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COMPUTING ALL INTEGER SOLUTIONS
OF A GENUS 1 EQUATION

R. J. STROEKER AND N. TZANAKIS

Abstract. The elliptic logarithm method has been applied with great success
to the problem of computing all integer solutions of equations of degree 3 and
4 defining elliptic curves. We extend this method to include any equation
f(u, v) = 0, where f ∈ Z[u, v] is irreducible over Q, defines a curve of genus 1,
but is otherwise of arbitrary shape and degree. We give a detailed description
of the general features of our approach, and conclude with two rather unusual
examples corresponding to equations of degree 5 and degree 9.

1. Introduction

In this paper we discuss a general method for solving equations defining plane
curves of genus 1 in rational integers. This method generalizes the so-called elliptic
logarithm method—ellog for short—which, as a practical routine (‘getting one’s
hands dirty’, so to speak) for solving Weierstrass equations, was first described and
applied by Stroeker and Tzanakis [16] and a little later, independently, by Gebel,
Pethő and Zimmer [8]. These papers only differ in their general approach towards
height estimates and software preference. Both employ David’s estimate of linear
forms in elliptic logarithms [7]. Since then, it has been applied by a number of
authors to a variety of elliptic equations of degree 3 or 4; see [15], [21], [3], [9], [19],
[20], [17]. In particular, a general treatment of the cubic elliptic equation can be
found in [20].

Now that many elliptic equations of standard types have been successfully solved
by application of Ellog, it seems natural to ask whether we can extend this method
to arbitrary equations defining a genus 1 plane curve. To be more precise, the
problem we wish to deal with in this paper is to develop a general practical method
for solving explicitly the diophantine equation in rational integers u, v

f(u, v) = 0,

where f ∈ Z[u, v] is irreducible over Q and f = 0 defines a curve C of genus 1.
This equation has at most finitely many solutions in integers, which can be ef-

fectively computed; see for instance [1] and [13]. However, the explicit computation
of all such is quite a different matter, and to this we shall direct our efforts. What
is new in this paper is a general procedure, in the framework of Ellog, for obtain-
ing, starting from an elliptic equation of arbitrary shape, an explicit linear form in
elliptic logarithms and an upper bound for it. This is a nonstandard task because
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it depends nontrivially on the particular shape of the initial equation f(u, v) = 0.
After this stage the process of explicitly obtaining all integer solutions may be
considered standard at the present state of affairs.

In Section 2 we give a full description of this generalization of Ellog, and in
Section 3 we present two rather unusual curves of total degree 5 and 9 respectively.
They serve the purpose of illustrating essential points in the description of our
method.

In the Notes section at the end of this paper, we have collected some relevant
facts that are considered standard but may be difficult to locate in the literature.

A preliminary, incomplete version of this paper found its way into the Proceed-
ings of Ants-iv [18].

2. Description of Ellog

In this section we shall give a detailed description of Ellog in its most general
form. We shall reserve the letter n for degv f . If C(R) is a bounded subset of R2,
solving this equation in integers should be a trivial task. We therefore consider only
such polynomials f for which C(R) is unbounded. Then, without loss of generality,
we may assume that there are real solutions (u, v) with |u| arbitrarily large.

2.1. The birational transformation. The curve C is birationally equivalent over
a number field K to

(1) E : y2 = q(x) = x3 +Ax+B,

where the degree of K is at most min{degu f, degv f = n}. A proof can be found
in [13, Proposition 1]. Moreover, for our method to work we need K to be real.
Fortunately this can always be guaranteed, as we shall see shortly. Because C(R)
is nonempty, an assumption we made above, we can choose a nonsingular point
(u0, v0) ∈ C(R ∩ Q) and put K = Q(u0, v0). The function field K(C) is of genus 1
and admits a place of degree 1, namely, the one corresponding to the point (u0, v0).
By [4, Chapter II, § 3] this function field is generated over K by two functions
x,y ∈ K(C) related by a Weierstrass equation (1), where x takes the place of x
and y that of y. This shows that K(C) can be both expressed as the quotient field
K[u, v]/〈f〉 and as the quotient field K[x, y]/〈q〉, which is precisely what we require.
Note that this argument also shows that [K : Q] ≤ min{degu f, degv f = n}.

Alternatively, by [13, § 6], a field K as above can be obtained by adjoining to Q
the coefficients of any Puiseux series at infinity of the algebraic function implicitly
defined by f(u, v) = 0. Given the existence of points (u, v) ∈ C(R) with |u| arbi-
trarily large, Lemma 2.2.1 below implies the existence of such Puiseux series and
ensures that K is real.

A practical algorithm for computing the Weierstrass model (1) and the bira-
tional transformation between C and E is described in [12]; an implementation of
this algorithm is included in the package algcurves of recent releases of the com-
puter algebra system Maple. It is worth noticing that this algorithm, when given
a nonsingular point (u0, v0) ∈ C(Q) and the coefficients of f as input, produces
an output (that is to say, the coefficients A,B of (1) and the coefficients of the
isomorphism C → E and its inverse) belonging to Q(u0, v0). Although this is not
very explicit in [12], it can be verified by careful scrutiny of [10, §§ 1 and 2.1] and
[11, §§ 1-3.1] on which the algorithm of [12] is based.
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The inclusion A,B ∈ K can be further improved to A,B ∈ Q: by an argument
found on pages 93–95 of [6], a simple transformation (x, y) 7→ (t2x, t3y) for a conve-
niently chosen t ∈ Q maps equation (1) to an equivalent Weierstrass equation with
coefficients in Q. Therefore, we have established the following:

Fact 1. The curve C is birationally equivalent over Q to a Weierstrass equation
(1) with A,B ∈ Q by means of a birational transformation

(2)
u = U(x, y),

x = X (u, v),

v = V(x, y),

y = Y(u, v),

whose coefficients are real algebraic numbers of degree at most min{degu f, degv f =
n}. These coefficients, as well as A and B, can be explicitly computed.

