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COMPUTING CLOSEST STABLE NONNEGATIVE MATRIX∗
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Abstract. The problem of finding the closest stable matrix for a dynamical system has many
applications. It is studied for both continuous and discrete-time systems and the corresponding
optimization problems are formulated for various matrix norms. As a rule, nonconvexity of these
formulations does not allow finding their global solutions. In this paper, we analyze positive discrete-
time systems. They also suffer from nonconvexity of the stability region, and the problem in the
Frobenius norm or in the Euclidean norm remains hard for them. However, it turns out that for
certain polyhedral norms, the situation is much better. We show that for the distances measured in
the max-norm, we can find an exact solution of the corresponding nonconvex projection problems
in polynomial time. For the distance measured in the operator ℓ∞-norm or ℓ1-norm, the exact
solution is also efficiently found. To this end, we develop a modification of the recently introduced
spectral simplex method. On the other hand, for all these three norms, we obtain exact descriptions
of the region of stability around a given stable matrix. In the case of the max-norm, this can be
seen as an extension onto the class of nonnegative matrices, the Kharitonov theorem, providing a
stability criterion for polynomials with interval coefficients [V. L Kharitonov, Differ. Uravn., 14
(1978), pp. 2086–2088; K. Panneerselvam and R. Ayyagari, Internat. J. Control Sci. Engrg., 3
(2013), pp. 81–85]. For practical implementation of our technique, we developed a new method for
approximating the maximal eigenvalue of a nonnegative matrix. It combines the local quadratic rate
of convergence with polynomial-time global performance guarantees.
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1. Introduction. We address the problem of finding the closest stable or closest
unstable nonnegative matrix to a given matrix A. The stability is considered in the
sense of Schur: a matrix is stable if all its eigenvalues are strictly less than one by
modulo. If the matrix A is stable, then the problem is to find the closest unstable
matrix to it, i.e., the closest to A matrix X such that ρ(X) = 1, where ρ denotes the
spectral radius. If A is unstable, i.e., ρ(A) > 1, then the closest stable matrix does not
exist, because the set of stable matrices is open. Hence, by the closest stable matrix
we understand the closest matrix X with ρ(X) = 1 (although X is actually unstable).
Sometimes a matrix with the spectral radius one is referred to as weakly stable. So, if
A is unstable, then the problem is to find the closest weakly stable matrix.

In all these problems, the choice of matrix norm plays a crucial role. In this
paper, we consider three polyhedral norms:

• the max-norm ‖X‖max = max(i,j) |X
(i,j)|;

• the ℓ1 operator norm: ‖X‖1 = supu 6=0
‖Xu‖1

‖u‖1
, where ‖u‖1 =

∑n
i=1 |u

(i)|;

• the ℓ∞ operator norm: ‖X‖∞ = supu 6=0
‖Xu‖∞

‖u‖∞

, where ‖u‖∞=max1≤i≤n |u
(i)|.
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2 YU. NESTEROV AND V. YU. PROTASOV

Note that ‖X‖∞ = max1≤i≤n ‖X
T ei‖1, where ei is the ith coordinate vector in R

n.
Thus, we actually consider six problems of finding the closest stable/unstable matrix
in these three norms. For all problems, we characterize the optimal matrix and
construct efficient algorithms for finding the solution. For the max-norm, we explicitly
find the closest unstable matrix and present an algorithm based on bisection for
computing the closest stable matrix. For the ℓ∞- and ℓ1-norms, we also characterize
the optimal matrices. For the closest unstable matrix, the solution is found explicitly,
while for finding the closest stable matrix, we use the concept of product families and
apply the spectral simplex method, which can optimize the spectral radius over such
families [19, 22]. To this end, we develop a modification of this algorithm, the greedy
spectral simplex method, which may be of some independent interest.

1.1. Motivation. The problem of finding the closest stable or unstable matrix
plays an important role in the analysis of differential equations, linear dynamical
systems, electrodynamics, etc.; see [1, 4, 7, 9, 15, 18] and references therein. This
problem is notoriously hard due to properties of the spectral radius as a function of
matrix: it is neither convex nor concave, it may lose Lipschitz continuity at some
points, etc. That is why the majority of methods for this problem find only local min-
ima [4, 9, 10, 20]. Nevertheless, we are going to see that for some classes of matrices
and matrix norms, this problem is efficiently solvable even for absolute minima. We
analyze the case of nonnegative matrices. They correspond to positive linear systems
arising naturally in problems of combinatorics, mathematical economics, population
dynamics, etc. [1, 2, 5, 6, 14, 17, 25]. We show that on the set of nonnegative matri-
ces equipped either with the max-norm (entrywise maximum) or with the ℓ∞ or ℓ1
operator norms, the closest stable and unstable matrices admit explicit descriptions
and can be found by efficient algorithms.

Finally, let us note that in the problem of finding the closest stable/unstable
nonnegative matrix to a matrix A, the matrix A itself does not have to be nonneg-
ative. For any real-valued matrix A, this problem can be reduced to the case of
nonnegative A. Indeed, if we denote A+ = max {A, 0} (the entrywise maximum),
then we see that the closest stable nonnegative matrices to the matrices A and A+

are the same. Indeed, if ρ(A+) ≤ 1, then A+ is the closest stable nonnegative matrix
for A, because it is the closest nonnegative matrix for it. Otherwise, if ρ(A+) > 1,
then we denote by A′ and A′′ the closest stable nonnegative matrices for A+ and
for A, respectively. Since increasing the entry of a nonnegative matrix increases
its spectral radius (see (2.3) below), it follows that A′ ≤ A+ and A′′ ≤ A+. If
‖A′ −A+‖ < ‖A′′ −A+‖, then ‖A′ −A‖ < ‖A′′ −A‖, which contradicts the choice of
A′′. Hence ‖A′ −A+‖ = ‖A′′ −A+‖, and A

′′ is the closest stable nonnegative matrix
for A+, which concludes the proof.

Thus, in what follows we assume the initial matrix A is nonnegative.
The last remark concerns possible statements of the main problems. We consider

the two main problems:
(1) Destabilizing problem: for a matrix A such that ρ(A) < 1 find the closest

matrix X such that ρ(X) ≥ 1.
(2) Stabilizing problem: for a matrix A such that ρ(A) > 1 find the closest matrix

X such that ρ(X) ≤ 1.
Sometimes those problems are formulated in a strong sense: given a parameter

δ > 0, find the closest matrix such that ρ(X) ≥ 1 + δ (respectively, ρ(X) ≤ 1 − δ).
The methods developed in this paper (sections 2, 4, and 4.5) are directly adapted to
those strong problems as well; it suffices to replace everywhere the spectral radius 1
by 1 + δ (respectively, 1− δ).
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CLOSEST STABLE NONNEGATIVE MATRIX 3

1.2. Contents. We start with solving the problems of the closest stable/unstable
nonnegative matrix in the max-norm (section 2). We show that global minima for both
problems admit explicit description and can be found by polynomial algorithms. To
make them more efficient, we take a close look at the problem of computing the largest
eigenvalue of a nonnegative matrix. In section 3 we develop a new method with local
quadratic rate of convergence and polynomial-time worst-case global performance
guarantees (this result is not standard for linear algebra; see, for example, Chaper 7
in [8]). In section 4 we address the problems of the closest stable/unstable nonnegative
matrix in the ℓ∞- and ℓ1-norms. We show that the closest unstable matrix admits an
explicit description and can be computed within polynomial time, while for finding
the closest stable matrix we develop a new greedy spectral simplex method. In both
problems we apply the method of computing the Perron eigenvalue (see section 3)
and show that the corresponding algorithms have local quadratic convergence. Note
that the greedy spectral simplex method has a much wider range of applications and,
probably, is of independent interest.

