
Int. J. of Computers, Communications & Control, ISSN 1841-9836, E-ISSN 1841-9844
Vol. VI (2011), No. 4 (December), pp. 739-748

Computing by Folding

D. Sburlan

Dragoş Sburlan
Faculty of Mathematics and Informatics
Ovidius University of Constanta, Romania
E-mail: dsburlan@univ-ovidius.ro

Abstract: The present paper introduces a new computing paradigm based
on the idea of string folding. Comparisons between the computational power
of the proposed model with the classical families of languages from the Chom-
sky hierarchy are studied. Some preliminary results are reported and some
conjectures are discussed. In this respect, the proposed model is promising
not only because of the expected theoretical results, but also because of the
possible indirect applications in various fields (as for instance, mathematical
linguistics, DNA computing, computing using light, and so on).

1 Introduction

The computing paradigm proposed in this paper has as motivation several completely dif-
ferent domains that naturally converge. Whether we talk about the traditional Japanese art of
paper folding (Origami), or about some in-vivo biochemical processes happening at the cellular
level (for instance, the protein folding that produces particular 3-dimensional structures which
are essential for their ”correct" functioning), or about the in-vitro folding of DNA (by which one
can arbitrary build two and three dimensional shapes at the nanoscale), a common feature is the
folding of the physical support. Aiming to design novel computational techniques, the present
paper introduces a new model of computation which can be easily described by the controlled
folding of the computational support.

In order to be more eloquent, one may consider the Origami perspective. Assume for the sake
of argument that the paper used in Origami is actually a bi-dimensional array of symbols. Hence
the paper is not only the physical support for building two or three-dimensional shapes and
forms but also it might be considered as the support for computation. In this simple framework
a fold of the paper corresponds to a step of computation. Even if in this informal presentation
we are not interested to precisely define the outcome of performing such steps of computation,
we only want to point out that, for instance, a simple fold along the vertical middle of a page
corresponds actually to the simultaneous movement of symbols from one side to another. In
this case, if to each symbol one associates a position in the two/three dimensional space, then
this folding represents, in a certain sense, a parallel rewriting of symbols. More specifically, this
simple procedure moves (rewrites) a lot of space in just one computational step. This is just one
argument which indicates that, under certain conditions, the expected computational power for
such systems exceeds the semi-linearity (see [1] for an operation that recalls in a certain sense
the folding).

In this general framework several issues have to be settled, namely the computational support,
the method by which the computational support will be folded, and the way the output is read.
Here we only consider a restricted model where both the support of computation and the folding
procedure are strings of symbols from some given languages. The model deals with the one-
dimensional case and in our construction “computing” represents the generation of a language
by means of a folding operation, starting from two “simpler” languages.

Copyright c⃝ 2006-2011 by CCC Publications

740 D. Sburlan

Finally, it is worth noting that the folding operation appears in various forms and contexts in
formal language and natural computing theories; we quote here only [7] and [9]. In addition, the
type of string operation considered in this paper recalls in a certain sense the shuffle operation
as defined in [3] and [6].

2 Preliminaries

For the present work, we assume the reader be familiar with the basic notions and results of
formal languages and theory of computation (for more details we indicate [2] and [8]). Here, we
only present some results related to the current work.

If FL is a family of languages, then NFL denotes the family of length sets of languages in FL.
We denote by REG, CF , CS, REC, and RE the family of regular, context-free, context-

sensitive, recursive, and recursively enumerable languages, respectively. It is known that REG
CF CS REC RE. For regular and context-free languages there are known necessary
conditions also called pumping lemmas. In case of regular languages the pumping lemma can be
stated as:

Lemma 1. Let L be an infinite regular language over a finite alphabet Σ. Then there is a positive
constant nL such that if w ∈ L, |w| ≥ nL, then w can be decomposed as w = xyz, x, y, z ∈ Σ∗,
with |y| ≥ 1, |xy| ≤ nL, and wi = xyiz ∈ L, for any i ≥ 0.

