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COMPUTING AND VERIFYING DEPTH ORDERS*
MARK DE BERGt, MARK OVERMARS t, AND OTFRIED SCHWARZKOPFt

Abstract. A depth order on a set of line segments in 3-space is an order such that line segment a comes before
line segment a in the order when a lies below a or, in other words, when there is a vertical ray that first intersects
a’ and then intersects a. Efficient algorithms for the computation and verification of depth orders of sets of n line
segments in 3-space are presented. The algorithms run in time O(n4/3+e), for any fixed e > 0. If all line segments
are axis-parallel or, more generally, have only a constant number of different orientations, then the sorting algorithm
runs in O(n log n) time and the verification takes O(n log n) time. The algorithms can be generalized to handle
triangles and other polygons instead of line segments. They are based on a general framework for computing and
verifying linear orders extending implicitly defined binary relations.

Key words, computational geometry, depth orders, three dimensions, linear extensions of partial orders
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1. Introduction. Hidden surface removal is an important problem in computer graphics.
In a typical setting, we are given a set of nonintersecting polyhedral objects in 3-space and a
view point and want to compute which parts of the objects can be seen from the view point.

An efficient way of solving this problem is the painter’s algorithm; see, for example,
10]. In this algorithm one tries to "paint" the objects in a back-to-front order onto the screen.
Thus the objects in the front are painted on top of the objects in the back, resulting in a correct
view of the scene. Such a back to front ordering is called a depth order of the set of objects.
Note that a depth order does not always exist, since there can be cyclic overlap among the
objects, as is the case for the three triangles shown in Fig. 1. A closely related approach uses

FIG. 1. Cyclic overlap among triangles.

a binary space partition tree to obtain a displaying order for the objects in a scene 11]. A
binary space partition (BSP) cuts the objects in such a way that there is a depth order in any
direction. Unfortunately, the number of fragments and, hence, the size of the resulting BSP
tree can be as large as f2 (n2) [20]. Hence, this approach can be very wasteful if there is no
cyclic overlap in the viewing direction.

The view of a scene consists ofa subdivision ofthe viewing plane into maximal connected
regions such that in each region either (some portion of) a single object can be seen or no
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object is seen. Sometimes it is necessary to compute a combinatorial representation of this
so-called visibility map. Note that the painter’s algorithm does not give us such a combinatorial
representation. The combinatorial complexity of the visibility map of a set of objects with n
edges in total varies between O(1) and fZ(n2). Hence, it would be nice to have an output-
sensitive algorithm, that is, an algorithm whose running time is dependent on the complexity
of the visibility map. Almost all output-sensitive algorithms known to date require that a
depth order on the objects is given; see, for example, 14], 16], 19], [21 ]. Only the recent

algorithms of [8], [9] do not need a depth order. The implementation of the latter algorithms,
however, is much easier when a depth order is known.

It is thus important to be able to compute depth orders efficiently. This problem was
studied by Chazelle et al. [5]. When the objects are lines in 3-space, they noted that a depth
order can be obtained by a standard sorting algorithm, because any two lines can be compared
(assuming no two have parallel projections). If there is cyclic overlap, however, then the
outcome of the sorting algorithm is not a valid depth order. Verifying whether a depth order is
valid is no trivial matter though; in [5], Chazelle et al. presented an O(r/4/3+e) time algorithm
to verify a given depth order of a set of lines. When the objects are line segments in 3-space,
the problem becomes much harder, since not every pair of line segments can be compared.
For this case, the best algorithm that was known runs in time O(n log n + k), where k is the
number of intersections in the projection plane, or, in other words, the number of pairs that
can be compared directly [5], [18]. Note that k can be (R)(n 2) and, hence, that the worst-case

running time of these algorithms is (R) (n2). Even for the case of axis-parallel line segments, it
was an open problem to find a depth order in o(n 2) time [21 ].

In this paper we show that a depth order for a set of line segments in 3-space can be
computed in subquadratic time. More specifically, we give an algorithm that computes a
depth order in time 0(n4/3+). We also present an algorithm that verifies a given order in
O(n4/3+e) time. When the line segments are c-oriented, that is, they have only c different
orientations for some constant c, then the sorting algorithm runs in O(n log n) time and
verification takes O(n log2 n) time. Note that axis-parallel line segments are 3-oriented. The
results can be generalized to depth orders for sets of triangles, or other polygons, instead of
line segments.

