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COMPUTING AN EIGENVECTOR WITH INVERSE ITERATIONILSE C. F. IPSEN�Abstract. The purpose of this paper is two-fold: to analyse the behaviour of inverse iterationfor computing a single eigenvector of a complex, square matrix; and to review Jim Wilkinson'scontributions to the development of the method. In the process we derive several new results regardingthe convergence of inverse iteration in exact arithmetic.In the case of normal matrices we show that residual norms decrease strictly monotonically. Foreighty percent of the starting vectors a single iteration is enough.In the case of non-normal matrices, we show that the iterates converge asymptotically to aninvariant subspace. However the residual norms may not converge. The growth in residual normsfrom one iteration to the next can exceed the departure of the matrix from normality. We presentan example where the residual growth is exponential in the departure of the matrix from normality.We also explain the often signi�cant regress of the residuals after the �rst iteration: it occurs whenthe non-normal part of the matrix is large compared to the eigenvalues of smallest magnitude. Inthis case computing an eigenvector with inverse iteration is exponentially ill-conditioned (in exactarithmetic).We conclude that the behaviour of the residuals in inverse iteration is governed by the departureof the matrix from normality, rather than by the conditioning of a Jordan basis or the defectivenessof eigenvalues.Key words. eigenvector, invariant subspace, inverse iteration, departure from normality, ill-conditioned linear systemAMS subject classi�cation. 15A06, 15A18, 15A42, 65F151. Introduction. Inverse Iteration was introduced by Helmut Wielandt in 1944[56] as a method for computing eigenfunctions of linear operators. Jim Wilkinsonturned it into a viable numerical method for computing eigenvectors of matrices. Atpresent it is the method of choice for computing eigenvectors of matrices when approx-imations to one or several eigenvalues are available. It is frequently used in structuralmechanics, for instance, to determine extreme eigenvalues and corresponding eigen-vectors of Hermitian positive-(semi)de�nite matrices [2, 3, 20, 21, 28, 48].Suppose we are given a real or complex square matrix A and an approximation�̂ to an eigenvalue of A. Inverse iteration generates a sequence of vectors xk from agiven starting vector x0 by solving the systems of linear equations(A� �̂I)xk = skxk�1; k � 1:Here I is the identity matrix, and sk is a positive number responsible for normalisingxk. If everything goes well, the sequence of iterates xk converges to an eigenvector as-sociated with an eigenvalue closest to �̂. In exact arithmetic, inverse iteration amountsto applying the power method to (A� �̂I)�1.The importance of inverse iteration is illustrated by three quotes fromWilkinson1:`In our experience, inverse iteration has proved to be the most suc-cessful of methods we have used for computing eigenvectors of atri-diagonal matrix from accurate eigenvalues.'� Center for Research in Scienti�c Computation, Department of Mathematics, North CarolinaState University, P. O. Box 8205, Raleigh, NC 27695-8205, USA (ipsen@math.ncsu.edu). This re-search was supported in part by NSF grants CCR-9102853 and CCR-9400921.1 [60, xIII.54], [63, p 173], [45, x1] 1



2`Inverse iteration is one of the most powerful tools in numericalanalysis.'`Inverse iteration is now the most widely used method for comput-ing eigenvectors corresponding to selected eigenvalues which havealready been computed more or less accurately.'A look at software in the public domain shows that this is still true today [1, 44, 47].The purpose of this paper is two-fold: to analyse the behaviour of inverse iteration;and to review Jim Wilkinson's contributions to the development of inverse iteration.Although inverse iteration looks like a deceptively simple process, its behaviour issubtle and counter-intuitive, especially for non-normal (e.g. non-symmetric) matrices.It is important to understand the behaviour of inverse iteration in exact arithmetic, forotherwise we cannot develop reliable numerical software. Fortunately, as Wilkinsonrecognised already [45, p 355], the idiosyncrasies of inverse iteration originate fromthe mathematical process rather than from �nite precision arithmetic. This means anumerical implementation of inverse iteration in �nite precision arithmetic does notbehave very di�erently from the exact arithmetic version. Therefore we can learn a lotabout a numerical implementation by studying the theory of inverse iteration. That'swhat we'll do in this paper.We make two assumptions in our discussion of inverse iteration. First, the shift�̂ remains �xed for each eigenvector during the course of the iterations; this excludesvariants of inverse iteration such as Rayleigh quotient iteration2, and the interpreta-tion of inverse iteration as a Newton method3. Second, only a single eigenvector iscomputed as opposed to a basis for an invariant subspace4.To illustrate the additional di�culties in the computation of several vectors, con-sider a real symmetric matrix. When the eigenvalues under consideration are well-separated, inverse iteration computes numerically orthogonal eigenvectors. But whenthe eigenvalues are poorly separated, it may not be clear with which eigenvalue a com-puted eigenvector is to be a�liated. Hence one perturbs the eigenvalues to enforce aclear separation. Even then the computed eigenvectors can be far from orthogonal.Hence one orthogonalises the iterates against previously computed iterates to enforceorthogonality. But explicit orthogonalisation is expensive and one faces a trade-o�between orthogonality and e�ciency. Therefore one has to decide which eigenvaluesto perturb and by how much; and which eigenvectors to orthogonalise and againsthow many previous ones and how often. One also has to take into account that thetests involved in the decision process can be expensive. A detailed discussion of theseissues can be found for instance in [44, 8].1.1. Motivation. This paper grew out of commentaries about Wielandt's workon inverse iteration [26] and the subsequent development of the method [27]. Severalreasons motivated us to take a closer look at Wilkinson's work. Among all contri-butions to inverse iteration, Wilkinson's are by far the most extensive and the mostimportant. They are contained in �ve papers5 and in chapters of his two books [60, 61].Since four of the �ve papers were published after the books, there is no one place whereall of his results are gathered. Overlap among the papers and books, and the gradualdevelopment of ideas over several papers makes it di�cult to realise what Wilkinson2 [11, x5.4], [41, xx4.6-9], [40], [46, xIV.1.3] [62, x3]3 [10, x3], [11, x5.9], [38, x2, x3], [45, x4]4 [10, 29, 43, 8]5 [44, 45, 57, 62, 63]



3has accomplished. Therefore we decided to compile and order his main results and toset out his ideas.Wilkinson's numerical intuition provided him with many insights and empiricalobservations for which he did not provide rigorous proofs. To put his ideas on atheoretical footing, we extend his observations and supply simple proofs from �rstprinciples. To this end it is necessary to clearly distinguish the mathematical proper-ties of inverse iteration from �nite precision issues. The importance of this distinctionwas �rst realised in Shiv Chandrasekaran's thesis [8] where a thorough analysis ofinverse iteration is presented for the computation of a complete set of eigenvectors ofa real, symmetric matrix.1.2. Caution. Our primary means for analysing the convergence of inverse it-eration is the backward error rather than the forward error. The backward error foriterate xk is krkk, where rk = (A� �̂I)xk is the residual. When krkk is small then xkand �̂ are an eigenpair of a matrix close to A (x2.3). In contrast, the forward errormeasures how close xk is to an eigenvector of A. We concentrate on the backwarderror because krkk = k(A� �̂I)xkk = kskxk�1k = skis the only readily available computational means for monitoring the progress of inverseiteration.Unfortunately, however, a small backward error does not imply a small forwarderror. In the case of normal matrices, for instance, a measure of the forward erroris the acute angle �k between xk and the eigenspace associated with all eigenvaluesclosest to �̂. The resulting sin � theorem [12, x2], [14, x4] bounds the forward errorin terms of the backward error and an ampli�cation factor , which is the separationbetween �̂ and all eigenvalues farther away:sin �k � krkk=:This means, even though the backward error may be small, xk can be far away from theeigenspace if the eigenvalues closest to �̂ are poorly separated from those remaining.Nevertheless, in the absence of information about the eigenvalue distribution of Athe only meaningful computational pursuit is a small backward error. If the backwarderror is small then we can be certain, at least, that we have solved a nearby problem.Therefore we concentrate our e�orts on analysing the behaviour of successive residuals,and on �nding out under what conditions a residual is small.1.3. New Results. To our knowledge, the following observations and resultsare new.Normal Matrices. Residual norms decrease strictly monotonically (x3.3). Foreighty percent of the starting vectors a single iteration is enough, because the residualis as small as the accuracy of the computed eigenvalue (x3.1).Diagonalisable Matrices. Inverse iteration distinguishes between eigenvectors,and vectors belonging to an invariant subspace that are not eigenvectors (x4.4). Thesquare root of the residual growth is a lower bound for an eigenvector condition number(x4.3).Non-Normal Matrices6. For every matrix one can �nd iterates where the resid-ual growth from one iteration to the next is at least as large as the departure of the6 Non-normal matrices include diagonalisable as well as defective matrices.



4matrix from normality; and one can also �nd iterates where the residual growth is atleast as large as the departure of the inverse matrix from normality (x5.3).We introduce a measure for the relative departure of a matrix from normality bycomparing the size of the non-normal part to the eigenvalues of smallest magnitude(x5.2). There are matrices whose residual growth can be exponential in the relativedeparture from normality (x5.4). This explains the often signi�cant regress of inverseiteration after the �rst iteration.Increasing the accuracy of the approximate eigenvalue �̂ increases the relativedeparture of A � �̂I from normality. When the relative departure from normalityexceeds one, computing an eigenvector of A with inverse iteration is exponentiallyill-conditioned (x5.2).We conclude that the residual growth in inverse iteration is governed by thedeparture of the matrix from normality, rather than by the conditioning of a Jordanbasis or the defectiveness of eigenvalues (x5.2).1.4. Overview. In x2 we discuss the basic aspects of inverse iteration: the un-derlying idea (x2.1); how to solve the linear system (x2.2); the purpose of the residual(x2.3, x2.4); and the choice of starting vectors (x2.5, x2.6).In x3 we exhibit the good behaviour of inverse iteration in the presence of anormal matrix: one iteration usually su�ces (x3.1); and the residuals decrease strictlymonotonically (x3.2, x3.3).In x4 we show what happens when inverse iteration is applied to a diagonalisablematrix: residuals can grow with the ill-conditioning of the eigenvectors (x4.1, x4.3);the accuracy of the approximate eigenvalue can exceed the size of the residual (x4.2);and residuals do not always reveal when the iterates have arrived at their destination(x4.4).In x5 we describe the behaviour of inverse iteration in terms of the departure fromnormality: upper and lower bounds on the residual growth (x5.2, x5.3); an example ofexponential residual growth (x5.4); and the relation of the residual to conditioning ofa Jordan basis and defectiveness of eigenvalues (x5.1).In x6 we illustrate that inverse iteration in �nite precision arithmetic behaves verymuch like in exact arithmetic. We examine the e�ects of �nite precision arithmetic onthe residual size (x6.1), the performance of starting vectors (x6.2), and the solutionof linear systems (x6.3). A short description of a numerical software implementation(x6.4) concludes the chapter.In x7 we prove the convergence of inverse iteration in exact arithmetic.In x8 (Appendix 1) we supply facts about Jordan matrices required in x5; andin x9 (Appendix 2) we present relations between di�erent measures of departure fromnormality.1.5. Notation. Our protagonist is a real or complex n�n matrix A with eigen-values �1; �2; : : : ; �n. When the matrix is normal or, in particular Hermitian, we callit H .Our goal is to compute an eigenvector of A. But since we have access only toan approximate eigenvalue �̂, the best we can get is an approximate eigenvector x̂.We use a hat to represent approximate or computed quantities, such as �̂ and x̂. Weassume most of the time that �̂ is not an eigenvalue of A, hence A� �̂I is nonsingular,where I (or In) is the identity matrix of order n. If, on the contrary, �̂ is an eigenvalueof A then the problem is easy to solve because we only have to compute a null vectorof A� �̂I .