In case of context-free languages the pumping lemma can be stated as:

Lemma 2. Let L be an infinite context-free language over a finite alphabet Σ. Then there is
a positive constant nL such that if z ∈ L, |z| ≥ nL, then z can be decomposed as z = uvwxy,
u, v, w, x, y ∈ Σ∗, with |vx| ≥ 1, |vwx| ≤ nL, and zi = uviwxiy ∈ L, for any i ≥ 0.

Let IN be the set of nonnegative integers and k be a positive integer. A set S ⊆ INk is a linear
set if there are the vectors v0, v1, . . . , vn ∈ INk such that S = {v | v = v0+a1v1+ · · ·+anvn, ai ∈
IN, 1 ≤ i ≤ n}. The vectors v0 (the constant vector) and v1, v2, . . . , vn (the periods) are called
the generators of the linear set S. A set S ⊆ INk is semilinear if it is a finite union of linear sets.

Let Σ = {a1, a2, . . . , an} be a finite alphabet. A mapping Ψ : Σ∗ → IN |Σ| such that Ψ(w) =
(|w|a1 , . . . , |w|an) is called the Parikh mapping. The mapping Ψ can be extended to languages
such that if L ⊆ Σ∗ then Ψ(L) =

∪
w∈L

Ψ(w). Two languages L1 and L2 are called letter equivalent

if Ψ(L1) = Ψ(L2). By length(L) we will denote the length set of L.
A language L is called semilinear if Ψ(L) is a semilinear set of vectors of numbers.
Semilinear sets are closed under complement, finite intersection and finite union. A permuta-

tion of symbols in a word preserves the Parikh image. All context-free languages are semilinear.

3 Folding Systems

Let Σ be a finite alphabet and Γ = {u, d}. Let f : Σ∗ × Σ× Γ → Σ∗ such that

f(w, a, u) = aw,

f(w, a, d) = wa.

We define the folding function h : Σ∗ × Γ∗ → Σ∗ such that

Computing by Folding 741

h(w1, w2) =

f(. . . f(f(λ, a1, b1), a2, b2) . . . , ak, bk), if
|w1| = |w2|, w1 = a1a2 . . . ak, w2 = b1b2 . . . bk;

undefined, if |w1| ̸= |w2|.

Remark 3.1. If w1 ∈ Σ∗, w2 ∈ Γ∗, and |w1| = |w2|, then by applying h we mean that w1 is
folded symbol by symbol according with the folding procedure described by the symbols of w2

(d means to fold the ”remaining" of w1 downwards and u upwards); the result can be seen as a
stack of symbols that by definition we read from the top to the bottom (see Figure 1).

Example 3. Let w1 = aabb and w2 = dduu. Then we formally have

h(w1, w2) = f(f(f(f(λ, a, d), a, d), b, u), b, u)

= f(f(f(a, a, d), b, u)b, u)

= f(f(aa, b, u), b, u)

= f(baa, b, u)

= bbaa

or graphically, the recurrent application of f is given in Figure 1.

Figure 1: The computation of h(aabb, dduu).

A folding system (in short an F-system) is a construct Φ = (L1, L2) where L1 is an arbitrary
language over an arbitrary alphabet Σ (called the core language) and L2 is an arbitrary language
over Γ = {u, d} (called the folding procedures set). The language generated by Φ(L1, L2) is

L(Φ) =
∪

w1∈L1,w2∈L2
|w1|=|w2|

h(w1, w2),

742 D. Sburlan

where h : Σ∗ × Γ∗ → Σ∗ is the folding function.
For a class C of core languages and a class H of folding procedures sets, we denote by F(C,H)

the family of all languages generated by F-systems, using components from the respective classes,
that is

F(C,H) = {L(Φ) | Φ = (L1, L2), L1 ∈ C, L2 ∈ H}.
The following result shows the relation between the family of regular languages and the family

of all languages generated by F-systems using regular languages as components.