Throughout this paper we shall adopt the following convention and notation. In
our terminology, ‘a point P of the curve’ is a point with coordinates (u(P ), v(P ))
on C satisfying f(u(P ), v(P )) = 0, or, as the case may be, a point with coordinates
(x(P ), y(P )) on E satisfying (1). Then, according to Fact 1,

u(P ) = U(x(P ), y(P )),

x(P ) = X (u(P ), v(P )),

v(P ) = V(x(P ), y(P )),

y(P ) = Y(u(P ), v(P )).

Remark. A rational integer solution of f(u, v) = 0 corresponds to a point P with
u(P ), v(P ) ∈ Z. Although E is defined overQ by (1), the field K does not necessarily
coincide with Q. Now x(P ), y(P ) ∈ K, and so we need to consider E over K.
According to Section 2.5 it will be necessary to compute a Mordell-Weil basis for
E(K), which may turn out to be tricky in case K 6= Q. Such complications can be
avoided if we happen to know a nonsingular point in C(Q).

2.2. Puiseux series. The complex solutions (u, v), implicitly given by f(u, v) = 0,
can be made explicit ‘near infinity’ by means of Puiseux series. We gather the details
in the following statement.

Fact 2. (a) There is a finite Galois extension L/Q, which we view as a subfield
of C, and n distinct formal power series (Puiseux expansions at infinity)

(3) vi(u) =
∞∑

k=µi

αk,iu
−k/νi , with αµi,i 6= 0 (i = 1, . . . , n),

where for each i, νi, µi ∈ Z, νi ≥ 1, all αk,i’s belong to L, the formal
identity f(u, vi(u)) = 0 holds, and νi is minimal subject to the restriction
that no proper divisor of νi divides all k ≥ µi with αk,i 6= 0.

(b) Any formal power series v(u) satisfying the formal identity f(u, v(u)) = 0
and having properties analogous to those of the series (3), even without the
requirement that the coefficients of v(u) be algebraic, necessarily coincides
with one of the above n series.

(c) The formal identity

f(u, v) = p0(u)
n∏
i=1

(v − vi(u))

holds, where p0(u) is the coefficient of vn in f(u, v).
(d) Each series (3) converges for u in the range |u| > M , where M is the

maximum modulus of the roots of the polynomial resv(f, ∂f∂v ) ∈ Z[u].
(e) For each i the function t 7→ vi(t−νi) =

∑∞
k=µi

αk,it
k is analytic and one-

to-one in the punctured disk with center at the origin and radius M−1/νi .

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1920 R. J. STROEKER AND N. TZANAKIS

Most of these facts are considered standard, but detailed references are not
always easy to find. In the Notes (subsection 4.1) section at the end of this paper
we have collected as much information as we have been able to trace. The reader
may find it useful; we certainly did.

Also in the Notes section, (see 4.2) an algorithm is presented that determines
the finite extension of Q generated by the infinitely many αk,i’s, once the integers
νi and µi have been computed (e.g., by the first few steps in the construction of a
Newton polygon).

The following lemma shows how to obtain points (u, v) belonging to C(R) with
arbitrary large u.

Lemma 2.2.1. Let f(u0, v0) = 0 with u0, v0 ∈ R and u0 > M . There is exactly
one series vi(u) of (3) with all its coefficients αk,i (k = µi, µi+1, . . .) in R such
that, if we give u−1/νi its usual interpretation of the real νi-th root of 1/u, then
v0 = vi(u0).

Proof. By statement (c) of Fact 2, 0 = f(u0, v0) = p0(u0)
∏n
s=1(v0 − vs(u0)).

Further, by remark (iii) in the Notes (see 4.1), p0(u0) 6= 0; hence vi(u0) = v0

for some series vi(u). This series has only real coefficients αk,i (k = µi, µi+1, . . .).
Indeed, assume the contrary and denote by σ0 the element of Gal(L/Q) obtained by
restricting the complex conjugation automorphism of C to L. Then, by remark (v)
in the Notes (see 4.1), vi(u, 0, σ0) coincides with a series vj(u), the coefficients of
which are the complex conjugates of the corresponding coefficients of vi(u), and
hence vj(u) is distinct from vi(u). Then, vj(u0) = vi(u0) = v0 = v0, so that
f(u0, v) = p0(u0)

∏n
s=1(v − vs(u0)) ∈ Z[v] is a nonzero polynomial divisible by

(v−vi(u0))(v−vj(u0)) = (v−v0)2, which is impossible by remark (iii) in the Notes
(see 4.1). This shows that all coefficients of vi(u) are real.

Finally, if vl(u0) = v0 were true for some l distinct from i, an argument analogous
to that just given would show the polynomial f(u0, v) ∈ Z[v] to be divisible by
(v − v0)2, which again is impossible. �

2.3. A limiting value for X . Our intention of giving a full description of the
Ellog way of solving f(u, v) = 0 in integers u and v is clearly not hampered by
the restriction u > 0. As the computation of all such solutions (or ‘integral points’
of C) with 0 ≤ u ≤ M is rather straightforward, it suffices to consider only those
points P ∈ C(R) with u(P ) > M . By Lemma 2.2.1, for any such point P , there is
a subscript i ∈ {1, . . . , n}, such that the series vi(u) of (3) has only real coefficients
and v(P ) = vi(u(P )). Therefore, the problem we need to solve is essentially this:

For any (fixed) series vi(u) of (3) having all its coefficients in R,
find all points P ∈ C(R) such that u(P ) is a rational integer > M
and vi(u(P )) is a rational integer too.

