
Computing Cliques and Cavities in Networks
Dinghua Shi

Shanghai University
Zhifeng Chen

Fujian Normal University
Xiang Sun

Fujian Normal University
Qinghua Chen

Fujian Normal University
Chuang Ma

Anhui University
Yang Lou

City University of Hong Kong
Guanrong Chen ( eegchen@cityu.edu.hk)

City University of Hong Kong

Article

Keywords: C. elegans neuronal network, boundary matrix, clique, cavity, 0-1 programming, Euler
characteristic number, Betti number

Posted Date: June 7th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-576074/v1

License:   This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License

Version of Record: A version of this preprint was published at Communications Physics on November
25th, 2021. See the published version at https://doi.org/10.1038/s42005-021-00748-4.

https://doi.org/10.21203/rs.3.rs-576074/v1
mailto:eegchen@cityu.edu.hk
https://doi.org/10.21203/rs.3.rs-576074/v1
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1038/s42005-021-00748-4

Computing Cliques and Cavities in Networks

Dinghua Shi1*, Zhifeng Chen2, Xiang Sun2, Qinghua Chen2*, Chuang Ma3, Yang Lou4, Guanrong Chen4*

(1Department of Mathematics, College of Science, Shanghai University, China, shidh2012@sina.com;
2School of Mathematics and Statistics, Fujian Normal University, China, 920978196@qq.com;

2School of Mathematics and Statistics, Fujian Normal University, China, sun_xiang_3@163.com;

2School of Mathematics and Statistics, Fujian Normal University, China, qinghuachen@fjnu.edu.cn;
3Department of Internet Finance, School of Internet, Anhui University, China, chuang_m@126.com;

4Department of Electrical Engineering, City University of Hong Kong, China, felix.lou@my.cityu.edu.hk;
4Department of Electrical Engineering, City University of Hong Kong, China, eegchen@cityu.edu.hk)

Abstract: Complex networks have complete subgraphs such as nodes, edges,

triangles, etc., referred to as cliques of different orders. Notably, cavities consisting of

higher-order cliques have been found playing an important role in brain functions.

Since searching for the maximum clique in a large network is an NP-complete

problem, we propose using k-core decomposition to determine the computability of a

given network subject to limited computing resources. For a computable network, we

design a search algorithm for finding cliques of different orders, which also provides

the Euler characteristic number. Then, we compute the Betti number by using the

ranks of the boundary matrices of adjacent cliques. Furthermore, we design an

optimized algorithm for finding cavities of different orders. Finally, we apply the

algorithm to the neuronal network of C. elegans in one dataset, and find all of its

cliques and some cavities of different orders therein, providing a basis for further

mathematical analysis and computation of the structure and function of the C. elegans

neuronal network.

Keywords: C. elegans neuronal network, boundary matrix, clique, cavity, 0-1

programming, Euler characteristic number, Betti number

Introduction

A network has three basic sub-structures: chain, star and cycle. Chains are

closely related to the concept of average distance, while a small average distance and

a large clustering coefficient together implies a small-world network1, where the

clustering coefficient is determined by the number of triangles, special cycles. Stars

follow heterogeneous degree distributions, with which the growth of node numbers

and a preferential attachment mechanism together leads from random networks2 to

scale-free networks3. Cycles contain not only triangles but also higher-order cliques

and cavities. The cycle structure brings redundant paths into network connectivity,

creating feedback effects and higher-order interactions in network dynamics.

mailto:sun_xiang_3@163.com

In retrospect, we introduced the notion of totally homogeneous networks4 in

studying optimal network synchronization, which are networks with the same node

degree, same girth (length of the smallest cycle passing the node) and same path-sum

(sum of all distances from other nodes to the node). We showed4 that totally

homogeneous networks are the easiest ones to self-synchronize among all networks of

the same size. Recently, we found5 that cycles are essentially described by the Euler

characteristic number (alternative sum of cliques of different orders) and the Betti

number (number of cavities of different orders), while higher-order cliques and

smallest cavities are key components of the totally homogenous networks.