In section 5, we give examples and discuss the complexity issues. We show that our
method for finding closest stable matrices in ℓ1- and in ℓ∞-norms works surprisingly
fast even in high dimensions. For positive matrix of dimension 100, it finds the closest
stable matrix for less than one second. For dimension 1000 it does for about 3–4
minutes. For sparse matrices, the algorithm works more slowly but still very efficiently.

1.3. Notation. In what follows, we denote by R
n×n the set of real n×n-matrices,

and by R
n×n
+ the set of nonnegative matrices. For A ∈ R

n×n
+ and x ∈ R

n
+, denote

supp (A) =
{

(i, j) | A(i,j) > 0
}

, supp (x) =
{

i | x(i) > 0
}

.

For two vectors x, y ∈ R
n
+, we denote x ≥ y if x − y ∈ R

n
+. The active set of this

equality is {i | x(i) = y(i)}.
We denote Ω = {1, . . . , n}, and for any nonempty subset I ⊂ Ω, let VI =

span {ei | i ∈ I}. So, VI is the coordinate subspace spanned by the basis vectors with
indices from I. A support of a vector v ≥ 0 is the set of its positive indices. Thus,
supp (v) = {i ∈ Ω | v(i) > 0}. If v > 0 , then supp (v) = Ω, i.e., a positive vector
possesses a full support. Finally, we use notation In for the unit n × n-matrix, and
Jn ∈ R

n×n for the matrix of all ones.

Let A ∈ R
n×n be a real square matrix with spectrum Λ(A)

def
= {λ1, . . . , λn} ⊂ C.

Denote by ρ(A) its spectral radius:

ρ(A) = max
λ∈Λ(A)

|λ|.

If the matrix A is nonnegative, then by the Perron–Frobenius theorem, ρ(A) ∈ Λ(A).
So, there exists a positive eigenvalue equal to the spectral radius. This eigenvalue
will be denoted by λmax and referred to as the leading eigenvalue. An arbitrary
nonnegative eigenvector v 6= 0 with eigenvalue λmax is called the leading eigenvector.
By the same Perron–Frobenius theorem, every nonnegative matrix has at least one
leading eigenvector [11, chapter 8].

2. Problem with distances measured in max-norm. In this case, the prob-
lem is rather simple and admits very efficient solutions. For a nonnegative n×nmatrix
A, we consider the following problems:

(1) If ρ(A) < 1, then we find the closest unstable matrix:

‖X −A‖max → min : ρ(X) = 1, X ≥ 0 .(2.1)
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4 YU. NESTEROV AND V. YU. PROTASOV

(2) If ρ(A) > 1, then we are interested in finding the closest stable matrix. The
corresponding problem looks exactly like (2.1).

2.1. Closest unstable matrix. The spectral radius of a nonnegative matrix A
can be represented in the following minimax form:

ρ(A) = inf
x>0

max
1≤i≤n

1

x(i)
〈ei, Ax〉.(2.2)

For the proof, it suffices to consider positive matrices and then take a limit. For
the leading eigenvector x, the right-hand side is equal to ρ(A); this proves the in-
equality ≥. If we have a strict inequality, then there exists a number q < ρ(A)
which is larger than the right-hand side. Hence, for some positive vector x, we have
max1≤i≤n

1
x(i) 〈ei, Ax〉 < q, i.e., Ax < qx. Therefore, Akx < qkx for all k, and conse-

quently ‖Ak‖ ≤ C qk. Finally, ρ(A) = limk→∞ ‖Ak‖1/k ≤ q, which is a contradiction.
An important consequence of this representation is monotonicity of this function:

A ≥ B ∈ R
n×n
+ ⇒ ρ(A) ≥ ρ(B).(2.3)

Sometimes we need conditions for strict monotonicity.

Lemma 2.1. Let A,B ∈ R
n×n
+ . If for some γ > 0 we have

A(i,j) ≤ γB(i,j) ∀i, j ∈ {1, . . . , n},

then ρ(A) ≤ γρ(B).

Proof. It follows immediately from the definition (2.2).

Remark 2.2. Assumptions of Lemma 2.1 ensure strict monotonicity of spectral
radius only if A+B is an irreducible matrix. This condition cannot be dropped, and
the corresponding examples are well known.

Consider the set of weakly stable nonnegative matrices

Sn =
{
A ∈ R

n×n
+ : ρ(A) ≤ 1

}
,

and denote by S0
n the set of stable matrices, for which inequality in the above definition

is strict. In what follows, we often use a simple criterion for stable matrices.

Lemma 2.3. Nonnegative matrix A is stable if and only if the matrix (In −A)−1

is well defined and nonnegative. Indeed, if ρ(A) < 1, then the matrix (In −A)−1 can
be represented by a convergent series

∑∞
k=0A

k, which is a nonnegative matrix.

Let Y
def
= (In − A)−1 be well defined and nonnegative. Since it is nondegenerate,

it has the same system of eigenvectors as matrix A. Moreover, since the function
f(λ) = 1

1−λ is decreasing on the interval (0, 1), we see that the leading eigenvalue
λmax = ρ(A) of the matrix A (the maximal by modulus eigenvalue, which is positive
by the Perron–Frobenius theorem) is mapped to the leading eigenvalue f(λmax) of Y .
Consequently, ρ(Y ) = 1

1−ρ(A) . Hence, for the leading eigenvector s ∈ R
n
+ of matrix A

we have Y s = 1
1−ρ(A)s. Since Y ≥ 0, we conclude that ρ(A) < 1.

As pointed out by the anonymous referee, this lemma can also be quickly deduced
from Theorem 2.3 of [2]. We are grateful to the referee for this remark. This simple
lemma helps us in computing the distance between a stable matrix and the boundary
of the set of unstable matrices. Let us prove first an auxiliary statement.
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CLOSEST STABLE NONNEGATIVE MATRIX 5

Lemma 2.4. Let A ∈ S0
n and H ∈ R

n×n
+ , H 6= 0. Denote ξ(A,H) = ρ((In −

A)−1H). Then

A+ αH ∈ S0
n, 0 ≤ α <

1

ξ(A,H)
,(2.4)

and ρ(A+ H
ξ(A,H) ) = 1.

