R, (1986), "The approximation of non-degenerate offset swfaces". C ' ~ o = m = p : : : u : : : t e = r ------

Aided Geometric Design, 3, 15-43.

Foley, 1., A. Van Dam, (1983), Fundamentals of interactive computer graphics, Addison-

Wesley, Reading. MA.

Griffiths, P., J. Harris, (1978), Principles of algebraic geometry, Wiley-Interscience Series.
Grace, W., A. Young, (1902), The algebra of invariants, Cambridge University Press.

Hoffmann, C., 1. Hopcroft, (1985), "Automatic surface generation in computer aided
design", The Visual Computer, 1, 92-100.

Hoffmann, C., J. Hopcroft, (1986), "Quadratic blending surfaces", Compo Aided Design

18,301-306.

Hoffmann, c., 1. Hopcroft, (1987a), "Geometric ambiguities in boundary representations",

Compo Aided Design 19, 3,141-147.
Hoffmann, C., J. Hopcroft, (1987b), "The potential method for blending surfaces and

comers", Geometric Modeling, G. Farin, ed., SIAM, 347-366.
Hoffmann, C., J. Hopcroft, (1987), "Simulation of physical systems from geometric

models", special issue. IEEE J. ofRobotics and Automation.

Hoffmann, C., J. Hopcroft, and M. Karasick, (1986), "Boolean operations on boundary
representations of polyhedral objects", in preparation.

Kantabutta, V. and R. Kosaraju, (1986), "New algorithms for multilinked robot arms",

- 31 -

Journal a/Computer and System Sciences, 32, 136-153.

Kosaraju, R., (1986), "Problems on points distributed around a circle", (in preparation).

Laidlaw D., W. Trumbore, J. Hughes, (1986), "Constructive solid geometry for polyhedral
objects", Proc. of the ACM SIG-GRAPH'86 Conference, Dalias, TX, 161-170.

Lozano-Perez, T., (1983), "Spatial planning: A configuration space approach", IEEE

Trans. on Computers, C-32, 108-120.
Lozano-Perez, T. and M. Wesley, (1979), "An algorithm for planning collision free paths

among polyhedral obstacles", CACM, 22, 10,560-570.
Middled1tch, A., and A. Sears, (1985), "Blend surfaces for set-theoretic volume modeling

systems", Camp. Graphics, 19:3, 161-170.
Meagher, D., (1982), "Geometric modeling using octree encoding", Computer Graphics

and Image Processing, 19,2,129-147.

Paoluzzi, A, M. Ramella, and A. Santarelli, (1986), "Un modellatori geometrico SIl rap

presentazioni triango-alate". Tech. Rept 13.86, Dept. of Inform. and Systems,

University of Rome.

Poppelstone, R., A. Ambler, and I. Bellos, (1980), "An interpreter for a language describ
ing assemblies", Artificiai Inteiiigence, 14, 79-107.

Requicha, A.. (1980), <'Representations for Rigid Solids: Theory, methods, and systems".

ACM Camp. Surveys, 12, 437-464.
Requicha, A., and H. Voelcker, (1983), "Solid modeling: Current status and research

dlrections", IEEE Camp. Grophics and Appl., 25-37.
Rockwood, A., and J. Owen, (1986), "Blending surfaces in solid geometric modeling".

Geometric Modeiing, G. Farin, ed., SIAM.
Rossignac, J., and A. Requicha, (1984), "Constant-radius blending in solid modeling".

Camp in Meeh. Engin. 3, 65-73.

Ribbens. C., (1986), Domain mappings: A tool for the development of vector algorithms

for numerical solutions of partial differential equations, Ph.D. Thesis, Purdue

University.
. ·-------,Ri"·c:cc:-e,-"J.-,'("1"96Zo9")~, 'T"'he:':-'-C:-a[J=p=r=ox='''''ma=tiC:o=n-o=>f'tu=n=c'''tioC:-ns=-,'v'o"I.-I"I'--'a=d"'vC:-an=c=e"'d'--::ro=pics, Addison-·-

Wesley.
Rice, J., (1986), "Adaptive tensor product grids for singular problems", Algorithms for the

Approximation of Functions and Data, J. Mason, eel., Oxford University Press.
Sederberg, T., D. Anderson, and R. Goldman, (1985), "Implicit representation of

parametric curves and surfaces", Computer Vision, Graphics and Image Pro

cessing, 28, 72-84.
Thompson, J., Z. Warsi, and C. Mastin, (1985), Numericai Grid Generation, North Hol

land.

- 32-

S. MATHEMATICAL SOFTWARE SYSTEMS

We first describe the current status and approach of this work. The mathematical
software group (primarily Wayne Dyksen. Elias Houstis and John Rice) has developed one
of the most advanced mathematical software systems, ELLPACK. We plan in the next five
years to produce a much more sophisticated system with a greatly enlarged domain of
applicability. ELLPACK is described and documented in the book [Rice and Boisvert,
1985]. It consists of (I) a very high level, mathematical like language for elliptic partial
differential equations (PDEs), (2) an integrated library of 60+ problem solving modules and
(3) a set of software tools to provide easy extensibility, portability and system evolution. It
is embedded in a system for the scientific evaluation of the performance of POE software
[Boisvert, Houstis and Rice, 1979]. ELLPACK consists of 120,000+ lines of code and is
being used at about 100 sites worldwide. Its current status is summarized in the report
[Rice et. al., 1986]. Overviews of PDE software systems are given by [Machura and
Sweet, 1980] and [Boisvert et. al., 1985], see also [Boisvert et. al., 1986]. Many of the
characteristics of ELLPACK will be apparent from the discussions given below, the future
evolution of ELLPACK is discussed in some detail in [Rice et. al., 1986] and [Rice, 1986].

Instead of describing ELLPACK in more detail, we present our approach to the crea
tion and evolution of mathematics software systems. We find computational systems for

POEs an excellent vehicle for studying mathematical software systems in general. Further,
we know the problem domain well, the group has written perhaps 50 papers on methods for
solving POEs and POEs are central to a large variety of major scientific fields. As Figure

5.1 illustrates, the problem area touches all the major components found in mathematical
software systems. The box' 'algorithm mapping" refers to the problem of mapping a com
putational structure (program) onto an architecture.

A useful alternative is our view of the future structure of mathematical software sys
tems given in Figure 5.2. At the top is the user and at the bottom is an enormously power-

----ful-and-varied-computing-environment-.A-central-task-facing-computer-science-is-to-give

the user full benefit of the underlying computing power. The top layers will have very
large, sophisticated software systems running on powerful, graphically oriented worksta
tions to provide access to supercomputers. The workstations will provide a large body of
generic software for user interaction, graphical interfaces, text processing. Each major
application area will have an expert system to aid in fonnutating the problem to be solved,
choosing the methods to solve and analyzing the results.

Underneath this is another software layer consisting of application specific software
(modules to solve particular classes of problems, to present results in particular ways, etc.)
and somewhat generic mathematical software: geometric software to define and manipulate
physical objects, numerical software to solve equations or do data analysis, symbolic
software to handle algebraic systems or logic programming. We will specifically focus on
very high software integration of a "loosely coupled" nature. This is best defined by an
example, our new "POE Solving System" could have MACSYMA running to do algebraic
manipulations or differentiations, Lisp running to support the expert system, ELLPACK
running to solve a POE, SAS running to do data analysis or provide graphical summaries,

I-OEAS running to allow input of complex physical structures. We do not intend to "get
inside" any of these systems but rather make them communicate. There are many obvious
inefficiencies in this approach, but we expect to compensate by having high powered

- 33-

workstations. Once the feasibility and desirability of a particular configuration is deter

mined, one can then turn to optimizing the system interfaces to improve performance.

User
Interface

Output

and Data
Reduction

Algorithm

Mapping

Hardware

Configuration

Definition

Problem
Definition

Input

Computational

System

ForPDEs

Algorithm

Performance

Analysis

Governing

Equations

Domain

'-_--1Definition

Grid

Algorithm

Development

Figure 5.1. Schematic illustration of the facets of scientific computing involved in a sys

tem for PDEs.