It is more challenging to study network cycles than node degrees. A triangle is

the smallest first-order cycle (denoted 1-cycle for brevity), which consists of three

edges, and is a second-order clique (denoted 2-clique for brevity). Similarly, a

complete graph of four nodes, which consists of 4 triangles, is a 3-clique. In the same

manner, these concepts can be extended to higher-order ones. In a connected

undirected network, the number of cycles with different lengths (defined as the

number of cliques that compose the cycle) is huge, therefore new mathematical

concepts and tools are needed6.7, including such as cyclic operations and equivalent

cycles, to classify them and select their representatives for effective analysis and

computation.

In the studies of brain science, computational neuroscience has a special focus on

cyclic structures in neuronal networks. It was found, for example as reported in [8],

that cycles generate neural loops in the brain, which not only can transmit information

all over the brain but also have an important feedback function. It was suggested8 that

this provides a foundation for the brain functions of memories and controls. Unlike

cliques, which are placed at some particular locations e.g. cerebral cortexes, cavities

extend to almost everywhere in the brain connecting many different regions together.

In [9], it points out that in both biological and artificial neural networks, one can find

huge numbers of cliques and cavities therein, which are massive and complex but not

noticed before. Of particular importance is that cavities play an indispensable role in

brain functioning. All these findings indicate an encouraging and promising direction

in brain science research. However, it remains unclear today as how and in what

pattern all such neuronal cliques and cavities are organized and mutually connected

together. This calls for further endeavor into understanding the relationship between

the complexity of higher-order topologies and the complexity of intrinsic neural

functions of the brain. To do so, however, it needs to find most if not all cliques and

especially cavities of different orders from the network.

Artificial intelligence, on the other hand, relies on artificial neural networks

inspired by the brain neuronal network10, including recurrent neural networks,

convolutional neural networks, Hopfield neural network, etc. Now, given the recent

discover of higher-order cliques and cavities in the brain, the question is how to

further develop artificial intelligence to an even higher level by utilizing the new

knowledge about the brain topology. It is notable that a new neuronal network

construction is recently proposed by an MIT research team inspired by the real

structure of neuronal network of the C. elegans11.

It is an important but challenging problem to understand how the brain store

information, learn new knowledge and react to external stimuli, as well as its

adaptively created topological connections and parallel computing patterns, which

depend on in-depth studies of the brain neuronal network. Recently, the Brain

Initiative project of USA12, the Human Brain project of EU13 and the China Brain

project14 are established to take such big challenges.

In retrospect, many innovative mathematicians contributed a lot of fundamental

work to related subjects, such as Euler characteristic number, Betti number, the

notions of groups introduced by Abel and Galois and higher-order Laplacian matrices

as well as Euler-Poincaré formula and the homology group. This also demonstrates

the importance of studying cliques and cavities for further development of network

science. In addition, the advance from pairwise interactions to higher-order

interactions in dynamics of complex systems requires the knowledge of higher-order

cliques and cavities of networks15. The numbers of zero eigenvalues of higher-order

Hodge-Laplacian matrices are equal to the corresponding Betti numbers, while their

associate eigenvectors are closely related to higher-order cavities16.

Motivated by all the above observations, this paper investigates the important

issue of the computability of a complex network, based on which the study continues

to find higher-order cliques and their Euler characteristic number, as well as

higher-order Betti numbers and higher-order cavities. The approach starts from -core decomposition17, through finding cliques of different orders, and then performs

a sequence of computations on the ranks of the corresponding boundary matrices to

obtain the Betti numbers. To that end, an optimized algorithm is developed for finding

higher-order cavities. Finally, the paper shows how to apply the optimized algorithm

to the neuronal network of C. elegans from a dataset, and find its all cliques and some

cavities of different orders.

Results

For computable undirected networks, the proposed approach is able to find all

higher-order cliques, thereby obtaining the Euler characteristic number and all Betti

numbers, as well as some cavities of different orders. These can provide global

information for understanding and analyzing the relationships between topologies and

functions of various complex networks such as brain neural networks.