5The norm k � k is the two-norm, i.e. kxk = px�x, where the superscript � denotesthe conjugate transpose. The ith column of the identity matrix I is called the canonicalvector ei, i � 1.2. The Method. In this section we describe the basics of inverse iteration: theidea behind it, solution of the linear systems, rôle of the residual, and choice of startingvectors.2.1. Wilkinson's Idea. Wilkinson had been working on and talking about in-verse iteration as early as 1957 [39]. In those days it was believed that inverse iterationwas doomed to failure because of its main feature: the solution of an ill-conditionedsystem of linear equations [38, p 22] (see also x6.3). In a radical departure fromconventional wisdom, Wilkinson made inverse iteration work7 [38, x1].Although Wilkinson gives the credit for inverse iteration to Wielandt [45, 60, 62],he himself presented it in 1958 [57] as a result of trying to improve Givens's methodfor computing a single eigenvector of a symmetric tridiagonal matrix (a di�erent im-provement of Givens's method is discussed in [42]).We modify Wilkinson's idea slightly and present it for a general complex matrix Arather than for a real symmetric tridiagonal matrix. His idea is the following: If �̂ isan eigenvalue of the n�n matrix A, then A� �̂I is singular, and n�1 equations from(A � �̂I)x̂ = 0 determine, up to a scalar multiple, an eigenvector associated with �̂.However, if �̂ is not an eigenvalue of A, A� �̂I is non-singular and the only solutionto (A� �̂I)x̂ = 0 is zero. To get a non-zero approximation to an eigenvector, select anon-zero vector y that solves n� 1 equations from (A� �̂I)x̂ = 0.Why should y be a good approximation to an eigenvector? First consider thecase where y solves the leading n � 1 equations. Partition A so as to distinguish itsleading principal submatrix A1 of order n� 1, and partition y conformally,A � �A1 a1a2 � � ; y � � y1� � :One can always �nd a number � so that the smaller system(A1 � �̂I)y1 = ��a1has a non-zero solution y1: If �̂ is an eigenvalue of A1, set � = 0. Since A1 � �̂I issingular, (A1 � �̂I)y1 = 0 has a non-zero solution. If �̂ is not an eigenvalue of A1, set� to some non-zero value. Since A1 � �̂I is non-singular, the system has a non-zerosolution. Therefore there exists a non-zero vector y that solves the leading n � 1equations of the larger system (A� �̂I)x̂ = 0. Including the last equation and setting� � ( a2 �� �̂ ) yimplies that y is a non-zero solution to(A� �̂I)y = �en;where the canonical vector en is the nth column of the identity matrix.Suppose � is an eigenvalue of A and x is an associated eigenvector. If �en containsa contribution of x, then this contribution is multiplied in y by 1=(�� �̂). Moreover,if � is a simple eigenvalue that is closer to �̂ than any other eigenvalue �j then1j�� �̂j > 1j�j � �̂j :7 I am grateful to Michael Osborne for providing this historical context.



6For a diagonalisable matrix A this means the contribution of the eigenvector x in y isampli�ed by a larger amount than the contributions of all other eigenvectors. In thiscase y is closer to x than is �en.Instead of solving the leading n � 1 equations one can solve any set of n � 1equations. Omitting the ith equation leads to a multiple of ei as the right-hand side(for real, symmetric tridiagonal matrices, Parlett and Dhillon [42] select the doomedequation according to the pivots from a pair of `complementary' triangular factorisa-tions). In general, the right-hand side can be any vector x0, as long as it contains acontribution of the desired eigenvector x so that the solution x1 of (A � �̂I)x1 = x0is closer to x than is x0.Therefore, if there is only a single, simple eigenvalue � closest to �̂ and if A isdiagonalisable then the iterates xk of inverse iteration converge to (multiples of) aneigenvector x associated with �, provided x0 contains a contribution of x. A moredetailed convergence proof is given in x7.2.2. Solution of the Linear System. In practice, one �rst solves the linearsystem before normalising the iterate. Given a scalar �̂ so that A� �̂I is non-singular,and a vector x0 with kx0k = 1, perform the following iterations for k � 1:(A� �̂I)zk = xk�1xk = zk=kzkkHere zk is the unnormalised iterate. The corresponding normalised iterate satis�eskxkk = 1. Hence the normalisation constant is sk = 1=kzkk.Already in his very �rst paper on inverse iteration [57, pp 92-3] Wilkinson advo-cated that the linear system (A � �̂I)zk = xk�1 be solved by Gaussian eliminationwith partial pivoting,P (A� �̂I) = LU; Lck = Pxk�1; Uzk = ck;where P is a permutation matrix, L is unit lower triangular and U is upper triangular.Since the matrix A � �̂I does not change during the course of the iteration, thefactorisation is performed only once and the factors L and U are used in all iterations.For reasons to be explained in x2.6, Wilkinson chooses c1 equal to e, a multipleof the vector of all ones8. This amounts to the implicit choice x0 � P TLe for thestarting vector. It saves the lower triangular system solution in the very �rst inverseiteration. The resulting algorithm isFactor P (A� �̂I) = LUIteration 1 Set c1 � eSolve Uz1 = c1Set x1 � z1=kz1kIteration k � 2 Solve Lck = Pxk�1Solve Uzk = ckSet xk � zk=kzkkTo reduce the operation count for the linear system solution, the matrix is oftenreduced to Hessenberg form or, in the real symmetric case, to tridiagonal form beforethe start of inverse iteration [1]. While Gaussian elimination with partial pivoting re-quires O(n3) arithmetic operations for a general n�n matrix, it requires merely O(n2)8 [44, p 435], [57, pp 93-94], [60, xIII.54], [61, x5.54, x9.54], [62, p 373]



7operations for a Hessenberg matrix [61, 9.54], and O(n) operations for an Hermitiantridiagonal matrix [57], [60, xIII.51].2.3. An Iterate and Its Residual. Wilkinson showed9 that the residualrk � (A� �̂I)xkis a measure for the accuracy of the shift �̂ and of the iterate xk. Here we presentWilkinson's argument for exact arithmetic; and in x6.1 we discuss it in the context of�nite precision arithmetic.From rk = (A� �̂I)xk = 1kzkk (A� �̂I)zk = 1kzkk xk�1and kxk�1k = 1 follows krkk = 1=kzkk:Therefore the residual is inversely proportional to the norm of the unnormalisediterate10. Since kzkk is required for the computation of xk, the size of the resid-ual comes for free in inverse iteration. It is used as a criterion for terminating theiterations. Once the residual is small enough, inverse iteration stops because then �̂and xk are an eigenpair of a nearby matrix:Theorem 2.1 (x15 in [18]). Let A be a complex, square matrix, and let rk =(A� �̂I)xk be the residual for some number �̂ and vector xk with kxkk = 1.Then there is a matrix Ek with (A + Ek � �̂I)xk = 0 and kEkk � � if and onlyif krkk � �.Proof. Suppose (A+Ek � �̂I)xk = 0 and kEkk � �. Thenrk = (A� �̂I)xk = �Ekxkimplies krkk � kEkk � �.Now suppose krkk � �. Then(A� �̂I)xk = rk = rkx�kxk;implies (A+Ek � �̂I)xk = 0; where Ek = �rkx�k:Since Ek has rank one, kEkk = krkk � �:Thus, a small residual implies that �̂ and xk are accurate in the backward sense.2.4. The Smallest Possible Residual. Since a small residual rk indicates thatthe iterate xk is an eigenvector of a matrix close to A, we would like to know howsmall a residual can possibly be.From the de�nition of the residual rk = (A� �̂I)xk and the fact thatkMxk � kxk=kM�1kfor any non-singular matrix M , it follows thatkrkk � 1=k(A� �̂I)�1k:9 [18, x15], [44, pp 419-420], [45, p 356], [60, x49], [61, x3.53], [62, p 371]10 [44, p 420], [45, p 352], [60, xIII.52], [61, x5.55], [62, p 372], [63, p 176]



8Thus, when A� �̂I is almost singular, k(A� �̂I)�1k is large and the residual can bevery small.The lower bound for krkk is attained when xk is a right singular vector associatedwith the smallest singular value of A��̂I [45, p 358]. Denoting by u the correspondingleft singular vector gives (A� �̂I)xk = uk(A� �̂I)�1kand the residual has minimal norm krkk = 1=k(A � �̂I)�1k. The starting vector x0that gives the smallest possible residual after one iteration is therefore a left singularvector associated with the smallest singular value of A� �̂I .Di�erent Interpretations. The bound krkk � 1=k(A � �̂I)�1k has severaldi�erent meanings.One interpretation is based on the separation11 between two matrices A and B,sep(A;B) � minkXk=1 kAX �XBk:In the special case when B � �̂ is a scalar, the separation between A and �̂ is [55, x2]sep(A; �̂) = minkxk=1 kAx� x�̂k = minkxk=1 k(A� �̂I)xk = 1=k(A� �̂I)�1k:Thus, the residual is a lower bound for the separation between the matrix A and theshift �̂, krkk � sep(A; �̂):A second interpretation is based on the resolvent of A at the point �̂ [33, xI.5.2],R(A; �̂) � (A� �̂I)�1:Since krkk = 1=kzkk, the iterate norm represents a lower bound on the resolvent normat �̂, kzkk � kR(A; �̂)k:Yet a third interpretation is based on the �-pseudospectrum12 of A,S�(A) � �� : k(A� �I)�1k � ��1	 :Thus, when krkk � � then �̂ is contained in the �-pseudospectrum of A,�̂ 2 S�(A):Regrettably, we found notions like separation between matrices, pseudospectrum,and resolvent of limited help in analysing inverse iteration, because they focus on theoperator (A� �̂I)�1 rather than on its application to a particular argument.11 [50, x2], [50, x4.3], [55, x1]12 [33, xVIII.5.1], [52], [55, x3]