The algorithms that we give are surprisingly simple. They are based on a general frame-
work for computing a linear order extending a relation (S, -<). It is easy to compute an order
in time that is linear in the number of pairs that are related; to this end one sorts the directed
graph (S, E) topologically, where (a, a’) E if and only if a -< a’. This is the approach
taken in [5], 18] to sort a set S of n line segments: first compute all pairs of line segments that
are related--this can be done in O (n log n + k) time by computing all intersections in the pro-
jection plane--and then sort the corresponding graph in O(n + k) time. Note that if (S, -<)
does not contain a cycle then the sorting will succeed, otherwise some cycle will be detected
in the graph . We show that it is not necessary to compute the full graph corresponding
to (S, -<). All that is needed is to have a data structure that answers the following question:
Given an element a 6 S, return a predecessor of a and a successor of a, if they exist. The
data structure should allow for the deletion of an element a in S in sublinear time. In cases
where the relation is given implicitly--such as for depth orders--this is often possible. Our
algorithm uses an interesting form of divide-and-conquer, where the divide-step does not need
to be balanced. In fact, the more unbalanced it is, the better the running time of the algorithm.

There is some previous work on the computation of a linear order that extends a partial
order. This work is also in the context of depth orders, in particular, depth orders in two-
dimensional space 12], 13], [23] and depth orders for spheres in 3-space [22]. Unfortunately,
the solutions given in these papers do not generalize to our setting. Of related interest is also
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a paper by Kenyon-Mathieu and King 5], who describe an algorithm that verifies whether a
given partial order holds on n elements from an unknown total order.

The rest of this paper is organized as follows. In 2 we present our general framework
for computing a linear order extending a relation (S, -<), and in 3 we give an algorithm to
verify a given order. In 4 we show how to use these results to compute or verify a depth order
for a set of line segments (or triangles, or polygons) in 3-space. We make some concluding
remarks in 5.

2. Computing linear extensions. Let -< be a binary relation defined on a set S of n
elements. Note that -< is not necessarily a partial order, since we do not assume transitivity.
This will be useful in our application. In this section it is shown how to compute a linear
order extending (S, -<) or to decide that (S, -<) contains a cycle. Thus we want to compute
an order a an on the elements in S such that ai -< aj implies < j. The algorithm that
we will give for this problem needs a data structure 79-< for storing a subset S’ c_ S that can
return a predecessor in S’ of a query element a 6 S. More formally, QUERY(a, 79.<) returns
an element a’ 6 S’ such that a’ -< a or NIL if there is no such element. We call such a query
a predecessor query. Similarly, we need a structure 79. for successor queries. To make our
algorithm efficient, the structures should allow for efficient deletions of elements from S’ and
the preprocessing time should not be too high.

Let us define -<, to be the transitive closure of -< and >-, to be the transitive closure of >-.
The basic strategy of the algorithm is divide and conquer: we pick a pivot element apiv G S,
partition the remaining elements into a subset S.< of elements a that must come before apiv
in the order because a -<, apiv and a subset S_ of elements that must come after apiv in the
desired order because apiv -<, a, and recursively sort these sets. Note that not every pair of
elements is comparable under -<,. Hence, except for the subsets S.< and S_, there is a third
subset S of elements that cannot be compared to apiv under -<,. This subset should be sorted
recursively as well. To find the subsets S.< and S_ efficiently, the data structures 79.< and 79,,
are used. Consider the subset S.<. By querying 79.< with element apiv, we can find an element
a such that a -< apiv. We delete a from 79.< to avoid reporting it more than once and query
once more with apiv. Continuing in this manner until the answer to the query is NIL, we can
find all elements a 6 S such that a -< apiv. However, we want to find all elements a such that
a -<. apiv. Thus we also have to query 79.< with the elements a that we have just found, query
with the new elements that we find, and so forth. Whenever we find an element, it is deleted
from 79.< and we query with it until we have found all predecessors of it (that have not been
found before). This way we can compute the set S.< with a number of queries in 79.< that is
linear in the size of S.<. Notice that when we find apiv as an answer to a query, there must be
a cycle in the relation. The subset S_ can be found in a similar way, using the data structure
79_. The subset S contains the remaining elements.