5.1. High Level Environments for Scientific Computing

ELLPACK is a very high level language for solving a large class of elliptic problems:

second order, linear elliptic PDEs in two and three dimensions with Dirichlet, Neuman,

mixed or periodic boundary conditions. For example, the simple elliptic problem

-'12"-201t2" = 0 (x,y)e (O,I)x(O,I)

"- 0 x=O,I, y=O

U, 41tsin(21tX) y = I

can be solved by the ELLPACK program shown in Figure 5.3.

An ELLPACK program consists of several segments. The elliptic problem is defined by

the equation and boundary segments; these segments are declarations to ELLPACK and as

such are not "executed". The remaining segments are executed from top to bottom. Fig

ure 5.4 shows further examples of equation and boundary segments.

ELLPACK contains four basic types of problem solving modules. Discretization

modules discretize the continuous problem by generating a system of linear equations.

Indexing modules are used to order the linear system which is then solved by a solution

- 34-

user
........................

-ligh Performance, High Lev

Workstation Environment

I
Application Oriented

Expert System

I
Mathematical Software

Infrastructure

........................

Computational Resources

Management

I
Network Operating

System

I
Heterogeneous Computing

Facility

Mathematical

Software

Systems

Figure 5.2. Schematic of the future organization of scientific computing. The mathemati
cal software systems area is indicated by the dotted box.

module. Triple modules incorporate all three of the above steps into one module.

Interactive ELLPACK is an extension of ELLPACK. Menus of traditional ELLPACK

statements can be constructed using the newly added menu segment. Interactive
ELLPACK uses both color graphics output and graphics input to provide a sophisticated

user interface.

The segments in a traditional ELLPACK program are executed sequentially. from top

to bottom. In order to allow the user to specify several different methods or procedures
that might be used in solving a problem, and to interactively choose from them at run time,

we added a new menu segment to ELLPACK:

equation.

- 35-

- uxx - uyy - (20'pi"2)u = 0

boundary. u=O

uy = 4*pi*sin(2*pi*x)

onx =0

on x = 1
ony=O

on y = 1

grid.
discretization.

indexing.

solution.
output.

end.

17 x points % 17 Ypoints

5 point star

as is

Hnpack baud

max(u) % plot(u) % max(residual) % plot(residual)

Figure 5.3. Sample ELLPACK program for solving the Helmholtz equation

by ordinary finite differences and Gauss elimination.

menu. '<menu name>'
<menu item>

<menu item>

The title for the menu is given by <menu name>. One or more <menu item>'s follow,
specifying the choices to be listed in the menu. Each <menu item> is of the fonn:

---------------------- --

,[<key>] : [<label>]' <item definition>

where <key> is an optional key (the user enters this to select the item at run time), and
<label> is an optional name for this item. The default <key> is an integer such that the
items in each menu are numbered sequentially. The default <label> is a meaningful string
from <item definition>. The <item definition> may include one or more of the following
ELLPACK segments: grid, discretization, indexing, solution, triple, output, procedure, or
fortran. An <item definition> may extend over several lines, as long as segment names
within menus do not appear in column one. Since segment names which appear outside of
a menu segment must begin in column one, the assumption is that a menu segment contin
ues until another segment name occurs beginning in column one. Every menu automati
cally contains three standard items: continue to the next menu. return to the previous menu,
and quit from the Interactive ELLPACK session. In a UNIX environment, the user can
escape to the shell by «!command". Three examples which illustrate most of the features
of the menu segment are given in Figure 5.5.

In a windowing environment, <menu narne> is used as the window title, and the
<key>'s are used to construct pop-up menus; in this case. the default keys 1.2.... should be
avoided and meaningful ones supplied.

- 36-

Sample Equations Segments

uxx + uyy + (1.+sin(pi*x))ux - u = f(x,y)

(P(x,y)ux)x + (p(x,y)uy)y - q(x,y)u ~ f(x,y)

uxx + uyy + uzz = [(x,y,z)

Sample Rectangular Boundary Segment

periodic

u=O
uy + 2u ~ g(x)

u=O

onx=O

on x = 1

ony=O

on y = 1

Sample Nonrectangular Boundary Segment

on line 0.2, 0.0
to 0.0, 0.4

to 0.0, 0.6
to 0.2, 1.0

uy=O on line 0.2, 1.0
to 0.6, 1.0

a(x,y)ux + b(x,y)uy - () on x-I+O.4*cos(t), &

y=I+O.4*sin(t) &

for t = pi to 3*pi/2

ux=o on line 1.0, 0.6
to 1.0, 0.4

a(x,y)ux + b(x,y)uy = 0 on x=I+O.4*cos(t), &

Y ~ O.4*sin(t) &

for t = pi/2 to pi

uy = 0 on line 0.6, 0.0
to 0.2, 0.0

Figure 5.4. Examples of ELLPACK equation and boundary segments used to describe

second order, linear elliptic PDEs in two and three dimensions with Dirichlet,
Neuman, mixed or periodic boundary conditions.

- 37-

menu. 'Discretization'

'Sps:linile differences'
'hbc:hennite bicubic collocation'

'hod:high order finite differences'

dis. 5 point star
dis. interior collocation

dis. hodie

• discretization •

5ps :

hbc

hod
c
r

q

finite differences
hermite bicllbic collocation
high order finite differences
continue

return

quit

menu. 'Solution'
'.' sol. band ge
'.' sol. Iinpack spd band
'.' sol. sor

• solution •

1 bandge
2 linpackspdband

3 sor

c continue

r return
___q_:_quit -----_.- -_. -------

menu. 'Output'

':maximums' ouL max(true)

max(error)

max(rcsidu)
':table u' ouL Iablc(u)

•• output

••*.*.**********************************

1 maximums
2 lablcll

c continue

r return
q quit

Figure 5.5. Examples of Interactive ELLPACK. menu segmenls. Each menu segment is followed by lhe

corresponding menu that would be produced at run time in a non-windowing environmenL

- 38 -

ELLPACK contains a number of output modules which produce graphics output. If
function is a FORTRAN function, then plot(junction) produces a two dimensional contour

plot (level curves), and plotJd(function) gives a three dimensional rendering of function. A
plot of the domain (perhaps nonrectangular) along with the current grid can be obtained by

plot domain. In standard ELLPACK a small set of plotting primitives are called to produce

the plots. These routines are system dependent, but examples using well-known plotting
packages such as CALCOMP or DISSPLA are provided. Most installations then provide
some way of sending these plot files to a number of output devices.

Interactive ELLPACK gives the user the ability to interactively view and manipulate
multiple ELLPACK plots. The interface depends on the terminal type, which is specified
using the Interactive ELLPACK option rerminal; currently, terminal can be anyone of
dwnb, tek4105, tek4107, tek4U5, or ridge. If the lerminallype is dwnb, graphics output is
merely written to a file in the standard ELLPACK way. On a graphics terminal, the inter
face consists of either a fixed number of static views or a variable number of dynamic
views (i.e., windows), each of which is identified by number.

On the Tektronix tenninals, color graphics output is written to predefined graphics

views. The number of colors and views is terminal specific. Figure 5.6 shows a complete
Interactive ELLPACK program; the color pictures of Figure 5.7 (which is unlabeled) illus
trates the Interactive ELLPACK interface on a Tektronix 4115.

The Interactive ELLPACK screen has ten fixed views and the resolution is good enough for
all the numbers to be read easily. The second color picture is an enlargement of view 10 of
the first picture, this can be displayed instantly using the ev command seen at the lower left
(the text view) of the first picture. Each view is a rectangular area typically occupying
some subregion of the terminal's graphic surface. Each graphic view is logically
equivalent to a copy of the entire graphics surface; hence, the high level software does not
need to know about the size or location of individual views. The terminals themselves
translate and scale the graphics output to fit in a given view. One view is chosen as the

-----default-output-vrew:-Graphics-output-is-stored-in-so-=-caIled-segments--which-are-stored-in-

memory local to the terminal. These segments can be manipulated locally (i.e., with only a
few bytes of communication from the host). Graphic output can be saved in a file to be

viewed during subsequent sessions, or to be printed on a color printer. These tenninals
support a separate surface for dialog (non-graphics) output. This dialog area covers (tran

sparently or opaquely) some number of views. It can be made invisible (and visible) from
the keyboard so that all graphics views may be exposed.