92.5. Good Starting Vectors. Wilkinson's goal was to �nd starting vectorsx0 `so that one iteration produces a very good eigenvector ' [62, p 372]. Little or nowork should be involved in determining these starting vectors. Here we assume exactarithmetic. The �nite precision case is discussed in x6.2.Varah [54] and Wilkinson13 showed that there exists at least one canonical vectorthat, when used as a starting vector x0, gives an iterate z1 of almost maximal normand hence an almost minimal residual r1. Varah's results constitute the basis forWilkinson's argument [62, p 374].Suppose column l, 1 � l � n, has the largest norm among all columns of (A ��̂I)�1, k(A� �̂I)�1elk � 1pnk(A� �̂I)�1k:Setting x0 = el gives a residual r1 that deviates from its minimal value by a factor ofat most pn, 1k(A� �̂I)�1k � kr1k � pn 1k(A� �̂I)�1k ;and the �rst iterate exhibits almost maximal growth,1pnk(A� �̂I)�1k � kz1k � k(A� �̂I)�1k:Varah [54] showed that the above argument is true for any orthonormal basis,not just the canonical basis. Choose a unitary matrix W , i.e. W �W = WW � = I . Ifcolumn l has the largest norm among all columns of (A� �̂I)�1W thenk(A� �̂I)�1Welk � 1pnk(A� �̂I)�1Wk = k(A� �̂I)�1k:Thus, kr1k is almost minimal and z1 exhibits almost maximal growth when x0 = Wel.More generally, when x0 is a column of largest norm of (A� �̂I)�1W , where W is anynon-singular matrix, the upper bound on kr1k contains the condition number of W[54, Theorem 2].Wilkinson's Argument. In spite of their apparent dissimilarity, Wilkinson'sargument [62, pp 372-3], [45, p 353] and our argument above are basically the same.Wilkinson argues as follows. Selecting, in turn, each canonical vector ei as astarting vector amounts to solving the linear system(A� �̂I)Z = I;where Zei is the unnormalised �rst iterate for inverse iteration with starting vectorx0 = ei. Since �̂ is an exact eigenvalue of A + F for some F , A � �̂ + F is singularand kZk � 1=kFk. If �̂ is a good approximation to an eigenvalue of A then kFk mustbe small, at least one column of Z must be large, and at least one of the canonicalvectors must give rise to a large �rst iterate.Since Z = (A � �̂I)�1, Wilkinson basically argues that k(A � �̂I)�1k is large if�̂ is close to an eigenvalue of A. The quantity kFk is an indication of the distanceof A � �̂I to singularity. Thus, the norm of at least one column of Z is inverselyproportional to the distance of A� �̂I from singularity, cf. [44, p 420].In comparison, our argument shows that an appropriate canonical vector leadsto an iterate z1 with kz1k � 1pn k(A� �̂I)�1k. As 1=k(A� �̂I)�1k is the distance of13 [44, p 420], [45, p 353], [62, pp 372-3]



10A� �̂I to singularity [13, x3], this means, as in Wilkinson's case, that the magnitudeof z1 is inversely proportional to the distance of A� �̂I from singularity.Hence, the basis for both, Wilkinson's and our arguments is that the ideal startingvector x0 should result in a z1 whose size reects the distance of A��̂I from singularity.2.6. Wilkinson's Choice of Starting Vector. Wilkinson's motivation forputting so much care into the choice of starting vector x0 is to reduce the resid-ual r1 of the �rst iterate as much as possible [62, p 374]. This is especially importantfor non-normal matrices because the residuals can grow signi�cantly in subsequentiterations [44, p 420]. Although he cannot expect to �nd x0 that produces a minimalr1, he tries to select x0 that is likely to produce a small r1 [44, p 420].There are certain choices of x0 that Wilkinson rules out immediately14. In case ofreal symmetric tridiagonal matrices T for instance it is `quite common' that a canon-ical vector contains only a very small contribution of an eigenvector [57, p 91]. WhenT contains a pair of zero o�-diagonal elements, it splits into two disjoint submatricesand the eigenvectors associated with one submatrix have zero elements in the posi-tions corresponding to the other submatrix. Hence canonical vectors with ones inthe position corresponding to zero eigenvector elements are likely to produce large r1.Wilkinson remarks [57, p 91]:It is clear that none of the ei is likely to produce consistently accu-rate eigenvectors and, in particular, that e1 and en will, in general,be the least satisfactory.Since no one canonical vector works satisfactorily all the time, Wilkinson plays it safeand chooses a vector that represents all of them: the vector consisting of all ones.Wilkinson's choice, already alluded to in x2.2, can be justi�ed as follows.If A is a complex, square matrix and �̂ is not an eigenvalue of A then A � �̂Iand the upper triangular matrix U from Gaussian elimination P (A � �̂I) = LU arenon-singular. LetU � �Un�1 un�1unn � ; U�1 = �U�1n�1 �U�1n�1un�1=unn1=unn � ;where Un�1 is the leading principal submatrix of order n � 1 and unn is the trailingdiagonal element of U . If �̂ is a good approximation to an eigenvalue of A, so thatA� �̂I is almost singular, and if junnj is small then choosing c1 = en yieldsz1 = U�1en = 1unn ��U�1n�1un�11 � :Hence kz1k � 1=junnj is large. This means, if the trailing diagonal element of U issmall then choosing c1 = en results in a small residual r1.More generally, let Ul and Ul�1 be the leading principal submatrices of orders land l � 1 of U , so Ul � �Ul�1 ul�1ull � :If the lth diagonal element ull of U is small then choosing c1 = el givesz1 = U�1el = 1ull ��U�1l�1ul�11 �and kz1k � 1=jullj is large.14 [57, p 91], [60, III.54], [62, p 373]



11However, it can happen that A� �̂I is almost singular while no diagonal elementof U is small15. According to x2.5, U�1 contains a column l whose norm is almost aslarge as kU�1k. But l is unknown, so Wilkinson proposes16 what he considers to bea `very safe' choice, a multiple of the vector of all ones, i.e. c1 � e [57, p 94]. In thespecial case of symmetric tridiagonal matrices Wilkinson remarks [61, p 322]:No solution to this problem has been found which can be demon-strated rigorously to be satisfactory in all cases, but [the choicec1 = e] has proved to be extremely e�ective in practice and thereare good reasons for believing that it cannot fail.Back to general, complex matrices: Although the choice c1 = e often results inz1 = U�1e with large norm, this is not guaranteed [54, p 788]. It is thus necessary tohave contingency plans. Varah [54, p 788] and Wilkinson [44, x5.2] present orthogonalmatrices whose �rst column is e, a multiple of the vector of all ones, and whoseremaining columns stand by to serve as alternative starting vectors. If c1 = e doesnot produce a su�ciently large iterate z1, one column after another of such a matrixtakes its turn as c1 until an iterate z1 with su�ciently large norm appears. Wilkinsonrecommends this strategy `in practice' [62, p 373] and remarks [62, pp 373-74]:In the majority of cases the �rst of these [i.e. c1 = e] immediatelygives an acceptable z and no case has been encountered in practicewhere it was necessary to proceed to the third vector [i.e. the thirdcolumn of the orthogonal matrix].In spite of all the e�ort devoted to choosing a starting vector x0 that is likely toproduce a small residual r1, Wilkinson states [45, p 353], cf. also [45, p 358]:In fact if we take a random x0 the probability that one iterationwill produce an x1 having a pathologically small residual is veryhigh indeed; this would only fail to be true if we happen to choosean x0 which is almost completely de�cient in all those es [for whichk(A� �̂I)�1esk is large].This was con�rmed more recently for real symmetric matrices by a rigorous statisticalanalysis [29]. In case of general matrices Wilkinson remarks [45, p 360]:The ordinary process of inverse iteration will almost always succeedin one iteration; if it does not do so one only has to re-start with aninitial vector orthogonal to the �rst. This process can be continueduntil one reaches an initial vector which gives success in one itera-tion. It is rare for the �rst vector to fail and the average number ofiterations is unlikely to be as high as 1.2.3. Normal Matrices. In this section we examine the size of the residual andits change during the course of the iteration in the special case when the matrix isnormal.We use the following notation. LetH be a normal matrix with eigendecompositionH = Q�Q� where Q is unitary; and let� � mini j�i � �̂jbe the accuracy of the shift �̂. We assume for the most part that �̂ is not an eigenvalueof H , because otherwise a single linear system solution would su�ce to produce aneigenvector, see the discussion in x2.1 and [42, x2].15 [54, p 788], [57, p 93], [61, x5.56, x9.54]16 [44, p 435], [57, p 93-94], [60, xIII.54], [61, x5.54, x9.54], [62, p 373]



12Wilkinson showed that for Hermitian matrices the size of the residual is con-strained solely by the accuracy of the shift17. The Bauer-Fike theorem [4, TheoremIIIa] implies that this is true for the larger class of normal matrices as well:Theorem 3.1. Let H be a normal matrix, and let rk = (A��̂I)xk be the residualfor some number �̂ and vector xk with kxkk = 1.Then krkk � �:Proof. If �̂ is an eigenvalue of H then � = 0 and the statement is obviously true.If �̂ is not an eigenvalue of H then H � �̂I is non-singular. Because H is normal,k(H � �̂I)�1k = 1=�, andkrkk = k(H � �̂I)xkk � 1k(H � �̂I)�1k = �:3.1. Once Is Enough. We show that in most cases the residual of a normalmatrix after the �rst iteration is as good as the accuracy of the shift �̂.Partition the eigendecomposition as� = ��1 �2� ; Q = (Q1 Q2 ) ;where �1 contains all eigenvalues �i at the same, minimal distance to �̂,� = k�1 � �̂Ik;while �2 contains the remaining eigenvalues that are further away from �̂,� < minj j(�2)jj � �̂j = 1=k(�2 � �̂I)�1k:This partition covers two common special cases: �̂ approximates an eigenvalue � ofmultiplicity l � 1, i.e. �1 = �I ; and �̂ approximates two distinct real eigenvalues atthe same minimal distance to its left and right, i.e. �̂� �1 = �2 � �̂. The columns ofQ1 span the invariant subspace associated with the eigenvalues in �1.The result below states that the residual decreases with the angle between thestarting vector and the desired eigenspace. It applies in all cases but the worst, whenthe starting vector is orthogonal to the desired invariant subspace.Theorem 3.2. Let inverse iteration be applied to a normal, non-singular matrixH� �̂I; let r1 = (H� �̂I)x1 be the residual for the �rst iterate x1; and let 0 � � � �=2be the angle between starting vector x0 and range(Q1).If � < �=2, then kr1k � �= cos �:Proof. Decompose x0 into its contribution c in range(Q1) and its contribution soutside, x0 = Q� cs� ; where c � Q�1x0; s � Q�2x0:Since x0 has unit norm, kck2 + ksk2 = 1, and kck = cos � [17, x12.4.3].17 [9, x2.3], [45, x8], [59, x2], [60, xIII.49]



