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COMPUTING AN EIGENVECTOR WITH INVERSE ITERATION

ILSE C. F. IPSEN*

Abstract. The purpose of this paper is two-fold: to analyse the behaviour of inverse iteration
for computing a single eigenvector of a complex, square matrix; and to review Jim Wilkinson’s
contributions to the development of the method. In the process we derive several new results regarding
the convergence of inverse iteration in exact arithmetic.

In the case of normal matrices we show that residual norms decrease strictly monotonically. For
eighty percent of the starting vectors a single iteration is enough.

In the case of non-normal matrices, we show that the iterates converge asymptotically to an
invariant subspace. However the residual norms may not converge. The growth in residual norms
from one iteration to the next can exceed the departure of the matrix from normality. We present
an example where the residual growth is exponential in the departure of the matrix from normality.
We also explain the often significant regress of the residuals after the first iteration: it occurs when
the non-normal part of the matrix is large compared to the eigenvalues of smallest magnitude. In
this case computing an eigenvector with inverse iteration is exponentially ill-conditioned (in exact
arithmetic).

We conclude that the behaviour of the residuals in inverse iteration is governed by the departure
of the matrix from normality, rather than by the conditioning of a Jordan basis or the defectiveness
of eigenvalues.

Key words. eigenvector, invariant subspace, inverse iteration, departure from normality, ill-
conditioned linear system

AMS subject classification. 15A06, 15A18, 15A42, 65F15

1. Introduction. Inverse Iteration was introduced by Helmut Wielandt in 1944
[56] as a method for computing eigenfunctions of linear operators. Jim Wilkinson
turned it into a viable numerical method for computing eigenvectors of matrices. At
present it is the method of choice for computing eigenvectors of matrices when approx-
imations to one or several eigenvalues are available. It is frequently used in structural
mechanics, for instance, to determine extreme eigenvalues and corresponding eigen-
vectors of Hermitian positive-(semi)definite matrices [2, 3, 20, 21, 28, 48].

Suppose we are given a real or complex square matrix A and an approximation
A to an eigenvalue of A. Inverse iteration generates a sequence of vectors z from a
given starting vector zy by solving the systems of linear equations

(A — /A\I)ﬂfk = SkTk—1, k Z 1.

Here [ is the identity matrix, and sy is a positive number responsible for normalising
zy. If everything goes well, the sequence of iterates x converges to an eigenvector as-
sociated with an eigenvalue closest to X. In exact arithmetic, inverse iteration amounts
to applying the power method to (A — 5\1)*1.
The importance of inverse iteration is illustrated by three quotes from Wilkinson!:

‘In our experience, inverse iteration has proved to be the most suc-

cessful of methods we have used for computing eigenvectors of a

tri-diagonal matrix from accurate eigenvalues.’

* Center for Research in Scientific Computation, Department of Mathematics, North Carolina
State University, P. O. Box 8205, Raleigh, NC 27695-8205, USA (ipsen@math.ncsu.edu). This re-
search was supported in part by NSF grants CCR-9102853 and CCR-9400921.
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‘Inverse iteration is one of the most powerful tools in numerical
analysis.’
‘Inverse iteration is now the most widely used method for comput-
ing eigenvectors corresponding to selected eigenvalues which have
already been computed more or less accurately.’
A look at software in the public domain shows that this is still true today [1, 44, 47].

The purpose of this paper is two-fold: to analyse the behaviour of inverse iteration;
and to review Jim Wilkinson’s contributions to the development of inverse iteration.
Although inverse iteration looks like a deceptively simple process, its behaviour is
subtle and counter-intuitive, especially for non-normal (e.g. non-symmetric) matrices.
It is important to understand the behaviour of inverse iteration in exact arithmetic, for
otherwise we cannot develop reliable numerical software. Fortunately, as Wilkinson
recognised already [45, p 355], the idiosyncrasies of inverse iteration originate from
the mathematical process rather than from finite precision arithmetic. This means a
numerical implementation of inverse iteration in finite precision arithmetic does not
behave very differently from the exact arithmetic version. Therefore we can learn a lot
about a numerical implementation by studying the theory of inverse iteration. That’s
what we’ll do in this paper.

We make two assumptions in our discussion of inverse iteration. First, the shift
A remains fixed for each eigenvector during the course of the iterations; this excludes
variants of inverse iteration such as Rayleigh quotient iteration?, and the interpreta-
tion of inverse iteration as a Newton method®. Second, only a single eigenvector is
computed as opposed to a basis for an invariant subspace?.

To illustrate the additional difficulties in the computation of several vectors, con-
sider a real symmetric matrix. When the eigenvalues under consideration are well-
separated, inverse iteration computes numerically orthogonal eigenvectors. But when
the eigenvalues are poorly separated, it may not be clear with which eigenvalue a com-
puted eigenvector is to be affiliated. Hence one perturbs the eigenvalues to enforce a
clear separation. Even then the computed eigenvectors can be far from orthogonal.
Hence one orthogonalises the iterates against previously computed iterates to enforce
orthogonality. But explicit orthogonalisation is expensive and one faces a trade-off
between orthogonality and efficiency. Therefore one has to decide which eigenvalues
to perturb and by how much; and which eigenvectors to orthogonalise and against
how many previous ones and how often. One also has to take into account that the
tests involved in the decision process can be expensive. A detailed discussion of these
issues can be found for instance in [44, §].

1.1. Motivation. This paper grew out of commentaries about Wielandt’s work
on inverse iteration [26] and the subsequent development of the method [27]. Several
reasons motivated us to take a closer look at Wilkinson’s work. Among all contri-
butions to inverse iteration, Wilkinson’s are by far the most extensive and the most
important. They are contained in five papers® and in chapters of his two books [60, 61].
Since four of the five papers were published after the books, there is no one place where
all of his results are gathered. Overlap among the papers and books, and the gradual
development of ideas over several papers makes it difficult to realise what Wilkinson
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has accomplished. Therefore we decided to compile and order his main results and to
set out his ideas.

Wilkinson’s numerical intuition provided him with many insights and empirical
observations for which he did not provide rigorous proofs. To put his ideas on a
theoretical footing, we extend his observations and supply simple proofs from first
principles. To this end it is necessary to clearly distinguish the mathematical proper-
ties of inverse iteration from finite precision issues. The importance of this distinction
was first realised in Shiv Chandrasekaran’s thesis [8] where a thorough analysis of
inverse iteration is presented for the computation of a complete set of eigenvectors of
a real, symmetric matrix.

1.2. Caution. Our primary means for analysing the convergence of inverse it-
eration is the backward error rather than the forward error. The backward error for
iterate xy, is ||ry||, where 1y = (A — Al)xy, is the residual. When ||ry|| is small then z,
and \ are an eigenpair of a matrix close to A (§2.3). In contrast, the forward error
measures how close z; is to an eigenvector of A. We concentrate on the backward
error because .

Irell = (A = ADzi |l = llspze 1]l = s

is the only readily available computational means for monitoring the progress of inverse
iteration.

Unfortunately, however, a small backward error does not imply a small forward
error. In the case of normal matrices, for instance, a measure of the forward error
is the acute angle 6; between x; and the eigenspace associated with all eigenvalues
closest to A. The resulting siné theorem [12; §2], [14, §4] bounds the forward error
in terms of the backward error and an amplification factor ~, which is the separation
between A and all eigenvalues farther away:

sin By, < [|re||/7-

This means, even though the backward error may be small, x; can be far away from the
eigenspace if the eigenvalues closest to \ are poorly separated from those remaining.

Nevertheless, in the absence of information about the eigenvalue distribution of A
the only meaningful computational pursuit is a small backward error. If the backward
error is small then we can be certain, at least, that we have solved a nearby problem.
Therefore we concentrate our efforts on analysing the behaviour of successive residuals,
and on finding out under what conditions a residual is small.

1.3. New Results. To our knowledge, the following observations and results
are new.

Normal Matrices. Residual norms decrease strictly monotonically (§3.3). For
eighty percent of the starting vectors a single iteration is enough, because the residual
is as small as the accuracy of the computed eigenvalue (§3.1).

Diagonalisable Matrices. Inverse iteration distinguishes between eigenvectors,
and vectors belonging to an invariant subspace that are not eigenvectors (§4.4). The
square root of the residual growth is a lower bound for an eigenvector condition number

(§4.3).

Non-Normal Matrices®. For every matrix one can find iterates where the resid-
ual growth from one iteration to the next is at least as large as the departure of the

6 Non-normal matrices include diagonalisable as well as defective matrices.
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matrix from normality; and one can also find iterates where the residual growth is at
least as large as the departure of the inverse matrix from normality (§5.3).

We introduce a measure for the relative departure of a matrix from normality by
comparing the size of the non-normal part to the eigenvalues of smallest magnitude
(85.2). There are matrices whose residual growth can be exponential in the relative
departure from normality (§5.4). This explains the often significant regress of inverse
iteration after the first iteration.

Increasing the accuracy of the approximate eigenvalue )\ increases the relative
departure of A — Al from normality. When the relative departure from normality
exceeds one, computing an eigenvector of A with inverse iteration is exponentially
ill-conditioned (§5.2).

We conclude that the residual growth in inverse iteration is governed by the
departure of the matrix from normality, rather than by the conditioning of a Jordan
basis or the defectiveness of eigenvalues (§5.2).

1.4. Overview. In §2 we discuss the basic aspects of inverse iteration: the un-
derlying idea (§2.1); how to solve the linear system (§2.2); the purpose of the residual
(§2.3, §2.4); and the choice of starting vectors (§2.5, §2.6).

In §3 we exhibit the good behaviour of inverse iteration in the presence of a
normal matrix: one iteration usually suffices (§3.1); and the residuals decrease strictly
monotonically (§3.2, §3.3).

In §4 we show what happens when inverse iteration is applied to a diagonalisable
matrix: residuals can grow with the ill-conditioning of the eigenvectors (§4.1, §4.3);
the accuracy of the approximate eigenvalue can exceed the size of the residual (§4.2);
and residuals do not always reveal when the iterates have arrived at their destination
(84.4).

In §5 we describe the behaviour of inverse iteration in terms of the departure from
normality: upper and lower bounds on the residual growth (§5.2, §5.3); an example of
exponential residual growth (§5.4); and the relation of the residual to conditioning of
a Jordan basis and defectiveness of eigenvalues (§5.1).