There is one major problem with this approach: we cannot ensure that the partitioning is
balanced, that is, that the sets S.<, S_, and S have about the same size. Fortunately, we can
circumvent this if we make the following two observations. First, we note that we need not
treat the subset S separately. We can put the elements ofS in either S.< or S., as long as we
do it consistently, that is, as long as we put all elements in the same set. It seems that this only
makes things worse because the partitioning gets more unbalanced. But now we observe that
it is enough to find the smaller of the two subsets S.< and S.. The remaining elementsmwhich
can be elements of Smare all put into one set. It is possible to find the smaller of the two
subsets S.< and S,.mwithout computing the complete larger set as well--with a number of
queries that is linear in its size, by doing a "tandem search"" alternatingly, find an element of

S.< and an element of S. until the computation of one of the two subsets has been completed.
Thus we partition S into two subsets in time that is dependent on the size of the smaller of the
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two subsets. This means that the more unbalanced the partitioning is, the faster it is performed,
leading to a good worst-case running time for the algorithm. There is one problem left that
we have not addressed so far: we cannot afford to build the data structures that we need for
the recursive call for the large set from scratch. Fortunately, we can obtain these structures
from those that we have at the end of the tandem search by reinserting and deleting certain
elements.

The algorithm for computing an ordering on (S,-<) first builds the data structures 79-<
and 79>. on the set S and then calls the procedure ORDER, with the set S and these two data
structures as arguments. Below follows a detailed description of this procedure, whose output
is a linear order extending (S, -<) if one exists, and which detects a cycle otherwise. The
algorithm maintains two queues Q-< and Q>., which store the elements of S-< (respectively,
S>.) for which we have not yet found all predecessors (respectively, successors). The procedure
ENQUEUE adds an element to a queue. Similarly, DEQUEUE deletes an element from the queue.
An element a is deleted from the data structure 79-< by calling DELETE(a, 79.<); a deletion from
79>_ is performed with a similar call. To delete all elements in a set A, we simply write
DELETE(A, 79-< ).

The two main steps in the algorithm are steps 4 and 5. In step 4 of the algorithm the tandem
search is performed; step 40) computes a new element of S-<, and step 4(ii) computes a new
element of S>.. In step 5 the two sets that result from the partitioning are sorted recursively;
to this end we first construct the data structures that are needed in the recursive calls. For the
larger of the two sets the new data structures are obtained from the existing data structures,
and for the smaller set the data structures are built from scratch.

ORDER(S,’/)-<, 79>.)
1. if lSI > then perform steps 2-6 else stop (S is already sorted).
2. Make S-< -- 13 and S>. +-- 0, and initialize two empty queues Q-< and Q>..
3. Pick an arbitrary pivot element apiv 6 S; ENQUEUE(apiv, Q-<); ENQUEUE(apiv, Q>-).
4. while both Q-< and Q>- are nonempty

do (i) a +-- DEQUEUE(Q-<); a’+-- QUERY(a, 75-<).
if a’ NIL
then if a’ apiv

then Stop and report that there is a cycle.
else ENQUEUE(a, Q-<) ENQUEUE(a’, Q-<); DELETE(a’, 79-<).

S-< S-< t_J a

(ii) Compute a new element a’ S>- in a similar way, using Q>_ and 79>-.
5. if Q-< is empty (hence, S-< is the smaller set)

then Reinsert the elements of S>. into 79>..
DELETE(S-< I,,J {apiv}, 79>.); DELETE(apiv, 79-<).
Build new predecessor and successor structures 79’-< and 79’>. for the set S-<.
ORDER(S-<, 79’-<, 7)’>.).
ORDER(S- {apiv} S-<, 79-<, 79>.).

else Compute the data structures for the recursive calls as above, reversing the
roles of S-<, 79-< and S>., 79>., and sort S>. and S- S>. {apiv recursively.