Proposition 4. F(REG,REG) ! REG.

Proof: Let L1 be an arbitrary regular language and the regular language L2 = {d}∗ ⊆ Γ∗. Then
we have that for any word w1 ∈ L1 there exists w2 ∈ L2 such that |w1| = |w2|. Since w1 is
”folded" always down (w2 consists only of d symbols), then it follows that h(w1) = w1, hence
h(L1) = L1 and further more F(REG,REG) ⊇ REG.

In order to prove the strict inclusion one can construct the following F -system:

Φ(L1, L2) where L1 = (ab)∗ and L2 = (ud)∗.

It follows that for any even number i = 2k, k > 0, there exist exactly one word w1 =
ab . . . ab ∈ L1 and exactly one word w2 = ud . . . ud ∈ L2 such that |w1| = |w2| = i. Hence
h(w1, w2) = akbk and consequently L(Φ) = {anbn | n > 0}, the well-known non-regular but
context-free language. 2

By using context-free languages as core languages while preserving the regularity of folding
procedure sets, one can surpass the class of context-free languages.

Proposition 5. F(CF,REG) ! CF.

Proof: One can use the same argument as given in the proof of Proposition 4 to show that
F(CF,REG) ⊇ CF. In addition, consider the context-free language L1 = {bn(ac)n | n ≥ 0} (as
being generated for instance by the context-free grammar G = (N,T, P, S), where N = {S},
T = {a, b, c}, and P = {S → bSac, S → λ}) and the regular language L2 = {(ud)n | n ≥ 0}
indicated by the regular expression (ud)∗. The length of any word in L1 is a multiple of 3,
while any word from L2 has a length which is a multiple of 2. Consequently, any word from
Φ(L1, L2) must have a length multiple of the least common multiple of 2 and 3. It follows that
Φ(L1, L2) = {a2nb2nc2n | n ≥ 0}, which by using the pumping lemma for context-free languages
can be shown not to be a context-free language. Consequently, we have that F(CF,REG) ! CF.

2

Proposition 6. F(CF,CF) ! CF.

Proof: Since obviously F(CF,CF) ⊇ F(CF,REG) then to prove the strict inclusion one can
construct the following F-system, whose generated language does not belong to context-free
languages family.

Let Φ = (L1, L2), where L1 = {wwr | w ∈ {a, b}∗} is the context-free language of even
palindromes and L2 = {undn | n ≥ 0} is a context-free language as well. It follows that
L(Φ) = {ww | w ∈ {a, b}∗} – a language that is not context-free.

Another interesting example which proves the strict inclusion regards the generation of the
language L = {anbncn | n ≥ 0}. This can be achieved by an F-system Φ(L1, L2) where L1 =
{bn(ac)n | n ≥ 0} and L2 = {un(ud)n | n ≥ 0} are also context-free languages. 2

Using a similar technique as the one presented in the proofs of Proposition 4 and Proposition
5 one can actually prove a more general result (that in addition suggests some interesting open
problems regarding the usage of subfamilies of REG as folding procedures sets)

Computing by Folding 743

Lemma 7. Let FL be a family of languages. Then FL ⊆ F(FL,REG).

Moreover, one can state the following result:

Lemma 8. Let FLi, 1 ≤ i ≤ 4, some families of languages such that FL1 ⊆ FL2 and FL3 ⊆
FL4. Then F(FL1, FL3) ⊆ F(FL2, FL4).

The following result states that all F-systems using context-free languages as components are
equivalent to F-systems with a particular relation between the core languages and the folding
procedures sets.

Lemma 9. (Normal Form) Let L ∈ F(CF,CF). Then there exists an F -system Φ(L1, L2),
L1, L2 ∈ CF , with length(L1) = length(L2) and such that L(Φ) = L.