1. Computable Networks

For undirected networks, the concept of clique in graph theory refers to a

complete subgraph, e.g., a node is a 0-clique, an edge is a 1-clique, a triangle is a

2-cliques, etc. For example, it is easy to find all such cliques from the sample network

shown in Figure 1.

Figure 1. A sample network, with 14 nodes, 26 edges, 13 triangles, and 1 tetrahedron

For a given general large-scale complex network, however, finding all cliques of

different orders is never an easy task. In fact, even just searching for a maximum

clique (namely, a clique with the largest possible number of nodes) from a large

network is a computationally NP-complete problem18. It is noticed that, to find all

cliques of a large-scale undirected network, especially when the network is dense, the

number of cliques are huge and will increase rapidly as the network size becomes

larger. For example, in the real USair, Jazz and Yeast networks19, if the number of

cliques is limited to not more than 107 to be computable, the order of the cliques can

go up only to 9, 6 and 4, respectively, as summarized in Table 1, where |N| (|E|) is the

number of nodes (edges). If the number of cliques does not decrease with the increase

of the order, it will become impossible to compute them by using personal computers.

Table 1. Three real networks: their sizes and maximum cores kmax,

maximum cliques cmax and the maximum order of the cliques when their numbers < 107

Network |N| |E| kmax cmax max{k|mk <107}

USAir 332 2126 26 > 21 9 (m9= 9121594)

Jazz 198 2742 29 29 6 (m6= 2416059)

Yeast 2375 11693 40 > 30 ? 4 (m4= 2454474)

For large and dense networks, k-core decomposition can determine the cells

(layers), where the th cell has all nodes with degrees at least k, and the kernel of the

network has the largest core value, where nodes are very dense. Therefore, the largest

core value kmax can be used to estimate the order of a maximum clique. For this reason, -core decomposition is used to determine whether a given network is computable

subject to the available limited computing resources. If the computing resources allow

the number of cliques, with the first several lowest orders, be no more than 107, which

commercial laptops and PCs can handle, then the maximum core value should not be

bigger than 30, say limited to kmax = 25, as detailed in Supplementary Information 1.

2. Clique-Searching Algorithm

The Bron–Kerbosch algorithm20 is a popular scheme for finding all cliques of an

undirected graph, while the Hasse-diagram algorithm9 is useful for finding all cliques

of a directed network. For computable networks, this paper proposes an algorithm for

searching cliques, namely a common-neighbors scheme, which can quickly find all

cliques of different orders and the associate Euler characteristic number.

For illustration, consider the sample network shown in Figure 1.

(1) Find all neighbors of each node, for which the index-number should be bigger

than the index-numbers of the node (the shaded numbers are not so), as follows:

Note 1 {2,3,4,5}, Node 2 {1,3,4,5}, Node 3 {1,2,4,6,8}, Node 4 {1,2,3}, Node

5 {1,2}, Node 6 {3,7}, Node 7 {6,8}, Node 8 {3,7}, Node 9 {5,10,11,12,13},

Node 10 {9,11,13,14}, Node 11 {9,10,12,14}, Node 12 {9,11,13,14}, Node 13

{9,10,12,14}, Node 14 {10,11,12,13}.

Compute the number of nodes in 0-clique: m0 = 14.

(2) Then, from the above list, generate edges in increasing order of node numbers:

(1,2)，(1,3)，(1,4)，(1,5)，(2,3)，(2,4)，(2,5)，(3,4)，(3,6)，(3,8)，(5,9)，

(6,7)，(6,14)，(7,8)，(9,10)，(9,11)，(9,12)，(9,13)，(10,11)，(10,13)，(10,14)，

(11,12)，(11,14)，(12,13)，(12,14)，(13,14).

Compute the number of edges in 1-clique: m1 = 26.

(3) For every edge, check if its two nodes have common neighbors, for which the

index-number should be bigger than the index-numbers of both nodes, and then

record all such neighbors.