In §6 we illustrate that inverse iteration in finite precision arithmetic behaves very
much like in exact arithmetic. We examine the effects of finite precision arithmetic on
the residual size (§6.1), the performance of starting vectors (§6.2), and the solution
of linear systems (§6.3). A short description of a numerical software implementation
(§6.4) concludes the chapter.

In §7 we prove the convergence of inverse iteration in exact arithmetic.

In §8 (Appendix 1) we supply facts about Jordan matrices required in §5; and
in §9 (Appendix 2) we present relations between different measures of departure from
normality.

1.5. Notation. Our protagonist is a real or complex n x n matrix A with eigen-
values A1, Az, ..., A,. When the matrix is normal or, in particular Hermitian, we call
it H.

Our goal is to compute an eigenvector of A. But since we have access only to
an approximate eigenvalue 5\, the best we can get is an approximate eigenvector Z.
We use a hat to represent approximate or computed quantities, such as X and #. We
assume most of the time that \ is not an eigenvalue of A, hence A — M is nonsingular,
where I (or I,,) is the identity matrix of order n. If, on the contrary, \is an eigenvalue
of A then the problem is easy to solve because we only have to compute a null vector
of A— Al
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The norm || -|| is the two-norm, i.e. ||z|| = vz*z, where the superscript * denotes
the conjugate transpose. The ith column of the identity matrix [ is called the canonical
vector e;, 1 > 1.

2. The Method. In this section we describe the basics of inverse iteration: the
idea behind it, solution of the linear systems, role of the residual, and choice of starting
vectors.

2.1. Wilkinson’s Idea. Wilkinson had been working on and talking about in-
verse iteration as early as 1957 [39]. In those days it was believed that inverse iteration
was doomed to failure because of its main feature: the solution of an ill-conditioned
system of linear equations [38, p 22] (see also §6.3). In a radical departure from
conventional wisdom, Wilkinson made inverse iteration work” [38, §1].

Although Wilkinson gives the credit for inverse iteration to Wielandt [45, 60, 62],
he himself presented it in 1958 [57] as a result of trying to improve Givens’s method
for computing a single eigenvector of a symmetric tridiagonal matrix (a different im-
provement of Givens’s method is discussed in [42]).

We modify Wilkinson’s idea slightly and present it for a general complex matrix A
rather than for a real symmetric tridiagonal matrix. His idea is the following: If ) is
an eigenvalue of the n x n matrix A4, then A4 — M is singular, and n — 1 equations from
(A - /\I)a: = 0 determine, up to a scalar multlple an eigenvector associated with \.
However, if ) is not an eigenvalue of A, A — M is non-singular and the only solution
to (A — ;\I)i = 0 is zero. To get a non-zero approximation to an eigenvector, select a
non-zero vector y that solves n — 1 equations from (A — A)i = 0.

Why should y be a good approximation to an eigenvector? First consider the
case where y solves the leading n — 1 equations. Partition A4 so as to distinguish its
leading principal submatrix A; of order n — 1, and partition y conformally,

A
AE( ! a1>7 yE(yl).

as « v
One can always find a number v so that the smaller system

(A; — M)y, = —vay
has a non-zero solution y;: If )\ is an eigenvalue of 41, set v = 0. Since A; — M is
singular, (A; — Al)y; = 0 has a non-zero solution. If A is not an eigenvalue of A;, set
v to some non-zero value. Since A; — Al is non-singular, the system has a non-zero

solution. Therefore there exists a non-zero vector y that solves the leading n — 1
equations of the larger system (A — AI)# = 0. Including the last equation and setting

B=(as a—A)y
implies that y is a non-zero solution to
(A= Ay = Ben,
where the canonical vector e, is the nth column of the identity matrix.
Suppose A is an eigenvalue of A and z is an associated eigenvector. If fe,, contains
a contribution of z, then this contribution is multiplied in y by 1/(A — A). Moreover,
if A is a simple eigenvalue that is closer to A than any other eigenvalue A; then
1 1
— > —.
A=A A=Al

71 am grateful to Michael Osborne for providing this historical context.



For a diagonalisable matrix A this means the contribution of the eigenvector z in y is
amplified by a larger amount than the contributions of all other eigenvectors. In this
case y is closer to = than is fe,.

Instead of solving the leading n — 1 equations one can solve any set of n — 1
equations. Omitting the ith equation leads to a multiple of e; as the right-hand side
(for real, symmetric tridiagonal matrices, Parlett and Dhillon [42] select the doomed
equation according to the pivots from a pair of ‘complementary’ triangular factorisa-
tions). In general, the right-hand side can be any vector zq, as long as it contains a
contribution of the desired eigenvector x so that the solution z; of (A — ;\I)xl =z
is closer to z than is zg.

Therefore, if there is only a single, simple eigenvalue A closest to X and if A4 is
diagonalisable then the iterates zj, of inverse iteration converge to (multiples of) an
eigenvector z associated with A, provided zy contains a contribution of z. A more
detailed convergence proof is given in §7.

2.2. Solution of the Linear System. In practice, one first solves the linear
system before normalising the iterate. Given a scalar A so that A — AT is non- singular,

and a vector xg with ||z¢|| = 1, perform the following iterations for k > 1:
(A — ;\I)Zk = Tk-1
ok = 2/l

Here zj is the unnormalised iterate. The corresponding normalised iterate satisfies
|lzx|l = 1. Hence the normalisation constant is sy = 1/]|2zk]|.

Already in his very first paper on inverse iteration [57, pp 92-3] Wilkinson advo-
cated that the linear system (A — :\I)zk = xp_1 be solved by Gaussian elimination
with partial pivoting,

P(A—X)=LU,  Lcgy=Paxy_y, Uz =cp,

where P is a permutation matrix, L is unit lower triangular and U is upper triangular.
Since the matrix A — A does not change during the course of the iteration, the
factorisation is performed only once and the factors L and U are used in all iterations.

For reasons to be explained in §2.6, Wilkinson chooses ¢; equal to e, a multiple
of the vector of all ones®. This amounts to the implicit choice zy = P” Le for the
starting vector. It saves the lower triangular system solution in the very first inverse

iteration. The resulting algorithm is

Factor P(A — \I) = LU
Iteration 1 Set ¢c; =e

Solve Uz = ¢

Set &1 = z1/||z1]]
Tteration k> 2 Solve Ley = Prp_q

Solve Uz, = ¢4,

Set xz = Zk/”Zk”

To reduce the operation count for the linear system solution, the matrix is often
reduced to Hessenberg form or, in the real symmetric case, to tridiagonal form before
the start of inverse iteration [1]. While Gaussian elimination with partial pivoting re-
quires O(n?) arithmetic operations for a general n x n matrix, it requires merely O(n?)

8 [44, p 435], [57, pp 93-94], [60, §II1.54], [61, §5.54, §9.54], [62, p 373)]
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operations for a Hessenberg matrix [61, 9.54], and O(n) operations for an Hermitian
tridiagonal matrix [57], [60, §II1.51].

2.3. An Iterate and Its Residual. Wilkinson showed? that the residual
e = (A — Xz

is a measure for the accuracy of the shift A and of the iterate z;. Here we present
Wilkinson’s argument for exact arithmetic; and in §6.1 we discuss it in the context of
finite precision arithmetic.

From

R 1 ~ 1
=(A -\ =—(A—- )\ = — T
re= (A ADme = (A ADze = e e

and ||zk_1| = 1 follows
il = 1/1lzx]l-

Therefore the residual is inversely proportional to the norm of the unnormalised
iterate'Y. Since ||z|| is required for the computation of zj, the size of the resid-
ual comes for free in inverse iteration. It is used as a criterion for terminating the
iterations. Once the residual is small enough, inverse iteration stops because then A
and xj, are an eigenpair of a nearby matrix:

THEOREM 2.1 (§15 1N [18]). Let A be a complex, square matriz, and let rj, =
(A — Xz be the residual for some number X and vector zj, with ||z = 1.

Then there is a matriz Ex with (A + Ey — M)z, = 0 and ||Ey|| < p if and only
if el < p.

Proof. Suppose (A + Ej, — ;\I)azk =0 and ||Ek|| € p. Then

T = (A — ;\I):Ek = —Ekmk

implies [[rg[| < [[Exll < p.
Now suppose ||rg|| < p. Then

(A — X)zy = 1y = 1T}y,

implies .
(A4 Ep — M)z =0, where Ey = —rpay.

Since Fj, has rank one,
1Bkl = llrell < p-

Thus, a small residual implies that X and z, are accurate in the backward sense.

2.4. The Smallest Possible Residual. Since a small residual rj, indicates that
the iterate x; is an eigenvector of a matrix close to A, we would like to know how
small a residual can possibly be.

From the definition of the residual r;, = (A — M)z, and the fact that

M|l > |l /l|M 1]
for any non-singular matrix M, it follows that

il > 1/11(A = AD)~H.

9 [18, §15], [44, pp 419-420], [45, p 356], [60, §49], [61, §3.53], [62, p 371]
10 [44, p 420], [45, p 352], [60, §TI1.52], [61, §5.55], [62, p 372], [63, p 176]
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Thus, when A — Al is almost singular, ||(A — AI)~!|| is large and the residual can be
very small.

The lower bound for ||r| is attained when zy, is a right singular vector associated
with the smallest singular value of A— A [45, p 358]. Denoting by u the corresponding
left singular vector gives

. u
(A=) = ————
[(A—=AD)~H|

and the residual has minimal norm ||r¢|| = 1/[/(A — AI)~"||. The starting vector zo

that gives the smallest possible residual after one iteration is therefore a left singular
vector associated with the smallest singular value of A — AI.

Different Interpretations. The bound ||ri| > 1/[/(A — AI)7'|| has several
different meanings.
One interpretation is based on the separation'' between two matrices A and B,

sep(4, B) = H?ﬁgl |[AX — X B

In the special case when B = \is a scalar, the separation between A and s [55, §2]

sep(4,\) = min ||Az — z)\| = ”nhigl (A= ADz| =1/||(A-XI)7Y.

[[zll=1

Thus, the residual is a lower bound for the separation between the matrix A and the
shift A, .
k]l > sep(A4, A).

A second interpretation is based on the resolvent of A at the point [33, §1.5.2]
R(A,N) = (A - X)L

3

Since ||rg]| = 1/||zk]|, the iterate norm represents a lower bound on the resolvent norm
at A, .
2kl < ITR(A, MII-

Yet a third interpretation is based on the e-pseudospectrum' of A,
S.(A) = (A J(A-AD) 2 e}
Thus, when |r|| < e then X is contained in the e-pseudospectrum of A,
AeS.(A).