Proof: Let L = L(Φ(L1, L2)) such that L1, L2 ∈ CF and length(L1) ̸= length(L2). We
construct an equivalent F-system Φ(L1, L2), L1, L2 ∈ CF , such that length(L1) = length(L2)
as follows.

It is known from [5] that NREG = NCF . This means that there exist the languages
LB, LC ∈ REG such that length(LB) = length(L1) and length(LC) = lenght(L2). Let ΣL1 =
{a1, a2, . . . , ak} be the alphabet of L1, ΣB = {b1, b2, . . . , br} be the alphabet of LB, and ΣC =
{c1, c2, . . . cs} be the alphabet of LC . In addition, let us consider the finite substitution given by

∆1 : ΣC → P(Σ∗
B) such that ∆1(ci) = ΣB, 1 ≤ i ≤ s.

Because regular languages are closed under finite substitutions and intersection then it follows
that LB = LB ∩ ∆(LC) ∈ REG (LB contains all the words of length t ≥ 0 from LB for
which there exists at least one word in LC with the same length). Moreover, we have that
length(LB) = length(LB) ∩ length(LC) = length(L1) ∩ length(L2).

Let us consider now the substitutions:

∆2 : ΣB → P(Σ∗
A) such that ∆2(bi) = ΣA, 1 ≤ i ≤ r,

and

∆3 : ΣB → P({u, d}∗) such that ∆3(bi) = {u, d}, 1 ≤ i ≤ r.

Then, if we take L1 = L1 ∩ ∆2(LB) and L2 = L2 ∩ ∆3(LB) it follows that L1, L2 ∈ CF
(as being the results of intersection of context-free languages with regular languages) and more-
over length(L1) = length(L2) (both substitutions ∆2 and ∆3 do not change the length sets
of the languages on which they are applied; in particular length(LB) = length(∆2(LB)) =
length(∆3(LB))).

Similarly as before, in order to construct L1 we get from L1 only those words which match
as length at least one word in LB.

As a consequence, we have that L(Φ(L1, L2)) = L(Φ(L1, L2)) = L. 2

Remark 3.2. The language generated by an F -system Φ(L1, L2), where L1 and L2 are semilinear
sets, is also semilinear.

Let us prove now a necessary condition for a language generated by a folding system using as
components regular languages. Let L1 ⊆ Σ∗ and L2 ⊆ {u, d}∗ be two arbitrary infinite regular
languages and assume that L(Φ(L1, L2)) (the corresponding generated language) is also infinite.
Let nL1 and nL2 be the constants from the pumping lemma for regular languages applied to L1

744 D. Sburlan

and L2, respectively. Let n = max(nL1 , nL2). Because L(Φ(L1, L2)) is infinite, then there are
the words r ∈ L1 and s ∈ L2 such that |r| = |s| ≥ n. According with the pumping lemma for
regular languages, it follows that r can be written as r = xyz, where x, y, z ∈ Σ∗ and such that
|xy| ≤ n, y ≥ 1. Similarly, s = uvt where u, v, t ∈ {u, d}∗, and such that |uv| ≤ n, v ≥ 1. In
both cases, the pumping lemma states that ri = xyiz ∈ L1 and si = uvit ∈ L2, for any i ≥ 0.
Although in general |ri| ̸= |si|, for all i ≥ 0, one can remark that, based on the lowest common
multiple between y and v, one can define the sub-sequences of words

ri = xy
lcm(|y|,|v|)

|y| ·i
z, for any i ≥ 0,

and
si = uv

lcm(|y|,|v|)
|v| ·i

t, for any i ≥ 0,

such that |ri| = |si|, for any i ≥ 0.
For simplicity of argument, let us consider now the double stranded structures

[
ri
si

]
, for any

i ≥ 0. First of all, remark that x, z, u, t have constant lengths. Moreover, the above sub-sequences
are infinite (because |y| ≥ 1 and |v| ≥ 1, one can remark that |ri+1| > |ri|, |si+1| > |si|, for
any i ≥ 0). It follows that, starting from a certain positive constant ñ (that depends on |x|, |y|,
|u|, |v|, hence on L1 and L2), in the double stranded structure

[
rj
sj

]
, with j ≥ ñ, the substring

from ri composed by multiple concatenations of y overlaps (partially) the one from si composed
by multiple concatenations of v. Moreover, assume in addition that ñ is the first rank in the
sequence of double stranded structures such that the overlapping part is equal or longer than
min(lcm(|y|,|v|)

|y| , lcm(|y|,|v|)
|v|); this is necessary for having the same “context” repeated at least once.