Proof. Denote B = (In −A)−1H ≥ 0. Note that equality H = (In −A)B implies
that In −A− αH = (In −A) − α (In −A)B. Therefore,

W (α)
def
= In − (A+ αH) = (In −A)(In − αB),(2.5)

and ρ(αB) < 1 for all α ∈ [0, 1
ρ(B) ). Consequently, all matrices W (α) are well defined

for α ∈ [0, 1
ρ(B) ) and W

−1(α) are nonnegative as a product of nonnegative matrices.

Hence, by Lemma 2.3, all matrices W (α) are stable.
Assume now that the matrix H is strictly positive. In this case its leading eigen-

vector v is also strictly positive and W ( 1
ρ(B) ) v

(2.5)
= 0. Hence ρ(A+ H

ρ(B) ) = 1. Now, if

H is an arbitrary nonnegative matrix, we perturb it to be strictly positive and prove
this equality. Then by continuity of spectral radius, we conclude that for arbitrary
nonnegative H, we have ρ(A+ H

ρ(B) ) = 1.

Corollary 2.5. Let A ∈ S0
n and H ∈ R

n×n
+ , H 6= 0. Then all matrices from

the set

{

X ∈ R
n×n : 0 ≤ X < A+

H

ρ((In −A)−1H)

}

are stable.

Proof. This is a direct consequence of Lemma 2.4 and of monotonicity of spectral
radius.

We conclude this section by a variant of Corollary 2.5 for the special case H = Jn
(the matrix of all ones). It gives an explicit formula for the closest (in the max-norm)
unstable matrix.

Theorem 2.6. Let A ∈ S0
n and e ∈ R

n be the vector of all ones. Then all matrices
from the set

{

X ∈ R
n×n : 0 ≤ X < A+

Jn
〈(In −A)−1e, e〉

}

(2.6)

are stable. At the same time, ρ(A+ Jn

〈(In−A)−1e,e〉 ) = 1.

Proof. It is enough to note that Jn = eeT . Therefore

ρ
(
(In −A)−1Jn

)
= ρ

(
(In −A)−1eeT

)
=
〈
(In −A)−1e, e

〉
.

The above statement can be seen as an analogue for nonnegative matrices of
the well-known Kharitonov theorem, describing an ℓ∞-neighborhood of a vector of
coefficients, which belongs to the set of stable polynomials [12].
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6 YU. NESTEROV AND V. YU. PROTASOV

2.2. Closest stable matrix. In the previous subsection, we characterized the
distance from a stable matrix to the boundary of stability. In this section, we consider
another group of questions related to the distance from an unstable matrix to the
nonconvex set of weakly stable matrices Sn. As above, the distance is measured in
the max-norm ‖X −A‖max = max1≤i,j≤n |X

(i,j) −A(i,j)|.
Let A ∈ R

n×n
+ . Consider the following parametric family of minimization prob-

lems:

min
X∈R

n×n

+

{ρ(X) : ‖X −A‖max ≤ τ}, τ ≥ 0.(2.7)

For a nonnegative matrix A and for a given parameter τ > 0, let A[τ ] be the matrix
with the following elements:

A(i,j)[τ ] = max
{

0, A(i,j) − τ
}

, i, j = 1, . . . , n.(2.8)

Lemma 2.7. The optimal solution of problem (2.7) is the matrix A[τ ] defined
in (2.8).

Proof. Indeed, matrix A[τ ] is feasible for problem (2.7). On the other hand, for
any other feasible solution X, we have X ≥ A[τ ]. Thus, A[τ ] is optimal for (2.7) in
view of monotonicity of spectral radius (2.3).

Consider now the following projection problem:

(2.9) τA = min
X∈Sn

‖X −A‖max.

Lemma 2.8. Value τA is the unique root of equation ρ(A[τ ]) = 1.

Proof. Indeed, in view of Lemma 2.1, the function ρ(A[τ ]) is monotonically
decreasing.

Example 1. Consider the following Sudoku matrix:

A =

5 3 4 6 7 8 9 1 2
6 7 2 1 9 5 3 4 8
1 9 8 3 4 2 5 6 7
8 5 9 7 6 1 4 2 3
4 2 6 8 5 3 7 9 1
7 1 3 9 2 4 8 5 6
9 6 1 5 3 7 2 8 4
2 8 7 4 1 9 6 3 5
3 4 5 2 8 6 1 7 9

In accordance to Lemma 2.8, we can easily find its ℓ∞-projection onto the set of stable
matrices:

X∗ =

0 0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1

with τA = 8.
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CLOSEST STABLE NONNEGATIVE MATRIX 7

Before we present an algorithm for solving problem (2.9) let us recall the notion
of bisection by number or bisection by index. Suppose we have an ordered sequence
of numbers x1 ≤ x2 ≤ · · · ≤ xn and decreasing function f(xi) on it. If for some
a, we need to find the smallest i such that f(xi) < a, then we compute first f(xk)
with x = [n/2] (the integer part of the number n/2). If f(xk) < a, then we do the
next iteration for the sequence x1, . . . , xk, i.e., compute the function at the point with
index [k/2]. Otherwise we do the next iteration for the sequence xk+1, . . . , xn. Now
we present the algorithm.

Let A ∈ R
n×n
+ . Assume that ρ(A) > 1. Our strategy of solving the problem (2.9)

is as follows:

(2.10)

1. Sort all elements of matrix A in an increasing order.

2. Using the criterion of Lemma 2.3, find by bisection in the element
number the value τ1, which is the largest between all A(i,j) and zero,
having ρ(A[τ1]) ≥ 1, and value τ2, which is the smallest element of A
with ρ(A[τ2]) < 1.

3. Define matrix H with entries H(i,j) =

{
1 if (i, j) ∈ supp (A(τ1)),
0 otherwise.

4. Compute the output as τA = τ2 −
1

ρ((In−A[τ2])−1H) .

Theorem 2.9. Algorithm (2.10) computes an optimal solution of problem (2.9).

Proof. First of all, let us show that the algorithm (2.10) is well defined. Indeed,

A

(

max
1≤i,j≤n

A(i,j)

)

= 0,

and ρ(A[0]) = ρ(A) > 1. Thus, we can find two values τ1 < τ2 from the set

{0}
⋃
{A(i,j)}ni,j=1

such that ρ(A[τ1]) ≥ 1, ρ(A[τ2]) < 1, and A[τ ] is linear for τ ∈ [τ1, τ2]. Hence, for τ
from this interval we have

A[τ ] = A[τ2] +
τ2 − τ

τ2 − τ1
(A[τ1]−A[τ2]) = A[τ2] + (τ2 − τ)H.