13To bound kr1k from above, bound kz1k from below, as 1=kr1k = kz1k. Thenz1 = Q(�� �̂I)�1� cs�implies kz1k � kQ�1z1k = k(�1 � �̂I)�1ck � kckk�1 � �̂Ik = cos �� :Since � < �=2, cos � 6= 0 and kr1k � �= cos �:The previous observations imply that the deviation of kr1k from its minimalvalue depends only on the angle between the starting vector and the desired invariantsubspace:Corollary 3.3. Under the assumptions of Theorem 3.2� � kr1k � �= cos �:Already in 1958 Wilkinson surmised with regard to the number of inverse it-erations for real, symmetric tridiagonal matrices `this will seldom mean producinganything further than x3' [57, p 93]. In case of Hermitian matrices, Wilkinson pro-poses several years later that two iterations are enough to produce a vector that is asaccurate as can be expected [60, xxIII.53-54]. The following result promises (in exactarithmetic) something even better, for the larger class of normal matrices: For overeighty percent of the starting vectors, one iteration su�ces to drive the residual downto its minimal value.Corollary 3.4. If, in addition to the assumptions of Theorem 3.2, � does notexceed 75� then kr1k � 4�:Proof. Apply the bound in Theorem 3.2 and use the fact that � � 75� impliescos � � p24 (p3� 1) � 14 :This result is con�rmed in practice. With regard to his particular choice ofstarting vector c1 = e Wilkinson remarked in the context of symmetric tridiagonalmatrices [61, p 323]:In practice we have usually found this choice of [starting vector] tobe so e�ective that after the �rst iteration, [x1] is already a goodapproximation to the required eigenvector [...]3.2. Residual Norms Never Increase. Although he did not give a proof,Wilkinson probably knew deep down that this was true, as the following quotationshows [62, p 376]:For a well-conditioned eigenvalue and therefore for all eigenvaluesof a normal matrix subsequent iterations are perfectly safe and in-deed give valuable protection against an unfortunate choice of initialvector.



14We formalise Wilkinson's observation and show that residuals of a normal matrix aremonotonically non-increasing (in exact arithmetic). This observation is crucial forestablishing that inverse iteration always converges for normal matrices.Theorem 3.5. Let inverse iteration be applied to a non-singular normal matrixH � �̂I, and let rk = (H � �̂I)xk be the residual for the kth iterate xk.Then krkkkrk�1k � 1; k � 1:Proof. As krkk = 1=kzkk (x2.3), the ratio of two successive residuals iskrkkkrk�1k = 1kzkk 1k(H � �̂I)xk�1k = 1k(H � �̂I)�1xk�1k k(H � �̂I)xk�1k :Now use the fact that kHxk = kH�xk for any vector x when H is normal [15, Theorem1], [24, Problem 1, p 108], and then apply the Cauchy-Schwartz inequality,k(H � �̂I)�1xk�1k k(H � �̂I)xk�1k = k(H � �̂I)��xk�1k k(H � �̂I)xk�1k� jx�k�1(H � �̂I)�1(H � �̂I)xk�1j = 1:Theorem 3.5 does not imply that the residual norms go to zero. That's becausethey are bounded below by � (Theorem 3.1). The residual norms are not even assuredto converge to �. If an iterate lies in an invariant subspace of H � �̂I all of whoseeigenvalues have magnitude  > � then the residual norms cannot be smaller than .3.3. Monotonic Convergence of Residual Norms. In the previous sec-tion (cf. Theorem 3.5) we established that residual norms are monotonically non-increasing. Now we show that the residual size remains constant whenever inverseiteration has found an iterate that lies in an invariant subspace all of whose eigenval-ues have the same magnitude (these eigenvalues, though, are not necessarily the onesclosest to �̂).Theorem 3.6. Let inverse iteration be applied to a non-singular normal matrixH � �̂I, and let rk = (H � �̂I)xk be the residual for the kth iterate xk.Then krk�1k = krkk if and only if iterate xk�1 lies in an invariant subspace ofH � �̂I all of whose eigenvalues have the same magnitude.Proof. Suppose xk�1 belongs to an invariant subspace of eigenvalues whose mag-nitude is , where  > 0. Partition the eigendecomposition as�� �̂I = � ~�1 ~�2� ; Q = ( ~Q1 ~Q2 ) ;where j(~�1)iij = . Then xk�1 = ~Q1y for some y with kyk = 1. The residual for xk�1is rk�1 = (H � �̂I)xk�1 = ~Q1~�1yand satis�es krk�1k = . The next iteratezk = (H � �̂I)�1xk�1 = ~Q1~��11 ysatis�es kzkk = 1=. Hence krk�1k =  = 1=kzkk = krkk:



15Conversely, if krk�1k = krkk then, as in the proof of Theorem 3.5, krkk = 1=kzkkimplies 1 = krkkkrk�1k = 1k(H � �̂I)�1xk�1k k(H � �̂I)xk�1kand1 = k(H � �̂I)�1xk�1k k(H � �̂I)xk�1k � jx�k�1(H � �̂I)�1(H � �̂I)xk�1j = 1:Since the Cauchy Schwartz inequality holds with equality, the two vectors involvedmust be parallel, i.e. (H � �̂I)xk�1 = �(H � �̂I)��xk�1 for some scalar � 6= 0.Consequently (H � �̂I)�(H � �̂I)xk�1 = �xk�1;where � > 0 since (H � �̂I)�(H � �̂I) is Hermitian positive-de�nite. Let m be themultiplicity of �. Partition the eigendecomposition of(H � �̂I)�(H � �̂I) = Q(�� �̂I)�(�� �̂I)Q�as (�� �̂I)�(�� �̂I) = ��Im M2� ; Q = ( ~Q1 ~Q2 ) ;where ~Q1 hasm columns. Since xk�1 is an eigenvector for �, we must have xk�1 = ~Q1yfor some y with kyk = 1. Thus xk�1 belongs to the invariant subspace of all eigenvalues�i of H with j�i � �̂j2 = �.Thus, inverse iteration converges strictly monotonically in the following sense.Corollary 3.7. Let inverse iteration be applied to a non-singular normal ma-trix. Then the norms of the residuals decrease strictly monotonically until some iteratebelongs to an invariant subspace all of whose eigenvalues have the same magnitude.The above result insures that the iterates approach an invariant subspace. Astronger conclusion, convergence of the iterates to an eigenspace, holds when there isa single (possibly multiple) eigenvalue closest to �̂.Corollary 3.8. Let inverse iteration be applied to a non-singular normal ma-trix H� �̂I. If, for the partitioning in x3.1, �1 = �1I for some �1 and Q�1x0 6= 0, thenthe norms of the residuals decrease strictly monotonically until some iterate belongs toan eigenspace associated with �1.In x7 we present more details about the space targeted by the iterates.4. Diagonalisable Matrices. In contrast to a normal matrix, the eigenvectorsof a diagonalisable matrix can, in general, not be chosen to be orthonormal; in fact,they can be arbitrarily ill-conditioned. In this section we examine how ill-conditioningof eigenvectors can a�ect the size of a residual and the increase in the norms ofsuccessive residuals.We use the following notation. Let A be a diagonalisable matrix with eigende-composition A = V �V �1; and let � � mini j�i � �̂jbe the accuracy of the shift �̂. The condition number of the eigenvector matrix V is�(V ) � kV k kV �1k.



164.1. Diagonalisable Matrices Are Di�erent. We showed in x2.5, x2.6 andx3.1 that, with an appropriate starting vector, the residual after one iteration is almostnegligible. Consequently one should expect iterations beyond the �rst one to bringmore improvement. Unfortunately this is not true. Wilkinson18 and Varah [54, p 786]point out that inverse iteration applied to a non-normal matrix can produce an almostnegligible �rst residual and much larger subsequent residuals. Wilkinson remarks [62,p 374]: It might be felt that the preoccupation with achieving what is re-quired in one iteration is a little pedantic, and that it would bemore reasonable to concede the occasional necessity of performinga second iteration and even, rarely, a third. In fact, early inverseiterations procedures were usually designed to perform two steps ofinverse iteration in all cases on the grounds that it cost little andwould give a useful safety factor. The results proved to be disap-pointing and it was frequently found that the residuals were vastlyabove noise level.Wilkinson points out that this residual growth is neither due to round-o� errors[63, p 176] nor is it related to the process of inverse iteration as such [63, p 174].He puts the blame on ill-conditioned eigenvectors when the matrix is diagonalisable19.The following example illustrates such residual growth caused by ill-conditioned eigen-vectors.Example 1 (S.C. Eisenstat). The residual of a diagonalisable matrix can bemuch smaller than the accuracy of the shift; and the residual growth can be proportionalto the eigenvector condition number.Consider the 2� 2 matrix A� �̂I = � � �1� ;where 0 < � < 1 and � > 1. Then A� �̂I = V �V �1 with� = � � 1� ; V = � 1 �1��1 � ;and �(V ) � �2(1� �)2 :Fix � and let � grow, so the ill-conditioning of the eigenvectors grows with �,�(V )!1 as � !1:The starting vector x0 = e2 produces the unnormalised �rst iteratez1 = (A� �̂I)�1x0 = 1� ���� �and the residual is bounded bykr1k = 1=kz1k = �p�2 + �2 � �� :The �rst residual can be much smaller than the shift � and tends to zero as � becomeslarge.18 [45, xx6-8], [63], [62, x4]19 [45, x7], [62, pp 374-6], [63, pp 174-5]



17The normalised �rst iteratex1 = 1p�2 + �2 ���� �produces the unnormalised second iteratez2 = (A� �̂I)�1x1 = 1�p�2 + �2 ���(1 + �)�2 �and the residual kr2k = 1=kz2k = �p�2 + �2p�2(1 + �)2 + �4 :Since kr2k � �p�2 + �2p(�2 + �2)(1 + �)2 = �1 + � � 12�;the second residual is limited below by the accuracy of the shift, regardless of �.As a consequence, the residual growth is bounded below bykr2kkr1k � 12 ��� = 12 �;independently of the shift. This means20kr2kkr1k = O �p�(V )�!1 as � !1;and the residual growth increases with the ill-conditioning of the eigenvectors.In the following sections we analyse the behaviour of inverse iteration for diago-nalisable matrices: Ill-conditioned eigenvectors can push the residual norm far belowthe accuracy of the shift, and they can cause signi�cant residual growth from oneiteration to the next.4.2. Lower Bound on the Residual. The following lower bound on the resid-ual decreases with ill-conditioning of the eigenvectors. Hence the residual can be muchsmaller than the accuracy of the shift if the eigenvectors are ill-conditioned.Theorem 4.1 (Theorem 1 in [5]). Let A be a diagonalisable matrix witheigenvector matrix V , and let rk = (A� �̂I)xk be the residual for some number �̂ andvector xk with kxkk = 1.Then krkk � �=�(V ):Proof. If �̂ is an eigenvalue of A then � = 0 and the statement is obviously true.If �̂ is not an eigenvalue of A then A� �̂I is non-singular. Hencek(A� �̂I)�1k � �(V ) k(�� �̂I)�1k = �(V )=�and krkk = k(A� �̂I)xkk � 1k(A� �̂I)�1k � ��(V ) :20 A number � satis�es � = O(�m) if there exists a positive constant  such that j�j � �m forsu�ciently large � [19, x4.1.1].