Regrettably, we found notions like separation between matrices, pseudospectrum,
and resolvent of limited help in analysing inverse iteration, because they focus on the
operator (A — AT)~! rather than on its application to a particular argument.

' [50, §2], [50, §4.3], [55, §1]
12 133, §VIIL5.1], [52], [55, §3]



2.5. Good Starting Vectors. Wilkinson’s goal was to find starting vectors
xo ‘so that one iteration produces a very good eigenvector’ [62, p 372]. Little or no
work should be involved in determining these starting vectors. Here we assume exact
arithmetic. The finite precision case is discussed in §6.2.

Varah [54] and Wilkinson'? showed that there exists at least one canonical vector
that, when used as a starting vector z(, gives an iterate z; of almost maximal norm
and hence an almost minimal residual r;. Varah’s results constitute the basis for
Wilkinson’s argument [62, p 374].

Suppose column [, 1 < [ < n, has the largest norm among all columns of (4 —
DT,

(A= AD el > %nm — A

Setting z¢ = e; gives a residual r; that deviates from its minimal value by a factor of

at most \/n,
1 1
< I < V1
I(A =D~ I(A = AD)~|

and the first iterate exhibits almost maximal growth,

1 « .
—(A-AD7! < < [(A=AD7H.
\/ﬁll( )< Hlzall < IC )l
Varah [54] showed that the above argument is true for any orthonormal basis,
not just the canonical basis. Choose a unitary matrix W, i.e. W*W =WW=* = 1. If
column [ has the largest norm among all columns of (A — AI)~'W then

(A =A™ Wey|| > %II(A = ADTW = [(A=AD 7.
n
Thus, ||r1]| is almost minimal and z; exhibits almost maximal growth when zy = We;.
More generally, when g is a column of largest norm of (A — /A\I)’1W, where W is any
non-singular matrix, the upper bound on ||r1| contains the condition number of W
[54, Theorem 2].

Wilkinson’s Argument. In spite of their apparent dissimilarity, Wilkinson’s
argument [62, pp 372-3], [45, p 353] and our argument above are basically the same.

Wilkinson argues as follows. Selecting, in turn, each canonical vector e; as a
starting vector amounts to solving the linear system

(A—AZ =

where Ze; is the unnormalised first iterate for inverse iteration with starting vector
Ty = e;. Since \ is an exact eigenvalue of A + F for some F', A — A+ Fis singular
and || Z|| > 1/||F||. If X is a good approximation to an eigenvalue of A then ||F|| must
be small, at least one column of Z must be large, and at least one of the canonical
vectors must give rise to a large first iterate.

Since Z = (A — AI)~!, Wilkinson basically argues that |[(4 — AI)~'|| is large if
X is close to an eigenvalue of A. The quantity ||F|| is an indication of the distance
of A— X to singularity. Thus, the norm of at least one column of Z is inversely
proportional to the distance of 4 — I from singularity, cf. [44, p 420].

In comparison, our argument shows that an appropriate canonical vector leads
to an iterate z; with [|z1]] > —= ||(A AD7Y[. As 1/]|(A — AI)7"|| is the distance of

13 44, p 420], [45, p 353], [62, pp 372-3]
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A=\ to singularity [13, §3], this means, as in Wilkinson’s case, that the magnitude
of z; is inversely proportional to the distance of A — A from singularity.

Hence, the basis for both, Wilkinson’s and our arguments is that the ideal starting
vector xg should result in a z; whose size reflects the distance of A\ from singularity.

2.6. Wilkinson’s Choice of Starting Vector. Wilkinson’s motivation for
putting so much care into the choice of starting vector zy is to reduce the resid-
ual 7y of the first iterate as much as possible [62, p 374]. This is especially important
for non-normal matrices because the residuals can grow significantly in subsequent
iterations [44, p 420]. Although he cannot expect to find zo that produces a minimal
1, he tries to select zq that is likely to produce a small vy [44, p 420].

There are certain choices of zy that Wilkinson rules out immediately'*. In case of
real symmetric tridiagonal matrices T for instance it is ‘quite common’ that a canon-
ical vector contains only a very small contribution of an eigenvector [57, p 91]. When
T contains a pair of zero off-diagonal elements, it splits into two disjoint submatrices
and the eigenvectors associated with one submatrix have zero elements in the posi-
tions corresponding to the other submatrix. Hence canonical vectors with ones in
the position corresponding to zero eigenvector elements are likely to produce large ry.
Wilkinson remarks [57, p 91]:

It is clear that none of the e; is likely to produce consistently accu-

rate eigenvectors and, in particular, that e; and e,, will, in general,

be the least satisfactory.
Since no one canonical vector works satisfactorily all the time, Wilkinson plays it safe
and chooses a vector that represents all of them: the vector consisting of all ones.
Wilkinson’s choice, already alluded to in §2.2, can be justified as follows.

If A is a complex, square matrix and )\ is not an eigenvalue of A then A — Y4
and the upper triangular matrix U from Gaussian elimination P(A — \I) = LU are
non-singular. Let

U= Up—1 un—1 U71 — Ugjl *Unifllunfl/unn
- Unpn ’ ]-/Unn ’

where U,_; is the leading principal submatrix of order n — 1 and wy, is the trailing
diagonal element of U. If A is a good approximation to an eigenvalue of A, so that
A — A is almost singular, and if |u,,| is small then choosing ¢; = e, yields

—1
2 =U"te, = L Unatna )
Unn 1

Hence ||z1|| > 1/|uny| is large. This means, if the trailing diagonal element of U is
small then choosing ¢; = e, results in a small residual r;.
More generally, let U; and U;_; be the leading principal submatrices of orders [

and I — 1 of U, so
U, = <U11 Ull) _
Uy

If the Ith diagonal element uy; of U is small then choosing ¢; = ¢; gives

1
21 = Uﬁlel = i _Ulflulil
uy 1

and ||zq|| > 1/|uy| is large.

14 157, p 91], [60, TT1.54], [62, p 373]
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However, it can happen that A4 — M is almost singular while no diagonal element
of U is small'®. According to §2.5, U ! contains a column ! whose norm is almost as
large as ||[U~'||. But [ is unknown, so Wilkinson proposes'® what he considers to be
a ‘very safe’ choice, a multiple of the vector of all ones, i.e. ¢; = e [57, p 94]. In the
special case of symmetric tridiagonal matrices Wilkinson remarks [61, p 322]:

No solution to this problem has been found which can be demon-
strated rigorously to be satisfactory in all cases, but [the choice
¢1 = e] has proved to be extremely effective in practice and there
are good reasons for believing that it cannot fail.

Back to general, complex matrices: Although the choice ¢; = e often results in
21 = U e with large norm, this is not guaranteed [54, p 788]. It is thus necessary to
have contingency plans. Varah [54, p 788] and Wilkinson [44, §5.2] present orthogonal
matrices whose first column is e, a multiple of the vector of all ones, and whose
remaining columns stand by to serve as alternative starting vectors. If ¢; = e does
not produce a sufficiently large iterate z;, one column after another of such a matrix
takes its turn as ¢; until an iterate z; with sufficiently large norm appears. Wilkinson
recommends this strategy ‘in practice’ [62, p 373] and remarks [62, pp 373-74]:

In the majority of cases the first of these [i.e. ¢; = €] immediately
gives an acceptable z and no case has been encountered in practice
where it was necessary to proceed to the third vector [i.e. the third
column of the orthogonal matrix].

In spite of all the effort devoted to choosing a starting vector xq that is likely to

produce a small residual 1, Wilkinson states [45, p 353], cf. also [45, p 358]:
In fact if we take a random z, the probability that one iteration
will produce an z; having a pathologically small residual is very
high indeed; this would only fail to be true if we happen to choose
an xo which is almost completely deficient in all those e, [for which
(A= AI)"Te,]| is large].

This was confirmed more recently for real symmetric matrices by a rigorous statistical

analysis [29]. In case of general matrices Wilkinson remarks [45, p 360]:

The ordinary process of inverse iteration will almost always succeed
in one iteration; if it does not do so one only has to re-start with an
initial vector orthogonal to the first. This process can be continued
until one reaches an initial vector which gives success in one itera-
tion. It is rare for the first vector to fail and the average number of
iterations is unlikely to be as high as 1.2.

3. Normal Matrices. In this section we examine the size of the residual and
its change during the course of the iteration in the special case when the matrix is
normal.

We use the following notation. Let H be a normal matrix with eigendecomposition
H = QAQ* where @ is unitary; and let

e =min |\; — A|
13
be the accuracy of the shift A. We assume for the most part that A is not an eigenvalue

of H, because otherwise a single linear system solution would suffice to produce an
eigenvector, see the discussion in §2.1 and [42, §2].

15 [54, p 788], [57, p 93], [61, §5.56, §9.54]
16 44, p 435], [57, p 93-94], [60, §TT1.54], [61, §5.54, §9.54], [62, p 373]



12

Wilkinson showed that for Hermitian matrices the size of the residual is con-
strained solely by the accuracy of the shift'”. The Bauer-Fike theorem [4, Theorem
IIIa] implies that this is true for the larger class of normal matrices as well:

THEOREM 3.1. Let H be a normal matriz, and let ry = (A— M)z, be the residual
for some number \ and vector xj, with ||zx|| = 1.

Then

[l > e.

_ Proof. 1f ) is an eigenvalue of H then € = 0 and the statement is obviously true.
If A is not an eigenvalue of H then H — Al is non-singular. Because H is normal,
[(H = A1)~ = 1/e, and
1

Irll = I(H = ADzg]| > —————— =
I(H = AD)~ ]

3.1. Once Is Enough. We show that in most cases the residual of a normal
matrix after the first iteration is as good as the accuracy of the shift \.
Partition the eigendecomposition as

A:<A1 Ag)’ Q=(Q: Q2),

where Ay contains all eigenvalues \; at the same, minimal distance to ;\,
e=[Ar = M,
while Ay contains the remaining eigenvalues that are further away from 5\,

€ <min|(Az);; — A= 1/11(A2 = AD) 71,

This partition covers two common special cases: A approximates an eigenvalue A of
multiplicity [ > 1, i.e. Ay = AI; and A approximates two distinct real eigenvalues at
the same minimal distance to its left and right, i.e. P Al = Ao — \. The columns of
(21 span the invariant subspace associated with the eigenvalues in A;.