In view of this, from now on and until the end of the paper the following will always
be tacitly understood:

• The subscript i belongs to {1, . . . , n}, and vi(u) is as in (3) with all its
coefficients belonging to R.
• For the generic point P under consideration, (u(P ), v(P )) ∈ C(R), u(P ) >
M and v(P ) = vi(u(P )).
• The meaning of u−k/νi is the usual one (see Lemma 2.2.1).
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Proposition 2.3.1. The expression X (u, vi(u)) always has a limiting value for
u→∞, including ±∞. Notation: x0i = limu→∞ X (u, vi(u)). If finite, x0i is a real
algebraic number that can be explicitly computed.

Proof. First note that f(u, v) cannot be a factor of either the numerator or the
denominator of the rational function X (u, v). For, otherwise, the curve C could be
injectively mapped into a straight line, which is impossible for a curve of genus 1.

Next, put u = t−νi with t ∈ R and 0 < t < M−1/νi . In view of Facts 1 and 2, it
is easy to see that X (u, vi(u)) takes the form

βtλ + β′tλ
′
+ β′′tλ

′′
+ . . .

γtρ + γ′tρ′ + γ′′tρ′′ + . . .
,

for certain nonzero real algebraic numbers β, β′, β′′, . . . , γ, γ′, γ′′, . . . and rational
integers λ < λ′ < λ′′ < . . . and ρ < ρ′ < ρ′′ < . . . . This shows that

x0i = lim
u→∞

X (u, vi(u)) =


β/γ if λ = ρ,

0 if λ > ρ,

sgn(β/γ)∞ if λ < ρ.

By Facts 1 and 2, β and γ can be explicitly computed. Hence the same is true for
x0i. �

Definition 2.3.2. In case x0i is finite we denote by Q0i ∈ E(Q∩R) the point with
x-coordinate x0i and nonnegative y-coordinate. In case x0i = ±∞ we set Q0i = O,
the group identity of E(Q).

2.4. The elliptic integrals. In this section we are concerned with the precise
connection between the elliptic integrals corresponding to the two models of our
curve of genus 1, that is to say, the original f(u, v) = 0 on the one hand, and the
Weierstrass equation (1) on the other. It is not difficult to see that

(4)
dx
y

= G(u, v)
du

fv(u, v)
,

where

G(u, v) = 2
Yu(u, v) · fv(u, v)− Yv(u, v) · fu(u, v)

3X 2(u, v) +A
.

In case f(u, v) = 0 is a Weierstrass equation, a quartic equation of type v2 =
Q(u) for some quartic polynomial Q, or a general cubic elliptic equation, G(u, v) is
constant with value 2; see [16], [21] and [20].

Now put

(5) gi(u) = G(u, vi(u)), xi(u) = X (u, vi(u)), yi(u) = Y(u, vi(u)).

Obviously, xi(u) and yi(u) are continuous real functions of the real argument u >
M , and satisfy yi(u)2 = xi(u)3 +Axi(u) +B. Hence

yi(u) = ε
√
q(xi(u)), with ε ∈ {−1, 1},

and consequently

(6)
dx
y

=
dx

ε
√
q(x)

.
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Then, by relations (4) and (6), we get

(7)
∫ ∞
u(P )

gi(u) du
fv(u, vi(u))

=
∫ x0i

x(P )

dx
ε
√
q(x)

,

under the assumption that u(P ) ≥ M is sufficiently large.1 Indeed, recall the
assumption v(P ) = vi(u(P )), which we made at the beginning of Section 2.3. By
the relations given at the end of Section 2.1 and (5), x(P ) = X (u(P ), v(P )) =
X (u(P ), vi(u(P ))) = xi(u(P )). Now (7) follows by Proposition 2.3.1, and relations
(4) and (6). Observe that for u(P ) large enough (see the Notes (subsection 4.3)
at the end of the paper), the open integration intervals of both integrals are in
one-to-one correspondence for the birational map (see Fact 1).

We shall now estimate the integrand in the left-hand side of (7). For Ellog to
work, it is essential that the corresponding integral tends to zero as u(P ) tends to
∞.

Proposition 2.4.1.

(8)
gi(u)

fv(u, vi(u))
= O(u−1−δ) (u→∞),

where δ ≥ ν−1
i .

Proof. By a classical result the integral associated with the differential in the left-
hand side of (4) is an elliptic integral of the first kind, and by implication, so
is the corresponding integral of the right-hand side of (4). This means2 that
for any parametrization (u, v) = (u(t), v(t)) of f(u, v) = 0, the t-expansion of
G(u(t), v(t))
fv(u(t), v(t))

· du
dt

contains no negative t-powers. Using this fact in the parametriza-

tion

u(t) = t−νi , v(t) = vi(t−νi) =
∞∑

k=µi

αk,it
k,

and taking into account that du/dt = −νit−νi−1, leads to the inequality

ordt
G(t−νi , vi(t−νi))
fv(t−νi , vi(t−νi))

≥ νi + 1.

Now on putting t−νi = u in the relation above we conclude that

ordu
gi(u)

fv(u, vi(u))
≤ −1− 1

νi
.

�

For example, if f(u, v) = 0 happens to be a Weierstrass equation to start with,
no birational transformation is needed, and δ = 1

2 , while in case of either a non-
Weierstrass cubic equation or of a quartic equation of type v2 = Q(u) with quartic
polynomial Q, it is easily shown that δ = 1 (see [20] and [21], respectively). In both
examples studied in Section 3 of this paper, δ = 1/νi.

1This can be made explicit; see the Notes (subsection 4.3).
2See for example [2, § 24].
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2.5. Linear forms in elliptic logarithms. In this section we shall show that the
integral in the right-hand side of (7) can be expressed as a linear form in elliptic
logarithms of points in E(Q), so that estimates for the integral automatically provide
estimates for this linear form.