On the Ridge display (a bit-mapped device), graphics output is displayed in windows
which can be manipulated with a mouse. Figure 5.8 contains examples of an Interactive
ELLPACK session on a Ridge display. One window is used for dialog; its shape and size
change depending on the active menu. Menu items are selected from pop-up menus with
the mouse. Graphics output is usually placed into a newly opened window, although it can
be directed to any existing window. Once opened, the windows are managed by the Ridge
window manager

A number of new output modules have been added to ELLPACK to implement the
interactive graphics interface of Interactive ELLPACK. For example, move view moves the
contents of one view to another. If a menu contains the item

'mv : move view' output. move view

- 39-

then after entering "mY", the user will be prompted for "From view?" and "To view?".
Recall that views are identified by number. Parameters for these interactive output modules

can also be specified directly on the command line as in "mv 3 T'. A complete list of
these modules is given in Table 5.1.

Table 5.1

Interactive ELLPACK out ut modules for maniDulating the contents of views

Module Parameters Effect

move view view] view2 Moves the contents of view] to view2.

copy view view] view2 Copies the contents of view1 to view2.

select view view Selects view as the active view.

delete view view Deletes the contents of VielV.

enlarge view view Enlarges the contents of view so that it fills the screen.

plot grid view Plots the current grid in view. The plot is not part of the

retained segment in the view.
overlay grid view Plots the current grid in view. The plot is added to the re-

tained segment in the view.
put plot view file Puts the plot displayed in view into file.

Eet olot file view Gets a Dlot from file and disDlavs it in view.

The ELLPACK grid segment allows the user to specify either a unifonn grid as in

grid. 5 x points

5 y points
-_._. --------

or a nonunifonn grid as in

grid. 5 x points 0.0, 0.2, 0.5, 0.8, 1.0

5 y poims 0.0, 0.2, 0.5, 0.8, 1.0

In the nonunifonn case, it is often desirable to place the grid lines with respect to some
known function such as the right side of the PDE, a residual, a trial solution or an estimate

of the error. This is done both computationally and visually.

Interactive ELLPACK contains a new grid segment interactive which allows the user
to interactively construct a grid. In a non-graphic environment, the user is simply
prompted for the appropriate grid information. On graphics tenninals, the grid is con
structed via a graphics input device. The interactive grid module displays the domain with
the current grid in the default graphics view, and prints the following menu:

- 40-

• INTERACTIVE ELLPACK PROGRAM •

options.
max x points = 33 $ max y points = 33

interpolation =splines

terminal = tek41l5

equation. uxx + nyy + (20*pi*"'2)u = 0

boundary. u = 0

uy = 4*pi*sin(2*pi*x)

on x =0
on x = 1

on y = 0
on y = 1

menu. 'Solution Menu'

'ig: int.eracLive grid'

'5p: ordinary finite diffs'

'co: hermite collocation'

'hh: high order diffs/linpack band'

'hf: high order diffs/fft'

grid. interactive
disc. 5 point slar
solu. band ge
disc. hennite collocation

soln. band ge
disc. hodie helmhollZ
soln. Iinpack band

trip. hodie tIt

menu. 'Output Menu'

'pt : plot true' ont plol(true)

'pt3 : plot true 3d' out plol.3d(truc)
'pu : plOl u' out ploten)
'pu3 : plot II 3d' ouL plo13d(u)
'pa : plot abserr = abs(error)' ouL plot(abserr)
'pa3 : plot abserr 3d' ouL plot3d(abserr)

________'PL_:_ploJ re:slcLualcc'_--c__c-c--;- ~ O ~ U ~ L _ p l o l (r e s i d u) _

'mv : move plot from view to view' ouL move view
'ev : copy plot from view to view' oul copy ...iew

'dv : delete plot from view' oul delete view
'ev : enlarge views' out enlarge views
'pp : put function plot to a file' oul put plot
'gp : get function plot from a file' oul get plot
'pg : plot grid' ouL plot grid
'og : overlay grid' ouL overlay grid
'mx : max error' ouL max{error)

subprograms.
function true(x,y)
common I clrvgll rlepsg, rlepsm, pi
true = sin(2*pi*x) ... sin(4*pi*y)

relurn
end

function abserr(x,y)
abserr =abs{error{x,y))
return
eod

-_._-

end.

Figure 5.6. Interactive ELLPACK program. Two menus are specified in this example: one with a set of
problem solving modules (grid, discretization, solurion. triple), and one with a choice of output

modules.

- 41 -

I •

,,,,,
o

L
L
W

•J:J
"

I •

t ,

I--'--------------t-~~:..--------------i'"

I

.' .'1--'------+.::..----------i'"

c' ~ ' , ,

c

" .

" ,,.
L :. .:.

.' ~ -' ~ .' ~
l:. :::. <" <" <" ~ . '- .' "<'

',' '.'
.' "

,. ".

,
,"; ".

~:

'0 c'.

Figure 5,7.

- 42-

,""

anllna
return

Lt tru

" "It .rr

..-

..-

==

",,,till"
return
plot to".
plot tI

plot e'l"Or
plot lIbserr • lIbs(e
contOllJ'5 "burr •
nlect
delete 'leV
pat rllllCt!"a pLot t on
get rnnclTon plot r ~l

plot grId
"....rley.grld
escape
quit

==

..

conti"...
...t1ll""
pit tove
pit 'n
pit ,.r
pIt Hr.

'cO", Mr.

Ie' .Ie"
doll .,
",it: piOl
·gn plot
pit grId
arl gr,d

"quit

Figure 5.8. Interactive ELLPACK session on a Ridge display which suppons windowing
(top); individual views may be enlarged (bottom).

- 43-

• •
* Interactive Grid Module Commands *
• •

c clear the grid and the screen

E enlarge view
e undo enlarge view
g get a grid from a file

h help

i : input a value for a grid line

m : make the grid uniform in x or y

n : print the number of grid lines

o : restore original grid

p : put a grid into a file

q : quit

r : redraw the screen

U : user defined via llsrgrd

u uniform grid in x or y

v : print the value of the nearest grid lines

x : add an x grid line
X : delete an x grid line

y : add a y grid line

Y : delete a y grid line

location of the grid line to be added or deleted is specified by a cross hair cursor which is

------"P"o=sltionecl usmg elmer a Joyst1Ck~umbs wheels, or a mouse depenCling on ilie type o["("er"'---

minal. Typically, the grid is constructed over top of a plot of some function of interest. If

a command requires input, the user is prompted for it in the dialog area. The command

menu cae be displayed by typing "h".

5.2. Expert System Technology Applied to Scientific Computing

For any nontrivial scientific computing problem, the selection of the "best" solution

algorithm is difficult for the average nonexpen. Inferior familiar algorithms are often

selected over superior·unfamiliar ones in order to insure confidence in the computed results.

As a step toward solving this problem, we are applying the use of Artificial Intelligence

(AI) techniques to make powerful scientific computing techniques usable by nonexperts.

We are performing this investigation by actually designing, implementing and testing an

expen system in scientific computing. As a case study, we have begun work on El/iptic

Expert, an expert system for solving elliptic partial differential equations (PDEs).

Although ELLPACK contains vast "raw" PDE solving power, its potential as a prob

lem solver is often not realized since it takes an "elliptic expen" to make full use of

ELLPACK's problem solving powers. For a given elliptic problem, ELLPACK provides

1147 distinct solution paths. For the nonexpen user, choosing a valid path is difficult while

- 44-

choosing an "optimal" path is nearly impossible. Most similar very high level systems
share analogous drawbacks.