The result below states that the residual decreases with the angle between the
starting vector and the desired eigenspace. It applies in all cases but the worst, when
the starting vector is orthogonal to the desired invariant subspace.

THEOREM 3.2. Let inverse iteration be applied to a normal, non-singular matriz
HfS\I; let ry = (Hfj\l).rl be the residual for the first iterate x1; and let 0 < 0 < /2
be the angle between starting vector o and range(Q1).

If 6 < w/2, then

Ir1]] < €/ cosb.

Proof. Decompose x( into its contribution ¢ in range();) and its contribution s
outside,

T =@ (g) , where ¢ = Qizo, s = Q.
Since z¢ has unit norm, ||c||? + ||s||*> = 1, and ||¢|| = cos@ [17, §12.4.3].

1719, §2.3], 45, §8], [59, §2], [60, §111.49]
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To bound ||r1]| from above, bound ||z from below, as 1/||r1|| = ||z1]|. Then

2= QA — A (;’)

implies

co llell cosé
21| > |Q 21| = ||(Ar — M) " te|| > — = .
21l 2 @zl = I(Ar = AD)™c]| TSV -
Since 6 < 7/2, cosf # 0 and
Ir1]] < €/ cosb.

a

The previous observations imply that the deviation of ||r1]| from its minimal
value depends only on the angle between the starting vector and the desired invariant
subspace:

COROLLARY 3.3. Under the assumptions of Theorem 3.2

e <||r1|| <€/ cosb.

Already in 1958 Wilkinson surmised with regard to the number of inverse it-
erations for real, symmetric tridiagonal matrices ‘this will seldom mean producing
anything further than z3’ [57, p 93]. In case of Hermitian matrices, Wilkinson pro-
poses several years later that two iterations are enough to produce a vector that is as
accurate as can be expected [60, §§111.53-54]. The following result promises (in exact
arithmetic) something even better, for the larger class of normal matrices: For over
eighty percent of the starting vectors, one iteration suffices to drive the residual down
to its minimal value.

COROLLARY 3.4. If, in addition to the assumptions of Theorem 3.2, 6 does not
exceed 75° then

| < 4e.

Proof. Apply the bound in Theorem 3.2 and use the fact that § < 75° implies

cosf > Q(\/gf 1) > 1

4 4
a

This result is confirmed in practice. With regard to his particular choice of

starting vector ¢; = e Wilkinson remarked in the context of symmetric tridiagonal
matrices [61, p 323]:

In practice we have usually found this choice of [starting vector] to

be so effective that after the first iteration, [z;] is already a good

approximation to the required eigenvector [...]

3.2. Residual Norms Never Increase. Although he did not give a proof,
Wilkinson probably knew deep down that this was true, as the following quotation
shows [62, p 376]:

For a well-conditioned eigenvalue and therefore for all eigenvalues
of a normal matrix subsequent iterations are perfectly safe and in-
deed give valuable protection against an unfortunate choice of initial
vector.
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We formalise Wilkinson’s observation and show that residuals of a normal matrix are
monotonically non-increasing (in exact arithmetic). This observation is crucial for
establishing that inverse iteration always converges for normal matrices.

THEOREM 3.5. Let inverse iteration be applied to a non-singular normal matriz
H — 5\1, and let r, = (H — ;\I)a:k be the residual for the kth iterate xy.

Then
Irell —
Ikl
Proof. As ||| = 1/]lzx|| (§2.3), the ratio of two successive residuals is
[l ] _ 1 1 _ 1
lre—1ll ekl ||(H = ADap || |(H =AD" Y@ o] || (H — A1 ||
Now use the fact that || Hz| = |H*z|| for any vector  when H is normal [15, Theorem
1], [24, Problem 1, p 108], and then apply the Cauchy-Schwartz inequality,
I(H =AD" ap I = ADz ol = (= A1) @y | 1 = AD)ay 1 |

|zt (H — XI)"Y(H — MN)zp_y| = 1.

v

O

Theorem 3.5 does not imply that the residual norms go to zero. That’s because
they are bounded below by € (Theorem 3.1). The residual norms are not even assured
to converge to e. If an iterate lies in an invariant subspace of H — A all of whose
eigenvalues have magnitude v > € then the residual norms cannot be smaller than .

3.3. Monotonic Convergence of Residual Norms. In the previous sec-
tion (cf. Theorem 3.5) we established that residual norms are monotonically non-
increasing. Now we show that the residual size remains constant whenever inverse
iteration has found an iterate that lies in an invariant subspace all of whose eigenval-
ues have the same magnitude (these eigenvalues, though, are not necessarily the ones
closest to A).

THEOREM 3.6. Let inverse iteration be applied to a non-singular normal matriz
H — 5\1, and let r, = (H — ;\I)azk be the residual for the kth iterate xy.

Then ||re_1]| = l|rkll if and only if iterate xy_1 lies in an invariant subspace of
H — M all of whose eigenvalues have the same magnitude.

Proof. Suppose xj_1 belongs to an invariant subspace of eigenvalues whose mag-
nitude is 7, where v > 0. Partition the eigendecomposition as

A;\I=<A1 /~\>’ Q:(Ql Q2):
2

where |(A})si] = 7. Then z;_; = Q,y for some y with ||y|| = 1. The residual for z;_,
is

rho1 = (H — M)zp 1 = Q1Ay
and satisfies ||rg—1|| = 7. The next iterate

zr = (H — 5\1)71‘“71 = Qlf\fly
satisfies ||zx|| = 1/~. Hence

Ire—all =~ = 1/llzell = ll7ell-



15

Conversely, if ||rt—1|| = ||7k|| then, as in the proof of Theorem 3.5, ||ri|| = 1/||zk]]
implies
il 1
T~ I = D) 'ag 1 ||| — Ao |

and
1= |[(H = AD) ™ e || |(H = ADaya || 2 |y (H = A~ (H = Al | = 1.

Since the Cauchy Schwartz inequality holds with equality, the two vectors involved
must be parallel, i.e. (H — M)z 1 = p(H — M) *z;_; for some scalar pu # 0.
Consequently . .

(H—-AD)*"(H = MN)zp—1 = pzg—_1,

where i > 0 since (H — AI)*(H — M) is Hermitian positive-definite. Let m be the
multiplicity of u. Partition the eigendecomposition of

(H = X)*(H — M) = Q(A — XI)*(A — AI)Q*

as

a-Anra-an= (M ) e=(@ .

where Ql has m columns. Since zy_1 is an eigenvector for u, we must have z,_; = Qly
for some y with ||y|| = 1. Thus z;_; belongs to the invariant subspace of all eigenvalues
Ai of H with [A\; = A2 = p. O

Thus, inverse iteration converges strictly monotonically in the following sense.

COROLLARY 3.7. Let inverse iteration be applied to a non-singular normal ma-
triz. Then the norms of the residuals decrease strictly monotonically until some iterate
belongs to an invariant subspace all of whose eigenvalues have the same magnitude.

The above result insures that the iterates approach an invariant subspace. A
stronger conclusion, convergence of the iterates to an eigenspace, holds when there is
a single (possibly multiple) eigenvalue closest to A

COROLLARY 3.8. Let inverse iteration be applied to a non-singular normal ma-
triv H— M. If, for the partitioning in §3.1, Ay = M\ I for some A1 and Qizo # 0, then
the norms of the residuals decrease strictly monotonically until some iterate belongs to
an eigenspace associated with ;.

In §7 we present more details about the space targeted by the iterates.

4. Diagonalisable Matrices. In contrast to a normal matrix, the eigenvectors
of a diagonalisable matrix can, in general, not be chosen to be orthonormal; in fact,
they can be arbitrarily ill-conditioned. In this section we examine how ill-conditioning
of eigenvectors can affect the size of a residual and the increase in the norms of
successive residuals.

We use the following notation. Let A be a diagonalisable matrix with eigende-
composition A = VAV ~!; and let

e =min |\; — A|
13

be the accuracy of the shift A\. The condition number of the eigenvector matrix V is
s(V) = [IVIHIVL
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4.1. Diagonalisable Matrices Are Different. We showed in §2.5, §2.6 and
§3.1 that, with an appropriate starting vector, the residual after one iteration is almost
negligible. Consequently one should expect iterations beyond the first one to bring
more improvement. Unfortunately this is not true. Wilkinson'® and Varah [54, p 786]
point out that inverse iteration applied to a non-normal matrix can produce an almost
negligible first residual and much larger subsequent residuals. Wilkinson remarks [62,
p 374]:

It might be felt that the preoccupation with achieving what is re-
quired in one iteration is a little pedantic, and that it would be
more reasonable to concede the occasional necessity of performing
a second iteration and even, rarely, a third. In fact, early inverse
iterations procedures were usually designed to perform two steps of
inverse iteration in all cases on the grounds that it cost little and
would give a useful safety factor. The results proved to be disap-
pointing and it was frequently found that the residuals were vastly
above noise level.

Wilkinson points out that this residual growth is neither due to round-off errors
[63, p 176] nor is it related to the process of inverse iteration as such [63, p 174].
He puts the blame on ill-conditioned eigenvectors when the matrix is diagonalisable!®.
The following example illustrates such residual growth caused by ill-conditioned eigen-
vectors.

EXAMPLE 1 (S.C. EISENSTAT). The residual of a diagonalisable matriz can be
much smaller than the accuracy of the shift; and the residual growth can be proportional
to the eigenvector condition number.

Consider the 2 x 2 matriz

and

(V) > m

Fiz e and let v grow, so the ill-conditioning of the eigenvectors grows with v,
k(V) = o0 as v — oo.

The starting vector xq = ey produces the unnormalised first iterate
R 1/_

le(A)\I)liﬂ[):—( V)
€\ €

and the residual is bounded by

]l = 1/llzll =

€
VU2 + €2
The first residual can be much smaller than the shift € and tends to zero as v becomes
large.