The group E(R), defined by y2 = q(x), has the identity component E0(R), and
in the real case—we remind the reader that in this case q(x) = 0 has three real
roots e1 > e2 > e3—also the bounded component E1(R). Let Qj = (ej, 0) ∈ E(Q)
for j = 1, 2, 3. For any R ∈ E1(R) we put R′ = R+Q2 ∈ E0(R). We have the usual
isomorphism

φ : E0(R) −→ [0, 1) = R/Z
(see [16]). In the complex case—that is, when q(x) = 0 has a single real root—we
have E0(R) = E(R), and φ is defined on the whole of E(R). In the real case φ is
extended to a two-to-one epimorphism φ̃, defined by

φ̃(R) =

{
φ(R), if R ∈ E0(R)
φ(R′), if R ∈ E1(R).

Let ω = 2
∫∞
e1

dt√
q(t)

, the fundamental real period. A bit of thought suffices to

convince one that

(9) ω · φ̃(R) =

{
elliptic log of R, if R ∈ E0(R),
elliptic log of R′, if R ∈ E1(R).

We write
P = n1P1 + · · ·+ nrPr + T,

where P1, . . . , Pr form a Mordell-Weil basis of E(K)3 and T is one of the finitely
many torsion points. It is easy to see that the φ̃(T ) are rational numbers with
effectively bounded denominators. Then both φ̃(P ) and φ̃(−P ) are of the form

(10) m1φ̃(P1) + · · ·+mrφ̃(Pr) +m0 +
s

t
,

where r is the rank of E over Q, mj = ±nj (j = 1, . . . , r), m0 ∈ Z is effectively
bounded in terms of N = max1≤j≤r |nj |, and s, t are relatively prime integers,
effectively bounded by a small number; for a more detailed exposition, see [16].

Reminding the reader of the definition of Q0i and, in general, of our discussion
in Section 2.3, we now distinguish two cases:

(1) e1 ≤ x0i If u(P ) > M is sufficiently large (which, in practice, can easily

be made completely explicit), then e1 < x(P ), and hence∫ x0i

x(P )

dx√
q(x)

=
∫ ∞
x(P )

dx√
q(x)

−
∫ ∞
x0i

dx√
q(x)

= ωφ(σP )− ωφ(Q0i) = ωφ̃(σP )− ωφ̃(Q0i).

Here σ = 1 or −1, depending on whether y(P ) is nonnegative or negative
respectively. This, combined with (10) and (9), shows that the integral in
the left-hand side of (7) is equal to the linear form in elliptic logarithms

(11) −ωφ̃(Q0i) + (m0 +
s

t
)ω +m1ωφ̃(P1) + · · ·+mrωφ̃(Pr),

3Not of E(Q) in general; cf. Section 2.1 and the remark there.
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and all points appearing in it have algebraic coordinates. We shall denote
this linear form by L(P ).

(2) e3 ≤ x0i ≤ e2 For u(P ) > M sufficiently large (again, this can be made

completely explicit), x(P ) ∈ (e3, e2) and∫ x0i

x(P )

dx√
q(x)

=
∫ e2

x(P )

dx√
q(x)

−
∫ e2

x0i

dx√
q(x)

=
∫ ∞
x(P ′)

dx√
q(x)

−
∫ ∞
x(Q′0i)

dx√
q(x)

= ωφ(σP ′)− ωφ(Q′0i) = ωφ̃(σP )− ωφ̃(Q0i),

by which we have arrived at the same linear form L(P ) as before (11).

Remark. Occasionally it may happen that φ̃(Q0i) is a rational linear combination
of φ̃(P1), . . . , φ̃(Pr). For example, if kQ0i ∈ E(Q) for some integer k ≥ 1, then

kQ0i = k1P1 + · · ·+ krPr + torsion

for certain explicit, generally small integers k1, . . . , kr. Hence

φ̃(Q0i) =
k1

k
φ̃(P1) + · · ·+ kr

k
φ̃(Pr) +

k0

k
+
s′

t′
,

where k0/k and s′/t′ play roles analogous to those of m0 and s/t in (10). If
such is the case, the term φ̃(Q0i) in L(P ) disappears, and the coefficients of
ω, φ̃(P1), . . . , φ̃(Pr) change to fractions with explicit, generally small denomina-
tors. Thus, this case can be included in a more general situation in which the
coefficients of ω, φ̃(P1), . . . , φ̃(Pr) in L(P ) are rational numbers with explicit small
denominators, and numerators that are bounded by a large constant N0, for which

(12) N0 ≤ αN + β,

as is easily verified. Here α and β are small positive constants that can be explicitly
computed in every particular case.

We showed above that the integral in the right-hand side of (7) equals the linear
form L(P ) in elliptic logarithms of points in E(Q). It is quite straightforward to
give an upper bound for |L(P )|. Indeed, in view of Proposition 2.4.1, the integrand
in the left-hand side of (7) is in absolute value at most c1u−1−δ for an explicitly
computable positive constant4 c1. Thus,

(13) |L(P )| ≤ c1δ−1|u(P )|−δ.
Next we need the following

Lemma 2.5.1. Let h(·) denote the logarithmic height function. Then,

(14) h(x(P )) = h(X (u(P ), v(P ))) ≤ c2 + c3 log |u(P )|
for any point P with integer coordinates u(P ) and v(P ), where u(P ) is taken to be
larger than a conveniently chosen explicit constant.

Proof. The proof we shall give below is not the most straightforward one we can
give, but it is constructive, and it provides smaller values for the constants c2 and
c3 than those implied by a theoretically simpler proof.