Elliptic-Expert is an extension of Interactive ELLPACK which advises the user in the

selection of the "best" solution path (algorithm) for solving an elliptic problem. The
interaction between the Elliptic-Expert system and the user includes the following areas:

1. Elliptic problem definition

• Options

• Equation

• Boundary

• Hole

• Subprograms

2. Objectives

• Accuracy requirements

• Resource constraints

3. Metaknowledge

• Elliptic problem properties

• Solution properties

• Reasoning strategies

4. Solution method

• Grid selection

• Discretization or triple module

• Indexing/Solution module

5. Output specifications

The architecture of Elliptic-Expert is shown in Figure 5.9. Many tools and techniques

exist for building expert systems [Hayes-Roth, et aI., 1984]. They assume the existence of

a knowledge-base and a set of inference rules for the given problem domain. We already

have a knowledge-base of performance of methods in over 10,000 elliptic problem solu
tions. A prime research effort for us is that of using our knowledge-base of the perfor

mance data plus an inference engine to create an expert system for elliptic problems.

The knowledge-base contains facts about the following three main areas:

1. Discretization or Triple Modules

• Applicability to elliptic problem

• Effect of grid on discrete problem

• Convergence properties

• Discrete problem properties

• Resource requirements

• Relative ranking from perfonnance data

2. Solution Modules

- 45-

• Effect of and/or need for indexing

• Applicability to discretization

• Resource requirements

• Relative ranking from performance data

3. Module Documentation

The knowledge-base also contains rules for selecting the best ELLPACK elliptic solver for

a particular problem. Examples of knowledge-base rules are

1. If there is limited information about the problem and its solution, then use a
robust method.

2. If the coefficient of u is much larger than those of Un and UyY' then the solution

may exhibit boundary layer behavior.

3. IT the right side of the PDE is oscillatory, then the solution is oscillatory.

4. If the elliptic problem is the LaPlacian with Dirichlet boundary conditions, the

domain is rectangular and the solution is smooth, then use Fishpak-Helmholtz.

Elliptic-Expert's inference engine has two modes. In heuristic mode the solution
method is selected only on the basis of a priori knowledge; e.g., symbolic analysis of the
elliptic problem and past performance knowledge. In algorithmic mode, dynamic sttategies
based on both a priori and a posteriori knowledge are used; e.g.,

1. side calculations to study the behavior of coefficients, forcing function and boun-
dary data,

2. trial, low accuracy, cheap solutions,

3. trial solutions using the 2 or 3 "most promising" methods, and

4. additional input/advice from the user after presentation of the initial results.

The Acquisition System is used to gain knowledge-base facts and inference rules for
-----the-Knnwledge-Proces-sor:-Th:is-knowl&lge comes f'tOInllITee sources: tlie elliptic expert,

the Expertise System as it learns from its actions. and the ELLPACK Perfonnance Evalua
tion System [Boisvert, Rice & Houstis, 1979], [Rice, Houstis & Dyksen, 1980j.

The System Supervisor gives the problem definition to ELLPACK analyzer which

returns the problem interface-that is, the encoded elliptic problem. This interface is then
passes to the Expertise System along with requests for advice and/or explanation. Using
the Knowledge System. the Expertise System then makes suggestions to the user. If no

performance data is available for this type of problem, the Acquisition System is requested
to generate some via the Performance Evaluation System. IT the problem is deemed to be
interesting and different, it is added to the PDE population. After the user chooses a solu

tion method, the System Supervisor passes the solution interface to the appropriate
ELLPACK module which returns the solution. The Expertise System contains an explana
tion system to "justify" its actions.

Elliptic-Expert will serve in many roles including consulting, training and refining
expert's expertise. We expect the methodology developed in building Elliptic-Expert to be
applicable in other scientific problem domains.

- 46-

Elliptic-Expert

Elliptic-Expert

Uscr

,

Uscr

Interface

ELLPACK

v'"
Analyzer

SYSTEM

SUPERVISOR

~ ELLPACK

Modules

KNOWLEDGE SYSTEM
..
Knowledge Processor
------------j,

Inference , Expenise

System , System,
,,

............. ..,
Performance Syslem,, , r------------, , ,

Knowledge , Acquisition , Performance,
Base System Database,,

____________ .J

............................

E11ipLic PDE

Expert Population

,
,
L

Existing

To be
developed

r,,,
,

---------I------e-',
,,
,

L .J

···············AcijiliSiTiiiNSYSTEM·········

Figure 5.9. Schematic of Elliptic-Expen showing the user interface (top) and the expert system for

analyzing PDE and selecting methods (bottom). Note that the Performance System

exists but must be incorporated into Elliptic-Expert.

- 47-

5.3. Mathematical Software Infrastructure

This area includes creating the algorithms and software for rather specific mathemati

cal tasks (e.g., solving a certain type of PDE on a certain type of region, mapping a 2D
domain with five sides onto a rectangle, approximating a set of scattered data points by a

polynomial surface). There are literally hundreds of such items needed in a mature system
for computing about physical objects. We have these approaches to building this infras

tructure:

(1) Incorporate large sets of existing software using the high level integration tech

nique.

(2) Create ourselves a certain number of items critical to the next generation of

systems.

(3) Do without many items that are less critical, especially for an experimental

system.

Note that the large size (100,000+ lines of codes) of the existing ELLPACK system is due

primarily to its rich infrastructure.

Geometry Infrastructure.

We will concentrate on three areas: 3D objects, multiple domains and mappings or

grids. We have produced software [Rice, 1984] for the numerical processing of general 2D

objects. We now know how to modify this work to apply to 3D objects with surfaces

either defined implicitly (Le., f (x, y, z) = 0), explicitly (i.e,
zi = gi(X, y), i = I, 2, ... , p) or parametricaliy (Le.,

x =h,(s, t), y = h2 (s, t), Z =h, (s, t)). This will provide the interface with the geometric

modeling project. Knowing how is still a long way from accomplishing, only those who

have implemented geometric algorithms know how difficult it is to obtain reliable software

for seemingly straight forward tasks.

-------WewUraIso attempt to use existing systems for 3Doojects. We do not expect much;---

trouble when the entire computation can be carried out within such a system, we do expect

problems in using the 3D geometry capability separately because of complications in deter-

mining and accessing the data structures used internally.

Multiple domains are needed because so many applications involve more than one

domain. It is only work to extend the existing system to do most of the geometric process

ing of multiple domains. There are, however, serious research challenges in handling the

interactions and interfaces between domains. The geometric portion of this challenge is

addressed by the geometric modeling project. We are still left with the problems of creat
ing algorithms for handling PDEs with general interface conditions or with interfacing

domains where unrelated PDEs model the physical processes. We will create some such

algorithms using the collocation approach, see below.

Domain mappings are a key tool in handling general geometry. Note that gridding or

mesh generations may be viewed as simply mapping a domain with a very regular mesh

onto the domain of interest. An extensive and recent survey of this area is given by
[Thompson et. a1, 1985], we have successfully used this approach recently [Ribbens,

1986], [Rice, 1986] to handle a wide class of problem difficulties and believe that further

work will be fruitful in this area.

- 48-

Domain of PDE Applicability

We will extend our existing systems for PDEs in three directions: allowing time
dependent problems, allowing systems of PDEs and allowing nonlinear PDEs. This effort

consists of two steps. First the language and preprocessing system must be extended. We

have known how to do this for many years but, until now, have not had sufficient motiva

tion to do it. Second, we must obtain the software modules (the infrastructure) to solve the
PDEs newly admitted to the domain of applicability. We want to make one point clear:
we do not claim that we will produce a PDE solving system that will handle all non
linear, time dependent systems of PDEs on multiple domains. This is impossible now.
We do claim that we will produce a system that will handle a wide range of such problems,

including many of practical interest. We have already solved such problems within our

existing framework (see [Rice and Boisvert, 1985], Chapter 5). We will extend these ideas

but we will depend more heavily on using other PDE solving systems and software. Of

particular interest are DSS (Differential Systems Simulator) [Schiesser, 1982] and PDE

PROTRAN (formerly TWODEPEP) [IMSL, 1985] which are quite general in their applica

bility. Smaller. but srill substantial, sets of PDE solving software are the ACM algorithms:

540: PDECOL and 565 PDETWO/PSETM/GEARB by D.K. Melgaard and R.F. Sincovec.
Finally, we intend to use one of the standard structural engineering systems to extend our

capability to the fourth order PDEs that arise in stress and strain models.