For example, edge (1,2) has common neighbors {3,4,5}, edge (1,3) has {4},

edge (2,3) has {4}, edge (9,10) has {11,13}, edge (9,11) has {12}, edge (9,12)

has {13}, edge (10,11) has {14}, edge (10,13) has {14}, edge (11,12) has {14},

edge (12,13) has {14}.

However, edge (1,4) and edges (1,5), (3,4), (3,6), (3,8), (5,9), (6,7), (6,14),

(7,8), (9,13), (10,14), (11,14), (12,14), (13,14) do not have any common

neighbor.

Thus, the following triangles are obtained: (1,2,3), (1,2,4), (1,2,5), (1,3,4),

(2,3,4), (9,10,11), (9,10,13), (9,11,12), (9,12,13), (10,11,14), (10,13,14),

(11,12,14), (12,13,14).

Compute the number of triangles in 2-cliques: m2 = 13.

(4) For each triangle, check if its three nodes have common neighbors (the

index-number should be bigger than the index-numbers of three nodes), and record all

such neighbors.

Here, only triangle (1,2,3) has a common neighbor {4}, yielding 1

tetrahedron (1,2,3,4).

Compute the number of tetrahedrons in 3-cliques: m3 = 1.

(5) This does not yield any more higher-order clique.

(6) Compute the Euler characteristic number5: .

3. Computing Betti Numbers

Based on the above-obtained cliques of all orders, which can be used to generate

boundary matrices Bk, where B1 is the node-edge matrix, in which an

element is 1 if the node is on the corresponding edge; otherwise, it is 0. Similarly, B2

is the edge-face matrix, in which an element is 1 if the edge is on the corresponding

face; otherwise, it is 0, etc. It is straightforward to compute the rank rk matrices Bk for

every using row-column operations in the binary field F2, following the

binary operation rules, namely . Then,

the Betti number5 can be obtained as .

One can also calculate the numbers of zero eigenvalues of higher-order

Hodge-Laplacian matrices, so as to find the Betti numbers. To do so, it needs to

follow some algebraic topology rules to form oriented cliques16.

Figure 2. A subnetwork of the network shown in Figure 1.

As an example, consider the network shown in Figure 2, which is a subnetwork

of the one shown in Figure 1, with the node-edge boundary matrix B1 of rank

as follows, where the shaded row is linearly dependent on the others:

B1 (1,2) (1,3) (1,4) (1,5) (2,3) (2,4) (2,5) (3,4) (3,6) (3,8) (6,7) (7,8)

1 1 1 1 1 0 0 0 0 0 0 0 0
2 1 0 0 0 1 1 1 0 0 0 0 0
3 0 1 0 0 1 0 0 1 1 1 0 0
4 0 0 1 0 0 1 0 1 0 0 0 0
5 0 0 0 1 0 0 1 0 0 0 0 0
6 0 0 0 0 0 0 0 0 1 0 1 0
7 0 0 0 0 0 0 0 0 0 0 1 1
8 0 0 0 0 0 0 0 0 0 1 0 1

Moreover, its edge-face boundary matrix of rank is obtained, as follows,

where the shaded column is linearly dependent on the others:

 B2 (1,2,3) (1,2,4) (1,2,5) (1,3,4) (2,3,4)

(1,2) 1 1 1 0 0
(1,3) 1 0 0 1 0
(1,4) 0 1 0 1 0
(1,5) 0 0 1 0 0
(2,3) 1 0 0 0 1
(2,4) 0 1 0 0 1
(2,5) 0 0 1 0 0
(3,4) 0 0 0 1 1

Table 2 summarizes all data for the network shown in Figure 1, in which the

Euler characteristic number and Betti numbers satisfy the Euler-Poincaré formula5

Table 2. Data for the network shown in Figure 1

Order 0 1 2 3 14 26 13 1 0 13 11 1 1 2 1 0

4. Cavity-Searching Algorithm

The concept of cavity comes from the homology group in algebraic topology.