6. Concatenate S-<, apiv, and S>. to form the ordered list for S.

The following lemma proves the correctness of our algorithm.
LEMMA 2.1. Procedure ORDER outputs a linear order extending (S, -<) if it exists and

detects a cycle otherwise.

Proof. It is straightforward to see that the algorithm never claims to have found a cycle
that does not exist. It remains to show that if ORDER outputs a list a an then this list is
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a correct ordering. Assume for a contradiction that ai >- aj for some < j. Then, at some
stage of the algorithm, ai must have been put into S., whereas aj was put into S., or ai was
put into S. and aj was the pivot element apiv, or ai was the pivot element apiv and aj was put
into S_. The second and third case both imply that there is a cycle containing apiv, and we can
easily verify that step 3 never fails to discover a cycle containing the pivot element. We thus
consider the first case" If Q. is empty after step 3 then all predecessors of ai have been found,
including aj. Hence, aj would have been put into S. instead of S_. (It may also happen that
aj is put into both sets, but in that case the algorithm would have reported a cycle containing
the pivot element.) Similarly, if Q. is empty then ai would have been put into S_.

Next we prove a bound on the running time of the algorithm. Let us for the sake of
simplicity assume that the query time of 79 and the query time of 79. are equal, and let this
time be denoted by Q(n). Similarly, let the time to build these structures on n elements be
B(n), and let D(n) denote the time for a deletion.

LEMMA 2.2. The procedure ORDER runs in 0 ([B(n) + n(Q(n) + D(n))] log n) time.
The running time reducesto 0 (B(n) + n[Q(n) + D(n)]) ifB(n)/n + Q(n)+ D(n) f2(n)
for some constant > O.

Proof. Since all other operations in the procedure can be done in constant time, the time
that we spend is dominated by the operations on the structures D. and D_. Furthermore, if the
size of the smaller of the two subsets S. and S. is m, then we perform at most 2m + 2 queries
and deletions on these structures in step 4 of the procedure. Restoring a data structure to a
situation from the past, which we do in step 5, can be done without extra asymptotic overhead
if we record all the changes. Finally, we perform m deletions in step 5, and we build new data
structures for the smaller set. This adds up to B(m) + O(1 + m)[Q(n) + D(n)] in total for
the partitioning.

Next we argue that m < n/2 if the partitioning is successful, that is, if no cycle is found
at this point. Suppose that m > n/2. Then there must be an element a 6 S. f’l S.. But
this means that apiv will be found as a predecessor or a successor (whichever happens first)
and a cycle is detected. Trivially, an unsuccessful partitioning happens at most once, giving a
one-time cost of O(n[Q(n) + D(n)]).

It follows that the total running time T (n) can be bounded by the recursion

T(n) < max {B(m)+O(l+m)[Q(n)+D(n)]+T(m)+T(n-m-1)},
O<rn <n /2

which solves to the claimed time.
Combining the two lemmas above, we obtain the following theorem.
THEOREM 2.3. The procedure ORDER runs in 0 ([B(n) + n(Q(n) + D(n))] log n) time

and outputs an ordered list if (S, -<) does not contain a cycle orfinds a cycle otherwise. The
running time reduces to 0 (B(n) + n[Q(n) + D(n)]) ifB(n)/n + Q(n) + D(n) f2(n)for
some constant ot > O.

Remark. With a little extra effort, the algorithm can output a witness cycle, when (S, -<)
cannot be ordered. To this end, we keep track of the successor (predecessor) of each element
that we put into S. (S.). This extra information enables us to "walk back" when we find apiv
in step 3 of the algorithm and report the elements of the cycle.

3. Verifying linear extensions. In this section it is shown how to verify a given order for
a relation (S, -<). Notice that different orders can be valid for (S, -<), so it does not suffice to

compute a valid order and compare it to the given order. The algorithm uses a straightforward
divide-and-conquer approach. It relies on the existence of a data structure 79. for predecessor
queries. Unlike in the previous section, however, this data structure need not be dynamic. The
algorithm we describe next has a list E {a an as input. For this list we have to test
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whether it corresponds to a valid order. It will report that/2 is not sorted or run quietly when
/2 is a valid ordering for (S, -<).