It remains to apply Lemma 2.4.

Let us discuss the computational complexity of algorithm (2.10). Implementation
of step 1 needs O(n2 log2 n) operations. Step 2 requires O(n3 log2 n) operations. Step
3 needs O(n2) operations. And only step 4, at which we have to compute the spectral
radius of a nonnegative matrix (In − A[τ2])

−1H needs an iterative procedure, which
rate of convergence may depend on the particular data. This is the reason why we
analyze in section 3 a computational method for approaching the spectral radius of
a square matrix. If this method is used at step 4 of algorithm (2.10), then the whole
procedure will have polynomial-time complexity.
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8 YU. NESTEROV AND V. YU. PROTASOV

3. Computing the largest eigenvalue. Let A be a squared real matrix with
spectrum Λ(A). One of the most popular procedures for approaching its leading
eigenvalue is the power method:

(3.1) xk+1 = Axk

‖Axk‖
, k ≥ 0,

where ‖ · ‖ is an arbitrary norm for Rn. This method has two important advantages.
• Its iteration is very simple.
• Under some conditions, it has linear rate of convergence.

However, after a close look at this scheme, we can see that these advantages are not
very convincing. Indeed, if matrix A is dense, then each iteration of method (3.1)
needs O(n2) operations. Moreover, the rate of convergence of this method depends
on the gap between the magnitudes of the leading eigenvalue and of all others. The
smaller this gap, the slower the rate of convergence. Hence, for method (3.1) it is
impossible to derive worst-case polynomial-time complexity bounds.1

It this section, we present a scheme which has much better theoretical guarantees.
It is based on the interpretation of the leading eigenvalue of matrix A as a root of the
polynomial p(τ) = det(τIn −A).

We need to introduce the following notion.

Definition 3.1. A real polynomial p has a semidominant real root τ∗ if p(τ∗) = 0
and

τ∗ ≥ Re λ,(3.2)

where λ ∈ C is any other root of this polynomial.

Example 2. Let A be a real symmetric matrix. Then λmax(A) is a semi-dominant
root of the polynomial p(τ) = det(τIn −A).

Example 3. By the Perron–Frobenius theorem (see, for instance, [11, Chapter 8]),
for a nonnegative matrix A, its spectral radius is a semidominant real root of the
polynomial p(τ) = det(τIn −A).

Our interest in polynomials with semidominant real roots can be explained by
the following property.

Lemma 3.2. Let a monic polynomial p of degree n have a semidominant real root
τ∗. Then the function p(t) is a strictly increasing nonnegative convex function on the
set [τ∗,+∞). Moreover, on this half-line all its derivatives are nonnegative and for
τ ≥ τ∗ we have

p(τ) ≥ (τ − τ∗)
n,(3.3)

p(τ) ≥
1

n
p′(τ)(τ − τ∗).(3.4)

Proof. Denote by R(p) the set of all real roots of polynomial p and by C(p) the set
of all its complex roots. Further, for a real root x ∈ R, define function ξx(τ) = τ − x,
and for a complex root λ ∈ C define function ψλ(τ) = (τ − Re λ)2 + (Im λ)2. Then

p(τ) =




∏

x∈R(p)

ξx(τ)



 ·




∏

λ∈C(p)

ψλ(τ)



 .(3.5)

1This drawback is typical for all other standard methods for approximating the eigenvalues of
nonsymmetric matrices (see, for example, section 7 in [8]).
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CLOSEST STABLE NONNEGATIVE MATRIX 9

In view of Definition 3.1, the polynomial p is a product of functions, for which all
derivatives are nonnegative on the set [τ∗,+∞) (we treat the value of function as its
derivative of degree zero). Hence, the same is true for the polynomial itself.

Further, for τ ≥ τ∗ we have

ξx(τ)
(3.2)

≥ τ − τ∗, x ∈ R(p), ψλ(τ)
(3.2)

≥ (τ − τ∗)
2, λ ∈ C(p).

Hence, (3.3) follows from representation (3.5).
In order to prove inequality (3.4), note that

p′(τ)(τ − τ∗)

p(τ)
=

∑

x∈R(p)

τ − τ∗

τ − x
+ 2

∑

λ∈C(p)

(τ − Re λ)(τ − τ∗)

(τ − Re λ)2 + (Im λ)2
.

In view of condition (3.2), each term in the above sums is smaller than one. Hence,
(3.4) follows.

Let us show that the Newton method is especially efficient in finding the maximal
roots of increasing convex univariate functions.

Consider a convex univariate function f such that

f(τ∗) = 0, f(τ) > 0 for τ > τ∗.(3.6)

Let us choose τ0 > τ∗. Consider the following Newton process:

τk+1 = τk −
f(τk)

gk
,(3.7)

where gk ∈ ∂f(τk). Thus, we do not assume f to be differentiable for τ ≥ τ∗.

Theorem 3.3. Method (3.7) is well defined. For any k ≥ 0 we have

f(τk+1)gk+1 ≤
1

4
f(τk)gk ,(3.8)

where τk, gk are defined in (3.7). Thus, f(xk) ≤
(
1
2

)k
g0(τ0 − τ∗), provided τ0 ≥ τ∗.

Proof. Denote fk = f(τk). Let us assume that fk > 0 for all k ≥ 0. Since f is
convex, 0 = f(τ∗) ≥ fk + gk(τ∗ − τk). Thus,

gk(τk − τ∗) ≥ fk > 0.(3.9)

This means that gk > 0 and τk+1 ∈ (τ∗, τk). In particular, we conclude that

τk − τ∗ ≤ τ0 − τ∗.(3.10)

Further, for any k ≥ 0 we have

fk ≥ fk+1 + gk+1(τk − τk+1)
(3.7)
= fk+1 +

fkgk+1

gk
.

Thus, 1 ≥ fk+1

fk
+ gk+1

gk
≥ 2
√

fk+1gk+1

fkgk
, and this is (3.8). Finally, since f is convex, we

have

g0
(3.9)

≥

√

f0g0
τ0 − τ∗

(3.8)

≥ 2k
√

fkgk
τ0 − τ∗

(3.9)

≥ 2k

√

f2k
(τ0 − τ∗)(τk − τ∗)

(3.10)

≥ 2k
fk

τ0 − τ∗
.
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10 YU. NESTEROV AND V. YU. PROTASOV

For a polynomial with semidominant root, we can guarantee a linear rate of
convergence in the argument.

Theorem 3.4. Let a polynomial p have a semidominant real root. Then for the
sequence {τk}k≥0, generated by method (3.7) we have

τk − τ∗ ≤

(

1−
1

n

)k

(τ0 − τ∗), k ≥ 0.(3.11)

Proof. Indeed, it is enough to combine inequality (3.4) with the step-size rule of
method (3.7).