18This bound can also be interpreted as an inclusion domain for eigenvalues of thematrix polynomial A� �̂I , �(V ) krkk � � = mini j�i � �̂j:4.3. Upper Bound on Residual Increase. We derive an upper bound onthe residual growth that grows with the ill-conditioning of the eigenvectors. It alsoprovides a means for estimating the eigenvector ill-conditioning: The square-root ofthe residual growth is a lower bound for the eigenvector condition number.Theorem 4.2. Let inverse iteration be applied to a non-singular diagonalisablematrix A� �̂I with eigenvector matrix V , and let rk = (A� �̂I)xk be the residual forthe kth iterate xk.Then krkkkrk�1k � �(V )2:Proof. This proof is similar to the one for Theorem 3.5. Since krkk = 1=kzkk =1=k(A� �̂I)�1xk�1k we getkrkkkrk�1k = 1k(A� �̂I)�1xk�1k k(A� �̂I)xk�1k = 1kV (�� �̂I)�1yk kV (�� �̂I)yk� kV �1k2k(�� �̂I)�1yk k(�� �̂I)yk ;where y � V �1xk�1. The normality of � impliesk(�� �̂I)�1yk k(�� �̂I)yk � jy�yj � 1=kV k2:Hence krkkkrk�1k � kV �1k2 kV k2 = �(V )2:4.4. Residuals May Not Be Very Useful. In contrast to normal matrices,the residual norms of diagonalisable matrices do not necessarily converge even if theiterates lie in an invariant subspace associated with eigenvalues of the same magnitude.When the matrix is not normal, inverse iteration distinguishes eigenvectors fromvectors that belong to an invariant subspace but are not eigenvectors. If xk is aneigenvector then clearly the residuals of all succeeding iterates have norm krkk. Butthis may not be true when xk merely belongs to an invariant subspace but is not aneigenvector. The following example illustrates this.Example 2. The residual norms of a diagonalisable matrix can change evenif the iterates lie in an invariant subspace all of whose eigenvalues have the samemagnitude.Consider the 2� 2 matrixA� �̂I = � � ���� ; � > 0:The invariant subspace of A� �̂I associated with eigenvalues of magnitude � consistsof all 2� 1 vectors. Since(A� �̂I)�1 = � 1=� �=�2�1=�� = 1�2 (A� �̂I)



19we get zk = (A� �̂I)�1xk�1 = 1�2 (A� �̂I)xk�1 = 1�2 rk�1and krkk = 1kzkk = �2krk�1k :Thus, successive residuals of non-normal matrices can di�er in norm although alliterates belong to the same invariant subspace,krkkkrk�1k = �2krk�1k2 :Fortunately, for this particular matrix there happens to be a �x: (A� �̂I)2 = �2Iis a normal matrix. Hence the results for normal matrices apply to every other iterateof A� �̂I. Since (A� �̂I)2 is also a scalar matrix, all 2�1 vectors are eigenvectors of(A� �̂I)2, and xk�1 = xk+1. Thus, inverse iteration converges for all even-numberediterates, and for all odd-numbered iterates.This example illustrates that residual norms of diagonalisable matrices do notnecessarily reveal when the iterates have arrived in an invariant subspace.5. Non-Normal Matrices. In this section we use the Jordan and Schur de-compositions to analyse the residual for the class of all complex, square matrices:diagonalisable as well as defective. In particular, we show that the residuals of non-normal matrices can be much smaller than the accuracy of the shift when the Jordanbasis is highly ill-conditioned or when the matrix has a highly defective eigenvalue.We also derive tight bounds on the residual growth in terms of the departure of thematrix from normality.5.1. Lower Bounds for the Residual. We derive lower bounds on the residualin terms of the accuracy of the shift, as well as the conditioning of a Jordan basis andthe defectiveness of the eigenvalues.Let A = V JV �1 be a Jordan decomposition where the Jordan matrix J is ablock-diagonal matrix with Jordan blocks �i or0BBB@�i 1�i . . .. . . 1�i 1CCCAon the diagonal; and let � � mini j�i � �̂jbe the accuracy of the shift �̂. The condition number of the Jordan basis V is �(V ) �kV k kV �1k.Theorem 5.1. Let A � �̂I be non-singular with Jordan decomposition A =V JV �1, and let rk = (A� �̂I)xk be the residual for some vector xk with kxkk = 1.Then krkk � 1�(V ) 1k(J � �̂I)�1k :Proof. The inequality follows from the lower bound (x2.4),krkk � 1=k(A� �̂I)�1k;



20and the submultiplicative inequalityk(A� �̂I)�1k � �(V ) k(J � �̂I)�1k:Below we present several bounds for k(J � �̂I)�1k. The �rst upper bound wasderived in [11, Proposition 1.12.4]; and a �rst-order version of the lower bound wasderived in [18, x3].Theorem 5.2. Let J � �̂I be a non-singular Jordan matrix J ; let m be the orderof a largest Jordan block of J ; and let l be the order of any Jordan block of J � �̂Iwhose diagonal element has absolute value �.Then k(J � �̂I)�1k � (1 + �)m�1�m ;and 1�l s1� �2l1� �2 � k(J � �̂I)�1k � pm�m r1� �2m1� �2 :Proof. The �rst bound appears as Theorem 8.2 in Appendix 1 (x8), while theremaining two are part of Theorem 8.4.The lower bound on k(J � �̂I)�1k is proportional to 1=�l, which means thatk(J� �̂I)�1k increases exponentially with the defectiveness of an eigenvalue closest to�̂. We conclude that the residual can be much smaller than the accuracy of �̂ whenthe Jordan basis is ill-conditioned, or when A has a highly defective eigenvalue:Corollary 5.3. Let A � �̂I be non-singular with Jordan decomposition A =V JV �1; let m the order of the largest Jordan block of J ; and let rk = (A � �̂I)xk beteh residual for some vector xk with kxkk = 1.Then krkk � c �m=�(V );where c � max(� 11 + ��m�1 ; 1pm r 1� �21� �2m) :Proof. The inequality follows from Theorems 5.1 and 5.2.In the case of diagonalisable matrices, m = 1 and we recover the bound fromTheorem 4.1.5.2. Upper Bounds on Residual Increase. To bound the residual growthfor general matrices we use a Schur decompositionA = Q(��N)Q�;where Q is unitary, � is diagonal and N is strictly upper triangular. When N = 0, A isnormal. When A is non-normal, one can measure the departure of A from normality21.Henrici proposes as one such measure, among others, the Frobenius norm of N , kNkF[22, x1.2]. Although N is not unique, kNkF is.Here we are interested in the two-norm, kNk, which is not unique. But sinceFrobenius and two norms are related by [17, x2.2]1pnkNkF � kNk � kNkF ;21 e.g. [15, 22, 35, 36]



21we are content to know that kNk is at most pn away from a unique bound. Wemeasure the departure of A� �̂I from normality by� � kNk k(�� �̂I)�1k = kNk=�:This is a relative measure because it compares the size of the non-normal part ofA � �̂I to the eigenvalues of smallest magnitude. We use it to bound the residualgrowth.Theorem 5.4. Let inverse iteration be applied to a non-singular matrix A � �̂Iwhose Schur decomposition has nilpotent part N ; let m�1 � rank(N), where m�1 <n; and let rk = (A� �̂I)xk be the residual for the kth iterate xk.Then krkkkrk�1k � (1 + �) 1� �m1� � :Proof. From krkkkrk�1k = 1k(A� �̂I)�1xk�1k k(A� �̂I)xk�1kand the Schur decomposition of A� �̂I with �̂ � �� �̂I and y � Q�xk�1 followsk(A� �̂I)xk�1k = k�̂(I � �̂�1N)yk;and k(A� �̂I)�1xk�1k = k�̂�1(I �N �̂�1)�1yk = k�̂��(I �N �̂�1)�1yk:The last equality holds because �̂ is normal [15, Theorem 1], [24, Problem 1, p 108].Application of the Cauchy-Schwartz inequality givesk(A� �̂I)�1xk�1k k(A� �̂I)xk�1k = k�̂��(I �N �̂�1)�1yk k�̂(I � �̂�1N)yk� jy�(I �N �̂�1)��(I � �̂�1N)yj� 1k(I � �̂�1N)�1(I � �̂��N�)jj� 1k(I � �̂�1N)�1k (1 + �) :Since N is nilpotent of rank m� 1,k(I � �̂�1N)�1k = km�1Xj=0 (�̂�1N)jk � m�1Xj=0 �j = 1� �m1� � :Applying the bounds with � to the expression for krkk=krk�1k gives the desired result.When A is normal, � = 0 and the upper bound equals one, which is consistentwith the bound for normal matrices in Theorem 3.5.When � > 1, the upper bound grows exponentially with �, sincekrkkkrk�1k � � + 1� � 1 �m = O(�m):Thus, the problem of computing an eigenvector with inverse iteration is exponentiallyill-conditioned when A� �̂I has a large departure from normality. The closer �̂ is toan eigenvalue of A, the smaller is �, and the larger is �. Thus, increasing the accuracy