VERIFY(/)
if I1 >
then Let {a aLn/2j} and2 {aLn/21+l

Build a data structure 79, for predecessor queries on 2.
for/= to Ln/21
do if QUERY(a/, 79.<)# NIL

then Stop and report that/2 is not sorted
VERIFY(/I); VERIFY(2)

The correctness of the procedure is proved as follows. If does not correspond to a
valid order, then, by definition, there are elements ai, aj such that ai -< aj and > j. Now
either > In/2/ and j _< ln/23, or i, j _< /n/23, or i, j > [n/23. The first case is tested by
querying with the elements of in the data structure 79,, and the second and third possibilities
are tested with the recursive calls for/21 and/22, respectively. The following theorem is now
straightforward. As before, B(n) denotes the time needed to build the structure D. on a set
of n elements, and Q(n) denotes the query time.

THEOREM 3.1. The procedure VERIFY verifies in O([B(n) + n Q(n)] log n) time whether
a list corresponds to an order for (S, -<). The running time of the procedure reduces to

0 (B(n) + nQ(n)) ifB(n)/n + Q(n) f2(n)for some constant et > O.
Remark. Observe that if the procedure reports that is not ordered, then it can report a

witness pair ai, aj of elements such that < j and aj -< ai. If the structure 79. is dynamic,
then the algorithm can even report all conflicting pairs. When we test an element ai E , we
just remove each element aj E /2 that conflicts with ai from D. and report the pair ai, aj,
until no more conflicting elements are found. Then we reinsert the elements of/22 intoD
and test the next element of1 in the same way.

4. Application to depth orders.

4.1. Depth orders for line segments. Let S be a set of n line segments in 3-space, and
let d be the viewing direction. (The adaptation of the algorithms to "perspective depth orders,"
that is, depth orders with respect to a point, is straightforward.) We want to find a depth order
on S for direction d. In other words, we want to find a linear order extending the relation
(S, -<), where a -< a’ when there is a ray into direction d that first intersects line segment a’
and then intersects line segment a. When a -< a’, we say that a lies behind a’ or that a’ lies
in front of a. Observe that -< is not necessarily a transitive relation. To apply Theorem 2.3,
we need dynamic data structures that store a set S’ C S of line segments and enable us to
find a line segment in S’ lying behind (respecvely, in front of) a query line segment. Define
the curtain of a line segment into direction d to be the set of points q in 3-space such that
there is a ray into direction d that first intersects a and then intersects q. If we want to find a
line segment in S’ lying in front of a query line segment a, we just have to check whether a
intersects one of the curtains hanging from the line segments in S’ and report the line segment
holding that curtain. See Fig. 2. Finding a line segment lying behind a query line segment
can be done in a similar way. Agarwal and Matou,3ek [2] have shown that intersection queries
in a set of n curtains can be answered in time O(n 1/3) with a structure that uses O(n4/3+)
space and has an amortized update time of O(nl/3+e). (Note that the fact that the update time
is amortized does not cause any difficulties for the analysis of the time bound.) If both the
line segments holding the curtains and the query line segments are c-oriented, that is, they
have only c different orientations for some constant c, then queries can be answered in time
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FIG. 2. Line segment a lies behind line segment a and, hence, intersects its curtain.

O(log2 n) with a structure using O(n log n) space and with O(log2 n) update time; see de
Berg [7]. Combining this with Theorem 2.3 gives us the following result.

THEOREM 4.1. Given a set S ofn line segments in 3-space and a viewing direction d, one
can compute a depth order on Sfor direction d or decide that there is cyclic overlap among
the line segments, in time O(n4/3+e), for any fixed e > O. If the line segments are c-oriented
then the time bound improves to O(n log n).

To verify a given depth order for a set of line segments in 3-space, we use the results of

3. In the general case, we again use Agarwal and Matouek’s structure for predecessor and
successor queries. In the c-oriented case, we can use a more efficient structure than we used for
computing depth orders" because the structure need not be dynamic, we can use the structure
of de Berg and Overmars [9], which has O(log n) query time and O(n log n) preprocessing
time. We immediately obtain the following theorem.