In view of Theorem 3.4, method (3.7) can be equipped with a reliable stopping
criterion. Indeed, if we need to achieve accuracy ǫ > 0 in the argument, we can use
the right-hand side of inequality

τk − τ∗
(3.4)

≤
nf(τk)

f ′(τk)
≤ ǫ(3.12)

as a stopping rule. Since

nf(τk)

f ′(τk)

(3.7)
= n(τk − τk+1) ≤ n(τk − τ∗)

(3.11)

≤ ne−k/n(τ0 − τ∗),

this criterion will be satisfied after

n

⌈

ln
n(τ0 − τ∗)

ǫ

⌉

iterations at most.
Thus, we have seen that method (3.7) has linear rate of convergence, which does

not depend on the particular properties of function f . Let us show that in a non-
degenerate situation this method has local quadratic convergence (this never happens
with the power method (3.1)).

Theorem 3.5. Let convex function f be twice differentiable. Assume that it sat-
isfies the conditions (3.6) and its second derivative increases for τ ≥ τ∗. Then for any
k ≥ 0 we have

f(τk+1) ≤
f ′′(τk)

2(f ′(τk))2
· f2(τk).(3.13)

If the root τ∗ is nondegenerate,

f ′(τ∗) > 0,(3.14)

then f(τk+1) ≤
f ′′(τ0)

2(f ′(τ∗))2
· f2(τk).

Proof. In view of conditions of the theorem, f ′′(τ) ≤ f ′′(τk) for all τ ∈ [τk+1, τk].
Therefore,

f(τk+1) ≤ f(τk) + f ′(τk)(τk+1 − τk) +
1
2f

′′(τk)(τk+1 − τk)
2 (3.7)

= 1
2f

′′(τk)
f2(τk)

(f ′(τk))2
.

For proving the last statement, it remains to note that f ′′(τk) ≤ f ′′(τ0) and f
′(τk) ≥

f ′(τ∗).
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Corollary 3.6. If f is a monic polynomial of degree n with real roots, then

f(τk+1) ≤
n− 1

2n
f(τk), k ≥ 0 ,(3.15)

where the sequence τk is defined in (3.7).

Proof. Indeed, in this case f(t) =
∏n

i=1(t− xi) with xi ∈ R, i = 1, . . . , n. There-
fore,

f ′(t) = f(t)
n∑

i=1

1

t− xi
,

f ′′(t) = f(t)





(
n∑

i=1

1

t− xi

)2

−

n∑

i=1

1

(t− xi)2



 ≤

(

1−
1

n

)

f(t)

(
n∑

i=1

1

t− xi

)2

.

It remains to use inequality (3.13).

Note that both Theorems 3.3 and 3.5 are applicable to our main object of in-
terest, the polynomial p(τ) = det(τIn − A), where A is a nonnegative n × n-matrix.
However, the direct application of method (3.7) to this polynomial is expensive since
at each iteration we need to compute a determinant of the n × n-matrix. This com-
putation needs O(n3) operations. However, we can significantly reduce this cost by
transforming matrix A in a special Hessenberg form.

Recall that matrix A has a lower Hessenberg form if

A(i,j) = 0 ∀j ≥ i+ 2, i, j = 1, . . . , n.

Thus, it has the following structure:

An(a, b, L) =

(

a
L

bT

)

,

where a ∈ R
n, b ∈ R

n−1, and L is a lower-triangular (n − 1) × (n − 1)-matrix. Any
matrix can be represented in this form by transformation

A→ UTAU,

where U ∈ R
n×n is an orthogonal matrix. This transformation is standard and it

can be computed in O(n3) operations. At the same time, it does not change the
polynomial p(τ) = det(τIn − A). Hence, let us assume that we already have matrix
A in the lower Hessenberg form.

In this case, all matrices B(τ)
def
= τIn − A have also the Hessenberg structure.

Let us show that their determinants can be easily computed.

Lemma 3.7. Let matrix B ∈ R
n×n have a lower Hessenberg form:

B =





α β 0 . . . 0

a1 a2
L
bT



 ,

where a1, a2 ∈ R
n−1, L is a lower-triangular (n− 2)× (n− 2)-matrix, and b ∈ R

n−2

Then

detB = detAn−1(αa2 − βa1, b, L).(3.16)
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12 YU. NESTEROV AND V. YU. PROTASOV

Proof. For x ∈ R
n−1, consider the function d(x) = detAn−1(x, b, L). Note that

this function is linear in x. Therefore, by applying the Laplace formula to the first
row of matrix B, we get detB = αd(a2)− βd(a1) = d(αa2 − βa1).

Thus, using the recursion (3.16), the value of polynomial p(τ) = detB(τ) can be

computed in
∑n−1

k=1 2(n− k) = n(n− 1) multiplications. Clearly, its derivative can be
also computed in O(n2) operations.

Note that the above procedure has a hidden drawback. Indeed, for a high di-
mension we can expect the value of polynomial p(τ) = det(τIn − A) to be very big.
Therefore, the computation of its value and its derivative is computationally unstable.
However, note that in the Newton method

τk+1 = τk −
p(τk)

p′(τk)
, k ≥ 0,(3.17)

the step size is given by a ratio of polynomials, which can be computed in a stable
way.

Indeed, let us assume that our polynomial is represented in a multiplicative form:
p(τ) =

∏m
k=1 fk(τ), where fk are some functions defined in a neighborhood of τ ∈ R.

Then

p′(τ)

p(τ)
=

m∑

k=1

f ′k(τ)

fk(τ)
.(3.18)

Thus, any multiplicative representation of polynomial p allows a direct computation
of the Newton step in an additive form, which is much more stable. Let us show how
this representation can be computed for a Hessenberg matrix.

Our procedure is based on the recursion described in Lemma 3.7. However, we
introduce in it some scaling functions, which prevent the growth of intermediate co-
efficients.

We generate a sequence of Hessenberg matrices Hk of decreasing dimension. Let
us choose τ0 ∈ R and define H0(τ) = τIn − A. At iteration k, we assume that our
matrix has the following structure:

Hk(τ) =





αk(τ) βk(τ) 0 . . . 0

ak(τ) bk(τ)
Lk(τ)
cTk (τ)



 ∈ R
(n−k)×(n−k),

where ak(τ), bk(τ) ∈ R
n−k−1, Lk(τ) is a lower-triangular (n − k − 2) × (n − k − 2)-

matrix, and ck(τ) ∈ R
n−k−2. Let us define an arbitrary function of two variable

fk(α, β), which is analytic in the neighborhood of point (αk(τ0), βk(τ0))
T ∈ R

2. Then,
for the next iteration we define

Hk+1(τ) = An−k−1

(
αk(τ)bk(τ)− βk(τ)ak(τ)

fk(αk(τ), βk(τ))
, ck(τ), Lk(τ)

)

.