22of a computed eigenvalue �̂ increases the departure of A � �̂I from normality, whichin turn makes it harder for inverse iteration to compute an eigenvector.When � < 1, the upper bound can be simpli�ed tokrkkkrk�1k � 1 + �1� � :It equals one when � = 0 and is strictly increasing for 0 � � < 1.The next example presents a `weakly non-normal' matrix with bounded residualgrowth but unbounded eigenvector condition number.Example 3. The residual growth of a 2 � 2 matrix with � < 1 never exceedsfour. Yet, when the matrix is diagonalisable, its eigenvector condition number can bearbitrarily large.Consider the 2� 2 matrixA� �̂I = � � ��� ; 0 < � � j�j:Since m = 2, the upper bound in Theorem 5.4 iskrkkkrk�1k � (1 + �)2:For � < 1 this implies krkkkrk�1k � 4:Thus the residual growth remains small { whether the matrix has two distinct eigen-values, or a double defective eigenvalue.When the eigenvalues are distinct, as in Example 1, then � < j�j and A is diago-nalisable. The upper bound in Theorem 4.2,krkkkrk�1k � �(V )2;can be made arbitrarily large by shrinking the eigenvalue separation, since�(V ) � j�j2j�� �j2 :In general, ill-conditioned eigenvectors are not necessarily responsible for a largedeparture of A� �̂I from normality [7, Example 9.1]. Hence the bound on the residualgrowth for diagonalisable matrices in Theorem 4.2 may be totally unrealistic. We showin the next section that the residual growth is primarily a�ected by the departure ofA� �̂I from normality, rather than by eigenvector conditioning. Example 3 seems tosuggest that any harm done by defectiveness is limited, as long as the departure fromnormality remains small.5.3. The Bounds Make Sense. In this section we demonstrate that the boundin Theorem 5.4 is realistic in the following sense. Based on a di�erent measure fordeparture from normality, we show that for any matrix there always exist iterateswhose residual growth is at least as large as the departure of A� �̂I from normality.An alternative measure for departure from normality, which is invariant underscalar multiplication, is the Henrici number [6, De�nition 1.1],[7, De�nition 9.1]He(A) � kA�A�AA�kkA2k � 2kAk2kA2k :



23When A is normal matrix then He(A) = 0. Relations of the Henrici number to othermeasures of non-normality are described in Appendix 2 (x9).One of Wilkinson's explanations for residual growth22 is based on the singularvalue decomposition [18, x15], [45, x8]: The starting vector x0 that produces thesmallest possible residual r1 is a left singular vector un associated with the smallestsingular value of A � �̂I (cf. x2.4). The resulting z1 lies in the direction of thecorresponding right singular vector vn. Representing vn in terms of the left singularvector basis may result in a very small coe�cient for un if an eigenvalue closest to �̂is ill-conditioned. In this case r2 is likely to be much larger than r1.In the same spirit, we consider two possibilities for making kr2k=kr1k large: eithermake kr1k minimal, as Wilkinson suggested; or else make kr2k maximal. As a conse-quence the residual growth is no less than the departure from normality of (A� �̂I)�1in the �rst case, and of A� �̂I in the second case.Theorem 5.5. Let inverse iteration be applied to a non-singular matrix A� �̂I,and let rk = (A� �̂I)xk be the residual for the kth iterate xk.There exists a starting vector x0 so that kr1k is minimal andkr2kkr1k � k(A� �̂I)�1k2k(A� �̂I)�2k � 12He((A� �̂I)�1):There also exists a starting vector x0 so that kr2k is maximal andkr2kkr1k � kA� �̂Ik2k(A� �̂I)2k � 12He(A� �̂I):Proof. In the �rst case, let un and vn be respective left and right singular vectorsassociated with the smallest singular value of A� �̂I , i.e.(A� �̂I)vn = unk(A� �̂I)�1k :If x0 = un then x1 = vn and kr1k = 1=k(A� �̂I)�1k is minimal (x2.4). Thereforekr2kkr1k = 1kz2k 1k(A� �̂I)x1k = 1k(A� �̂I)�1x1k k(A� �̂I)x1k= k(A� �̂I)�1k2k(A� �̂I)�2x0k � k(A� �̂I)�1k2k(A� �̂I)�2k � 12He((A � �̂I)�1):In the second case, let u1 and v1 be respective left and right singular vectorsassociated with the largest singular value of A� �̂I , i.e.(A� �̂I)v1 = kA� �̂Ik u1:If x0 = (A � �̂I)u1=k(A� �̂I)u1k then x1 = u1 and x2 = v1. Then kr2k = kA � �̂Ikis maximal, andkr2kkr1k = 1k(A� �̂I)�1x1k k(A� �̂I)x1k = kA� �̂Ik2k(A� �̂I)2x2k� kA� �̂Ik2k(A� �̂I)2k � 12He(A� �̂I):22 For simplicity we consider residual growth from the �rst to the second iteration, but the argumentof course applies to any pair of successive iterations.



24Thus the best possible starting vector, i.e. a right singular vector associated withthe smallest singular value of A��̂I , can lead to signi�cant residual growth. Wilkinsonwas very well aware of this and he recommended [44, p 420]:For non-normal matrices there is much to be said for choosing theinitial vector in such a way that the full growth occurs in one it-eration, thus ensuring a small residual. This is the only simpleway we have of recognising a satisfactory performance. For wellconditioned eigenvalues (and therefore for all eigenvalues of normalmatrices) there is no loss in performing more than one iterationand subsequent iterations o�set an unfortunate choice of the initialvector.5.4. A Particular Example of Extreme Residual Increase. In this sectionwe present a matrix for which the bound in Theorem 5.4 is tight and the residualgrowth is exponential in the departure from normality.This example is designed to pin-point the apparent regress of inverse iterationafter the �rst iteration, which Wilkinson documented extensively23: The �rst resid-ual is tiny, because it is totally under the control of non-normality. But subsequentresiduals are much larger: The inuence of non-normality has disappeared and theybehave more like residuals of normal matrices. In the example below the residualssatisfy kr1k � 1�n�1 ; kr2k � 1n; kr3k � 2n+ 1 ;where � > 1. For instance, when n = 1000 and � = 2 then the �rst residual iscompletely negligible while subsequent residuals are signi�cantly larger than singleprecision, kr1k � 2�999 � 2 � 10�301; kr2k � 10�3; kr3k � 10�3:Let the matrix A have a Schur decomposition A = Q(��N)Q� withQ = �� �̂I = I; N = �Z; � > 1;and Z � 0BBB@ 0 10 . . .. . . 101CCCA :Thus � = 1, kNk=� = � > 1, m = n� 1, and(A� �̂I)�1 = 0BBBBBB@ 1 � �2 : : : �n�1. . . . . . . . . .... . . . . . �2. . . �1
1CCCCCCA :Let the starting vector be x0 = en. Then kr1k is almost minimal because x1 is amultiple of a column of (A� �̂I)�1 with largest norm (x2.5).23 [18, p 615], [45, P 355], [62, p 375], [63]



25The �rst iteration produces the unnormalised iterate z1 = (A� �̂I)�1en withkz1k2 = n�1Xi=0 (�i)2 = �2n � 1�2 � 1 ;and the normalised iteratex1 = z1kz1k = ��2n � 1�2 � 1 ��1=2 0BBBB@ �n�1...�2�1 1CCCCA :The residual norm can be bounded in terms of the (1; n) element of (A� �̂I)�1,kr1k = 1kz1k = 1k(A� �̂I)�1enk � 1k((A� �̂I)�1)1nk = 1�n�1 :The second iteration produces the unnormalised iteratez2 = (A� �̂I)�1x1 = ��2n � 1�2 � 1 ��1=2 0BBBB@n�n�1...3�22�1 1CCCCAwith kz2k2 = ��2n � 1�2 � 1 ��1 n�1Xi=0 �(i+ 1)�i�2 � n2;and the normalised iteratex2 = z2kz2k =  n�1Xi=0 �(i+ 1)�i�2!�1=2 0BBBB@n�n�1...3�22�1 1CCCCA :The residual norm is kr2k = 1kz2k � 1n:The third iteration produces the unnormalised iteratez3 = (A� �̂I)�1x2 =  n�1Xi=0 �(i+ 1)�i�2!�1=2 0BBBBB@ n(n+1)2 �n�1...6�23�1
1CCCCCAwith kz3k2 =  n�1Xi=0 �(i+ 1)�i�2!�1 n�1Xi=0 � (i+ 1)(i+ 2)2 �i�2 � �n+ 12 �2 :



26The residual norm is kr3k = 1kz3k � 2n+ 1 :In spite of the setback in residual size after the �rst iteration, the gradation ofthe elements in z1, z2, and z3 indicates that the iterates eventually converge to theeigenvector e1.6. Finite Precision Arithmetic. In this section we illustrate that �nite pre-cision arithmetic has little e�ect on inverse iteration, in particular on residual norms,starting vectors and solutions to linear systems. Wilkinson agreed: `the inclusion ofrounding errors in the inverse iteration process makes surprisingly little di�erence' [45,p 355].We use the following notation. Suppose x̂k�1 with kx̂k�1k = 1 is the currentiterate computed in �nite precision, and ẑk is the new iterate computed in �niteprecision. That is, the process of linear system solution in x2.2 produces a matrix Fkdepending on A � �̂I and x̂k�1 so that ẑk is the exact solution to the linear system[60, xIII.25], [61, x9.48] (A� �̂I � Fk)ẑk = x̂k�1:We assume that the normalisation is error free, so the normalised computed iteratex̂k � ẑk=kẑkk satis�es (A� �̂I � Fk)x̂k = ŝk x̂k�1;where the normalisation constant is ŝk � 1=kẑkk.In the case of oating point arithmetic, the backward error Fk is bounded by [60,xIII.25] kFkk � p(n) � kA� �̂Ik �M ;where p(n) is a low degree polynomial in the matrix size n. The machine epsilon �Mdetermines the accuracy of the computer arithmetic; it is the smallest positive oatingpoint number that when added to 1:0 results in a oating point number larger than 1:0[32, x2.3].The growth factor � is the ratio between the element of largest magnitude occur-ring during Gaussian elimination and the element of largest magnitude in the originalmatrix A� �̂I [58, x2]. For Gaussian elimination with partial pivoting � � 2n�1 [59,xx8, 29]. Although one can �nd practical examples with exponential growth factors[16], numerical experiments with random matrices suggest growth factors proportionalto n2=3 [53]. According to public opinion, � is small [17, x3.4.6]. Regarding the possi-bility of large elements in U , hence a large �, Wilkinson remarked [61, x9.50]:I take the view that this danger is negligible.while Kahan believes [30, p 782],Intolerable pivot-growth is a phenomenon that happens only to nu-merical analysts who are looking for that phenomenon.It seems therefore reasonable to assume that � is not too large, and that the backwarderror from Gaussian elimination with partial pivoting is small.For real symmetric tridiagonal matrices T , the sharper boundkFkk � cpn kT � �̂Ik �Mholds, where c is a small constant [60, x3.52], [61, x5.55].