THEOREM 4.2. It is possible_to verify a depth order on a given set S ofn line segments in
3-spacefor a viewing direction d in time 0(n4/3+), for anyfixed e > O. If the line segments
are c-oriented then the time bound improves to O(n log2 n).

4.2. Depth orders for triangles. To extend our results to triangles instead of line seg-
ments, we only need to adapt the data structures for predecessor and successor queries. Let
us discuss the structure for successor queries; to obtain a structure for predecessor queries we
only have to reverse the roles of "behind" and "in front of."

A triangle is in front of another triangle t’ if and only if at least one of the following
conditions holds" (i) an edge of is in front of an edge of t’, (ii) is in front of a vertex of t’, or
(iii) a vertex of is in front of t’. (A vertex v is in front of a triangle t’ if there is a ray into the
viewing direction that first intersects v and then intersects t’.) We already know how to find the
triangles t’ that satisfy condition (i) for a query triangle t. The triangles satisfying conditions
(ii) and (iii) can be found as follows. Consider condition (ii) and assume, to simplify the
description, that the viewing direction is the negative z-direction. Project all vertices onto the
xy-plane, and let be the projection onto the xy-plane of a query triangle t. To find a vertex in
front of we select all vertices whose projections are contained in in a small number ofgroups;
for such a group we can think of as being a plane, and the question becomes that of reporting
a point in a half-space in 3-space. The latter query can be answered in O(log n) time, using the
half-space emptiness structure ofAgarwal et al. ]. This structure uses O (n +) preprocessing
and has O(n) update time. The selection can be done using a three-level partition tree: each
level filters out those vertices lying on the appropriate side of the line through one of the three
edges of . We use the partition tree of Matouek [17], which allows for queries and updates
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in time O(n 1/3) (respectively, O(nl/3+e)), and which uses O(n4/3+) preprocessing time and
space. Because the preprocessing and the query times in such a multi-level partition tree
are essentially determined by the least efficient level, the preprocessing time, query time, and
update time of the total structure remain o(nn/3+e), O(nl/3), and O(nl/3+e), respectively. See
[2], [3], [6], 17] for further details on the analysis of multilevel partition trees. The structure
for condition (iii) is the same (up to some dualizations) as the structure for (ii) that we just
described. We conclude that a dynamic structure for predecessor queries in a set of triangles
exists with O(n 1/3) query and O(n 1/3+e) update time, using O(n4/3+e) preprocessing time
and space.

For the c-oriented case, where the edges of the triangles have only c different orientations
for some constant c, we can use structures from [7]. There it is shown that a vertex in front of a
c-oriented query triangle can be found in O (log n) time, with a structure that uses O (n log2 n)
space and has O(log3 n) update time. A triangle in front of a query vertex can be found in
O (log2 n log log n) time, using O (n log2 n) space and with O (log2 n log log n) update time.
Furthermore, finding a vertex in front of an axis-parallel rectangle can be done with a structure
whose query and update time are O (log2 n).

The above combined with Theorems 2.3 and 3.1 lead to the following result.
THEOREM 4.3. Given a set S of n triangs in 3-space and a viewing direction d, one

can compute a depth order on Sfor direction d or decide that there is cyclic overlap among
the triangles, in time O(n4/3+e), for any fixed e > O. If the triangles are c-oriented then the
time bound improves to O(n log4 n), and if the objects are axis-parallel rectangles then the
algorithm takes O(n log3 n log log n) time.

To verify a given depth order for an arbitrary set of triangles, we use the same structures
as for computing a depth order. In the c-oriented case, however, we can save some logarithmic
factors by using static structures instead of dynamic ones. In the algorithm of 3 we have to
test whether the triangles in a list do not lie in front of any triangle in a list/22. Testing
whether there is an edge of a triangle in E that lies in front of an edge of a triangle in/22 can
be done in O(n logn) time, as in 4.1. To test for conflicts corresponding to conditions (ii),
we build a structure on the triangles in that reports the first triangle that is hit by a query
ray starting from infinity into the viewing direction. Next, we shoot rays from infinity into the
viewing direction toward each vertex of all triangles in/2; when we know the first triangle
that is hit by the ray toward a certain vertex, we can decide if there is any triangle in front
of the vertex. There exists a structure that answers these ray shooting queries in O(log n)
time, after O(n log n) preprocessing [9]. Hence, in O(n log n) time we can decide if there is
a triangle in that is in front of some vertex of a triangle in/2. To test condition (iii) we
build a similar structure on the triangles in E2 (only this time for query rays into the opposite
viewing direction), and we query with vertices of triangles in El. This leads to the following
theorem.