Symbolic Systems

Symbolic computation has two rather distinct aspects: algebra (polynomials, deriva

tives. integrals, etc.) and logic (Lisp Prolog, Smalltalk, etc.). The applications oriented

expert systems will use symbolic systems of the logic flavor. We also need the algebraic
capabilities, first for the algebraic geometty computations for geometric modeling and

second for symbolic methods to solve PDEs. For example, we believe that symbolic

methods will be much more efficient than numerical methods for solving LaPlace's equa-
- - - - - t i o n - o n - g e n e r a l - 2 B - o r - - 3 E > - d o m a i n s ; - 0 n e - e x p a n d s - t h e - s o l u t i o n - - - i n - a - h a r m o n i c - s e r i e s - (g e n l ~ - --

erated symbolically) and then satisfies the boundary conditions by a least squares fit (com-
puted numerically). This old idea [Davis and Rabinowitz, 1961] has not given a fair test

because of the unfortunate separation that has existed between numerical and symbolic

computations. We will be able to implement this and similar methods within the environ-
ment we will create.

Numerical Algorithms

We have already mentioned that new algorithms will be needed to handle PDE inter

faces between domains. We have had good success in using collocation methods (see

[Houstis et. al., 1985], [Houstis et. al., 1985a], [Houstis, Vavalis and Rice, 1986], [Houstis,

Christara and Rice, 1986] for recent work). This area is still at the frontier of numerical

methods for PDEs (see [Birkhoff and Lynch, 1984] in Section 7.10) and we expect to make
-----contributions-lrere-an-d-to-d.i-scbver-algorithnrs-tlfarareooili reliaBle ano reasonably general.

We will also develop algorithms tailored to 3D problems. While many 2D methods

extend directly, they often have less efficiency than possible when one takes explicit advan

tages of the 3D nature of the problem. We will work with Robert E. Lynch in using high

order finite difference methods (see [Lynch and Rice, 1978], for example) in 3D. We will
also continue our one of collocation methods.

- 49-

Finally, we will develop parallel algorithms for PDEs as part of the parallel processing

project discllssed in the next section.

5.4 References

Basden. A., "On the application of expert systems", Int. J. Man-Machine Studies,

19(1983),461-477.
Birkhoff, G. and R.E. Lynch, (1985), Numerical solutions of elliptic problems, SIAM Pub

lications, Philadelphia.

Boisvert. R.F., S.E. Howe, and D.K. Kahaner, (1986), "GAMS: A framework for the
management of scientific software", ACM Trans. Marh. Software, 12, to

appear.
Boisvert. R.F., S.E. Howe, and D.K. Kahaner, (1985), "GAMS: Guide to available

mathematical software". Technical Report, Nat. Bur. Standards.

Boisvert, R.F.• E.N. Houstis, and J.R. Rice, (1979), "A system for perfonnance evaluation

of partial differential equations software". IEEE Trans. Software Engineering,

5, pp. 418-425.
Coombs, M.J., [ed.], Developments in expert systems, Academic Press, Orlando, 1984.

Davis, P.I. and P. Rabinowitz, (1961), Advances in orthonormalization computation. In

Advances in Computers, Vol. 2 (F.Alt, 00.).

Duda, R.O., P.E. Hart, K. Konolige, and R. Reboh, (1979), "A computer-based consultant
for mineral exploration", Technical Report, SRI International,

Dyksen, W.R. and C.J. Ribbens, (1986), "Interactive ELLPACK: An interactive problem
solving environment for elliptic partial differential equations". CSD-TR 588,

Department of Computer Sciences, Purdue University.

Hayes-Roth, F., D.A. Waterman, and D.B. Lenat, eds., (1983), Building Expert Systems,

Addison-Wesley. Reading, Massachusetts.

Houstis, E.N., E.A. Vavalis and l.R. Rice, "Convergence of an O(h 4
) cubic spline colloca

---------tion-method-for-elliptie-partial-differential-equation~ubmitted~. --------

Houstis, E.N., W.F. Mitchell, and J.R. Rice, (1985), "Collocation software for second order
elliptic partial differential equations", ACM Trans. Math. Software, 11, pp.
379-412.

Houstis, E.N., W.F. Mitchell, and J.R. Rice, (1985a), "Algorithm 638 GENCOL: Colloca
tion on general domains with bicubic Hermite polynomials", ACM Trans.

Math. Software, 11, pp. 416-418.
Houstis, E.N., C.C. Christara and I.R. Rice, "Quadratic spline collocation methods for two

point boundary value, problems". submitted.

"JMSL", (1985), TWODEPEP (Two diruensional, elliptic, parabolic and eigenvalue prob
lems), Houston.

Lynch, R.E. and l.R. Rice, (1978), "High accuracy finite difference approximation to solu

tions of elliptic partial differential equations", Proc. Nat. Acad. Sci., 75, pp.

2541-2544.

Machura, M. and R. Sweet, (1980), "A survey of software for partial differential equa
tions", ACM Trans. Math. Software, 6, pp. 461-488.

McDennott, J. "Rl: A rule-based configurer of computer systems", Artificial Intelligence,

19(1982), pp. 39-88.

Mehta, U.B. and P. Kutler, (1984), "Computational Aerodynamics and AI", NASA

- 50-

Technical Memorandum 85994,
Michie, D., "Expert Systems", Computer Journal, 23(1981), 369-375.
Ribbens, Calvin, J., (1986), "Domain mappings: A tool for the development of vector

algorithms for numerical solutions of partial differential equations". Ph.D.

thesis, Purdue University.

Rice, John, R, (1986), "Adaptive tensor product grids for singular problems". In Alga·

rithms for the Approximation of Functions and Data, (J. Mason, ed.) Oxford
University Press, Oxford.

Rice, J.R., W.R. Dyksen, E.N. Houstis, and C.J. Ribbens, (1986), ELLPACK status report.
CSD-TR 579, (31 pages).

Rice, J.R, (1986), "ELLPACK: An evolving problem solving environment". In Problem

Solving Environments for Scientific Computing (E. Ford, 00.) North-Holland, to
appear.

Rice, J.R, and R.F. Boisvert, (1985), Solving Elliptic Prob/emu Using EUPACK, Spring
Verlag.

Rice, J.R., (1984a), "Numerical computation with general two dimensional domains".

ACM Trans. Math. Software, 10, pp. 443-452.
Rice, J.R, (l984b), "Algorithm 624: A two dimensional domain processor". ACM Trans.

Math. Software, 10, 453-562.

Rice, J.R, E.N. Houstis, and W.R. Dyksen, (1981), "A population of linear, second order,
elliptic partial differential equations on rectangular domains, Parts 1 and 2",

Math. Comp, 36, 475-484.

Schiesser, W.E., (1982), "085/2: Differential systems simulator, Version 2". Dept. of

Computer Science. LeHigh University.

Shonliffe, E.H.. (1975), Computer-Based Medical Consultations: MYCIN, American
Elsevier. New York,

Thompson, J.F., Z.U.A. Warsi, and C.W. Mastin, (1985), Numerical Grid Generations,
North-Holland, New York.

- 51 -

6. PARALLEL PROCESSING

The design and analysis of algorithms for the next generation of parallel computers

requires attention to many factors including:

(i) parallelism detection, representation and exploitation.

(li) partition and allocation of computational objects based on the "physical"
structure of the application and target architecture.

(iii) performance evaluation of algorithm/architecture pairs.