Assume that u(P ) ≥ M . Then, v(P ) = vi(P ) for some i ∈ {1, . . . , n} (cf.
Section 2.3). Consider first the usual case, in which X is a rational function of

4The cj ’s that appear in this paper denote explicitly computable constants that are positive,

with the possible exception of c7.
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u and v with rational coefficients. Write X = F1/F2 for some relatively prime
polynomials with rational integer coefficients. For simplicity put u(P ) = u and
v(P ) = v, so that h(X (u(P ), v(P )) ≤ log max{|F1(u, v)|, |F2(u, v)|} = log |Fj(u, v)|
for the proper choice of j = 1, 2. By (3), |v| ≤ u−µi/νiγ, where γ is a small positive
constant, provided u is sufficiently large.5 Next, write Fj(u, v) =

∑
(k,l) ak,lu

kvl and
let c3 be a positive integer not less than max(k,l){k− lµi/νi}, where the maximum
runs over all pairs (k, l) for which ak,l 6= 0. Then, |Fj(u, v)| ≤ C2u

c3 , where
C2 =

∑
(k,l) |ak,l|γl and (14) holds with c2 = logC2.

In the general case, we proceed as before, but now the coefficients of the poly-
nomials F1, F2 are algebraic integers. Then, h(x(P )) = h(F1(u, v)/F2(u, v)) ≤
h(F1(u, v)) + h(F2(u, v)). Let F be a polynomial in two variables, the coeffi-
cients of which are algebraic integers. Further, for rational integers u, v, write
F (u, v) =

∑
(k,l) ak,lu

kvl. Then6

|F (u, v)| ≤ F (u, v) ≤
∑
(k,l)

ak,l u
k|v|l ≤ C2u

c3 ,

where c3 is as before and here C2 =
∑

(k,l) ak,l γ
l. �

Finally, we make use of the following relation between the Néron-Tate height
and the logarithmic height (see e.g., [14]7):

(15) ĥ(P )− 1
2h(x(P )) ≤ c4.

Recall that N is the maximum of absolute values of the coefficients nj of P with
respect to a given Mordell-Weil basis. It is well-known that ĥ(P ) ≥ c5N

2, where
c5 is the least eigenvalue of the height-pairing matrix corresponding to the chosen
Mordell-Weil basis. This is a positive-definite form; hence c5 is positive. Combining
this with (13), (14) and (15), we obtain

(16) |L(P )| ≤ exp(−c6N2 + c7) with c6 =
2c5δ
c3

, c7 = log c1− log δ+
c2 + 2c4

c3
δ .

The lower bound for |L(P )| is provided by S. David’s theorem [7], namely,

(17) |L(P )| > exp(−c8(logN0 + c9)(log logN0 + c10)k) ,

where N0 is as in (12) and k = r + 2 if φ̃(Q0i) is a rational linear combination of
φ̃(P1), . . . , φ̃(Pr),8 or k = r + 3, otherwise. Because of (12), the lower bound is
expressed in terms of N . This lower bound is valid, provided N0 is not less than
a certain ‘small’ explicit constant. For a more detailed discussion of the constants
appearing in the application of David’s theorem we refer the reader to the Appendix
of [21]. Thus, either N ≤ c11, or both (16) and (17) hold—with αN + β in place of
N0—so that in combination they give an upper bound for N .

5Actually, γ is already very small for u > 10 or u > 20.
6For an algebraic number α we write α to denote the so-called house of α, i.e., the maximum

absolute value of all its algebraic conjugates over Q.
7Cf. also [27] and [28].
8In particular, if Q0i = O.
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3. Examples

Now that the general outline of Ellog has been discussed in sufficient detail,
the reader may be curious to learn how the method behaves in practice, especially
under the pressure of nonstandard, unusual data. Numerous examples have been
given (see [3], [8], [9], [15], [16], [17], [19], [20], [21]) of the way Ellog works on quite
regular elliptic equations. In opposition to this, here we are interested in more
provocative equations that accentuate the general applicability of the method. It
turned out to be rather difficult to find matching examples in the literature. By
accident we stumbled on a fifth degree curve of genus 1 that is used to illustrate the
singularities command of the Maple package algcurves. We approached Mark
van Hoeij, author of this Maple package, who suggested another curve of genus 1.
The latter is given by an equation with small coefficients but of rather high degree.
In our view, both curves are unusual and, at the same time, sufficiently natural to
serve our purpose well enough. If the reader happens to know other such curves of
genus 1, we would be grateful to learn about them.

In the two examples of our choice, only the nonstandard parts are worked out
in detail. To justify this we repeat (see the Introduction) that new in this paper
is the general procedure leading from the initial equation to the linear form in
elliptic logarithms and the upper bound for it. It is mainly this stage that we
wish to illustrate in our examples; the remainder of the computational process is
standard,9 which is amply illustrated by an abundance of examples in the literature
(see the beginning of the Introduction). We therefore decided to show in detail how
we obtained the linear form in elliptic logarithms and its upper bound, but not to
give our computations beyond this point.

3.1. A degree 5 example. The example of this section has already been presented
in [18, section 6.3], where we used a somewhat different notation. Since it is an
interesting example, very appropriate in illustrating our general method, we once
again include it here, adapted to the choices of notation and overall description of
the present paper.

We want to solve f(u, v) = 0 in integers, where

f(u, v) = 8v5 + 35v4 + (128u− 82)v3 + 19v2

+ (207u4 − 621u3 + 521u2 − 135u+ 28)v

− 180u5 + 450u4 − 369u3 + 100u2 + 7u− 8.