Since a network usually has many 1-cycles, for instance the network shown in Figure

1 has nearly one hundred, to facilitate investigation they are classified into equivalent

classes. In a network, each 1-cavity belongs to a linearly independent cycle-equivalent

class5 with the total number equal to the Betti number . It is relatively easy to

understand 1-cavity, which has boundary edges consisting of 1-cliques. It needs some

imagination to understand higher-order cavities, which have boundary consisting of

some cliques of the same order. So far, in the literature, only one 2-cavity consisting

of 8 triangles is found and reported8. In the present paper, we found all possible

smallest cavities and list them up to order 11 in Supplementary Information 2.

Since a cavity belongs to cycle-equivalent class, only one representative from the

class with shortest length (namely, smallest number of cliques) is chosen for further

discussion. To find the smallest one, however, optimization is needed.

4.1 Finding Cavity-Generating Cliques

Select a maximum linearly independent group of column vectors from the

boundary matrix Bk as the minimum th-order spanning tree, which consists of rk

k-cliques, where rk is the rank value of matrix Bk. Then, perform row-column binary

operations to reduce it to a simplest form. In very row of the resultant matrix, the

column index of the first nonzero element is used as the index of the k-clique in the

spanning tree. For the example shown in Figure 2, those bold-faced 1's in the matrix correspond to columns (1, 2), (1, 3), (1, 4), (1, 5), (3, 6), (3, 8), (6, 7), which

constitute a spanning tree. Note that the minimum th-order spanning trees are not

unique in general.

Then, find the maximum group of linearly independent column vectors from

boundary matrix Bk+1, and obtain rk+1 (k+1)-cliques as a group of linearly independent

cliques. From this group, search for a -clique (the row index of the first nonzero

element) that belongs to the boundary of the (k+1)-clique but does not belong to the th-order spanning tree. In other words, the rk+1 k-cliques should not be a k-clique in

the minimum spanning tree. If this cannot be found, then choose another maximum

group of linearly independent column vectors from boundary matrix Bk+1, and try

again. In this way, rk+1 (k+1)-cliques are found. As an example, see the example

shown in Figure 2, where the bold-faced 1's in the boundary matrix correspond to

the rows (2, 3), (2, 4), (2, 5), (3, 4), which are different from the cliques in the

spanning tree.

Recall the formula of Betti numbers, , which is the number

of linearly independent k-cliques. Now, the task is to find the rest k-cliques that are

not in the kth-order minimum spanning tree and also not on the boundaries of linearly

independent ()-cliques. These are called cavity-generating cliques. In the

example shown in Figure 2, there is only one: (7, 8). On the minimum spanning tree,

after including all linearly independent boundaries, adding every cavity-generating

k-clique will create a linearly independent k-cavity, here the 1-cavity (3, 6, 7, 8).

4.2 Searching Cavities by 0-1 Programming

Every cavity-generating k-clique corresponds to at least one k-cavity. But, a

cavity-generating -clique may correspond to several different-length cavities, where

the length is the number of cliques. Since a cavity is a linearly independent cycle with

the smallest number of cliques, the task of searching for a cavity can be reformulated

as a 0-1 programming problem.

Recall that there are mk k-cliques, Bk is the boundary matrix between a -clique and a k-clique, Bk+1 is the boundary matrix between a k-clique and a -clique, and a -cavity consists of some -cliques. Let Ck be the vector space

based on k-cliques. A k-cavity can be expressed as in

which each component takes value 1 or 0, where 1 represents a -clique with

index in the cavity, while 0 means no such cliques. Now, suppose that a

cavity-generating k-clique has index among all k-cliques and let .

Then, the problem of searching for a k-cavity becomes the following optimization

problem to solve for a nonzero solution:

s.t. (1) (2) , (3) = 1+ rk+1.

Here, the first constraint means that the cavity comes from the cavity-generating

k-clique with index . The second constraint implies that the cavity is a k-cycle,

namely the boundaries of -cliques that form the cavity should appear in pairs. The

third constraint shows that the k-cavity to be found is not a linear representation of the -cliques. This can avoid generating false cavities.

