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Computing best IP approximations by functions
nonlinear in one parameter

I. Barrodale, F. D. K. Roberts and C. R. Hunt
Department of Mathematics, University of Victoria, Victoria, B.C., Canada

This paper describes an algorithm for computing best l\, k and /(D approximations to discrete
data, by functions of several parameters which depend nonlinearly on just one of these
parameters. Such functions (e.g. «i + a2ef:x, a\ + a2 sin ex, (ai + a2x)l(l + ex)) often occur
in practice, and a numerical study confirms that it is feasible to compute best approximations in
any of the above norms when using these functions. Some remarks on the theory of best h
approximations by these functions are included.
(Received October 1969)

1. Introduction
The computation of best /,, l2 and lx approximations by
linear functions to discrete data has received much
attention in the literature of the past few years. How-
ever, little has appeared concerning the actual deter-
mination of best nonlinear approximations, except for
the rational lx case and some l2 approximations. In
this paper we are concerned with the class of approxi-
mating functions which are nonlinear in only one of
their several parameters (see Table 1). We describe an
algorithm for obtaining best approximations by such
functions, and present a brief summary of some numerical
experiments involving this method. Complete details of
these computations are contained in Hunt (1970).

The method is the following. For any given value of
the nonlinear parameter, the determination of a best lp
approximation can be accomplished by using one of the
existing linear approximation algorithms. Considering
the error of approximation thus produced as a function
of the nonlinear parameter only, the problem of deter-
mining a best nonlinear approximation is reduced to
that of locating the minimum of a function of one
variable. If we assume that this error of approximation
is a unimodal function of the nonlinear parameter, then
the best nonlinear approximation can be found very
efficiently using a Fibonacci search technique.

This algorithm is implemented as a two-stage process.
Phase I is a search over a grid of values of the nonlinear
parameter to find a small interval containing the mini-
mum. Phase II locates the minimum within this interval
by using the Fibonacci method. In practice this scheme
has proved to be extremely effective and widely
applicable.

In the remainder of this section we make a precise
mathematical statement of the problem at hand and the
method proposed for its solution. The next section
contains a summary of our empirical experience with
this algorithm, and the last section consists of some
remarks on the theory of best l{ approximation which
have arisen from this study.

The general approximation problem on a set

X = {xu x2, • • ., xN} of real numbers (or points from
some Euclidean space ER) is to choose an approximating
function F(A, x) and select a particular form F(A*, x)
which approximates a given function f(x) satisfactorily
on X. Here A = {aua2, . • -,an} is a set of free para-
meters, and F(A, x) is a linear approximating function
only if it depends linearly upon these parameters. Thus
the functions a{ + a^e?** and 1/(1 + axx) are nonlinear.

n

The most general linear function is F{A, x) = 2 aj<f>j(x),
where the <f>/,x)'s are given linearly independent functions
defined on X. F(A*, x) is called a best approximation in
a norm 11 • 11 if for all choices of A, | \f(x) - F(A*, x)\ |
< ll/(x) ~ F(d> x)\\- The three norms used in practice
are:

/,: \\w(x)[f(x) - F(A, x)]\\t

= I »{x,)\f(xd-F{A,x-)\
1

Mx)[f(x)-F(A,x)]\\2
N \\Z

= max w(Xj)\f(Xi)- F(A,Xi)\
i / y v

where {W(XJ)} is a prescribed set of positive weights.
For linear functions F(A, x), best approximations exist

in all three norms, but only l2 approximations are neces-
sarily unique. Best /, and /,*, linear approximations can
be determined by linear programming (see Barrodale and
Young, 1966), while l2 approximations are produced by
a standard orthonormalising routine. If the discrete
data is affected by noise then the distribution of these
random errors should dictate the choice of norm. In
practice one chooses the lx, l2 or /, norm, respectively,
according as the errors are very small relative to the
error of approximation, normally distributed, or subject
to wild points (see Rice and White, 1964, and Barrodale,
1968).
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In the discrete nonlinear case best approximations do
not necessarily exist. Rice (1969) can be consulted for
information on the present state of computational
schemes for nonlinear approximation. Generally, pro-
gress towards developing algorithms for best nonlinear
approximation has been slow; for example, virtually
nothing is available in the /[ case. For our particular
problem in the l2 norm there is an alternate method
available which consists of solving the normal equations
by reducing them to one nonlinear equation in the single
nonlinear variable. In practice however, this technique
is not guaranteed to produce a best approximation.