276.1. The Finite Precision Residual. The exact iterate xk is an eigenvectorof a matrix close to A if its unnormalised version zk has su�ciently large norm (cf.x2.3). Wilkinson demonstrated that this is also true in �nite precision arithmetic [60,xIII.52], [61, x5.55]. The meaning of `su�ciently large' is determined by the size ofthe backward error Fk from the linear system solution.The residual of the computed iterater̂k � (A� �̂I)x̂k = �Fkx̂k + ŝkx̂k�1is bounded by 1kẑkk � kFkk � kr̂kk � 1kẑkk + kFkk:This means, if ẑk is su�ciently large then the size of the residual is about as small asthe backward error. For instance, if the iterate norm is inversely proportional to thebackward error, i.e. kẑkk � 1c1kFkkfor some constant c1 > 0, then the residual is at most a multiple of the backwarderror, kr̂kk � (1 + c1) kFkk:A lower bound on kẑkk can therefore serve as a criterion for terminating the inverseiteration process.For a real symmetric tridiagonal matrix T Wilkinson suggested [61, p 324] termi-nating the iteration process one iteration afterkẑkk1 � 1100n �Mis satis�ed, assuming T is normalised so kT � �̂Ik1 � 1. Wilkinson did his compu-tations on the ACE, a machine with a 46-bit mantissa where �M = 2�46. The factor100n covers the term cpn in the bound on the backward error for tridiagonal matricesin x6. According to Wilkinson [61, p 325]:In practice this has never involved doing more than three itera-tions and usually only two iterations are necessary. [: : :] The factor1=100n has no deep signi�cance and merely ensures that we seldomperform an unnecessary extra iteration.Although Wilkinson's suggestion of performing one additional iteration beyond thestopping criterion does not work well for general matrices (due to possible residualincrease, cf. x5 and [54, p 768]), it is e�ective for symmetric tridiagonal matrices [29,x4.2].In the more di�cult case when one wants to compute an entire eigenbasis of a real,symmetric matrix, the stopping criterion requires that the relative residual associatedwith a projected matrix be su�ciently small [8, x5.3].6.2. Good Starting Vectors in Finite Precision. In exact arithmetic thereare always starting vectors that lead to an almost minimal residual in a single iteration(cf. x2.5). Wilkinson proved that this is also true for �nite precision arithmetic [62,p 373]. That is, the transition to �nite precision arithmetic does not a�ect the size ofthe �rst residual signi�cantly.Suppose the lth column has the largest norm among all columns of (A � �̂I)�1,and the computed �rst iterate ẑ1 satis�es(A� �̂I + F1)ẑ1 = el:



28This implies (I + (A� �̂I)�1F1)ẑ1 = (A� �̂I)�1eland 1pn k(A� �̂I)�1k � k(A� �̂I)�1elk � kI + (A� �̂I)�1F1k kẑ1k:Therefore kẑ1k � 1pn k(A� �̂I)�1k1 + k(A� �̂I)�1k kF1k :If k(A� �̂I)�1k kF1k is small then z1 and ẑ1 have about the same size.Our bound for kẑ1k appears to be more pessimistic than Wilkinson's [62, p 373]which says essentially that there is a canonical vector el such that(A� �̂I + F1)ẑ1 = eland kẑ1k = k(A� �̂I + F1)�1elk � 1pn k(A� �̂I + F1)�1k:But k(A� �̂I + F1)�1k = k�I + (A� �̂I)�1F1��1 (A� �̂I)�1k� k(A� �̂I)�1kkI + (A� �̂I)�1F1k � k(A� �̂I)�1k1 + k(A� �̂I)�1k kF1kimplies that Wilkinson's result is an upper bound of our result, and it is not muchmore optimistic than ours.Unless x0 contains an extraordinarily small contribution of the desired eigenvec-tor x, Wilkinson argued that the second iterate x2 is as good as can be expected in�nite precision arithmetic [60, xIII.53]. Jessup and Ipsen [29] performed a statisticalanalysis to con�rm the e�ectiveness of random starting vectors for real, symmetrictridiagonal matrices.6.3. Solution of Ill-Conditioned Linear Systems. A major concern in theearly days of inverse iteration was the ill-conditioning of the linear system involvingA � �̂I when �̂ is a good approximation to an eigenvalue of A. It was believed thatthe computed solution to (A � �̂I)z = x̂k�1 would be totally inaccurate [45, p 340].Wilkinson went to great lengths to allay these concerns24. He reasoned that only thedirection of a solution is of interest but not the exact multiple: A computed iteratewith a large norm lies in `the correct direction' and `is wrong only by [a] scalar factor'[45, p 342].We quantify Wilkinson's argument and compare the computed �rst iterate to theexact �rst iterate (as before, of course, the argument applies to any iterate). Therespective exact and �nite precision computations are(A� �̂I)z1 = x0; (A� �̂I + F1)ẑ1 = x0:Below we make the standard assumption25 that k(A � �̂I)�1F1k < 1, which meansthat A � �̂I is su�ciently well-conditioned with respect to the backward error, so24 [44, x6], [45, x2], [60, xIII.53], [61, x5.57], [61, xx9.48, 49], [62, x5]25 [17, Lemma 2.7.1], [51, Theorem 4.2], [58, x9.(S)], [60, xIII.12]



29nonsingularity is preserved despite the perturbation. The following result assures thatthe computed iterate is not much smaller than the exact iterate.Theorem 6.1. Let A� �̂I be non-singular; let k(A� �̂I)�1F1k < 1; and let(A� �̂I)z1 = x0; (A� �̂I + F1)ẑ1 = x0:Then kẑ1k � 12kz1k:Proof. Since �̂ is not an eigenvalue of A, A� �̂I is non-singular and�I + (A� �̂I)�1F1� ẑ1 = z1:The assumption k(A� �̂I)�1F1k < 1 implieskz1k � �1 + k(A� �̂I)�1F1k� kẑ1k � 2kẑ1k:Since computed and exact iterate are of comparable size, the ill-conditioning ofthe linear system does not damage the accuracy of an iterate. When ẑ1 is a columnof maximal norm of (A� �̂I + F1)�1, Theorem 6.1 implies the bound from x6.2.6.4. An Example of Numerical Software. In this section we briey describea state-of-the-art implementation of inverse iteration from the numerical software li-brary LAPACK [1].Computing an eigenvector of a real symmetric or complex Hermitian matrix Hwith LAPACK requires three steps [1, 2.3.3]:1. Reduce H to a real, symmetric tridiagonal matrix T by means of an orthog-onal or unitary similarity transformation Q, H = QTQ�.2. Compute an eigenvector x of T by xSTEIN.3. Backtransform x to an eigenvector Qx of H .The reduction to tridiagonal form is the most expensive among the three steps. Fora matrix H of order n, the �rst step requires O(n3) operations, the second O(n) andthe third O(n2) operations.The particular choice of Q in the reduction to tridiagonal form depends on thesparsity structure of H . If H is full and dense or if it is sparse and stored in packedformat, then Q should be chosen as a product of Householder reections. If H isbanded with bandwidth w then Q should be chosen as a product of Givens rotations,so the reduction requires only O(w2 n) operations. Unless requested, Q is not deter-mined explicitly but stored implicitly in factored form, as a sequence of Householderreections or Givens rotations.Given a computed eigenvalue �̂, the LAPACK subroutine xSTEIN26 computesan eigenvector of a real symmetric tridiagonal matrix T as follows. We assume at �rstthat all o�-diagonal elements of T are non-zero.Step 1: Compute the LU factors of T � �̂I by Gaussian elimination withpartial pivoting: P (T � �̂I) = LU:26 The pre�x `x' stands for the data type: real single (S) or double (D) precision, or complex single(C) or double precision (Z).



30Step 2: Select a random (unnormalised) starting vector z0 with elementsfrom a uniform (�1; 1) distribution.Step 3: Execute at most �ve of the following iterations:Step i.1: Normalise the current iterate so its one-norm is on the orderof machine epsilon: xk�1 = sk�1 � zk�1 wheresk�1 = n kTk1 maxf�M ; junnjg = kzk�1k1;and unn is the trailing diagonal element of U .Step i.2: Solve the two triangular systems to compute the new unnor-malised iterate: Lck = Pxk�1; Uzk = ck:Step i.3: Check whether the in�nity-norm of the new iterate has grownsu�ciently: Is kzkk1 � 1=p10n ?1. If yes, then perform two additional iterations. Normalise the �-nal iterate xk+2 so that kxk+2k2 = 1 and the largest element inmagnitude is positive. Stop.2. If no, and if the current number of iterations is less than �ve, startagain at Step i.1.3. Otherwise terminate unsuccessfully.We comment on the di�erent steps of xSTEIN:Step 1. The matrix T is input to xSTEIN in the form of two arrays of lengthn, one array containing the diagonal elements of T and the other containing theo�-diagonal elements. Gaussian elimination with pivoting on T � �̂I results in aunit lower triangular matrix L with at most one non-zero subdiagonal and an uppertriangular matrix U with at most two non-zero superdiagonals. xSTEIN uses an arrayof length 5n to store the starting vector z0, the subdiagonal of L, and the diagonaland superdiagonals of U in a single array. In subsequent iterations, the location thatinitially held z0 is overwritten with the current iterate.Step i.1. Instead of normalising the current iterate xk�1 so it has unit-norm,xSTEIN normalises xk�1 to make its norm as small as possible. The purpose is toavoid overow in the next iterate zk.Step i.2. In contrast to Wilkinson's practice of saving one triangular system so-lution in the �rst iteration (cf. x2.2), xSTEIN executes the �rst iteration like allothers.To avoid overow in the elements of zk, xStein gradually increases the magnitudeof very small diagonal elements of U : If entry i of zk would be larger than the reciprocalof the smallest normalised machine number, then uii (by which we divide to obtainthis entry) has its magnitude increased by 2p �M maxi;j jui;j j, where p is the numberof already perturbed diagonal elements.Step i.3. The stopping criterion determines whether the norm of the new iteratezk has grown in comparison to the norm of the current iterate xk�1 (in previouschapters the norm of xk�1 equals one). To see this, divide the stopping criterion bykxk�1k1 and use the fact that kxk�1k1 = sk�1. This amounts to asking whetherkzkk1kxk�1k1 � 1p10 n n kTk1 �M :