€
<-.
14

18 [45, §§6-8], [63], [62, §4]
19 145, §7], [62, pp 374-6], [63, pp 174-5]
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The normalised first iterate

1 —1/)
T = —
V2 + €2 ( €
produces the unnormalised second iterate

S 1 —v(l+e)
2= ( ) m eVv? + €? ( e >

evVv? + €2
V2(1+¢€)? .

eVvVv? + €2 € 1

2]l > —=—= = = > e
\/(zxz—l—ez)(l—l—e)2 14+e ™ 2
the second residual is limited below by the accuracy of the shift, regardless of v.
As a consequence, the residual growth is bounded below by

|[r2]| S lev 1

=—-v
lra]l =2 ¢ 27

and the residual

Irall = 1/l[22] =

Since

)

independently of the shift. This means>°

ULkl =0 ( KZ(V)) — 00 as v — o,
[l ]
and the residual growth increases with the ill-conditioning of the eigenvectors.

In the following sections we analyse the behaviour of inverse iteration for diago-
nalisable matrices: Ill-conditioned eigenvectors can push the residual norm far below
the accuracy of the shift, and they can cause significant residual growth from one
iteration to the next.

4.2. Lower Bound on the Residual. The following lower bound on the resid-
ual decreases with ill-conditioning of the eigenvectors. Hence the residual can be much
smaller than the accuracy of the shift if the eigenvectors are ill-conditioned.

THEOREM 4.1 (THEOREM 1 IN [5]). Let A be a diagonalisable matriz with
eigenvector matriz V , and let rp, = (A — ;\I)a:k be the residual for some number \ and
vector xy with ||zg| = 1.

Then

Il > e/ (V).

_ Proof. 1f ) is an eigenvalue of A then € = 0 and the statement is obviously true.
If A is not an eigenvalue of A then A — AT is non-singular. Hence

I(A = AD) 7 < w(V) (A = AD 7 = K(V) /e

and
1 €

(A— D)1 = w(V)

7l = II(A = Az || > ||

20 A number a satisfies @ = O(8™) if there exists a positive constant v such that |a| < y8™ for
sufficiently large 3 [19, §4.1.1].
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This bound can also be interpreted as an inclusion domain for eigenvalues of the
matrix polynomial A — AT,

(V) [Irell > € = min |A; — Al

4.3. Upper Bound on Residual Increase. We derive an upper bound on
the residual growth that grows with the ill-conditioning of the eigenvectors. It also
provides a means for estimating the eigenvector ill-conditioning: The square-root of
the residual growth is a lower bound for the eigenvector condition number.

THEOREM 4.2. Let inverse iteration be applied to a mon-singular diagonalisable
matriz A — X with eigenvector matriz V, and let r, = (A — S\I)rk be the residual for
the kth iterate xy, .

Then il
Tk 2
< k(V)=.
[y
Proof. This proof is similar to the one for Theorem 3.5. Since ||ri|| = 1/||z|| =
1/)1(A = A) " 'ag 1| we get
Irell 1 _ L
I (A= AD e || (A= ADzpa ] [IVA =AD" Ty| V(A = ADy||

v
1A =AD"yl (A = Ayl
where y = V" 'z;_;. The normality of A implies

1A =AD"yl (A = ADyll > 1y™y| > 1/IIVI*.

Hence
[EA

751l

< IVEHPIVIE = w(V)™.

4.4. Residuals May Not Be Very Useful. In contrast to normal matrices,
the residual norms of diagonalisable matrices do not necessarily converge even if the
iterates lie in an invariant subspace associated with eigenvalues of the same magnitude.

When the matrix is not normal, inverse iteration distinguishes eigenvectors from
vectors that belong to an invariant subspace but are not eigenvectors. If z; is an
eigenvector then clearly the residuals of all succeeding iterates have norm ||r||. But
this may not be true when z; merely belongs to an invariant subspace but is not an
eigenvector. The following example illustrates this.

EXAMPLE 2. The residual norms of a diagonalisable matriz can change even
if the iterates lie in an invariant subspace all of whose eigenvalues have the same
magnitude.

Consider the 2 x 2 matriz

AXI:(6 U), e>0.

—€

The invariant subspace of A — M associated with eigenvalues of magnitude € consists
of all 2 x 1 vectors. Since

(A—AD)' = (1/6 f/li) - Elz(A—XI)
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we get
1
€2

. - 1
2 = (A — AI)71$k71 = (A — /\I):Ekfl = 6—27‘k,1

and
1 €’
Irell = 7= = 70—~
lzell el
Thus, successive residuals of non-normal matrices can differ in norm although all
iterates belong to the same invariant subspace,

Irell €

el llre—al?”

Fortunately, for this particular matriz there happens to be a fix: (A — 5\1)2 =€2]
is a nmormal matriz. Hence the results for normal matrices apply to every other iterate
of A— M. Since (A— 5\1)2 is also a scalar matriz, all 2 X 1 vectors are eigenvectors of
(A-— 5\1)2, and Ty_1 = Tr4+1. Thus, inverse iteration converges for all even-numbered
iterates, and for all odd-numbered iterates.

This example illustrates that residual norms of diagonalisable matrices do not
necessarily reveal when the iterates have arrived in an invariant subspace.

5. Non-Normal Matrices. In this section we use the Jordan and Schur de-
compositions to analyse the residual for the class of all complex, square matrices:
diagonalisable as well as defective. In particular, we show that the residuals of non-
normal matrices can be much smaller than the accuracy of the shift when the Jordan
basis is highly ill-conditioned or when the matrix has a highly defective eigenvalue.
We also derive tight bounds on the residual growth in terms of the departure of the
matrix from normality.

5.1. Lower Bounds for the Residual. We derive lower bounds on the residual
in terms of the accuracy of the shift, as well as the conditioning of a Jordan basis and
the defectiveness of the eigenvalues.

Let A = VJV~! be a Jordan decomposition where the Jordan matrix J is a
block-diagonal matrix with Jordan blocks A; or

A1
Ai
1
Ai
on the diagonal; and let .
€ =min |A; — Al
13

be the accuracy of the shift A. The condition number of the Jordan basis V is k(V) =
VIV )
THEOREM 5.1. Let A — A be non-singular with Jordan decomposition A =
VJIV™L and let 1, = (A — M )xy, be the residual for some vector xy with ||| = 1.
Then 1 1

SN T

Proof. The inequality follows from the lower bound (§2.4),
Irsll > 1/[1(A = AT) M),
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and the submultiplicative inequality
1A =AD" < &(V) (T =AD ],

a

Below we present several bounds for ||(J — AI)~'||. The first upper bound was
derived in [11, Proposition 1.12.4]; and a first-order version of the lower bound was
derived in [18, §3].

THEOREM 5.2. Let J — M be a non-singular Jordan matrixz J; let m be the order
of a largest Jordan block of J; and let | be the order of any Jordan block of J — A

whose diagonal element has absolute value €.

Then
(1 + E)mfl

em

1 [1—¢€ . Jm 11— em
= <I(J =AD" < — .
T\ 7=z SV - AN s - =

Proof. The first bound appears as Theorem 8.2 in Appendix 1 (§8), while the
remaining two are part of Theorem 8.4. O

The lower bound on [|(J — AI)!|| is proportional to 1/€/, which means that
[|(J — AI)~!|| increases exponentially with the defectiveness of an eigenvalue closest to

[[CAPY I

and

A. We conclude that the residual can be much smaller than the accuracy of A when
the Jordan basis is ill-conditioned, or when A has a highly defective eigenvalue:
COROLLARY 5.3. Let A — M be non-singular with Jordan decomposition A =
VJV =L let m the order of the largest Jordan block of J; and let v, = (A — ;\I)rk be
teh residual for some vector xy, with ||xg| = 1.
Then
Ikl = ¢ €™ /x(V),

1\ 1 1—¢
=m — .
¢ ax 1+e€ Tm V11— e2m
Proof. The inequality follows from Theorems 5.1 and 5.2. O

In the case of diagonalisable matrices, m = 1 and we recover the bound from
Theorem 4.1.

where

5.2. Upper Bounds on Residual Increase. To bound the residual growth

for general matrices we use a Schur decomposition
A=QA-N)Q,

where (@ is unitary, A is diagonal and N is strictly upper triangular. When N = 0, A is
normal. When A is non-normal, one can measure the departure of A from normality®'.
Henrici proposes as one such measure, among others, the Frobenius norm of N, | N|| r
[22, §1.2]. Although N is not unique, ||N||F is.

Here we are interested in the two-norm, || N||, which is not unique. But since
Frobenius and two norms are related by [17, §2.2]

1

N|r < |IN|| <|IN|l#,
\/ﬁll 7 < INIF<[INl#,

21 e.g. [15, 22, 35, 36]
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we are content to know that || IV| is at most /n away from a unique bound. We
measure the departure of A — A\l from normality by

n= NI = AD 7! = |IN||/e.

This is a relative measure because it compares the size of the non-normal part of
A — M to the eigenvalues of smallest magnitude. We use it to bound the residual
growth.

THEOREM 5.4. Let inverse iteration be applied to a non-singular matriz A — A
whose Schur decomnposition has nilpotent part N ; let m — 1 = rank(N), where m —1 <
n; and let rp = (A — ;\I)mk be the residual for the kth iterate xy.

Then . .
[E73 < (1+1) —-n
k-1 1—n
Proof. From
Irell 1
re—all 1A =AD"z | [(A = AD g |

and the Schur decomposition of A — M with A = A — M\ and Yy = Q*xyp_q follows
I(A = ADz || = AT = A" Ny,
and
1A= AN ag || = AT = NATY) T hyl| = A1 = NAY) My

The last equality holds because A is normal [15, Theorem 1], [24, Problem 1, p 108].
Application of the Cauchy-Schwartz inequality gives

[(A=AD o || (A= ADziall = A= NA) Yy AT = A "Ny
> |y (I = NA) (I = A" N)y|
1
> _ -
|0 —AN) (I — AN
> 1

I = ALN) 2 (L +m)

Since NV is nilpotent of rank m — 1,

,_.

m—

I —A7'N) = Z =

J:o 7=0

m

1—77

Applying the bounds with 7 to the expression for ||7||/||7r—1]| gives the desired result.
a

When A is normal, n = 0 and the upper bound equals one, which is consistent
with the bound for normal matrices in Theorem 3.5.

When 7 > 1, the upper bound grows exponentially with 7, since

Il 1
<152y = om™).