The success of our method depends upon the validity
of the assumption that a certain function is unimodal in
a given range. Roughly speaking, a function is uni-
modal if it has only one minimum in the interval to be
explored, but it does not have to be smooth or even
continuous. For any given tolerance within which
values of x are considered indistinguishable, the
Fibonacci method is the most efficient search technique
known for locating the minimum of a unimodal function.
Wilde (1964) contains precise definitions of these terms
and a description of the Fibonacci method.

Finally, returning to the problem at hand, suppose
that F{A, x) is an approximating function which depends
linearly upon parameters ai,a2,...,an_i and non-
linearly upon c, where A = {au a2, . . ., an_ u c}. Let
A* = {a*, . . ., a*_,, c*} be a set of best parameters for
a given norm: we assume here that a best approximation
exists. The justification for using a Fibonacci search in
Phase II of our method is that the following assumption
be true.
Assumption: G(c) = min \\J{x) — F(A, x)\\p is uni-

modal in c, at least for some small interval containing
c*.

Phase I of the algorithm is to calculate G(c) for a
discrete set of values of c from an interval large enough
to contain c*, and thus produce a small interval con-
taining c*. Phase II locates the minimum within this
interval by using the Fibonacci method. In many of
the test cases described in the next section, the graph of
G(c) turns out to be unimodal in the whole range, thus
emphasizing that at least in these instances our under-
lying assumption is very reasonable and Phase I itself is
redundant.

The approximating functions F(A, x) used in our
numerical study of the algorithm are listed in Table 1.

Table 1
Approximating functions F{A, x) considered

2.
3. (a
4. a{

5. ax

6. a,
7. a,
8.
9.

10. a,
11. a,
12. a,

in the numerical study

+ a2x)/(l + ex)
, + a2x + a3*

2)/(l + ex)
+ a2 log (1 + ex)
+ a2 sin ex
-f a2/(l + x)c

sin ex + a2 cos ex
+ a2x)

a2x + a3x
2 + a4x

3)
sinh ex + a2 cosh ex
+ a2x + a3{x
-f- a2x + a3x

2 as(x —

2. Computational experience with the algorithm
To test the method numerically, we selected twelve

approximating functions which are nonlinear in just one
of their several parameters (see Table 1). For each one
of these functions, discrete best approximations were
computed in the /,, l2 and /OT norm to twelve different
sets of data. Each data set consisting of 21 points with
abscissae equally spaced on [0, 1], and ordinates recorded
to 5D, was generated as follows:

(a) One set of exact data produced by assigning the
parameters of the approximating function F{A, x)
particular numerical values.

(b) Three sets of noisy data produced as in (a) but
with random errors added on. The distributions
of these errors are, respectively,
Laplace: g(rf) = exp (—2|TJ|), — OO < TJ < CO
Normal: g(rf) = 1/V77 exP(~V2)> ~ °° < V < °°
Uniform: g(rj) = 1, — \ < 77 < \.

(c) As (b) above but with different numerical values
assigned to the parameters of the approximating
function F(A, x).

(d) 1 + tan x, y/x, exp(-x2), min (e*, e"2).
(e) 21 uniform random numbers in [0, 10].

Table 2 and Table 3 together summarise the numerical
study for the second approximating function considered,
F{A, x) = (ai + a2x)l{\ + ex). The entire study, which
was performed in double precision arithmetic on an
IBM 360/44, is too extensive to present complete details
here: these can be found in Hunt (1970).