To ensure that the cavities found are linearly independent, let the l-th k

–cavity be and then complete the 0-1 programming: (1) , , ;

(2) ; (3) = l+rk+1 for .

It has been found that the sample network shown in Figure 1 has 2 1-cavities,

where two cavity-generating 1-cliques are corresponding to edge (7, 8) and corresponding to edge (5, 9). Its optimization problem is as follows:

s.t. (1) , (2) , namely

x1+x2+x3+x4=0, x1+x5+x6+x7=0, x2+x5+x8+x9+x10=0, x3+x6+x8=0, x4+x7+x11=0,

x9+x12+x13=0, x12+x14=0, x10+x14=0, x11+x15+x16+x17+x18=0, x15+x19+x20+x21=0,

x16+x19+x22+x23=0, x17+x22+x24+x25=0, x18+x20+x24+x26=0, x13+x21+x23+x25+x26=0,

(3) = 1+ r2.

Solving the above 0-1 programming problem, from corresponding to (7, 8),

it yields corresponding to (3, 8), and from corresponding to (6, 7),

it yields corresponding to (3, 6), leading to the first cavity (3, 6, 7, 8). Then,

replacing by yields the second cavity (1, 5, 9, 10, 14, 6, 3), which

has 8 equal-length cavities, including 1-cavity (2, 5, 9, 10, 14, 6, 3) and 1-cavity (1, 5,

9, 11, 14, 6, 3), etc. Finally, check the = l+r2 for ,

which meet the requirements.

5. Cliques and Cavities of C. elegans

For a dataset of C. elegans with 297 neurons and 2148 synapses21, all cliques and

some cavities are obtained here by using the above-described techniques, which is

compared to the typical random network (ER) model with the same numbers of nodes

and edges. The results are shown in Figure 3 and Table 3.

Figure 3. The number of cliques and the Betti numbers

for the C. elegans versus ER networks

Table 3. The Euler characteristic number, Betti numbers and the Euler-Poincaré formula

Network The Euler characteristic number, Betti numbers and the Euler-Poincaré formula

C. elegans = 297 2148+3241 2020+801 240+40 2 = 1 139+121 4 = 13

ER = 297 2148+524 4 = 1 1332 = 1331

Since the highest-order nonzero Betti number is , the C. elegans has 4

linearly independent 3-cavities, and these 4 cavities have cavity-generating 3-cliques

(164, 163, 119, 118), (119, 167, 118, 227), (195, 185, 119, 118) and (227, 195, 119,

118), respectively. The cavity-generating 3-clique (164, 163, 119, 118) forms a

3-cavity with 8 nodes: (85, 13, 3, 164, 163, 119, 118, 158), it is the smallest 3-cavities,

with structures5 as shown in Figure 4 (a). The cavity-generating 3-clique (119, 167,

118, 227) forms a 3-cavity with 11 nodes: (163, 3, 162, 119, 154, 167, 118, 227, 85,

13, 164) as shown in Figure 4 (b). The cavity-generating 3-clique (195, 185, 119, 118)

forms a 3-cavity with 8 nodes: (171, 13, 3, 195, 185, 119, 118, 173), as shown in

Figure 4 (c). The cavity-generating 3-clique (227, 195, 119, 118) forms a 3-cavity

with 8 nodes: (173, 13, 3, 227, 195, 119, 118, 185), as shown in Figure 4 (d), with

details included in Supplementary Information, part 3.

(a) 3-cavity with 8 nodes (b) 3-cavity with 11 nodes

(c) 3-cavity with 8 nodes (d) 3-cavity with 8 nodes

Figure 4. Four 3-cavities in the C. elegans neuronal network

Discussions

For a directed network, how to analyze higher-order cliques and cavities? In [9],

by introducing directed cliques it develops a Hasse algorithm to find directed cliques.