The short Weierstrass model of this curve is

y2 = x3 − 62058288278602561
805306368

x+
61852994116858326481398145

59373627899904
and

X (u, v) = 43681
49152 (103981u5 + 15228u4v + 10284u3v2 + 1536u2v3 + 4128uv4

− 316526u4 + 47412u3v + 67584u2v2 + 15468uv3 − 2592v4

+ 368606u3− 71388u2v − 88968uv2 − 13932v3 − 206150u2

+2268uv+12636v2+52681u+6480v− 2592)
/
u(u2 + 1)(u− 1)2 ,

9See, however, the discussion on computational limitations in [17].

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



INTEGER SOLUTIONS OF A GENUS 1 EQUATION 1927

Y(u, v) = 9129329
524288 (2070033u6 + 70533u5v − 28045u4v2 + 45962u3v3 + 90616u2v4

− 7973144u5 + 1130670u4v + 1634455u3v2 + 312517u2v3

− 117296uv4 + 12052790u4− 2569492u3v − 3224660u2v2

+524456uv3+33368v4−9090868u3+1336366u2v+1787607uv2

+ 179353v3 + 3599145u2 + 115343uv− 162669v2 − 691324u

− 83420v+ 33368)
/
u(u2 + 1)(u− 1)3 .

By now it should be clear that without the use of symbolic computation we would
not get very far. These rational functions X (u, v) and Y(u, v) are defined over Q,
which implies that (x(P ), y(P )) ∈ E(Q) for any point P with (u(P ), v(P )) ∈ C(Q).
Therefore we need only consider a Mordell-Weil basis of E over Q instead of over a
proper extension of Q (see the remark on page 1919). This curve has trivial torsion
and its rank is 5. A basis is given by

P1 =
(
− 84348011

49152 ,− 566849166939
524288

)
,

P2 =
(

406276981
49152 , 516236166963

524288

)
,

P3 =
(
− 240027095

49152 ,− 37384602255
32768

)
,

P4 =
(

30445657
49152 , 32673868491

32768

)
,

P5 =
(

589387733
24576 , 3778802730351

1048576

)
with corresponding canonical heights bounded from above by 3.011, 3.019, 3.039,
3.214, 4.005, respectively.

Consider the case u > 0. According to Fact 2, we have the following five Puiseux
expansions (i = 1, . . . , 5):

(18) vi(u) = ρiu+ d0(ρi) + d1(ρi)u−1 + d2(ρi)u−2 +O(u−3) (u→∞),

where

d0(ρi) = 117652915
2647875132ρ

4
i + 59690773

294208348ρ
3
i + 64881275

294208348ρ
2
i − 37533284

73552087ρi + 3292350
73552087 ,

d1(ρi) = 2409249577008465
86558552032889104ρ

4
i − 143100375932054279

4154810497578676992ρ
3
i − 3841218563243545585

12464431492736030976ρ
2
i

− 442118719850886867
692468416263112832ρi + 99742932488150451

173117104065778208 ,

d2(ρi) = − 46304367990791457732640885
3667139798237041673525787648 ρ

4
i + 91871979044861844697522343

1833569899118520836762893824ρ
3
i

+ 43666801880702130891932691
814919955163787038561286144 ρ

2
i + 2831900188941035651896208357

29337118385896333388206301184ρi

− 213000092757640705570148071
814919955163787038561286144 ,

and ρ1, . . . , ρ5 are the roots of 8X5 + 207X − 180 = 0, only one of which, ρ1 say, is
real.

In the notation of Fact 2, ν1 = 1. The maximum modulus of the roots of the
resultant resv(f, ∂f∂v ) equals M ≈ 2.83. According to Lemma 2.2.1, for any point
(u, v) ∈ C(R) with u > M , v can be expressed as v = v1(u). The geometric meaning
of this is that the graph of C(R) has one infinite ‘branch’ in the positive direction.
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From the expansions (18) it is clear that lim
u→∞

vi(u)
u

= ρi. It is then straightfor-
ward to deduce that for i = 1, . . . , 5

x0i = lim
u→∞

X (u, vi(u)) = 1878283
512 ρ4

i + 43681
32 ρ3

i + 37434617
4096 ρ2

i

+ 55431189
4096 ρi + 4541994061

49152 .

The explicit coordinates of the point Q01 now easily follow (see Definition 2.3.2).

Finally we consider
g1(u)

fv(u, v1(u))
as a Puiseux series in u. With Maple’s help

we find that
g1(u)

fv(u, v1(u))
= C(ρ)u−2 +O(u−3) (u→∞)

with

C(ρ) = − 3208960
19764496521ρ

4
1 − 3488000

19764496521ρ
3
1 + 3609248

6588165507ρ
2
1

+ 18542144
6588165507ρ1 − 7380608

2196055169 ,

which shows that δ = 1 = 1/ν1 (cf. Proposition 2.4.1).
In the notation of Section 2.5, e1 ≈ −12630.87093889 and e2, e3 6∈ R, which

means (cf. Section 2.5) a Case 1 situation. Once we explicitly know the rational
function U(x, y), it is easily checked that we may take the value 2.83 for the constant
M (see 4.3). Then the function u 7→ x1(u) (cf. the beginning of Section 2.4) maps
the interval (M,∞) bijectively onto the open interval (x1(M), x01), where x1(M) ≈
2.241652 and x01 ≈ 113356.8. Hence, every point P ∈ C(Q) with u(P ) > 2.83 has
x(P ) > e1, and the corresponding linear form is

L(P ) = −ωφ̃(Q01) +m0ω + m1ωφ̃(P1) + · · ·+ ωφ̃(P5) .

From this point on we follow the steps described in Section 2.5 to compute the
values c1, . . . , c10. Nothing unusual occurred in or as a result of this computational
process.

The case u < 0 can be dealt with analogously on putting f ′(u, v) = f(−u, v)
and studying the solutions of f ′(u, v) = 0 with u > 0. In particular, we now have
the following five Puiseux expansions (i = 1, . . . , 5):

v′i(u) = −ρiu+ d0(ρi)− d1(ρi)u−1 + d2(ρi)u−2 +O(u−3) (u→∞),

where ρi and d0, d1, d2 are as before. We then proceed exactly as in the case u > 0.