In Phase I the grid of values for the nonlinear
parameter c was usually the 201 points defined as
c = —4(0-04)4, although in certain cases this was
changed (e.g. for a, + a2sin ex we used c = 0(0-02)4).
This fine mesh size gives a good indication for the
validity of the unimodality assumption over the entire
interval. The computer printout from Phase I contains
for each c value the error of approximation G(c), and
also a table of first differences of G(c). It is thus a
simple task to locate on [—4, 4] the minimum of G(c)
within 0-04, and also to check for unimodality. In those
cases where G(c) was decreasing at one end of the inter-
val, Phase I was repeated with a larger range of c values.
In the few cases where a best approximation does not
exist (e.g. approximation by ax + a2 sin ex to our
discrete data from 1 + tan x), this phenomenon can
usually be detected by inspection of the output from
Phase I. For all instances where best approximations
do exist, the error of approximation appears to be
unimodal in a sizeable region enclosing the minimum,
and in many cases it is unimodal in the entire range
considered. It is important to stress that these remarks
are based on the observed behaviour of G{c) for only a
discrete set of values of c. However, we feel justified in
claiming that the unimodality assumption required for
Phase II is most reasonable in practice.

In Phase II the optimum value c* is located by search-
ing the small interval of unimodality determined in
Phase I. The Fibonacci search technique was used here,
and in most cases the initial interval was of width 0-08.
The tolerance within which c* was located was 0-000001.
The results of Phase II for one of the rational approxi-
mating functions are given in Table 2.

Examination of Table 2 reveals that in some cases
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Table 2
Complete details of best lp approximations computed when using F2(A, x) — (at + a2x)/(l + ex)

Define E, = |/(x,-) - F(A*, x,)\

DATA
x = 0(0-05)1

BEST It PARAMETERS
21

BEST I2 PARAMETERS BEST / „ PARAMETERS
MAX El

/>••

1 +2x
1 +x

3 + 15* ,
h' 1+2* +€»

U- \-Y2x + u

+ 3*

f,o- e~'*
/ , , : min(e»,e"2)

1-00000 1-99999 0-99999

3-66230 1-15067 —0-31991

2-94022 19-82145 2-77740

3-39576 13 05763 1-70736

1-96249 2-86899 —0-52004

2-17153 2-17032 —0-56465

2-13059 2-20236 —0-58604

1-02404 0-30111 —0-47446

0-17061 1-75785 0-95375

1-04932 —0-83400 —0-36501

0-94572 4-27947 2-06264

0-00000

0-42187

0-34060

6-21289

0-58200

0-37168

0-23153

0-00909

0-01331

0-01327

0-04524

100000

3-87611

3-12648

3-22852

2-18411

2-21005

1-99998

2-20955

19 02909

13-46381

1•89889

2-34352

0-99999

-0-09485

2-72056

1-73528

—0-60894

-0-54836

2-09546 2-29602 -0-57978

1-02267

0-06815

1-03799

0-93510

0-28974

2-53883

—0-82712

4-64232

-0-48255

1-68288

—0-38542

2-24602

000000

0-54768

0-43333

0-26230

0-71116

0-45779

0-26827

0-01104

0-02469

001637

0-05405

1-00000

4-10302

3-70285

3-01563

2-16127

2-45140

200004

5-57967

5 09068-

17-11797

1-51618

1-16545

1-00003

0-58859

0-44487

2-31248

—0-67130

—0-66382

2-04776 2-56249 —0-56086

1-01596

0-04297

1-02426

0-91256

0-30265

318124

—0-82747

5-52770

—0-48116

2-36898

-^0-42732

2-70948

0-00001

0-98188

0-76267

0-38253

112155

0-78556

0-44058

001595

0-04297

0-02426

0-08746

where noisy data is being approximated by the data
generating function itself, the parameters of best
approximation are very different from those used to
produce the uncontaminated data. This is because the
random errors added to this data are quite large. As
might be expected, the last data set (i.e. 21 random
numbers) is difficult to approximate closely. The output
of Phase I indicates that G(c) does not vary greatly for
this case, and appears to contain many local minima.
Consequently we cannot guarantee that our results for
this function represent best approximations, and we do
not display them in Table 2. This random data set was
included in the study to test the limitations of the
algorithm.