THEOREM 4.4. It is possible to verify a given depth order on a set S of n triangles in
3-spacefor a direction in time O(n4/3+e), for anyfixed e > O. lfthe triangles are c-oriented
then the time bound improves to O(n log2 n).

4.3. Extension to polygons. Consider the case where we want to compute a depth order
for a set of polygons in 3-space, instead of a set of triangles. Let n be the total number of
vertices of the polygons. First, we triangulate every polygon, which can be done in O(n)
time in total [4]. Observe that one polygon is behind another polygon if and only if one
of the triangles in the triangulation of the first polygon is behind one of the triangles of the
second polygon. Hence, we can use the same data structures as before to find predecessors
and successors. However, if the polygons do not have constant complexity, then there is a
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slight problem; the triangles that correspond to the same polygon must stay together in the
ordering, so when we find one triangle as a predecessor or successor we have to report the
other triangles as well. This is problematic, because the number of other triangles can be large.
Suppose that during our tandem search we suddenly have to add a very large polygon to one of
the subsets; if we find out in the next step that the other subset is complete, then we have spent
a lot of time that we cannot charge to the smaller subset. An elegant solution to this problem
can be obtained if we realize that we can choose any particular pivot element we like. Hence,
we can choose the polygon with the largest complexity as pivot element. The tandem search
for the sets S. and S now proceeds as follows. We find successors and predecessors using
the data structures for triangles. However, when we find a large polygon for, say, S., we first
allow S. to catch.up. Thus we search for successors until the complexity of S_--that is, the
total number of vertices of all polygons in S.--is greater than the complexity of S.. When
this happens, we start querying for predecessors again, and so forth, until one of the subsets
is completed. This way the extra work that we have to do, caused by adding a large polygon
to what turns out to be the larger set, is bounded by the time spent on one polygon. Since the
pivot polygon is chosen to be the largest polygon in the set, we can charge this extra work
to the pivot polygon. Clearly, each polygon is charged at most once this way, because in the
recursive calls we do not consider the pivot element anymore. Thus the asymptotic running
time of the algorithm remains the same, and we have the following theorem.

THEOREM 4.5. Given a set S ofpolygons in 3-space with n vertices in total and a viewing
direction d, one can compute a depth order on Sfor direction d or decide that there is cyclic
overlap among the polygons, in time O(r/n/3+e), for any fixed e > O. If the polygons are
c-oriented then the time bound improves to O(n log4 n), and if the polygons are axis-parallel
then the algorithm takes O(n log n log log n) time.

The adaptation of the verification procedure to polygons is fairly straightforward, and we
leave it as an (easy) exercise to the reader.

THEOREM 4.6. It is possible to verify a given depth order on a set S ofpolygons in 3-space
with n vertices in total, for a viewing direction d, in time O(na/3+e), for any fixed e > O. If
the polygons are c-oriented then the time bound improves to O(n log2 n).

5. Concluding remarks. We have shown that it is possible to compute a depth order for
a set of line segments in 3-space in subquadratic time. More specifically, a depth order can be
computed in O(n4/3+e) time in the general case and in O(n log3 n) time in the c-oriented case.
It is also possible.to verify a given depth order, and the results can be extended to polygons
instead of line segments. Our algorithms are based on a general framework to compute or

verify a linear order extending an implicitly defined binary relation, which might have other
applications as well.

When a depth order is needed as input to a hidden surface removal algorithm, we are
not done if we detect a cycle: the cycles should be removed by cutting the objects into
smaller pieces. Moreover, we would like to use as few cuts as possible. As mentioned in the
introduction, binary space partitions are a way of cutting the objects to obtain a depth order,
but there is no guarantee that the number of pieces in this scheme is small [20]. We leave the
computation of the minimum (or a small) number of cuts as an open problem. See [5] for an
initial study of these problems.
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