In this process, the last generated matrix will be Hn−2(τ) ∈ R
2×2. At this moment,

we define

fn−2(τ) = αn−2(τ)bn−2(τ)− βn−2(τ)an−2(τ)

(in this case, an−2(τ) and bn−2(τ) are real values). Under this convention, by Lemma

3.7 we have p(τ) =
∏n−2

k=0 fk(τ).
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In the above process, it is reasonable to choose functions fk, 0 ≤ k ≤ n − 3, in
the simplest form. For example, they could be linear functions of two variables with
coefficients ±1, ensuring the condition

fk(τ0) = |αk(τ0)|+ |βk(τ0)|.

In this case, all matrices Hk(τ) will be some rational functions of τ , well defined in a
neighborhood of τ0 (since in the process (3.17) we cannot have |αk(τ0)|+|βk(τ0)| = 0).
Therefore, the derivatives of functions fk at τ0 can be easily computed by forward
differentiation of the recursion formulas. The total complexity of this process will be
of the order O(n2).

4. Problems with distances measured in ℓ∞- and ℓ1-norms. As we know,
the operator ℓ1-norm ‖X‖∞ = max1≤i≤n

∑n
j=1 |X

(i,j)| is dual to the operator ℓ∞-

norm ‖X‖1 = max1≤j≤n

∑n
i=1 |X

(i,j)|. In particular, ‖X‖∞ = ‖XT ‖1 (to be more
precise, the vector norms ℓ1 and ℓ∞ are dual in R

n, and we consider the corresponding
operator norms with respect to these dual norms). Therefore, if X is a closest stable
matrix for A in the ℓ∞-norm, then XT is a closest stable matrix for AT in the ℓ1-norm.
Thus, the problem in the ℓ1-norm is equivalent to the same problem in ℓ∞-norm with
replacement of rows by columns. Therefore, we will deal with the ℓ∞-norm only.
Thus, for a nonnegative n× n matrix A, we consider the following two problems:

(1) If ρ(A) < 1, then we find the closest unstable matrix:

‖X −A‖∞ → min : ρ(X) = 1, X ≥ 0 .(4.1)

(2) If ρ(A) > 1, then we find the closest stable matrix. Its mathematical formu-
lation is the same as (4.1).

We will solve problems (1) and (2) by applying the technique of optimizing the
spectral radius over product families of matrices with row uncertainties. This is pos-
sible since any ball in the space of matrices equipped with the ℓ∞-norm forms a
product family. For implementing this strategy, we will develop a greedy spectral
simplex method, which minimizes the spectral radius over the matrix sets with poly-
hedral row uncertainties. All necessary definitions will be given later. Now we need
to prove several auxiliary results on the spectral radius of nonnegative matrices.

4.1. Some inequalities for spectral radius.

Lemma 4.1. Let A ∈ R
n×n
+ , u ≥ 0 be a nonzero vector, and λ ≥ 0 be a real

number. Then Au ≥ λu implies that ρ(A) ≥ λ. If for a strictly positive vector v we
have Av ≤ λv, then ρ(A) ≤ λ.

Proof. If Au ≥ λu, then Aku ≥ λku for each k. Therefore, ‖Ak‖ ≥ λk for all k,
and so ρ(A) = limk→∞ ‖Ak‖1/k ≥ λ. The second statement is a simple consequence
of the representation (2.2).

Corollary 4.2. Let A ∈ R
n×n
+ , u ≥ 0 be a vector, and λ ≥ 0 be a real number.

If Au > λu, then ρ(A) > λ. If Au < λu, then ρ(A) < λ.

For formulating the next auxiliary result, let us recall that the active set of a
vector inequality x ≥ y is the set of indices for which this becomes an equality:
I = {i | x(i) = y(i)}.

Lemma 4.3. Let A ∈ R
n×n
+ , ρ(A) = 1, and u ∈ R

n be a strictly positive vector
such that Au ≤ u (or Au ≥ u). Let I be the active set of this inequality. Then there
is a nonempty subset I ′ ⊂ I such that the subspace V = VI′ is invariant for AT and
ρ(AT |V ) = 1.
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14 YU. NESTEROV AND V. YU. PROTASOV

Proof. Consider the case Au ≤ u (the proof for Au ≥ u is literally the same).
Denote B = {bi = A(i) − ei | i ∈ I}, where A(i) is the ith row of A. If the system of
inequalities 〈bi, h〉 < 0, bi ∈ B, has a solution h ∈ R

n, then for all sufficiently small
numbers t > 0, we have A(u+ th) < u+ th. Therefore, by Corollary 4.2, ρ(A) < 1,
which contradicts the assumption. Hence, this system does not have a solution, which
by the Farkas lemma [23] implies that 0 ∈ Conv {B}, where Conv denotes the convex
hull. So,

∑

i∈I τi(A
(i)− ei) = 0 for some numbers τi ≥ 0,

∑

i τi = 1. If v is the vector

from R
n such that v(i) = τi for i ∈ I, and v(i) = 0 otherwise, then AT v = v and

supp (v) ⊂ I. Then the subspace VI′ with I ′ = supp (v) is invariant for the matrix
AT and ρ(AT |I′) ≥ 1 (Lemma 4.1). On the other hand, ρ(AT |I′) ≤ ρ(AT ) = 1, and
therefore ρ(AT |I′) = 1.

4.2. Optimizing the spectral radius over product families. Consider one
important class of matrices for which the problem of optimizing the spectral radius
admits an efficient solution.

Definition 4.4. A family F of nonnegative n × n-matrices is called a product
family if there exist compact sets F (i) ⊂ R

n
+ , i = 1, . . . , n, such that F consists of all

possible matrices with ith row from F (i) for all i = 1, . . . , n.

The sets F (i) are called the uncertainty sets. They are some compact sets of
nonnegative vectors. Respectively, product families are sets of matrices with inde-
pendent row uncertainties: their rows are independently chosen from the sets F (i).
Topologically, they are indeed products of the uncertainty sets: F = F (1)×· · ·×F (n).
Such families have been studied in the literature due to applications in spectral graph
theory, asynchronous systems, mathematical economics, population dynamics, etc.
(see [3, 5, 13, 17, 19, 26] and the references therein).

Product families have many remarkable properties. In particular, their joint and
lower spectral radii are always attained at one matrix [3]. Moreover, the problems of
minimizing and maximizing the spectral radius of a matrix over some compact set of
matrices, being notoriously hard in general, becomes efficiently solvable over product
sets. The recent paper [19] develops such methods in the case of polyhedral uncertainly
sets, when each F (i) is either a polytope given by vertices or a polyhedron given by a
system of linear inequalities. Our crucial observation is as follows:

For each A ∈ R
n×n
+ and for each τ > 0, the set Bτ (A) = {X ∈ R

n×n
+ | ‖X −

A‖∞ ≤ τ} is a product family with polyhedral row uncertainty sets.
Thus, the positive part of any ℓ∞-ball Bτ (A) is a product family. Therefore,

using methods of optimizing the spectral radius over product families, one can solve
the problem ρ(X) → min /max over the set X ∈ Bτ (A) and then try to adapt τ by
a bisection procedure. The minimal τ such that minX∈Bτ (A) ρ(A) ≤ 1 is the distance
to the closest stable matrix, the minimal τ such that maxX∈Bτ (A) ρ(A) ≥ 1 is the
distance to the closest unstable matrix. For implementing this strategy, we modify
some methods from [19] and [22] and apply them to the specific polyhedral uncertainly
sets

F (i) = Bτ (A
(i))

def
= {x ∈ R

n : ‖x−A(i)‖1 ≤ τ}, i = 1, . . . , n .