Since our method is guaranteed to produce best
approximations only if the unimodality assumption is
valid, we have verified that the lx results shown are in
fact best approximations, by using the characteristic
error equioscillation property. In the l2 case we checked
the results using the normal equations. No such
characterisation theorems are available for any of the
/( results or most of the nonrational /«, results.

Finally, we comment briefly on a comparison between
our method and that which results from regarding the
approximation problem as a pure minimisation problem.
The error of approximation is a function of the n
variables au a2, . . ., an_,, c and this can be minimised
by using any of the known numerical techniques for
locating the minimum of a function of several variables.
In the li and lm cases the derivative of the error of
approximation is not guaranteed to exist everywhere, so
we are restricted to optimizing techniques which do not
require derivatives. Powell (1964) has developed such a
scheme and we used it with success on several of our
examples. However, a disadvantage of any of these pure
optimisation techniques is that they can converge to a
local rather than a global minimum. Phase I of our
method ensures that any such failure during Phase II is
limited to the small region of c values over which the
Fibonacci search is conducted. The major advantage of

our method is that it is essentially a one-dimensional
procedure rather than an H-dimensional routine. This
fact makes the task of choosing upper and lower limits
on the activities of the variables much simpler for our
method, since we only have to limit c itself. Also, post-
computational analysis on our method is far simpler
than that which is required to investigate (say) inter-
mediate calculations performed by any n-dimensional
optimisation routine. Being able to regard our method
as a one-dimensional procedure is both convenient
computationally and quite enlightening analytically.

3. Some remarks on nonlinear best /t approximation
A theory of best approximation cannot be considered

complete until the questions of existence, uniqueness,
and characterisation of best approximations are answered,
and a satisfactory method is available to determine these
approximations in practice. In this section we include
some remarks on existence and characterisation for the
functions of Table 1, but we do not claim that these
remarks constitute complete answers to these difficult
questions.

Best linear /, approximations are guaranteed to exist.
However, for the first ten nonlinear functions of Table 1
we have constructed data sets for which no best approxi-
mation exists (see Hunt, 1970). These same examples
also demonstrate the possibility of nonexistence for best
nonlinear lp approximations with 0 < p < oo. For the
last two functions in Table 1 (i.e. spline functions with
one free knot) best discrete approximations always exist.
Since uniqueness of best linear /[ approximations is not
assured, even in the case of polynomial approximation,
any attempt to discover hypotheses which guarantee
uniqueness of best nonlinear /t approximations would
appear to be fruitless.

Rice (1964) contains the proof that the following
property is characteristic of best linear /t approximations.
Recall first that {<j>i(x), <f>2(x), . . ., <£„(*)} forms a
Chebyshev set on [a, b] if det | <£/*,) I ^=0 f ° r every
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Table 3

Random errors used in defining f2,f$, . . . , / 7

385

00
005
0-10
015
0-20
0-25
0-30
0-35
0-40
0-45
0-50
0-55
0-60
0-65
0-70
0-75
0-80
0-85
0-90
0-95
1-00