3.2. A degree 9 example. It was Mark van Hoeij who put us on the track of the
unusual curve of genus 1 given by the equation f(u, v) = 0, where

f(u, v) = v9 + (504u2 + 168)v6 + 405(3u2 + 1)(u+ 1)v5 − 636(3u2 + 1)2v3

+ 324(3u2 + 1)2(u+ 1)v2 − 243
4 (u2 + 2u+ 1)(3u2 + 1)2v + 8(3u2 + 1)3.

In order to find a short Weierstrass model for this curve, we noticed that (u, v) =
(0, 32

81 ) is a regular point on the curve g(u, v) = 0, where

g(u, v) = u6f(u−1, v).

Working with this point, it took van Hoeij’s algorithm [12] as implemented in
Maple 6 almost two and a half hours on a Pentium III 733 MHz desktop to find
the corresponding Weierstrass equation

(19) y2 = x3 − 2 ,
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together with the birational transformation (2), and as it happens, X (u, v) and
Y(u, v) are again defined over Q. Both are too large to reproduce here. To give an
impression of their sizes, the total degree of the numerator/denominator of X (u, v)
and Y(u, v) is 20/19 and 21/20 respectively, and both have numerators with more
than 100 terms.10

As in the previous example, the coefficients of these rational functions are again
rational, and therefore we need only consider a Mordell-Weil basis of E(Q). Actu-
ally, E/Q has trivial torsion and rank 1 with generator of infinite order P1 = (3, 5).

The remaining calculations only took a fraction of the time needed for the com-
putation of the birational transformations.

Consider first the case u > 0. In this example we have, according to Fact 2, nine
Puiseux expansions, namely

v1(u) = 32
81 + 832

19683u
−1 + 735680

43046721u
−2 +O(u−3) (u→∞),

and, for i = 2, . . . , 9,

vi(u) = βiu
3/4 − β2

i ( 4
3159β

4
i + 56

39 )u2/4 + β3
i ( 17

9477β
4
i + 4583

2106 )u1/4

− ( 10
9477β

4
i + 727

1053 ) + βi( 35
85293β

4
i + 3005

6318 )u−1/4

− β2
i ( 128

767637β
4
i + 5701

28431 )u−2/4 +O(u−3/4) (u→∞),

where β2, . . . , β9 are the conjugates of the algebraic number β, satisfying

4β8 + 4860β4 − 2187 = 0.

Exactly two conjugates of β are real, say β2 and β3 = −β2, and it is easy to see

that β2 = 4

√
− 1215

2 + 351
√

3 ≈ 0.818960467.
In the notation of Fact 2, ν1 = 1 and νi = 1/4 for i = 2, . . . , 9. The maximum

modulus of the roots of the resultant resv(f, ∂f∂v ) equals M = 1.375120737. Accord-
ing to Lemma 2.2.1, for any point (u, v) ∈ C(R) with u > M , v can be expressed as
v = vj(u) for some j = 1, 2 or 3. From a geometric point of view, this means that
the graph of C(R) has three infinite ‘branches’ in the positive direction.

Working in the way we explained in the example of Section 3.1, we that find

x01 =∞,
x0i = 19

351β
4
i + 5399

78 (i = 2, . . . , 9).

Since we are interested only in expansions vi(u) with real coefficients (see Defini-
tion 2.3.2), we only list

(20) Q01 = O and Q02 = Q03 = (109
3 + 19

√
3, 285 + 1513

9

√
3).

Finally, we consider the expansion of
gi(u)

fv(u, vi(u))
as a Puiseux series in u. Careful

comparison of degrees, with the indispensable help of Maple, gives us

gi(u)
fv(u, vi(u))

=


16
729u

−2 +O(u−3) (u→∞) for i = 1,

βi
18u
−5/4 +O(u−3/2) (u→∞) for i = 2, 3,

which again shows that δ = 1/νi in all cases (cf. Proposition 2.4.1).

10The interested reader may find them on our homepages.
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In the notation of Section 2.5, e1 = 3
√

2 and e2, e3 6∈ R. Again, this is the Case 1
situation, and, for a general point P ∈ C(Q), our linear form has one of the two
forms

L(P ) =

m0ω +m1ωφ̃(P1),

−ωφ̃(Q0) +m0ω +m1ωφ̃(P1),

where Q0 = Q02 = Q03 (cf. (20)). From this point on we follow the steps described
in Section 2.5 to compute the values c1, . . . , c10. As we mentioned at the beginning
of this section, there is no point in giving the details of these calculations. The only
somewhat ‘unfriendly’ value is that of c3, which in one instance is as large as 15.5.
This is due, basically, to the complicated form of the rational function X (u, v) (cf.
the proof of Lemma 2.5.1). As a consequence, a comparatively small value for c6
is obtained which, in turn, results in a large upper bound for N (approximately
1042), rather unusual for a rank 1 curve. This, combined with the fact that c1 is
very small (its smallest value is 0.046), requires checking multiples n · P1 in the
reduction process with n as large as 70.

The case u < 0 is treated analogously on putting f ′(u, v) = f(−u, v) and study-
ing the solutions of f ′(u, v) = 0 with u > 0. The Puiseux expansions are similar as
before, namely

v′1(u) = 32
81 −

832
19683u

−1 + 735680
43046721u

−2 +O(u−3) (u→∞),

and for i = 2, . . . , 9

v′i(u) = β′iu
3/4 − β′ 2i ( 4

3159β
′ 4
i − 56

39 )u2/4 + β′ 3i (− 17
9477β

′ 4
i + 4583

2106 )u1/4

− (− 10
9477β

′ 4
i + 727

1053 ) + β′i(
35

85293β
′ 4
i − 3005

6318 )u−1/4

− β′ 2i (− 128
767637β

′ 4
i + 5701

28431 )u−2/4 +O(u−3/4) (u→∞),

where β′2, . . . , β
′
9 are the conjugates of the algebraic number β′ with defining equa-

tion
4β′ 8 − 4860β′4 − 2187 = 0.