In the next five to ten years we will see the wide spread use of the following computer
organizations:

(i) parallel MIMD systems with hundreds of processors of k Million Instructions Per
Second (kM1PS)

(ii) parallel MIMD systems with tens of processors of Billion Instructions Per

Second (BIPS)

(iii) heterogeneous networks of supercomputers

The fundamental research project that we try to address is:

How does one create a system where parallel algorithms can be designed and
specified in a reasonable time and which provides good implementation map

pings to any of the three architectures above?

Our work concentrates on the following components of the fundamental problem:

A. Develop algorithms for partitioning and allocating PDE computations for the
these machines.

B. Create new algorithms of an inherently parallel nature especially for physical

objects modeled by PDEs.

C. Provide a software environment for designing algorithms for targeted architec
tures.

D. Study the performance of parallel algorithms in various computer architectures.

E. Develop a distributed PDE-Expen system for heterogeneous computing environ
ment.

F. Provide a high level man-machine interface.

The above components of research are described in more detail in the following sections.

6.1. Performance Analysis of AIgorithmJArchitecture Pairs

We are interested in the performance of PDE and Geometry processing algorithms in
two important classes of computer systems: BIPS (Billion Instructions Per Second) sys

tems consisting of several very high perlonnance processors and kMIPS (k Million Instruc
tions Per Second) systems with hundreds of low speed processors. Several models of com

putation will be considered based on BIPS and kMIPS processor elements. We believe that
computing environments in the 1990 time frame will contain elements of both systems.

- 52-

Detailed simulation of such systems is intractable. Simple approximate models will

be utilized for estimating the performance of such systems. The NCUBE will be used to
verify kMIPS models for non-shared memory architectures. A simulator will be developed

on the FLEX multicomputer at Purdue to simulate BIPS systems with large shared sem

iconductor memories.

For such systems there are no existing application programs to use as benchmarks.

We propose to create a number of these using algorithms from PDE and Geometry model

ing applications.

The £Ist step in performance evaluation is the careful determinating of a set of
metrics. Evaluation metrics can be classified as computational and programming (or
software). Metrics for computation are related to hardware performance and software
metries try to assess the productivity and usability of various hardware/software resources.
The metrics for parallel programming software are in an exploratory stage. We plan to

study them in collaboration with the Software Engineering Research Center (SERC) at Pur

due.

6.2. Parallel Algorithms

We propose to examine PDE and Geometry modeling applications on BIPS and
kMIPS multiprocessor systems. The Purdue group in PDEs (W. Dyksen, E.N. Houstis,
R.E. Lynch and lR. Rice) have extensively studied a subclass of finite element methods
known as collocation methods and a subclass of high order finite difference methods
(RODIE) for elliptic PDEs. One of the features of these methods is that the corresponding

discretization process is fully parallel. In [Houstis. Roustis. Rice 86] we have explored the
feasibility of FLEX32 multiprocessor system for solving discrete spline collocation equa
tions. The techniques used to partition the corresponding computations are based on the
partition of data structures involved. The results obtained indicate that optimal speedup is
possible for large problems. A number of techniques based on domain decomposition are
currently explored for solving the discrete collocation and RODIE type models on a variety
of existing architectures. In order to simulate and verify their behavior in future multipro
cessor systems of BIPS and kMIPS type it is essential to have a facility like NCUBE (256
processors). We plan to place greater emphasis on local iterative methods for 2D and 3D

collocation and RODIE computational models.

We also will examine more fundamental questions about parallel algorithms and
explore the practical application of recent advances in our theoretical understanding of
them. For example, we [Kosaraju 86, 86a] have obtained new results about algorithms for
trees of processors. We can explore the performance of such algorithms on the NCUBE (a
tree can be embedded in its structure easily) or consider them for use on the hypothetical
multi-FLEX machine [Rice, 86].

We have recently obtained striking results [Atallah, Kosaraju 86] about simulating one
network of processors by another. This is an abstract form of the problem of mapping a
computational structure onto an architecture structure. We will explore the possibility of
using this approach for the mapping problems.

Also, a study into the feasibility of using the NCUBE system for grid generations will

be undertaken. Careful consideration of the graphical input and output will be given and
the high perfonnance NCUBE graphics system will be exploited.

- 53-

6.3. Partitioning and Mapping of Large Scale Engineering and Science Systems to
Parallel Machines

Many engineering and science problems involve two or more distinct subsystems
(models) that are tightly coupled. For example, a computational system for studying the

weather usually comes from the interactions of many models with different scales in both
time and space. Other examples are provided by fluid-structure, soil-structure, thermal
structure and stnlcture-magnetodynamic interactions. This is centered in the following four
areas:

Partitioned analysis of coupled systems

The tight interaction of coupled models (subsystems) is a common characteristic of
many of these problems. The interaction between the components means that the response
of the overall system must be calculated concurrently. The current approach for handling

most coupled problems is the 'monolithic' expansion of existing computer programs to
handle more interaction effects. The availability of multiprocessor computer systems, the
uncontrollable complexity and lack of flexibility of large-scale sequential software systems

justifies the study of partitioning of such systems and how to distribute their processing.
We intend to study and apply various partitioned analysis procedures to the problem of
weather phenomenon.

Partitioned analysis of single subsystems

We are witnessing major changes in the architectures of the general use computer sys
tems. Experience has shown that such drastic hardware changes require major changes in
the way we design and write algorithms in order to achieve promised performance levels.
Some of the primary goals in the design of algorithms for parallel processors are (1)
minimization of the execution time, (2) minimization of the global memory access, (3)
minimization of communication between processors, (4) identification of sufficient con
currency and (5) load balancing.

We propose to study partitions of elliptic and time dependent PDEs so as to satisfy the
above objectives. These partitions will be based on mathematical properties of governing
equations and some discretization models based on finite element and finite difference tech

niques. The techniques of substrllcturing and Schwarz splitting [Wern, 1963], [Tang, 1986]
will be exploited and various iterative techniques will be analyzed for handling the interac
tions across the interior interfaces due to substructuring.

Mapping partitioned application to parallel machines

Supercomputers are essential for large scale scientific and engineering computations

but their usage is difficult for average scientist and engineer. We propose to develop intel
ligent software tools which are able to analyze a concurrent application program and map it
into a given system. For this discussion we assume tightly connected. parallel systems.

One of the allocation methodologies to be tested is the methodology of Houstis/Rice
[Houstis, Houstis, Rice 86]. The precedence graph of the application is identified and the
computational and communication requirements are determined. Then the application's
graph is mapped to the corresponding architecture graph provided certain parameters that
characterize the architecture are given. Our current implementation is able to analyze a
concurrent C or Fortran application programs and generated the data to a heuristic mapping

- 54-

algorithm [Houstis, HOllStiS, Rice 84]. Figure 6.1 depicts the application which is an
instance of a collocation program for PDEs. Figure 6.2 is the precedence graph of the
application generated automatically and Figure 6.3 is the mapping of the application graph
to a shared memory multibus architecture. We will also explore the use of recent advances
of exact algorithms for such allocation problems. Currently we are developing a
knowledge base with various analytical models that characterize different architectures. We
plan to advance the stage of this system and make it available as an intelligent front end to
the FLEX32 and NCUBE multiprocessor systems.

6.4. Heterogeneous Distributed Computing

Above we considered a tightly coupled homogeneous parallel machine. Now we dis
cuss determining an optimal schedule in a heterogeneous environment. We recognize that
the cost of producing optimal schedules for realistic computations is exorbitant. Our distri
buted computing facility will be used by three major Purdue projects to explore the use of
heuristics for scheduling when optimum solutions cannot be found. These heuristic solu
tions can be classified by the binding time at which the heuristics are applied:

• BLAZE: Programming Environment for Multiprocessing.
Heuristics applied at compile time assume that much is known about the algo
rithms and potential architectures. but that nothing is known about the input
data. They attempt, for example, to recognize and exploit implicit parallelism.
They assume complete control over the hardware on which the computation
executes (i.e., they do not consider loads introduced by other computations).