Then, it follows that any term in the sequence
[
ri
si

]
, for any i ≥ ñ, can be written as

[
k1k

j
2k3

q1q
j
2q3

]
,

where |kl| = |ql|, 1 ≤ l ≤ 3, and j ≥ 1 (see Figure 2 for a particular case).

Figure 2: Here is presented a particular case of a double stranded structure (when |u| > |x|).
For instance, here we have that q1 = u and q2 = v3.

Finally, by folding the string k1k
j
2k3 with respect to q1q

j
2q3, one gets m1m

j
2m3m

j
4m5. The

string k1 folded according with q1 produces m3. The string k2 folded according with q2 may
produce a string m2 ahead of m3 and a string m4 behind of m3, but such that |m2m4| ≥ 1
(because |k2| ≥ 1). By repeating the above procedure for all strings k2 and q2, one gets mj

2m3m
j
4.

Eventually, by folding k3 with respect to q3, one obtains m1m
j
2m3m

j
4m5.

Based on the above arguments, the following result holds true.

Lemma 10. Let L ∈ F(REG,REG) be an infinite language. Then there exists a positive
constant n such that if w ∈ L, |w| ≥ n then w can be decomposed as w = uvwxy such that
|vx| ≥ 1, |vwx| ≤ n, and wi = uviwxiy ∈ L, for any i ≥ 0.

Computing by Folding 745

Using Lemma 10, one can easily prove that L = {a2nb2nc2n|n ≥ 0} ̸∈ F(REG,REG).
Consequently, one can prove that

Proposition 11. F(REG,REG) ⊂ F(CF,REG).

A similar result stands also in case of a infinite language L ∈ F(CF,REG). More precisely,
let L1 ⊆ Σ∗ be a infinite context-free language and L2 ⊆ {u, d}∗ be a infinite regular languages
and assume that L = L(Φ(L1, L2)). Using the same type of arguments as in the proof of Lemma
10 it follows that there exists r ∈ L1 and s ∈ L2 such that |r| = |s| ≥ n = max(nL1, nL2), where
nL1 is the constant for L1 given by the pumping lemma for context-free languages and nL2 is the
constant for L1 given by the pumping lemma for regular languages. According to these lemmas
we have

• r can be decomposed into r = x1x2x3x4x5, where xi ∈ Σ∗, 1 ≤ i ≤ 5, such that |x2x4| ≥ 1,
|x2x3x4| ≤ nL1 ≤ n, and ri = x1x

i
2x3x

i
4x5 ∈ L1, for i ≥ 0;

• s can be decomposed into s = uvt, where u, v, t ∈ {u, d}∗, such that |uv| ≤ nL2 ≤ n, v ≥ 1,
and si = uvit ∈ L2, for i ≥ 0.