[rr—all = n—1

Thus, the problem of computing an eigenvector with inverse iteration is exponentially
ill- condltloned when 4 — M has a large departure from normality. The closer \is to
an eigenvalue of A, the smaller is €, and the larger is . Thus, increasing the accuracy
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of a computed eigenvalue \ increases the departure of A — M from normality, which
in turn makes it harder for inverse iteration to compute an eigenvector.
When 7 < 1, the upper bound can be simplified to
rell _ 1+m
lre—all = 1—mn
It equals one when n = 0 and is strictly increasing for 0 <n < 1.
The next example presents a ‘weakly non-normal’ matrix with bounded residual
growth but unbounded eigenvector condition number.
ExXaMPLE 3. The residual growth of a 2 x 2 matriz with n < 1 never exceeds
four. Yet, when the matriz is diagonalisable, its eigenvector condition number can be

arbitrarily large.
Consider the 2 X 2 matriz

A—J\I:(6 K) 0<e<|AL
Since m = 2, the upper bound in Theorem 5./ is
[l 2
< (1+n).
lI7e—1ll
For n < 1 this implies
Il
Ire—ll —

Thus the residual growth remains small — whether the matrixz has two distinct eigen-
values, or a double defective eigenvalue.

When the eigenvalues are distinct, as in Example 1, then ¢ < |\| and A is diago-
nalisable. The upper bound in Theorem 4.2,

e )
< g(V
Trecag < V%

can be made arbitrarily large by shrinking the eigenvalue separation, since
2

|v
V) > .
K(V) 2 A — €]?

In general, ill-conditioned eigenvectors are not necessarily responsible for a large
departure of A— I from normality [7, Example 9.1]. Hence the bound on the residual
growth for diagonalisable matrices in Theorem 4.2 may be totally unrealistic. We show
in the next section that the residual growth is primarily affected by the departure of
A — M from normality, rather than by eigenvector conditioning. Example 3 seems to
suggest that any harm done by defectiveness is limited, as long as the departure from
normality remains small.

5.3. The Bounds Make Sense. In this section we demonstrate that the bound
in Theorem 5.4 is realistic in the following sense. Based on a different measure for
departure from normality, we show that for any matrix there always exist iterates
whose residual growth is at least as large as the departure of A — A from normality.

An alternative measure for departure from normality, which is invariant under
scalar multiplication, is the Henrici number [6, Definition 1.1],[7, Definition 9.1]

JA*A — AA*| __[A]?
= < .
He(4) A <A
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When A is normal matrix then He(A) = 0. Relations of the Henrici number to other
measures of non-normality are described in Appendix 2 (§9).

One of Wilkinson’s explanations for residual growth?? is based on the singular
value decomposition [18, §15], [45, §8]: The starting vector zy that produces the
smallest possible residual r; is a left singular vector u,, associated with the smallest
singular value of A — Al (cf. §2.4). The resulting z; lies in the direction of the
corresponding right singular vector v,. Representing v, in terms of the left singular
vector basis may result in a very small coefficient for u,, if an eigenvalue closest to A
is ill-conditioned. In this case rs is likely to be much larger than r;.

In the same spirit, we consider two possibilities for making ||r2||/||r1]| large: either
make [|r1|| minimal, as Wilkinson suggested; or else make ||r2|| maximal. As a conse-
quence the residual growth is no less than the departure from normality of (4 — 5\1)*1
in the first case, and of A — M in the second case.

THEOREM 5.5. Let inverse iteration be applied to a non-singular matriz A — ;\I,
and let r, = (A — S\I)azk be the residual for the kth iterate xy.

There exists a starting vector xy so that ||r1|| is minimal and

AR
[r2ll o (A =AD" 1

Il = A a2 =2 el =D

There also exists a starting vector xq so that ||r2]|| is mazimal and

Irall o llA = AT|P 1
Il = 1A= AD)2)| ~ 2

He(A — AI).

Proof. In the first case, let u, and v, be respective left and right singular vectors
associated with the smallest singular value of A — AI, i.e.

(A= Ay = ——
[(A=AD)~
If 20 = up then 21 = v, and ||r|| = 1/||(A — AI)~!|| is minimal (§2.4). Therefore
froff 1 1 _ 1
[l 220l [[(A = AD)ar || 1(A = A=t || (A = AD)ay ||
A=A A-AD712 1 <
_ A=A )A P (A=A ‘II > LHe(a = i),
1(A =A@l — [[(A=AD)~2] — 2

In the second case, let u; and vy be respective left and right singular vectors
associated with the largest singular value of A — AT, i.e.

(A= XDy = || A = M| .
If 20 = (A — M)up /||(A — A)uy || then 2y = u; and @y = v;. Then |ro = ||A — M|

is maximal, and

Irall - _ 1 _ A= AP
7] [(A =AD" 2 [ [[(A=ADa || [[(A—=A])%zs|
_ATII2 R
MAZMIP S Lyoa = A,
[(A=AD?| — 2

22 For simplicity we consider residual growth from the first to the second iteration, but the argument
of course applies to any pair of successive iterations.
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d
Thus the best possible starting vector, i.e. a right singular vector associated with

the smallest singular value of A— 5\1, can lead to significant residual growth. Wilkinson
was very well aware of this and he recommended [44, p 420]:

For non-normal matrices there is much to be said for choosing the

initial vector in such a way that the full growth occurs in one it-

eration, thus ensuring a small residual. This is the only simple

way we have of recognising a satisfactory performance. For well

conditioned eigenvalues (and therefore for all eigenvalues of normal

matrices) there is no loss in performing more than one iteration

and subsequent iterations offset an unfortunate choice of the initial

vector.

5.4. A Particular Example of Extreme Residual Increase. In this section
we present a matrix for which the bound in Theorem 5.4 is tight and the residual
growth is exponential in the departure from normality.

This example is designed to pin-point the apparent regress of inverse iteration
after the first iteration, which Wilkinson documented extensively??: The first resid-
ual is tiny, because it is totally under the control of non-normality. But subsequent
residuals are much larger: The influence of non-normality has disappeared and they
behave more like residuals of normal matrices. In the example below the residuals

satisfy
1

n—1

1
Il < v irellz = sl 2

n+1’
where 7 > 1. For instance, when n = 1000 and = 2 then the first residual is

completely negligible while subsequent residuals are significantly larger than single
precision,

Il <27 <2107, gl 21077, I > 1077
Let the matrix A have a Schur decomposition A = Q(A — N)Q* with
Q=A-M=1, N=nZ  n>1,

and
0 1
Z = 0
1
0
Thus e =1, |N||/e=n>1, m=mn—1, and
1 n 72 ... g
(A=At = Lo 2
n
1

Let the starting vector be zy = e,. Then ||r1] is almost minimal because z; is a
multiple of a column of (4 — AI)~! with largest norm (§2.5).

23 [18, p 615], [45, P 355], [62, p 375], [63]



The first iteration produces the unnormalised iterate z; = (A — AI) e, with

n—1

2 i\2 772n -1
lz1]7 =) (') = ;
and the normalised iterate
77nfl
21 <772n - 1) —1/2 2
T = =
T ) n*—1 "

n
1

The residual norm can be bounded in terms of the (1,n) element of (A — AI)™L,

1 1 1
||T1|| = = 7V —1 S I7V-1 = n—1"
Izl (A =AD" Yen]l — (A =AD" D1nll 7
The second iteration produces the unnormalised iterate
nnnfl

2n —1/2 :

_ Al _ (0~ 1 iy
29 = (A — ) m1—<n2_1> 32

2n

1

with

7}271 1 -1 n— 9
el = (L) X (G 0a)* <o,
i=0

and the normalised iterate

np"!
o1 o\ 12 :
Ty = ﬁ = <Z ((i+ 1)ni)2> 312
=0 2,,7
1
The residual norm is
Irall = —— > 2.
22|l — n
The third iteration produces the unnormalised iterate
gy

n—1 —1/2 :
23 = (A — ;\1)71332 = (Z ((Z + 1)77i)2> 67.72
i=0
31
1

with

s> = (Z (G + 1>n">2>1 Z (wn) <

i=0

25
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The residual norm is . 5

— > .
llzs]] — n+1

73l =

In spite of the setback in residual size after the first iteration, the gradation of
the elements in 21, 29, and z3 indicates that the iterates eventually converge to the
eigenvector e;.

6. Finite Precision Arithmetic. In this section we illustrate that finite pre-
cision arithmetic has little effect on inverse iteration, in particular on residual norms,
starting vectors and solutions to linear systems. Wilkinson agreed: ‘the inclusion of
rounding errors in the inverse iteration process makes surprisingly little difference’ [45,
p 355].

We use the following notation. Suppose Zj_1 with ||Zx_1]] = 1 is the current
iterate computed in finite precision, and Z; is the new iterate computed in finite
precision. That is, the process of linear system solution in §2.2 produces a matrix Fj,
depending on A — M and ZTr_1 so that Zj is the exact solution to the linear system
[60, §TT1.25], [61, §9.48]

(A= X — Fy)2p, = #p1.

We assume that the normalisation is error free, so the normalised computed iterate
T = 21 /|| 2k || satisfies
(A=A — Fp)&p = 8 Tg_1,

where the normalisation constant is §; = 1/||2]|-
In the case of floating point arithmetic, the backward error F}, is bounded by [60,
§1I1.25]
1Ekll < p(n) p |A = M| enr,

where p(n) is a low degree polynomial in the matrix size n. The machine epsilon €y
determines the accuracy of the computer arithmetic; it is the smallest positive floating
point number that when added to 1.0 results in a floating point number larger than 1.0
[32, §2.3].

The growth factor p is the ratio between the element of largest magnitude occur-
ring during Gaussian elimination and the element of largest magnitude in the original
matrix A — A [58, §2]. For Gaussian elimination with partial pivoting p < 27! [59,
§§8, 29]. Although one can find practical examples with exponential growth factors
[16], numerical experiments with random matrices suggest growth factors proportional
to n?/? [53]. According to public opinion, p is small [17, §3.4.6]. Regarding the possi-
bility of large elements in U, hence a large p, Wilkinson remarked [61, §9.50]:

I take the view that this danger is negligible.
while Kahan believes [30, p 782],

Intolerable pivot-growth is a phenomenon that happens only to nu-

merical analysts who are looking for that phenomenon.
It seems therefore reasonable to assume that p is not too large, and that the backward
error from Gaussian elimination with partial pivoting is small.

For real symmetric tridiagonal matrices 7', the sharper bound

IFell < v/ T = Al enr
holds, where ¢ is a small constant [60, §3.52], [61, §5.55].
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6.1. The Finite Precision Residual. The exact iterate zj is an eigenvector
of a matrix close to A if its unnormalised version z; has sufficiently large norm (cf.
§2.3). Wilkinson demonstrated that this is also true in finite precision arithmetic [60,
§I11.52], [61, §5.55]. The meaning of ‘sufficiently large’ is determined by the size of
the backward error Fy, from the linear system solution.