Exactly two conjugates of β′ are real, say β′2 = 4

√
1215

2 + 351
√

3 and β′3 = −β′2, and
we proceed exactly as before.

4. Notes

4.1. The following remarks refer to Fact 2.
(i) Statements (a), (b), and (c) are classical statements on Puiseux series. They

can be found in classical books such as [2, Chapter II] and [22, Chapter IV],
though in slightly different form. The authors of these books use the notion
of parameterization in order to express the solutions (u, v), and instead of
(3) they write u = t−νi and v = vi(t−νi) =

∑∞
k=µi

αk,it
k. Here we prefer

following §3 of [23].
(ii) The Puiseux expansions (3) can be computed algorithmically by means of

Newton polygons; see for instance [22, Chapter IV, §3]. An interesting
refinement of this process is found in [25] with an added discussion on
complexity matters; see also [24, §2] and [26, §3]. It is worth mentioning
that the algcurves package of Maple computes the Puiseux expansions
of an algebraic function.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



INTEGER SOLUTIONS OF A GENUS 1 EQUATION 1931

(iii) Statement (d) seems widely known. However, we could not find an easily
accessible reference where this is explicitly stated and proved. Implicitly it
can be derived from, for example, [2, Chapter II] (especially §13).

Note that the nonvanishing of resv(f, ∂f∂v ) ∈ Z[u] for a specific value u0

of u (in particular for |u0| > M) means that the coefficient p0(u0) of vn

in f(u, v) is nonzero. In particular, this shows that f(u0, v) is a nonzero
polynomial in v, and what is more, this polynomial has only simple roots.

(iv) Statement (e) is found, for example, in [2, Theorem 13.1] and what pre-
cedes this theorem. For the injectivity proof of t 7→ vi(t−νi) we need the
somewhat technical requirement in (a) on the minimality of νi.

(v) Let ζ be a primitive νi-th root of unity, m ∈ {0, 1, . . . , νi − 1}, and σ ∈
Gal(L/Q). The formal series

vi(u,m, σ) =
∞∑

k=µi

σ(αk,i)ζmku−k/νi

also satisfies f(u, vi(u,m, σ)) = 0, and hence coincides with another series
(3), say with vj(u) = vj(u, 0, id). We then say that vj(u) and vi(u) belong
to the same conjugacy class. The n series (3) are thus partitioned into
disjoint conjugacy classes (see after relation (3.5) in [23]). Therefore, the
computation of a smaller set of series (3) composed of representatives of
each conjugacy class—this is what Maple actually does when it is asked
to compute the Puiseux expansions of an algebraic function—suffices for
the computation of all expansions (3).

4.2. The algorithm below, implicitly contained in the proof of Lemma 3 of [5],
determines the finite extension of Q, generated by the infinitely many αk,i’s that
appear in Fact 2, once the integers νi and µi have been computed (e.g., by the first
few steps in the construction of a Newton polygon).

Fix a subscript i in (3) and subsequently omit it in order to simplify notation.
Write

f(u, v) =
n∑
j=0

pj(u)vn−j , with pj ∈ Z[u] (j = 0, 1, . . . , n).

Choose a nonnegative integer N such that

−ν deg pj + µ(n− j) +N ≥ 0 (j = 0, . . . , n)

with equality for at least one subscript j, and put

Pj(x) = pj(x−ν)xµ(n−j)+N (j = 0, . . . , n) and F (x, y) =
n∑
j=0

Pj(x)yn−j .

Then F ∈ Z[x, y], and it is straightforward to check that

(21) F (x, y(x)) = 0 identically in x, where y(x) =
∞∑
k=0

αk+µx
k.

Algorithm. Let m = degx F and κ = (2n−2)m+1. For k = 0, 1, 2, . . . determine
recursively polynomials Fk(x, y) and Hk(y) as follows:

Step 1. Put k = 0 and Fk(x, y) = F (x, y).
Step 2. Write Hk(y) = Fk(0, y), and let uk be a zero of Hk.
Step 3. Compute Fk(x, uk + xy) and let xg be the least x-power occurring in the

resulting polynomial. Put Fk+1(x, y) = x−gFk(x, uk + xy), k ← k+ 1. If
k ≤ κ, go to Step 2.
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By the proof of Lemma 3 of [5], the polynomials Hk (k = 0, 1, 2, . . . ) are not
identically zero, their degrees are in nonincreasing order and degHk0 = 1 for some
k0 ≤ κ, so that for all k ≥ k0 the polynomial Hk is of degree 1. Now for each
k ≥ 0, the algebraic number αk+µ in (21) is a root of Hk, and therefore assumes
one of the possible values of uk. By the linear character of Hk for all k ≥ k0,
it follows that for k > k0, αk+µ is uniquely determined by the previous α’s and
αk+µ ∈ Q(αµ, αµ+1, . . . , αµ+k0).

4.3. Consider the set S consisting of those of the following points of E that are
not poles of U : the zero point and the points (e, 0), where e is a real zero of q(x)
(cf. (1)). For relation (7) to hold it suffices that u(P ) ≥ M , where M exceeds the
u-coordinates of all finite points of C(R) that are poles for either X or Y (these
poles are finite in number; cf. the beginning of the proof of Proposition 2.3.1) and
the values of U at all (at most four) points of S.
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