012119
0-59138
1-63373

—0-01027
0-92979

—0-22861
—0-37289
—0-81332
—0-27248
—0-32600

0-05851
0-06301
100156
0-69787

—0-11041
0-57299

—0-13291
0 00631

—015681
0-99279
1-07695

—0-05978
—0-20149

0-79925
0-91120
0-15312

—0-13592
0-30655
0-57667

—009552
—0-37644
—0-39987

0-24062
—0-88356

0-00819
0-08635
0-23558
0-72789

—0-40999
0-57207
0-11019

—0 16066

0-39576
—0-32132

0-44350
0-22425
0-02417
0-16845
0-36961

—0-20486
0-06392
0-11942

—0-23385
0-49689
0-24025

—0-10527
0-24790

• 14875
—0-28855

0-07986
0-46839

—0-20942
0-41499

—0-

—003751
0-57285

—0-23326
0-94078
0-03985

—0-41057
0-98547
0-36237

—0-57615
0-83611

—0-74548
0-73964
0-30710
0-26385

—104985
—0-60061
—0-94504
—0-02518
—0-75938

1-82531
0-06650

—0
0

15878
14117

0-54565
1-05350

—0-57894
0-59835

—0-39153
0-63852

—0-08338
—0-55820
—0-09386
—0-32734

•38076
•71750

0-42724
0-30996
0-66792
0-10825

—0-15849
—0-17359
—0-02672

—0-
—0-

—0-39276
0-37623

—0-04967
0-14031
0-43535
0-26050

—0-29630
—0-04687
—0-34234

0-21025
—0-18647
—0-40369
—0-08379
—0-38699
—0-42369

0-49232
—0-00517

0-31742
0-33342

—0-02777
0-46714

choice of n distinct points JC,- from [a, b].
Lemma:
Let {(f>i(x), <f>2{x), . . ., <f>n(x)} be a Chebyshev set on

[0, 1] and suppose the discrete point set Xc [0, 1].
Then there exists a best I, approximation by F(A, x) =

n

2 aj(f>j{x) on X which interpolates at least n points of

fix).
This result says that in searching for a best approxima-

tion we need only consider those approximating functions
which interpolate f(x) at n or more points of X. This
raises the question of whether there exists a best non-
linear approximation by, for example, F(A,x)=a1 -\-a2e

cx

which interpolates f(x) in three points. Our empirical
study shows that although interpolation at the extra
point (due to the presence of the nonlinear parameter c)
is most definitely the rule rather than the exception, this
phenomenon does not always occur even when the best
approximation is unique. This fact clearly has con-
sequences for those who might wish to devise a nonlinear
/i algorithm based on interpolation at n points of/(x).
However, we can use the characteristic interpolatory
property of linear approximation to help analyse the
situation that prevails with any of the functions in
Table 1 (in the case of the spline functions, which do not
form Chebyshev sets, the analysis is more difficult but
still carries through).

We shall consider lx approximation by functions of the
form F(A, x) = at + a2e

cx, although the arguments can
be extended to other nonlinear functions. Existence of
a best approximation depends upon the data defining
f(x); note that no best approximation exists to the set
{(0, 0), (1, 1), (2, 2)}. For c ^ 0 the set {1, e™} forms a
Chebyshev set on [0, 1], and hence there exists a best
linear lt approximation by at + a2e

cx which interpolates
at least two points of f(x). If there exists a best non-
linear approximation by ax + a2e

cx (c free), then there

exists one which interpolates at least two points.
Suppose f(x) = {(*,,/,), (x2,f2), • • •, (xN,fN)}. For
fixed nonzero c and i ^ j let Fjj(x; c) = a{l(c)+a'i'(c)ecx

be the function which interpolates the ith andyth points
of f(x). We are guaranteed the existence of this unique
function since {l,ecx} forms a Chebyshev set. Let

Su(c) = S |/fc - Fu{xk\ c)\, and define G(c) = min Su(c).
k = l i&j

If we now allow c to vary, since Fu{x; c) and conse-
quently Sjj{c) are continuous functions of c (except for
c = 0), then G(c) is also continuous. Furthermore, G(c)
is precisely that function of c which we calculate in our
algorithm. Thus our method is equivalent to that of
locating the minimum of a continuous curve (except at
c = 0) which is the envelope of a finite number of curves,
each of which is produced by interpolating a distinct
pair of data points.

Defining H = min { lim G(c), lim G(c), lim G(c)},
c—* — oo c—*0 c—* + oo

then G(c) will have a minimum provided there exists an
approximation to f(x) which has an error of approxi-
mation not exceeding H. We thus have a necessary and
sufficient condition for the existence of a best /t approxi-
mation by F(A, x) = ax + a2e°x. The quantity H can
be calculated for any data set in practice by considering
the limit of F,j(x; c) curves as c-> — oo, 0, + co.
Provided an approximation can be found which produces
a sum of errors not exceeding H, then the existence of a
best lt approximation is guaranteed.