The residual of the computed iterate

= (A= A& = —Fpdp + Sp2p 1

is bounded by

1 1
— = [Fell < |Ifell < o= + | Fxll-
EA| EA|

This means, if Z; is sufficiently large then the size of the residual is about as small as
the backward error. For instance, if the iterate norm is inversely proportional to the
backward error, i.e.

. 1
2| 2 ——=—
N T

for some constant ¢; > 0, then the residual is at most a multiple of the backward
error,
[7ell < (14 1) [ Fell-

A lower bound on ||2;|| can therefore serve as a criterion for terminating the inverse
iteration process.

For a real symmetric tridiagonal matrix T Wilkinson suggested [61, p 324] termi-
nating the iteration process one iteration after

felle > ——
12kl 2 100n epr

is satisfied, assuming T is normalised so ||T — M |s &~ 1. Wilkinson did his compu-
tations on the ACE, a machine with a 46-bit mantissa where €3, = 27%%. The factor
100n covers the term ¢y/n in the bound on the backward error for tridiagonal matrices
in §6. According to Wilkinson [61, p 325]:

In practice this has never involved doing more than three itera-

tions and usually only two iterations are necessary. [...] The factor

1/100n has no deep significance and merely ensures that we seldom

perform an unnecessary extra iteration.
Although Wilkinson’s suggestion of performing one additional iteration beyond the
stopping criterion does not work well for general matrices (due to possible residual
increase, cf. §5 and [54, p 768]), it is effective for symmetric tridiagonal matrices [29,
§4.2].

In the more difficult case when one wants to compute an entire eigenbasis of a real,

symmetric matrix, the stopping criterion requires that the relative residual associated
with a projected matrix be sufficiently small [8, §5.3].

6.2. Good Starting Vectors in Finite Precision. In exact arithmetic there
are always starting vectors that lead to an almost minimal residual in a single iteration
(cf. §2.5). Wilkinson proved that this is also true for finite precision arithmetic [62,
p 373]. That is, the transition to finite precision arithmetic does not affect the size of
the first residual significantly.

Suppose the Ith column has the largest norm among all columuns of (4 — /A\I)’l,
and the computed first iterate z; satisfies

(A=A + F)2 = e
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This implies . .
(I+(A-X)"'F)3 = (A M) e

and
JA=ADT <A =AD" el ST+ (A=A R |z

Sl-

Therefore R
1 [(A =AD"~

| > — S :
Vi 14+ (A= AN | F )
If || (A - 5\1)*1” ||F1]| is small then z; and Z; have about the same size.

Our bound for ||Z;|| appears to be more pessimistic than Wilkinson’s [62, p 373]
which says essentially that there is a canonical vector e; such that

(A — 5\I+F1)21 =€

121

and 1
20l = (A = AT+ F) el > —= (A= AT+ F) ).
Jn
But
~ ~ -1 ~
A=A+ FR)Y ) = {1+ @A-ADT'R)  (A-AD7Y
lA=ADY o A=A

1T+ (A=XDTFR| 1+ (A= XD IR

implies that Wilkinson’s result is an upper bound of our result, and it is not much
more optimistic than ours.

Unless zp contains an extraordinarily small contribution of the desired eigenvec-
tor z, Wilkinson argued that the second iterate z- is as good as can be expected in
finite precision arithmetic [60, §I111.53]. Jessup and Ipsen [29] performed a statistical
analysis to confirm the effectiveness of random starting vectors for real, symmetric
tridiagonal matrices.

6.3. Solution of IlI-Conditioned Linear Systems. A major concern in the
early days of inverse iteration was the ill-conditioning of the linear system involving
A — X when ) is a good approximation to an eigenvalue of A. It was believed that
the computed solution to (A — Al)z = #;_1 would be totally inaccurate [45, p 340].
Wilkinson went to great lengths to allay these concerns??. He reasoned that only the
direction of a solution is of interest but not the exact multiple: A computed iterate
with a large norm lies in ‘the correct direction’ and ‘is wrong only by [a] scalar factor’
[45, p 342].

We quantify Wilkinson’s argument and compare the computed first iterate to the
exact first iterate (as before, of course, the argument applies to any iterate). The
respective exact and finite precision computations are

(A= M)z =20, (A=A + F)% = .

Below we make the standard assumption? that ||(4 — AI)"'F}|| < 1, which means
that A — A is sufficiently well-conditioned with respect to the backward error, so

>4 [44, §6], [45, §2], [60, §111.53], [61, §5.57], [61, §§9.48, 49], [62, §5]
25 [17, Lemma 2.7.1], [51, Theorem 4.2], [58, §9.(S)], [60, §111.12]
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nonsingularity is preserved despite the perturbation. The following result assures that
the computed iterate is not much smaller than the exact iterate.
THEOREM 6.1. Let A — Al be non-singular; let ||[(A — XI)"'Fi|| < 1; and let

(A*/A\I)lex(]; (A*XI+F1)21 = Iy.

Then
~ 1
120 2 S llzall-

Proof. Since A is not an eigenvalue of A, A — M is non-singular and
(I+mfinﬂﬂ)z:m.
The assumption |[(A — AI) ' Fy|| < 1 implies
Izl < (14 1A= ADT R 150 < 200,

a

Since computed and exact iterate are of comparable size, the ill-conditioning of
the linear system does not damage the accuracy of an iterate. When 2; is a column
of maximal norm of (4 — A + F;)~!, Theorem 6.1 implies the bound from §6.2.

6.4. An Example of Numerical Software. In this section we briefly describe
a state-of-the-art implementation of inverse iteration from the numerical software li-
brary LAPACK [1].

Computing an eigenvector of a real symmetric or complex Hermitian matrix H
with LAPACK requires three steps [1, 2.3.3]:

1. Reduce H to a real, symmetric tridiagonal matrix 7" by means of an orthog-
onal or unitary similarity transformation @, H = QT Q*.
2. Compute an eigenvector z of T' by xSTEIN.
3. Backtransform z to an eigenvector Qz of H.
The reduction to tridiagonal form is the most expensive among the three steps. For
a matrix H of order n, the first step requires O(n?) operations, the second O(n) and
the third O(n?) operations.

The particular choice of ) in the reduction to tridiagonal form depends on the
sparsity structure of H. If H is full and dense or if it is sparse and stored in packed
format, then () should be chosen as a product of Householder reflections. If H is
banded with bandwidth w then @ should be chosen as a product of Givens rotations,
so the reduction requires only O(w? n) operations. Unless requested, @ is not deter-
mined explicitly but stored implicitly in factored form, as a sequence of Householder
reflections or Givens rotations.

Given a computed eigenvalue ;\, the LAPACK subroutine xSTEIN?® computes
an eigenvector of a real symmetric tridiagonal matrix 7" as follows. We assume at first
that all off-diagonal elements of 7" are non-zero.

Step 1: Compute the LU factors of T' — Vi by Gaussian elimination with
partial pivoting:
P(T — \) = LU.

26 The prefix ‘x’ stands for the data type: real single (S) or double (D) precision, or complex single
(C) or double precision (7).
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Step 2: Select a random (unnormalised) starting vector zo with elements
from a uniform (—1,1) distribution.
Step 3: Execute at most five of the following iterations:
Step i.1: Normalise the current iterate so its one-norm is on the order
of machine epsilon: zp_1 = sg_1 * 251 where

sk—1 =1 [Tl max{enr, [unnl} / l26-1]1,

and uy, is the trailing diagonal element of U.
Step i.2: Solve the two triangular systems to compute the new unnor-
malised iterate:

Lck = Pﬂ?k,h UZk = Cg-

Step i.3: Check whether the infinity-norm of the new iterate has grown
sufficiently:
Is |lzklleo > 1/V10R 7

1. If yes, then perform two additional iterations. Normalise the fi-
nal iterate xp4o so that ||zgya2]l2 = 1 and the largest element in
magnitude is positive. Stop.

2. If no, and if the current number of iterations is less than five, start
again at Step i.1.

3. Otherwise terminate unsuccessfully.

We comment on the different steps of xSTEIN:

Step 1. The matrix T is input to xSTEIN in the form of two arrays of length
n, one array containing the diagonal elements of T and the other containing the
off-diagonal elements. Gaussian elimination with pivoting on T — M results in a
unit lower triangular matrix L with at most one non-zero subdiagonal and an upper
triangular matrix U with at most two non-zero superdiagonals. xSTEIN uses an array
of length 5n to store the starting vector zg, the subdiagonal of L, and the diagonal
and superdiagonals of U in a single array. In subsequent iterations, the location that
initially held 2 is overwritten with the current iterate.

Step i.1. Instead of normalising the current iterate xy_; so it has unit-norm,
xSTEIN normalises z;_; to make its norm as small as possible. The purpose is to
avoid overflow in the next iterate zy.

Step i.2. In contrast to Wilkinson’s practice of saving one triangular system so-
lution in the first iteration (cf. §2.2), xSTEIN executes the first iteration like all
others.

To avoid overflow in the elements of z;, xStein gradually increases the magnitude
of very small diagonal elements of U: If entry ¢ of z;, would be larger than the reciprocal
of the smallest normalised machine number, then u;; (by which we divide to obtain
this entry) has its magnitude increased by 27 epr max; ; |u; |, where p is the number
of already perturbed diagonal elements.

Step i.3. The stopping criterion determines whether the norm of the new iterate
zr has grown in comparison to the norm of the current iterate z;_; (in previous
chapters the norm of z;_1 equals one). To see this, divide the stopping criterion by
||zk—1]|1 and use the fact that ||zx_1]l1 = sg—1. This amounts to asking whether

|12k [l oo 1

ekl = VI0nn |7 enr-
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Thus the stopping criterion in xSTEIN is similar in spirit to Wilkinson’s stopping
criterion in §6.1 (Wilkinson’s criterion does not contain the norm of T because he
assumed that T — AT is normalised so its norm is close to one).

When |up,| is on the order of ey then T — AI is numerically singular. The
convergence criterion expects a lot more growth from an iterate when the matrix is
close to singular than when it is far from singular.