31Thus the stopping criterion in xSTEIN is similar in spirit to Wilkinson's stoppingcriterion in x6.1 (Wilkinson's criterion does not contain the norm of T because heassumed that T � �̂I is normalised so its norm is close to one).When junnj is on the order of �M then T � �̂I is numerically singular. Theconvergence criterion expects a lot more growth from an iterate when the matrix isclose to singular than when it is far from singular.In the preceding discussion we assumed that T has non-zero o�-diagonal elements.When T does have zero o�-diagonal elements, it splits into several disjoint submatricesTi whose eigenvalues are the eigenvalues of T . xSTEIN requires as input the index iof the submatrix Ti to which �̂ belongs, and the boundaries of each submatrix. ThenxSTEIN computes an eigenvector x of Ti and expands it to an eigenvector of T by�lling zeros into the remaining entries above and below x.7. Asymptotic Convergence In Exact Arithmetic. In this section we givea convergence proof for inverse iteration applied to a general, complex matrix. Incontrast to a normal matrix (cf. x3.3), the residual norms of a non-normal matrix donot decrease strictly monotonically (cf. x5.3 and x5.4). In fact, the residual normsmay even fail to converge (cf. Example 2). Thus we need to establish convergence ofthe iterates proper.The absence of monotonic convergence is due to the transient dominance of thedeparture from normality over the eigenvalues. The situation is similar to the `hump'phenomenon: If all eigenvalues of a matrix B are less than one in magnitude, thenthe powers of B converge to zero asymptotically, kBkk ! 0 as k ! 1 [24, x3.2.5,x5.6.12]. But before asymptotic convergence sets in, kBkk can become much largerthan one temporarily before dying down. This transient growth is quanti�ed by thehump maxk kBkk=kBk [23, x2].Wilkinson established convergence conditions for diagonalisable matrices27 andfor symmetric matrices [60, xIII.50]. We extend Wilkinson's argument to generalmatrices. A simple proof demonstrates that unless the choice of starting vector is par-ticularly unfortunate, the iterates approach the invariant subspace of all eigenvaluesclosest to �̂. Compared to the convergence analysis of multi-dimensional subspaces [43]our task is easier because it is less general: Each iterate represents a `perturbed sub-space' of dimension one; and the `exact subspace' is de�ned conveniently, by groupingthe eigenvalues as follows.Let A� �̂I = V (J � �̂I)V �1 be a Jordan decomposition and partitionJ = � J1 J2 � ; V = (V1 V2 ) ; V �1 = �W �1W �2 � ;where J1 contains all eigenvalues �i of A closest to �̂, i.e. j�i � �̂j = �; while J2contains the remaining eigenvalues. Again we assume that �̂ is not an eigenvalue ofA, so � > 0.The following theorem ensures that inverse iteration gradually removes from theiterates their contribution in the undesirable invariant subspace, i.e the subspace as-sociated with eigenvalues farther away from �̂. If the starting vector x0 has a non-zerocontribution in the complement of the undesirable subspace then the iterates approachthe desirable subspace, i.e. the subspace associated with the eigenvalues closest to �̂.This result is similar to the well-known convergence results for the power method, e.g.[34, x10.3].27 [44, x1], [62, x1], [63, p 173]



32Theorem 7.1. Let inverse iteration be applied to a non-singular matrix A� �̂I.Then iterate xk is a multiple of yk1 + yk2, k � 1, where yk1 2 range(V1), yk2 2range(V2), and yk2 ! 0 as k !1.If W �1 x0 6= 0 then yk1 6= 0 for all k.Proof. Write (A� �̂I)�1 = ��1 V (�(J � �̂I)�1)V �1;where �(J � �̂I)�1 = � �(J1 � �̂I)�1 �(J2 � �̂I)�1� :The eigenvalues of �(J1��̂I)�1 have absolute value one; while the ones of �(J2��̂I)�1have absolute value less than one. Then(A� �̂I)�kx0 = ��k (yk1 + yk2);where yk1 � V1(�(J1 � �̂I)�1)kW �1 x0; yk2 � V2(�(J2 � �̂I)�1)kW �2 x0:Since all eigenvalues of �(J2��̂I)�1 are less than one in magnitude, (�(J2��̂I)�1)k ! 0as k !1 [24, x3.2.5, x5.6.12]. Hence yk2 ! 0. Becausexk = (A� �̂I)�kx0k(A� �̂I)�kx0k ;xk is a multiple of �k (A� �̂I)�kx0 = yk1 + yk2.If W �1 x0 6= 0, the non-singularity of �(J1 � �̂I)�1 implies yk1 6= 0.Because the contributions yk1 of the iterates in the desired subspace depend onk, the above result only guarantees that the iterates approach the desired invariantsubspace. It does not imply that they converge to an eigenvector.Convergence to an eigenvector occurs, for instance, when there is a single, non-defective eigenvalue closest to �̂. When this is a multiple eigenvalue, the eigenvectortargeted by the iterates depends on the starting vector. The iterates approach unitmultiples of this target vector. Below we denote by jxj the vector whose elements arethe absolute values of the elements of x.Corollary 7.2. Let inverse iteration be applied to the non-singular matrixA��̂I. If J1 = �1I in the Jordan decomposition of A��̂I, then iterate xk is a multipleof !ky1 + yk2, where j!j = 1, y1 � V1W �1 x0 is independent of k, yk2 2 range(V2), andyk2 ! 0 as k !1.If W �1 x0 6= 0 then jxkj approaches a multiple of jy1j as k !1.Proof. In the proof of Theorem 7.1 set ! � �=(�1 � �̂). Then �(J1 � �̂I)�1 = !Iand yk1 = !ky1.8. Appendix 1: Facts about Jordan Blocks. In this section we give boundson the norm of the inverse of a Jordan block. First we give an upper bound for asingle Jordan block.Lemma 8.1 (Proposition 1.12.4 in [11]). LetJ = 0BBB@� 1� . . .. . . 1�1CCCA



33be of order m and � 6= 0. ThenkJ�1k � (1 + j�j)m�1j�jm :Now we bound the norm of a matrix consisting of several Jordan blocks.Theorem 8.2 (Proposition 1.12.4 in [11], Theorem 8 in [31]). Let J be aJordan matrix whose Jordan blocks have diagonal elements �i; let� � mini j�ij;and let m be the order of a Jordan block Jj for which kJ�1k = kJ�1j k.If � > 0 then kJ�1k � (1 + �)m�1�m :Proof. Let �j be the diagonal element of Jj . Lemma 8.1 implieskJ�1k = kJ�1j k � (1 + j�j j)m�1j�j jm :Because of � � j�j j we get (proof of Proposition 1.12.4 in [11])(1 + j�j j)m�1j�j jm = 1j�j j �1 + j�j jj�j j �m�1 � 1� �1 + �� �m�1 :Now we derive a lower bound and a second upper bound, which di�er by a factorof at most pm. A �rst-order version of the lower bound appeared in [18, x3], and theone-norm upper bound was proved in [37, Lemma 2]. As before, we start with a singleJordan block.Lemma 8.3. Let J = 0BBB@� 1� . . .. . . 1�1CCCAbe of order m and � 6= 0. ThenkJ�1emk � kJ�1k � kJ�1emk1 � pm kJ�1emk;where for j�j 6= 1kJ�1emk = 1j�jm s1� j�j2m1� j�j2 ; kJ�1emk1 = 1j�jm s1� j�jm1� j�j :Proof. To prove the lower bound and the two-norm upper bound, note that theinverse of J is [25, x6.2.13]J�1 = 0BBB@ 1� �1�2 : : : (�1)m+1�m1� (�1)m�m�1. . . ...1� 1CCCA :



34The last column of J�1 has largest norm among all columns,kJ�1emk � kJ�1k � pm kJ�1emk;and the square of its two-norm is a geometric progression in 1=j�j2,kJ�1emk2 = 1j�j2 m�1Xi=0 1j�j2i = 1j�j2 1� 1j�j2m1� 1j�j2 :Taking square-roots on both sides giveskJ�1emk = 1j�jms1� j�j2m1� j�j2 :To prove the one-norm upper bound, apply the Neumann lemma [17, Lemma2.3.3] to J = �I +N ,kJ�1k = 1j�j �I + 1j�j N��1 � 1j�j m�1Xi=0 1j�ji = kJ�1emk1;where kJ�1emk1 is a geometric progression in 1=j�j.The relation between the two upper bounds follows from the fact that kxk1 �pm kxk for any m-vector x [17, (2.2.5)].We extend the above bounds to matrices consisting of several Jordan blocks.Theorem 8.4. Let J be a Jordan matrix whose diagonal blocks have diagonalelements �i, and let � � mini j�ij > 0:Furthermore let m be the order of a Jordan block Jj for which kJ�1k = kJ�1j k; andlet l be the order of any Jordan block whose diagonal elements have absolute value �.Then 1�l s1� �2l1� �2 � kJ�1k � 1�m 1� �m1� � :Proof. To prove the upper bound, let �j be the diagonal element of Jj . Since� � j�j j, we bound the one-norm upper bound from Lemma 8.3 in terms of �,kJ�1k = kJ�1j k � kJ�1j emk1 = 1j�j j m�1Xi=0 1j�j ji � 1� m�1Xi=0 1�i :To prove the lower bound, let Ji be any Jordan block whose diagonal element hasabsolute value �. Then Lemma 8.3 implieskJ�1k � kJ�1i k � 1�l s1� �2l1� �2 :



359. Appendix 2: Departure from Normality. In this section we present re-lations between di�erent measures for departure from normality.The following result relates kAA� �A�AkF and kNkF in the Frobenius norm.Theorem 9.1 (Theorem 1 in [22]). Let A be n� n with Schur decompositionA = Q(��N)Q�. Then kNk2F �rn3 � n12 kA�A�AA�kF :Below is a corresponding relation in the two-norm.Theorem 9.2. Let A be n�n with Schur decomposition A = Q(��N)Q�. ThenkNk2n2 � kA�A�AA�k � 2kNk2 + 4k�k kNk:Proof. The upper bound follows from the triangle inequality and the submulti-plicative property of the two-norm. Regarding the lower bound, there exists a columnNel, 1 � l � n, such that (cf. x2.5)1nkNk2 � kNelk2 = (N�N)ll;where (N�N)ll is the lth diagonal element of N�N . BecausenXi=l (N�N �NN�)ii = (N�N)ll + nXi=l+1 l�1Xj=1N�jiNji;where Nji is element (j; i) of N ,(N�N)ll � nXi=l (N�N �NN�)ii � n max1�i�n j(N�N �NN�)iij � n kA�A�AA�k:The last inequality holds because (N�N � NN�)ii is the ith diagonal element ofQ�(A�A � AA�)Q and because for any matrix M , kMk � maxi jMiij. Putting allinequalities together gives the desired lower bound.The Henrici number in the Frobenius norm [6, De�nition 1.1],[7, De�nition 9.1],HeF(A) � kA�A�AA�kFkA2kF � 2 kAk2FkA2kF ;is a lower bound for the two-norm eigenvector condition number of a diagonalisablematrix:Theorem 9.3 (Theorem 8 in [49] adapted to the two-norm). Let A ben� n. If A is diagonalisable with eigenvector matrix V then�(V )4 � 1 + 12 HeF(A)2:Acknowledgements. I thank Carl Meyer for encouraging me to write this pa-per; Stan Eisenstat and Rich Lehoucq for helpful discussions; Bob Funderlic and GeneGolub for pointers to the literature; and Inder Dhillon for carefully reading the paperand making many helpful suggestions.REFERENCES
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