• DE2: A Problem Solving Environment for a Scientific Application
Heuristics applied at program load time assume that much is known about the
algorithm and architecture, and that the sizes of the computation components
are estimable. They schedule the computation components on the machines,
attempting to minimize the processing time. The heuristics may, for example,
schedule a sequence of matrix manipulation steps, perhaps with some steps
performed in parallel on multiple machines. Again, the heuristics optimize
only for the computation and architecture that is specified; they do not consider
loads introduced by concurrently executing programs.

• TILDE: Control in a Loosely Compiled Distributed Environment.
Heuristics applied at execution time consider the set of resources requested by
computations and dynamically balance load on a set of machines. Such heuris
tics are closely related to the usual notions of scheduling and load balancing in
a distributed operating system. Typically, execution time heuristics know little
about the performance of a given algorithm, but they do understand the capa

bilities and loads of processors on the system. To minimize delay, tasks are
assigned to those processors that (a) are suitable for the computation, and (b)
have the least load among all suitable processors, where the "load" is normal
ized by the capacity of the machine. Note that such heuristics allow multiple
independent processes to compete for processors because the scheduler makes

- 55-

Text: 2000 0Ian;

p '" [V: N"'S, F: NOOSO. 1'.:. N"'300J

v: N"'S, A:. P"'20
A:. N

2
.. 25. Mat: H

2

,
N .. [F:40, v: 28,Mat: 16X16,A:.lOOOJ

18N'" [F: 15, V: 16. Mac: 16x16, A:. 1800J

L-9 L*[T:m*2,A:m*S+SOO]

, ,
T: K + 4K, A:. 10K + 300K

X-6 K* [MeIlt: Jo/II.U6fNIf. V: NIK .. 2,
A:.N IK f2+N IX]

KI2' ~ " ' i 2N"KY,64'ltK. V, 2NiK' 2,
A:.N IK 116+N IK J

1 .. [M ~ t : ?f'21K.x61f'l1I}. V: 4NtK • 2,

A:.N IK fl6+N IK)

1 '" [lvIat: ?:r"2/Kx61Nfl}. V: N '" 2
A:. NfI'K 116 + N IKj .

,
2 .. [Mac 2N IKx64N'!S

V: 4NIK" 2, A:. N"4'K]

KI2' [Mac 2 N " K x ~ N (K ,
V: 2N1K '" 2, A:. N IK"]

, , ,
K" [Mat: NzIK x ~ 6 4 1 W I K) . V: N I K ~ A:. (NIK)]
K" [Ma[:J2.F:J '2" 120)
K*[Mat:J ,F:! *300]

T: 81* L 2, A:. KJ2 '" 20

u

Figure 6. I. Graphical representation of a complex computation. The annotations are en

coded values of the memory and computation required at each node; anolher
set of annotations shows the communication requirements between the nodes.

- 56-

..

Figure 6.2. The precedence graph of application of Figure 6.1

- 57-

Figure 6.3. The mapping of the application graph (Fig. 6.2) to the FLEX32 system. The
numbers at the node indicate the processor to execute that node's code.

- 58-

dynamic decisions.

6.5. Distributed Elliptic-Expert (DE2): A Problem Solving Environmeut (PSE) for
Elliptic PDEs.

This project is a direct continuation of the Elliptic Expert project described briefly in

Section 5.2. Figure 6.4 shows the expansion of the DE2 system from the Elliptic-Expert
system shown in Figure 5.9. Our distributed computing facility attaches to the system
supervisor of Figure 5.9. Without further generalities, we describe our approach to key
problems: construction of an architecture compiler for a problem solving environment.

At the end of its analysis, the PSE knows a great deal about the computation; its size,
its input/output, the software modules to be used. etc., as well as the heterogeneous net
work facility. Assume that this infonnation is represented in a quantified fonn such as
annotated graphs. One then has to map the computation graph into the architecture graph
subject to all the constraints on size, sequencing and user specifications.

Once a machine is selected (e.g., a multiprocessor) for a computational module further
restructuring is feasible. The PSE has not yet created the load module for execution, so it
can restructure the module to fit the architecture better. An obvious, but very effective, tac
tic is as follows: we have a submodule that can do K things, we have N 2 of these things to
do and P processors. We create a load module with P copies of the submodule, each
assigned to one processor and each doing N 2/P of the things. Figure 6.1 shows a realistic
example of an annotated graph for a DE2 application. The shaded boxes represent repli
cated modules that can be grouped in any convenient way.

Our operational plan is as follows. We work with relatively coarse grain structures so
the graphs are of reasonable size. We translate all this infonnation into a mathematical

___9RtimiZl!Jio..!Lp-r_o_bJ~tm;jLwiILbe_mostly_aJine_acpr.ogram_with_perhaps_a_few_nonlinear __con
straints and a nonlinear objective function. We apply a fast heuristic algorithm to obtain a
good - probably not optimal - solution of the optimization problem. This solution is then
used to create the load module for the PSE run.

One can visualize from this description of DE2 that there are many specific technical
problems to be solved. To keep the presentation brief, we list only eight of these.

Technical Problems:

1. Obtain the module structure and resource use data. We want more "coarse" struc
ture and data that one obtains from a complete analysis of a program [Rice 84]. We
plan on software tools to help extract infonnation and simplify programs (e.g., count
the variables declared, reduce statements to arithmetic counts, ignore "small" loops
or branches). It is premature to automate this completely and we also will use human
interaction. Most submodules will reduce to one annotated node in the graph.

2. Parallelization of problem solving modules. We [Houstis, Houstis Rice 84], [Rice

85], and many others [Takuhashi 82] have studied recasting methods so they are easily
adapted to parallel computation. We have already parallelized some of the DE2
modules. We find that automatic approaches give helpful infonnation but that human

- 59-

analysis is essential for really good results.

3. Obtain the machine structure and resource capacities. We will obtain this informa
tion by hand for our network and machines.

4. Build the resource allocation problem. A particular run combines a fair number of

modules whose separate structure is known. These must be combined into one
resource allocation problem. We will automate this process.

5. Model the communications nonlinearities. In a mUltiprocessor or multimachine

environment the communication capacities behave nonlinearly as saturation is neared.
Since this is the interesting range of operation, this nonlinearity must be modeled. We

will measure this behavior ourselves for the FLEX32 and for intermachine communi
cation on the heterogeneous network.

6. Solve the resource allocation problem. The normal case will be to have only a few
hundred constraints and a nonlinear objective function. The problem is too big to use

time consuming standard optimization techniques, yet it is not a huge problem. We

[Houstis, Houstis, Rice 84] and others, [Oylus Edwards 76] have developed fast
heuristic methods for these problems. Our initial experience is that the work to obtain

a "good" solution heuristically grows linearly with the size of the problem. Our

heuristic algorithm will be developed further to make it robust and more widely appli

cable.

7. Architecture compiler: Dynamic software reconfiguration and program transforma

tions. Out long term goal is not only to map the computations onto the architecture,
but to dynamically reconfigure the software to fit better on the architecture. We will

operate at the procedure level (submodules).

8. Develop perjonnance estimators. In selecting machines we need to be able to make a

prior; estimates of routines based on the representations we have of the computations

and machines [Rice 82]. Performance prediction on multiprocessors is currently one
-- ----of-the-Ieading-open-questions-in-high-performance-computations;-we-place high-prior

ity on this problem and believe that the information we gather is the proper basis for

progress. Extensive experimental work is planned to calibrate these estimators.

- 60-

Distributed PDE.Expert

Distributed PDE-Expert

User

POE

Modules

User

Interface

POE

v"
Analyzer

''''.~_...L-_~ L ---'

.... SYSTEM

• SUPERVISOR "-

"" ,--------------

COMPUTER NETWORK
r---------------------------,

i1__M_P_C:_:_Ies__ I· '1__P r o c e s s _ R _ C m _ O _ ~ _ r _ 1 ;
L .J

r---------------------------,

i1__M_P_C:_:_Ies__ I· ·1__Processo_R_Cm_O_Ie_r_1 :
L .J

Performance

Dal.abase

. Pedowwce'S'ystem'"
r------------,,
,

.............