However, both concepts of cycle and especially cavity were not precisely defined

therein. For an undirected network, the length of a cavity, namely the number of

cliques that compose it, is longer than the length of the clique as a cycle having the

same order with the cavity. For example, an undirected triangle of length 3 not only is

a 2-clique but also is a 1-cycle, while 1-cavity at least is a quadrangle with length 4.

For a directed network, however, this may not be true. For example, the smallest

1-cavity could be composed by two oppositely directed edges, with length 2, but a

directed 2-clique could be a directed triangle of length 3. This implies the extreme

complexity of directed cavities, which will be a topic for future investigation.

It should be noted that the key technique in the present approach is to examine

various combinations of cliques and cavities, which differs from the focus on node

degrees in the current investigation of complex networks, where the focus is on the

statistical rather than topological properties. After comparing the neuronal network of

the C. elegans to random network model, we found that they are very different

regarding the numbers of cliques and cavities. From the perspective of brain science,

various combinations of higher-order topological components such as cliques and

cavities are of extreme importance, without which it is very difficult or even

impossible to understand and explain the functional complexity of the brain. In fact,

this seems provide reasonable supports to the recent works of many brain scientists.

The intrinsic combination of cliques and cavities also brings some unexpected

problems in programming the algorithm. For example, because network spanning

trees are not unique, the algorithm may not produce the required results when

searching for cavities. Efforts have been made to determine the information of cavities

by eigenvectors corresponding to zero eigenvalues of higher-order Hodge-Laplacian

matrices. However, similar non-uniqueness problem occurred in finding eigenvectors.

Method

Obviously, to solve the optimization problem of a k-cavity is difficult due to the

third constraint therein. As a remedy, the optimization problem is separated into two

parts. The first part is to use the following 0-1 programming problem to find a cycle: s.t. (1) , (2) (1)

and the second part is to use the third constraint to check if the cycle is a cavity, i.e. to

check = l+rk+1, for the l-th-cycle .

1. Searching a cycle

Because there is in Eq. (1), it is not a traditional 0-1 linear

programming problem. Let and , where I is the identity

matrix and . Then, is equivalent to .

Since the minimum length of the k-cavity is Lmin = 2k+1, Eq. (1) can be transformed to

the following 0-1 linear programming problem: s.t. (1) xe≥Lmin, (2) , (2) , (3) xi, yi = 0 or 1 (2)

Eq. (2) can be solved by using Matlab 0-1 linear programming toolbox, and the

algorithm is described as follows.

Algorithm 1：Searching a cycle ( *
min, ,

k
FindCycle B v Lx)

Input：boundary matrix
k

B

index of cavity-generating clique v

length of the smallest cycle minL

Output：cycle *
x

(1)  , 2
k k

B B I 

(2) Get *
x by using Matlab to solve the optimization Eq. (2)

2. Finding All Cavities

One needs to check the third constraint to see if the cycle found by Algorithm 1

is a cavity. If not, increase the length of the cycle 2k‒1 cliques obtained by Algorithm 1

to search again for it. Thus, the algorithm for searching cavities is as follows:

Algorithm 2：Searching -cavities (    1 1 1, , , , , , ,
k kk k

FindCavity B B v v k 
 

x x)

Input：boundary matrices Bk and Bk+1

indices of all cavity-generating cliques  1, ,
k

v v

Output：all k-cavities

(1) For 1
k

j to 

(2) 1
min 2k

L


(3)  min, ,
k

FindCycle B v L
 x

(4) While            1 1 1 1 1 1, , , , , , , 1
T T T T T

j k j k
rank B rank B

    
   

          
x x x x x

(5) 1min
min min 1

()
1 2

2
k

k

L
L L






  
       

x e

(6)  min, ,
k

FindCycle B v L
 x

(7) If  x （the optimization problem has no solution）

(8) Break

(9) End

(10) End

(11)
j

 x x

(12) End

Data availability

Data used in this work can be accessed at

http://linkprediction.org/index.php/link/resource/data/1

Code availability

The code for the numerical simulations presented in this article is available from

the corresponding authors upon reasonable request.