Based on the above relations one can define the sequences (an)n ⊆ IN and (bn)n ⊆ IN such
that |rai | = |sbi |, for i ∈ IN . More precisely if we denote by c1 = |x1|+ |x3|+ |x5|, c2 = |x2|+ |x4|,
and c3 = |u|+ |t|, c4 = v, then the following relations have to be true.

c1 + aic2 = c3 + bic4 , hence bi =
c1 − c3 + aic2

c4

Taking now

ai =

{
(c4i− 1)(c1 − c3) , if c1 ≥ c3

(c4i− 1)(c3 − c1) , if c3 > c1
i ∈ IN, i > 0

it follows that the subsequences ri = x1x
ai
2 x3x

ai
4 x5, for i > 0, and si = uvbit, for i > 0, have

equal lengths, that is |ri| = |si|, for i > 0.
Considering the double stranded structures

[
ri
si

]
, for any i ≥ 0, then it follows that, starting

from a certain positive constant ñ (that depends on L1 and L2), in the double stranded structure[
rj
sj

]
, with j ≥ ñ, the substring from sj composed by multiple concatenations of v underlays

(partially) the one from rj composed (in order) by multiple concatenations of x2, x3, and multiple
concatenations of x5 (because the substrings x1 and x3 have constant lengths). Moreover, assume
that ñ is the first rank in the double stranded sequence such that the following conditions are
satisfied:

• the substring from rj composed by multiple concatenation of x2 overlaps the substring
from sj composed by multiple concatenations of v; assume that the overlapping part is
equal or longer than min(lcm(|x2|,|v|)

|x2| , lcm(|x2|,|v|)
|v|);

• the substring from rj composed by multiple concatenation of x4 overlaps the substring
from sj composed by multiple concatenations of v; assume that the overlapping part is
equal or longer than min(lcm(|x4|,|v|)

|x4| , lcm(|x4|,|v|)
|v|).

Using similar arguments as in the proof of Lemma 10, it follows that any term in the sequence[
ri
si

]
, for any i ≥ ñ, can be written as

[
k1kh2 k3k

j
4k5

q1qh2 q3q
j
4q5

]
, where kl, ql, 1 ≤ l ≤ 5, are strings (of finite

lengths), |kl| = |ql|, 1 ≤ l ≤ 5, and h, j ≥ 1. Moreover, we have that |k2k4| ≥ 1 (because k2k4

746 D. Sburlan

contains at least one symbol from x2x4 and |x2x4| ≥ 1). Although in general h ̸= j, one can
decompose ri and si as[

k1k
h
2k3k

j−h
4 kh4k5

q1qh2 q3q
j−h
4 qh4 q5

]
, if j ≥ h, or

[
k1k

j
2k

h−j
2 k3k

j
4k5

q1q
j
2q

h−j
2 q3q

j
4q5

]
, if h ≥ j.

Furthermore, based on the above construction, one can actually build an infinite sequence of
type [

α1α
i
2α3α

i
4α5

β1βi
2β3β

i
4β5

]
, for i ≥ 0, where |αl| = |βl|, 1 ≤ l ≤ 5, |α2α4| ≥ 1 and |α2α3α4| ≤ ñ.

Consequently, by folding α1α
i
2α3α

i
4α5 according with β1β

i
2β3β

i
4β5, for i ≥ 0, one gets a string

wi = w1w
i
2w3w

i
4w5w

i
6w7w

i
8w9, hence the following result is true.

Lemma 12. Let L ∈ F(CF,REG) be an infinite language. Then there exists a positive constant
n such that if w ∈ L, |w| ≥ n then w can be decomposed as w = w1w2w3w4w5w6w7w8w9 such
that

|w2w4w6w8| ≥ 1

|w2w3w4w5w6w7w8| ≤ n

and wi = w1w
i
2w3w

i
4w5w

i
6w7w

i
8w9 ∈ L, for any i ≥ 0.

Using Lemma 12 one can prove that the language L = {ww | w ∈ {a, b}∗} ̸∈ F(CF,REG).
Consequently, the following result holds true.

Proposition 13. F(CF,REG) ⊂ F(CF,CF).

Furthermore, one can show the following result.

Proposition 14. F(CS,CS) = CS.