Expertise

System

Acquisition

SySlem

KNOWLEDGE SYSTEM
...
: Knowledge Processor
: r-------------,
: I I

. I Inference I

, ---I
I SYSl.ern I

: L_....:...__.J :
------:-1-.-- I_:·_:_:_:_:_:_:_.....:.:..:-.:..:~ ~: __ .':_._....:~. _

: I r: ..
: I r:
: I I :

: I I :
: I Knowledge I :, ,
: r Bmre I :

I I :
L. .J :

Elliptic

Expert

POE

Population

L. .J

··············AcQilisfuoJ'i"SYSTEM············· .

Figure 6.4. Schematic of DE2 showing the user interface (top right), the expert system for

analyzing PDEs and selecting methods (bottom) and the connection to the

computer network.

- 61 -

Distributed Hardware Facility

,
~ L ~_~

~---------------------------,, ,
FX/l: ELLPACK Fast Sequential :

I Modules Processor

r---------------------------,, ,
LISP ',' ELLPACK Symbolic:

Expert Processor I

, ,L ~

~---------------------------~ S~~~~~OR'~--'
I ELLPACK Vector" . - - - - - : J ; . : : . : . . : : : ; ~ : . : : . . : J

CYBER 205 : Modules Processor 10, ,, ,
~---------------------------~

~----------------------------,, ,
WORK' ELLPACK low Sequenti ,

STATION: Modules Processor, ,
~----------------------------~

r---------------------------,, ,
NCUBE: ELLPACK Parallel

I Modules Processor, ,L ~

r---------------------------,, ,
......- ·---FLEX:- -E!:;I:;PACK-- - -- -- -Parallel- _. -,- -- -_.

: Modules Processor:
, ,L ~

Figure 6.5. Schematic of the dislributed computer facility as attached to the PDE-Expert
system. The second expert system will analyze the computational require
ments, help select appropriate machines and map the computation onto them.

- 62-

6.6. References

Atallah, M.l and S.R. Kosaraju, (1986), "Optimal simulation between mesh-connected

arrays of processors". preliminary report.

Berman, F., M. Goodrich, C. Koelbel, W.J. Robinson, ill, and K. Showell, (1985), "Prep
p: A mapping preprocessor for chip computers," Proc. Inter. Con! Parallel
Processing, 731-733.

Berman, F. and L. Snyder, (1984), "On mapping parallel algorithms in parallel architec
tures," Proc. Internat. Con! Parallel Processing, 307-309.

Birkhoff, G. and R.E. Lynch, (1984), Numerical solution of elliptic problems, SIAM, Phi
ladelphia.

Boisvert, R.F., E.N. Houstis and J.R. Rice, (1979), "A system for performance evaluation

of partial differential equations software," IEEE Trans. Software Eng., 19, pp.
418-425.

Corner, D.E., J.T. Korb, T.P. Murtagh, W.P. Tichy, (1985), "The TILDE Project," Dept. of
Computer Science Technical Report CSD-TR-500, also appeared in the

Proceedings of the Workshop on Operating Systems in Computer Networks,

ACM and mM, Zurich, Switzerland.
Dyksen, W.R., R.E. Lynch, J.R. Rice and E.N. Houstis, (1984), "The performance of the

collocation and Galerkin methods with Hennite bi-cubics," SIAM J. Numer.
Anal., 21, pp. 695-715.

Gannon, D. and 1. Von Rosendale, (1984), "On the communication complexity of parallel

numerical algorithms", IEEE Trans. Computer, Vol. C-33, No. 12,1180-1194.
Gylus, V., and D. Edwards, (1976), "Optimal partitioning of workload for distributed sys

terns," Proc. Compcon. pp. 353-357.

Houstis, E.N., E.A. Vavalis and 1.R. Rice, "Convergence of an O(h4
) cubic spline colloca

tion method for elliptic partial differential equations", submitted.

Houstis, C.E., E.N. Houstis and J.R. Rice, "Perfonnance analysis of future multiprocessing

systems", to be submitted. __ _ __...
-- -- Hous-as, EN., C.C. Christara and J.R. Rice, -"-Quadratic spline collocation methods for two

point boundary value problems", submitted.

Houstis, C.E., E.N. Houstis and J.R. Rice, (1987), "Partitioning PDE compotations:
Methods and perfonnance evaluations", Journal ofParallel Computing.

Houstis, E.N., M.P. Mitchell and J.R. Rice, (1985), "Collocation software for second order

elliptic PDE's," ACM Trans. Math. Software, 11, 379-412.
Houstis, C.E., E.N. Houstis and J.R. Rice, (1984), "Partitioning and allocation of PDE

computations in distributed systems, >J in PDE Software: Modules Interfaces

and Systems (E. Engquist, ed.) North-Holland, 67-85.

Houstis, E.N., M.A. Vavalis and J.R. Rice, (1984), "Spline-collocation methods for elliptic
PDE's." In Advances in Computer Methods for Partial Differential Equations

V (R. Steplrnan, Ed.), lMACS, pp. 191-194.

Houstis, E.N. and J.R. Rice, (1982), "High order methods for elliptic partial differential
equations with singularities," Inter. J. Numer. Meth. Eng., 18,737-754.

I r o d o a t o u ~ E l l i n a . M. and E.N. Houstis, "An O(h 6
) quintic spline collocation method for

fourth order two point boundary value problems", submitted.

Kleinrock, Leonard, (1985), "Distributed systems," Communications ACM, 28,

1200-1213.

Kosaraju. S.R., (1986), "Efficient algorithms for selection on a tree of processors",

- 63-

preliminary repon.

Kosaraju, S.R., (1986a), "Pipelining characteristics of a tree of processors", preliminary

report.

Mehrotra, P. and J.R. Van Rosendale, "The BLAZE Language: A Parallel Language for

Scientific Programming," ICASE Report No. 85-29, ICASE, Hampton, VA.
23665 (to appear in Journal of Parallel Computing).

Norton, Alan and G.F. Pfister, (1985), "A methodology for predicting multiprocessor per

formance," Proc. Internat. Conf Parallel Processing, 772-778.

Rice, J.R., (1986), "Multi-Flex machines: Preliminary report", CSD-TR-612, Computer
Science, Purdue University.

Rice, J.R., (1985), "Problems to test parallel and vector languages". CSD-TR-516,
Department of Computer Science, Purdue University.

Rice, J.R., (1984), "Software parts for elliptic PDE software". In PDE Software:

Modules, Interfaces and Systems, (Engquist and Smedsaas. Eds), North

Holland, 123-134.

Rice I.R., (1982), "Machine and compiler effects on the performance of elliptic PDE

software". In Proc. lMACS lOth World Congress, I, IMACS, 446-448.
Tichy, W.F. and Z. Ruan, (1984), "Towards a Distributed File System," CSD-TR-480,

Computer Science, Purdue University, West Lafayette. IN, also appeared in the
Winter USENIX Coriference.

Takuhashi, Y., (1982), "Partitioning and allocations in parallel computations of partial
differential equations", In Proc. 10th lMACS World Congress, I, IMACS, pp.
311-313.

Tang, W.P., (1986), "Schwarz splitting, a model for parallel computations", Ph.D. thesis,
Stanford University.

Towsley, D., (1983), "An approximate analysis of a multiprocessor", IBM Research

Report RCI20 (43663).

Werner, A., (1963), "Anwendungen and fehlerabschatzungen fuer das a!~ernierende_ ver- _.
-- --_.- fwen von"-:-H.A. Schwarz. ZAMM, 43, pp-:- 55-61.'-

Williams, E.A., (1983), "Assigning processes to processors in distributed systems," Proc.

Internat. Conf. Parallel Processing, 404-406.

	Computing About Physical Objects
	Report Number:
	

	tmp.1307986960.pdf.woloQ