In the preceding discussion we assumed that 7" has non-zero off-diagonal elements.
When T does have zero off-diagonal elements, it splits into several disjoint submatrices
T; whose eigenvalues are the eigenvalues of T. xSTEIN requires as input the index i
of the submatrix T} to which A belongs, and the boundaries of each submatrix. Then
xSTEIN computes an eigenvector z of T; and expands it to an eigenvector of T by
filling zeros into the remaining entries above and below z.

7. Asymptotic Convergence In Exact Arithmetic. In this section we give
a convergence proof for inverse iteration applied to a general, complex matrix. In
contrast to a normal matrix (cf. §3.3), the residual norms of a non-normal matrix do
not decrease strictly monotonically (cf. §5.3 and §5.4). In fact, the residual norms
may even fail to converge (cf. Example 2). Thus we need to establish convergence of
the iterates proper.

The absence of monotonic convergence is due to the transient dominance of the
departure from normality over the eigenvalues. The situation is similar to the ‘hump’
phenomenon: If all eigenvalues of a matrix B are less than one in magnitude, then
the powers of B converge to zero asymptotically, ||[B*|| — 0 as k — oc [24, §3.2.5,
§5.6.12]. But before asymptotic convergence sets in, ||B*|| can become much larger
than one temporarily before dying down. This transient growth is quantified by the
hump max; | BY|/|[B]| [23, §2].

Wilkinson established convergence conditions for diagonalisable matrices?” and
for symmetric matrices [60, §II1.50]. We extend Wilkinson’s argument to general
matrices. A simple proof demonstrates that unless the choice of starting vector is par-
ticularly unfortunate, the iterates approach the invariant subspace of all eigenvalues
closest to . Compared to the convergence analysis of multi-dimensional subspaces [43]
our task is easier because it is less general: Each iterate represents a ‘perturbed sub-
space’ of dimension one; and the ‘exact subspace’ is defined conveniently, by grouping
the eigenvalues as follows.

Let A — A =V (J — M)V ! be a Jordan decomposition and partition

_ Ji _ -1 _ W1*
J-( J2>’ V=W W), 1% _<W2*>’

where J; contains all eigenvalues \; of A closest to ;\, ie. |\ — ;\| = ¢; while J5

7

contains the remaining eigenvalues. Again we assume that X is not an eigenvalue of
A, soe> 0.

The following theorem ensures that inverse iteration gradually removes from the
iterates their contribution in the undesirable invariant subspace, i.e the subspace as-
sociated with eigenvalues farther away from . If the starting vector zy has a non-zero
contribution in the complement of the undesirable subspace then the iterates approach
the desirable subspace, i.e. the subspace associated with the eigenvalues closest to A
This result is similar to the well-known convergence results for the power method, e.g.
[34, §10.3].

27 (44, §1], [62, §1], [63, p 173]
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THEOREM 7.1. Let inverse iteration be applied to a non-singular matriz A — M.
Then iterate xy, is a multiple of yp1 + yr2, k > 1, where yp € range(V1), yr2 €
range(Va), and yr2 — 0 as k — oo.

If Wixg # 0 then yr1 # 0 for all k.

Proof. Write

(A=A =t V(e(J =AD" HV

e(J - A" = <€(J1 -An” e(Jo — 5\1)1) '

The eigenvalues of e(J; —AI)~! have absolute value one; while the ones of €(.J — AI)~*
have absolute value less than one. Then

(A - 5\1)”“.1:0 =k (yr1 + Yk2),

where

where
Ye1 = Vl(e(.]l — Xf)il)kwl*.’t(], Yk2 = VQ(E(JQ — Xf)il)kW;,’EU.

Since all eigenvalues of €(.Jo—AI) " are less than one in magnitude, (e(Jo—AI)~")* — 0
as k — oo [24, §3.2.5, §5.6.12]. Hence ygo2 — 0. Because

(A= A"k

Tk = T 2. 5,
(A = AL)=Fao|

x, is a multiple of €* (4 — XI)”“:EO = Yp1 + Yro.

If Wizo # 0, the non-singularity of e(J; — /A\I)’1 implies yr1 # 0. O

Because the contributions yg; of the iterates in the desired subspace depend on
k, the above result only guarantees that the iterates approach the desired invariant
subspace. It does not imply that they converge to an eigenvector.

Convergence to an eigenvector occurs, for instance, when there is a single, non-
defective eigenvalue closest to A. When this is a multiple eigenvalue, the eigenvector
targeted by the iterates depends on the starting vector. The iterates approach unit
multiples of this target vector. Below we denote by |z| the vector whose elements are
the absolute values of the elements of z.

COROLLARY 7.2. Let inverse iteration be applied to the non-singular matriz
A=, If J1 = M1 in the Jordan decomposition ofA—;\I, then iterate xy is a multiple
of Whyy + yra, where |w| =1, yy = ViW/zq is independent of k, yo € range(Vs), and
yr2 — 0 as k — oo.

If Wixg # 0 then |xi| approaches a multiple of |y1| as k — oo.

Proof. In the proof of Theorem 7.1 set w = ¢/(A; — A). Then e(J; — )™t = wl
and yp; = why;. O

8. Appendix 1: Facts about Jordan Blocks. In this section we give bounds
on the norm of the inverse of a Jordan block. First we give an upper bound for a
single Jordan block.

LEMMA 8.1 (PROPOSITION 1.12.4 IN [11]). Let

Al
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be of order m and X\ # 0. Then

(1+[Ap™

1774 <
A

Now we bound the norm of a matrix consisting of several Jordan blocks.
THEOREM 8.2 (PROPOSITION 1.12.4 IN [11], THEOREM 8 IN [31]). Let J be a
Jordan matrix whose Jordan blocks have diagonal elements \;; let

€ = min |\ |;
2

and let m be the order of a Jordan block J; for which ||J 71| = ||J;1||.

If € > 0 then
(1+e)m!

Em

177 <

Proof. Let A; be the diagonal element of J;. Lemma 8.1 implies

1 X m—1
g = g < ST
A

Because of € < |\;| we get (proof of Proposition 1.12.4 in [11])

L+ Nt 1 <1+/\j>’”1<1 <1+e>m1
Al € '

RVike Al

T €
a

Now we derive a lower bound and a second upper bound, which differ by a factor
of at most y/m. A first-order version of the lower bound appeared in [18, §3], and the
one-norm upper bound was proved in [37, Lemma 2]. As before, we start with a single
Jordan block.

LeEMMA 8.3. Let

be of order m and X\ # 0. Then
1T emll < 177 S NT  emll < Vm |7 el
where for |\| #1

B 1 [1-|azm » 1 [1— |\
17~ emll = 5 W el = o
[Al™ | L= [AP Al Y T A

Proof. To prove the lower bound and the two-norm upper bound, note that the
inverse of .J is [25, §6.2.13]

(~nm+
=™
)\m—l

—

o
>|= >,f,|‘

Jt=

S e
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The last column of J ! has largest norm among all columns,
1T el < I < Vm |T el

and the square of its two-norm is a geometric progression in 1/|A|?,

m—1 _ 1
e = S L L
NE 2 N TR T

Taking square-roots on both sides gives

- 1 [1— e
T lemll = ot [ ——

To prove the one-norm upper bound, apply the Neumann lemma [17, Lemma

2.3.3]to J = Al + N,
1 -1 12
I+—N> < — — =7 e,
< Ry Ry ; |AJ?

where ||.J " te,,|l1 is a geometric progression in 1/|A|.

The relation between the two upper bounds follows from the fact that ||z|; <
Vvm ||z|| for any m-vector = [17, (2.2.5)]. O

We extend the above bounds to matrices consisting of several Jordan blocks.

THEOREM 8.4. Let J be a Jordan matriz whose diagonal blocks have diagonal
elements \;, and let

17 =

P ‘

€ = min |)\;| > 0.
K3

Furthermore let m be the order of a Jordan block J; for which ||J 71| = ||Jj71||; and
let I be the order of any Jordan block whose diagonal elements have absolute value €.
Then
1 /1—¢ 1 1 1—¢€m
— < < = .
el 1—62_||J ”_em 1—¢

Proof. To prove the upper bound, let A; be the diagonal element of .J;. Since
€ < ||, we bound the one-norm upper bound from Lemma 8.3 in terms of e,

[

1
<
RYIK

a | =

™

B B B 1 m—1 m—
1T =17 < 15 el = BV >
71 =0

1
| 2.

To prove the lower bound, let J; be any Jordan block whose diagonal element has
absolute value e. Then Lemma 8.3 implies
1— e
1€z’

1
—1 —1
[PA P ]
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9. Appendix 2: Departure from Normality. In this section we present re-
lations between different measures for departure from normality.

The following result relates ||AA* — A*A||r and || N||F in the Frobenius norm.

THEOREM 9.1 (THEOREM 1 IN [22]). Let A be n x n with Schur decomposition
A=Q(A - N)Q*. Then

. nd—n, ., .
IV < a4

Below is a corresponding relation in the two-norm.

THEOREM 9.2. Let A be n x n with Schur decomposition A = Q(A—N)Q*. Then
||]\']-||2 * * p

5 <[ ATA = AAT|| < 2|N|P + 4[A [IN]].

n

Proof. The upper bound follows from the triangle inequality and the submulti-
plicative property of the two-norm. Regarding the lower bound, there exists a column
Nej, 1 <1< mn, such that (cf. §2.5)

1 y y *
~[INIP < [INeu||* = (N*N)u,

where (N*N); is the Ith diagonal element of N*N. Because

n n -1
Z(N*N — NN*)u = (N*N)y + Z ZN;iNji7
Py =141 j=1

where Nj; is element (j,7) of N,

(N*N)u <> (N*N = NN*);; <n max [(N*N = NN*);| <n|[A*A— AA".
Py 1<i<n
The last inequality holds because (N*N — NN*);; is the ith diagonal element of
Q*(A*A — AA*)Q and because for any matrix M, ||M| > max;|M;;|. Putting all
inequalities together gives the desired lower bound. O
The Henrici number in the Frobenius norm [6, Definition 1.1],[7, Definition 9.1],
[AA — AA™[|p Al
HeF (A) = s
[A2]|e |A%[|g

is a lower bound for the two-norm eigenvector condition number of a diagonalisable
matrix:

THEOREM 9.3 (THEOREM 8 IN [49] ADAPTED TO THE TWO-NORM). Let A be
n x n. If A is diagonalisable with eigenvector matriz V then

<2

1 .
k(V)* > 1+ 3 Hep(A)?.
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