Although G(c) is a continuous function, for nonzero
c, this does not imply that it is necessarily unimodal in
some neighbourhood of its minimum. On the other
hand a moment's reflection can convince the reader that
any continuous function which is not in fact unimodal
in a small interval enclosing its minimum is rather

special. Such functions (e.g./(x) = * s i n - + \x\ for
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nonzero xe[—1, 1] and/(0) = 0) do not seem likely to
be representable as an envelope of curves S,j.

Concerning the question of interpolation at an extra
point, it appears in practice that the minimum of G(c)
occurs when two of the S,7(c) curves intersect. That is,
the minimum does correspond to interpolation at three
points. However we do have counter-examples to show
that this is not always the case. Interpolation at some
n points of f(x) will therefore not be a general charac-
teristic property of nonlinear best /, approximations.

For other approximating functions the analysis is
similar. For the rational function (a, + a2x)/(l + ex)
the function G{c) is also continuous except for poles at
the zeros of the denominator. The quantity H in this
case is defined to be H — min { lim G{c), lim G(c)}.

c—* — co c—> -f oo

Since best linear /„ approximations by Chebyshev sets
are characterised by the error equioscillation property at
n + 1 points, it is possible to carry out a similar analysis
in this case. For the exponential case we define, for
nonzero c, Fijk{c) = a[Jk(c) + aiik(c)ecx to be that func-
tion which has the equioscillation property at the z'th,
yth and kth points. Denning Sijk(c), G(c) and H as
before we obtain necessary and sufficient conditions for
the existence of best lm approximations by functions of
the type shown in Table 1.

4. Summary

The purpose of this paper is to report that the com-

putation of best lp approximations by functions non-
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linear in only one of their several parameters is feasible
in practice.

In particular it has transpired that in any of the three
popular lp norms, the error of approximation G(c) is a
well behaved function of the nonlinear parameter c.
Indeed it appears that the assumption that this function
is unimodal about its minimum is entirely reasonable.
For a given discrete function f{x) and approximating
function F(A, x), the amount of computation involved
in the method depends upon the extensiveness of the
preliminary search in Phase I and the tolerance specified
for the Fibonacci search of Phase II. In any event the
total time required will probably be 50 to 200 times that
which is involved in computing a linear best approxima-
tion with c fixed.

Finally we note that the method can be extended to
deal with functions which have more than one nonlinear
parameter. We have computed a few examples where
F(A, x) includes two or three nonlinear coefficients. In
these few cases we observed that if the error of approxi-
mation is regarded as a function of just one of these
nonlinear parameters, the other nonlinear parameters
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is still unimodal about the minimum.
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Book review
16 Biproportional Matrices and Input-Output Change, by

Michael Bacharach, 1970; 170 pages. {Cambridge
University Press, £3.00)

The main interest of this book for computer programmers and
systems analysts is in the mathematical description it contains
of the techniques known as the 'Ras techniques'. These
techniques are iterative processes for deducing the unknown
input/output matrix {a;y(l)} at time 1, from the known input/
output matrix {a;y(0)} at time 0. The new matrix is said to be
'bi-proportionaF to the original matrix, where

and /•,• and Sj satisfy relations like
S na-.j (0)Sj = «,(1)

and
£ r,«,y(0>,- = v,(l)

where [«,] and [v,] are known vectors. The name 'Ras
technique' follows from this notation.

The problem is, in fact, to deduce from a known matrix
a new matrix having known row and column sums. Since the
matrices which arise in input/output analysis are usually
large in size, say 100 X100 and the number of cycles needed to
produce a resonable degree of convergence is often 200 or
more, the solution of such a problem usually gives full scope to
the user of a fairly large and fast computer. I programmed the
process first for the Cambridge University computer EDSAC
II, circa 1960, for matrices up to 50 x50, and each cycle took
about twenty minutes. Now the current Cambridge com-
puter, Titan, takes about 50 sees, to do 100 cycles, on larger
matrices.

Michael Bacharach's book is highly recommended as the
first complete and detailed work dealing with these Ras
techniques as applied in economics. The book deals with the
applications of these techniques to various processes, such as
Markov states, and two stage processes in general, and it
concludes with the results produced when these researches are
applied to data about the British economy.

L. J. SLATER (Cambridge)
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