Our methods for optimizing the spectral radius over product families are based on
the following simple fact. Let A be a matrix from product family F , and let v ∈ R

n
+

be its leading eigenvector. We say that A is minimal in each row (with respect to
v) if 〈v,A(i)〉 = minx∈F(i)〈v, x〉 for all i = 1, . . . , n. A similar definition is used for
maximality in each row.
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Proposition 4.5. Suppose A belongs to a product family F and v ∈ R
n
+ is its

leading eigenvector. Then
(1) if A is minimal in each row with respect to v, then ρ(A) = minX∈F ρ(X);
(2) if v > 0 and A is maximal in each row with respect to v, then ρ(A) =

maxX∈F ρ(X).

Proof. The statement directly follows from Lemma 4.1.

Thus, if a matrix from a product family is optimal in each row, then it provides
the global optimum for the spectral radius. For strictly positive matrices, the converse
is also true.

Corollary 4.6. If matrix A ∈ F is strictly positive, then it has the minimal spec-
tral radius in F precisely when A is minimal in each row with respect to its (unique)
leading eigenvector. The same is true for maximization.

Proof. If A is optimal in each row, then as we showed above, it has the minimal
spectral radius. It remains to prove the converse. Assume A has the minimal spectral
radius, and without loss of generality let ρ(A) = 1. Since A is strictly positive, so is
its leading eigenvector v. Thus, Av = v. Suppose A is not minimal is some row, say,
in the first row. In this case the first row can be replaced so that for the new matrix
A′ the inequality A′v ≤ v is strict in the first row. Therefore, the set of indices of
active rows is I = {2, . . . , n}. On the other hand, ρ(A′) cannot be smaller than one,
because the matrix A has the smallest spectral radius in F . Thus, ρ(A′) = 1. Now
we apply Lemma 4.3 to the matrix A′ and to the vector v. We conclude that there
exists a subset I ′ ⊂ I such that the subspace VI′ is invariant for the matrix AT .
The latter is impossible, because the matrix AT does not have zeros in the last n− 1
columns.

Thus, if a matrix A is strictly positive, then the converse to Proposition 4.5 holds.
However, if A has some zero entries, this may not be true. Not every matrix from
F with the minimal (maximal) spectral radius is minimal (respectively, maximal) in
each row. Nevertheless, at least one matrix with this property always exists, as the
following proposition states.

Proposition 4.7. In every product family, there exists a matrix, which is mini-
mal (maximal) in each row with respect to one of its leading eigenvectors.

Proof. For a given ε > 0 consider ε-shifted uncertainty sets F
(i)
ε = F (i) + εe and

the corresponding product family Fε = F
(1)
ε × · · · × F

(n)
ε = F + εJn. Let Aε ∈ Fε

be the matrix with the minimal spectral radius. Since matrix Aε is strictly positive,
Corollary 4.6 implies that Aε is minimal in each row. To any ε we associate one of
such matrices Aε. By compactness, there is a sequence {εk}k∈‖ such that εk → 0 as
k → ∞, the matrices Aεk converge to a matrix A ∈ F , and their leading eigenvectors
converge to a nonzero vector v. Then by continuity, v is an eigenvector of A, and A
is minimal in each row with respect to v.

The proof for maximization is the same.

Propositions 4.5 and 4.7 offer a method for optimizing the spectral radius over
the product families by finding the optimal matrices in each row. This strategy was
used in [19] for developing two optimization algorithms. One of them is the spectral
simplex method. It consists in consecutive increasing of the spectral radius by one-row
corrections of a matrix. The main idea is the following. We take a matrix A from a
product family F and compute its leading eigenvector v. Then, for each i = 1, . . . , n,
we try to maximize the scalar product of v with rows from the uncertainty set F (i). If
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16 YU. NESTEROV AND V. YU. PROTASOV

for all i, the maximums are attained at the rows of A, then A is maximal in each row
and hence has the maximal spectral radius in F . Otherwise, we replace one row of A,
say, the ith one, with the row from F (i) maximizing the scalar product. We obtain
a new matrix. We compute its leading eigenvector, optimize the scalar products of
rows with this eigenvector, etc.

The advantage of this method is that it is applicable for both maximizing and
minimizing the spectral radius. However, its significant shortcoming is that it works
efficiently only for strictly positive matrices. If some row from F (i) has a zero entry,
then the algorithm may cycle. Even if it does not cycle, the terminal matrix, i.e., the
matrix produced by the algorithm, may not provide a solution. The idea of making
all matrices positive by slight perturbations may cause instability, which is difficult
to control. In high dimensions, even a very small perturbation of coefficients may
significantly change the spectral radius (see, for instance, [24] for the corresponding
analysis). The modified spectral simplex method which avoids these troubles and is
applicable for all nonnegative matrices was developed in [22]. The spectral simplex
method demonstrates its exceptional efficiency even for matrices of relatively big size.
In this paper, we present another modification, the greedy spectral simplex method,
which speeds up the convergence rate in the case of simply structured uncertainty
sets, when the minimization problem 〈v, x〉 → min, x ∈ F (i), can be easily solved.
We are going to show in section 4.6 that the ℓ∞-balls B(i)(τ) possess this property.

4.3. Closest unstable matrix. For an arbitrary nonnegative n × n-matrix A
with ρ(A) < 1 we consider the problem of finding a closest unstable matrix to A in
the operator ℓ∞-norm:

‖X − A‖∞ → min : ρ(X) = 1.(4.2)

Denote the minimal norm in problem (4.2) by τ∗. It is shown easily that the closest
unstable matrix X is nonnegative and, moreover, it is elementwise larger than or equal
to the matrix A. So, the matrix X−A is nonnegative and has the sum of elements in
each row at most τ∗. Thus, for an arbitrary matrix A ≥ 0 with ρ(A) < 1, the general
problem (4.2) is equivalent to the following:

‖X − A‖∞ → min : X ≥ A , ρ(X) = 1.(4.3)

For characterizing the optimal solution X, we introduce notation Ek = e eTk for the
matrix with kth column composed by ones and all other elements being zeros.

Theorem 4.8. The optimal value τ∗ of problem (4.2) is reciprocal to the largest
component of the vector (I − A)−1e. Let k be the index of this component. Then the
optimal solution of this problem is the matrix

(4.4) X∗ = A + τ∗Ek.