References

1 Watts, DJ, Strogatz, SH. Collective dynamics of 'small-world' networks. 1998; Nature 393:

440-442.

2 Erdös, P, Rényi, A. On random graphs. Publicationes Mathematicae 1959; 6: 290-291.

3 Barabási, A-L, Albert, R. Emergence of scaling in random networks. 1999; Science 286:

509-512.

4 Shi, DH, Chen, GR, Thong, WWK et al. Searching for optimal network topology with best

possible synchronizability, IEEE Circ. Syst. Magaz. 2013; 13: 66-75.

5 Shi, DH, Lü, LY, Chen, GR. Totally homogeneous networks. Natl. Sci. Rev. 2019; 6: 962-969.

6 Zomorodian, A, Carlsson, G. Computing persistent homology. Discrete Comput. Geom. 2005;

33: 249-274.

7 Gu, XF, Yau, ST. Computational Conformal Geometry -- Theory. Int. Press of Boston, 2008.

8 Sizemore, AE, Giusti, C, Kahn, A et al. Cliques and cavities in the human connectome. J.

Comput. Neurosci. 2018; 44: 115-145.

9 Reimann, MW, et al. Cliques of neurons bound into cavities provide a missing link between

structure and function. Frontiers in Comput. Neurosci. 2017; 11: 00048.

10 Mohamad H. Hassoun, Fundamentals of Artificial Neural Networks. MIT Press, 1995.

11 Lechner, M, Hasani, R et al. Neural circuit policies enabling auditable autonomy. Nature

Machine Intelligence. 2020; 2: 542-652.

12 https://en.wikipedia.org/wiki/BRAIN_Initiative

https://braininitiative.nih.gov/

13 https://en.wikipedia.org/wiki/Human_Brain_Project

https://www.humanbrainproject.eu/en/

14 https://en.wikipedia.org/wiki/China_Brain_Project

15 Battiston, F, Latora, V, Petri, G et al. Networks beyond pairwise interactions: structure and

dynamics, Phys. Rep. 2020; 05: 004.

16 Millan, AP, Torres, JJ, Bianconi, G. Explosive higher-order dynamics on simplicial complexes.

Phys. Rev. Lett. 124: 218301. (2020)

17 Kitsak, M, Makse, HA, et al. Identification of influential spreaders in complex networks,

Nature Phys., 2010; 6(11): 888-893.

18 Bomze, IM, Budinich, M, Pardalos, PM, Pelillo, M. The maximum clique problem. In

Handbook of Combinatorial Optimization, pp. 1-74. Springer, Boston, MA, 1999.

19 Fan, TL, Lü, LY, Shi, DH, Zhou T. Characterizing cycle structure in complex networks.

arXiv:2001.08541 [physics.soc-ph]

20 Bron, C, Kerbosch, J. Algorithm 457: Finding all cliques of an undirected graph, Commun.

ACM, 1973; 16(9): 575-577.

21 Rossi, RA, Ahned, NK. The network data repository with interactive graph analysis and

visualization. In Twenty-Ninth AAAI Conference, AAAI Press, 2015; 4292-4293.

Acknowledgements

The authors would like to thank the research support by the National Natural Science

Foundation of China (Grant No. 12005001) and by the National Natural Science

Foundation of Fujian Province (Grants No. 2019J01427, No. 2019J01671), and by the

Hong Kong Research Grants Council through GRF (Grant CityU 11206320).

Author contributions

DS and GC developed the theory and wrote the text. ZC, XS, CM, YL and QC

performed the simulations and computations for cross check. All authors checked and

verified the entire manuscript.

Competing interests

Authors declare no competing interests.

Correspondence and requests for materials should be addressed to DS and GC.

javascript:;
javascript:;
https://www.nature.com/natmachintell
https://www.nature.com/natmachintell

Supplementary Files

This is a list of supplementary �les associated with this preprint. Click to download.

SIComputingCliquesandCavitiesinNetworks.pdf

https://assets.researchsquare.com/files/rs-576074/v1/92d4e842f0d3645486c5816e.pdf