Proof: Assume that L1 and L2 are arbitrary context-sensitive languages. Then one can construct
a linear bounded automaton M such that L(M) = L(Φ(L1, L2)) and which works as follows. M
uses one read only input tape and three auxiliary tapes. A word w is placed on the input tape.
The first auxiliary tape is used by M to nondeterministically generate a word w1 of the same
length as the one present on the input tape, and then to check if w1 ∈ L1. The second auxiliary
tape is used by M to nondeterministically generate a word w2 of the same length as the one
present on the input tape, and then to check if w2 ∈ L1. Finally, if w1 ∈ L1 and w2 ∈ L2, then
M uses the third tape to simulate the folding of w1 according with w2 and to check whether
or not the result is equal to w. Because all the above mentioned tasks can be performed in
linear space with respect to the length of the input, then it follows that L(Φ(L1, L2)) ∈ CS.
Moreover, one can notice that all context-sensitive languages can be generated (to prove this,
one can use a similar construction as in the proof of Proposition 4). Consequently, we have that
F(CS,CS) = CS. 2

Because the class o context-sensitive languages CS contains non semilinear languages, then
using Remark 3.2 it follows that

Proposition 15. F(CF,CF) ⊂ F(CS,CS) = CS.

Using a similar construction as in the proof of Proposition 14 one can prove that

Computing by Folding 747

Proposition 16. F(REC,REC) = REC.

Proposition 17. F(RE,RE) = RE.

Finally we can sum up all the results in the following hierarchy:

Theorem 18.

REG ⊂ F(REG,REG) ⊆ CF ⊂ F(CF,REG) ⊂
F(CF,CF) ⊂ F(CS,CS) = CS ⊂ F(REC,REC) =

REC ⊂ F(RE,RE) = RE.

4 Conclusion

In this paper we introduced a new computing paradigm called folding systems. We in-
vestigated their computational power under certain constraints and we studied some of their
properties.

During our endeavor several open problems arose. One of them regards the existence of a
pumping lemma for folding systems where both the core language and the folding procedure set
are context-free languages. Another open problem regards the existence of a polynomial time
parsing algorithm for folding systems which use regular/context-free languages as core/folding
procedure set. Future investigations will focus on variants of folding systems where other families
of languages will be used (for example those generated by Lindenmayer systems), but also on
defining more complex and realistic methods for performing the string folding.

We conclude with the belief that many interesting problems can be pursued in this line of
research.

Acknowledgment

The work of the author was supported by the CNCSIS IDEI-PCE grant, no. 551/2009,
Romanian Ministry of Education, Research and Innovation.

Bibliography

[1] T. Head, Parallel Computing by Xeroxing on Transparencies, Algorithmic Bioprocesses, 9,
pp. 631–637, Springer-Verlag, Berlin, 2009.

[2] J. E. Hopcroft, J. D. Ullman, Introduction to Automata Theory, Languages and Computation,
Addison-Wesley Publishing, Reading Massachusetts, 1979.

[3] A. Mateescu, G. Rozenberg, A. Salomaa, Shuffle on Trajectories: Syntactic Constraints,
Theoretical Computer Science, 197, 1-2, pp. 1–56, 1998.

[4] M. Minsky, Computation – Finite and Infinite Machines. Prentice Hall, Englewood Cliffs,
NJ, 1967.

[5] R. J. Parikh. On Context–free languages. Journal of the Association for Computing Machin-
ery, 13 (4), pp. 570–581, 1966.

[6] G. Păun, G. Rozenberg, A. Salomaa, Grammars Based on the Shuffle Operation, Journal of
Universal Computer Science, 1 (1), pp. 67–82, 1995.

748 D. Sburlan

[7] P.W.K. Rothemund, Folding DNA to create nanoscale shapes and patterns, Nature (440),
pp. 297–302, 2006.

[8] G. Rozenberg, A. Salomaa, eds., Handbook of Formal Languages, 3 volumes. Springer-Verlag,
Berlin, 1997.

[9] G. Rozenberg, Gene Assembly in Ciliates: Computing by Folding. A Half-Century of Au-
tomata Theory, World Scientific Publishing Company, pp. 93–130, 2000.