Remark 4.9. The main conclusion of Theorem 4.8 can be formulated as follows:
if we want to increase the spectral radius of matrix A as much as possible, having
the sum of changes of entries in each row not exceeding a fixed number τ > 0, then
we have to change all entries in one column (add τ to each entry). This “steepest
growth” column of A corresponds to the largest component of the vector (I −A)−1e.

Remark 4.10. Theorem 4.8 is extended to the ℓ1 operator norm just by applying
formula (4.2) for the transposed matrices X and A.
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Proof. The optimal matrix X∗ in problem (4.3) is also a solution to the maxi-
mization problem

ρ(X) → max : ‖X − A‖∞ ≤ τ, X ≥ A,(4.5)

for τ = τ∗. Let us characterize this matrix for arbitrary τ . By Propositions 4.5
and 4.7, X is maximal in each row for the following product family:

B+
τ (A) = Bτ (A) ∩ {X ∈ R

n×n | X ≥ A}

=
{

X ∈ R
n×n : X ≥ A, 〈(X −A)e, ei〉 ≤ τ, i = 1, . . . , n

}

.

Conversely, every matrix X, which is maximal in each row with respect to a strictly
positive leading eigenvector and such that ρ(X) = 1, is the closest unstable matrix
for A.

Now let us show that v > 0, which will enable us to apply Proposition 4.5. Any
matrix X ∈ B+

τ (A) with leading eigenvector v is optimal in the ith row if and only if
the scalar product 〈X(i)−A(i), v〉 is maximal under the condition 〈X(i)−A(i), e〉 = τ .
This maximum is equal to r τ , where r is the maximal component of vector v. Denote
the index of this component by k: v(k) = r. Then

X(i) −A(i) = τ ek , i = 1, . . . , n.

Hence, if X is maximal in each row, then X = A + τ e eTk = A + τEk. Furthermore,
since each set B+

τ (A
(i)) contains a strictly positive point, it follows that

v(i) = (Xv)(i) = max
x∈Bτ (A(i))

〈x, v〉 > 0.

Hence, the vector v is strictly positive, and by Proposition 4.5, the matrix X has the
largest spectral radius on the set B+

τ (A).
Thus, the optimal matrix X∗ for the problem (4.2) has the form (4.4) for some k

and ‖X − A‖∞ = τ∗. It remains to find k ∈ {1, . . . , n} for which the value of τ is
minimal under the constraint ρ(X) = 1. Since ρ

(
A+ τ∗Ek

)
= 1, it follows that τ∗ is

the smallest positive root of the equation

(4.6) det
(
A − I + τ Ek

)
= 0 .

Since ρ(A) < 1, we have (I − A)−1 =
∑∞

j=0A
j ≥ 0. Multiplying (4.6) by det

(− (I −A)−1), we obtain

(4.7) det
(
I − τ (I −A)−1Ek

)
= 0 .

The matrix τ (I − A)−1Ek has only one nonzero column. This is the kth column
equal to τ(I −A)−1e. Hence

det
(
I − τ (I −A)−1Ek

)
= 1− τ

[
(I −A)−1e

](k)
.

Thus, τ∗ is the reciprocal to the kth component of the vector (I −A)−1e. Hence the
minimal τ corresponds to the largest component of this vector.

Remark 4.11. The vector x = (I − A)−1e needed in Theorem 4.8 can be found
by solving the linear system (I −A)x = e. It suffices to find an approximate solution,
because we actually need only the index of the largest component of x. This can be
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18 YU. NESTEROV AND V. YU. PROTASOV

done by the power method. Indeed, since (I − A)−1e =
∑∞

j=0 A
je, we see that the

vector (I − A)−1e is the limit of the following recursive sequence: x0 = e, xj+1 =
Axj + e , j = 0, 1, . . .. This power method converges with the linear rate O(ρN (A)).
Having an approximate value of the limiting vector, we can find k as the index of its
largest component and τ∗ as a reciprocal to this component. After that, the closest
unstable matrix X∗ can be approximated by the formula (4.4).

4.4. Closest stable matrix. For an arbitrary nonnegative n×n-matrix A with
ρ(A) > 1, consider the problem of finding the closest matrix to A in the operator
ℓ∞-norm, which has the spectral radius equal to one. Thus, we consider the same
formulation (4.2), but for the case ρ(A) > 1. This problem can be written as follows:

‖X − A‖∞ → min : X ≥ 0 , ρ(X) = 1.(4.8)

This case is more difficult than finding the closest unstable matrix because now we
have to respect the nonnegativity conditions for the matrix X, which were actually
redundant in the former case but now become a serious restriction. That is why the
optimal solution X is usually found not by a formula but by an iterative procedure.
The main idea is to solve the related problem

(4.9)

{
ρ(X) → min : ‖X − A‖∞ ≤ τ,
0 ≤ X ≤ A,

and then apply a bisection in τ for finding the value of the parameter ensuring ρ(X) =
1. In fact, the algorithm works much faster by using a kind of mixed strategy. After
several iterations of the bisection we can find τ by an explicit formula (see section 4.6
for details).

Our main goal now is to solve (4.9) for a particular τ . For this we develop a greedy
spectral simplex method, which is a natural extension of the spectral simplex method
presented and studied in [19, 22]. Let us start with some notation and auxiliary
results.

Matrix A ≥ 0 is called irreducible if it does not have a nontrivial invariant coor-
dinate subspace, i.e., a subspace spanned by some elements ei of the canonical basis.
The irreducibility is actually a combinatorial notion and can be explained in terms of
a graph of a matrix A: a digraph G with n vertices {1, . . . , n} such that there is an
arc from a vertex i to a vertex j if and only if Aji > 0. A matrix A is irreducible if
and only if its graph G is strongly connected, i.e., for every pair of vertices i, j, there
is a path from i to j.

Reducibility means that there is a proper nonempty subset Λ ⊂ Ω such that for
each i ∈ Λ, the support of the ith column of A is contained in Λ.

For every matrix A ≥ 0, there exists a suitable permutation P of the basis of Rn,
after which A gets a block upper-triangular form with r ≥ 1 diagonal blocks Aj of
sizes dj , j = 1, . . . , r, called the Frobenius factorization:

(4.10) P−1AP =









A1 ∗ . . . ∗

0 A2 ∗
...

...
. . . ∗

0 . . . 0 Ar









.

For each j = 1, . . . , r, the matrix Aj in the jth diagonal block is irreducible. Any
nonnegative matrix possesses a unique Frobenius factorization up to a permutation
of blocks (see [11, Chapter 8]).
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The following fact of the Perron–Frobenius theory is well known (e.g.,
[11, Chapter 8]).

Lemma 4.12. An irreducible matrix has a simple leading eigenvalue.

The converse is not true: a matrix with a simple leading eigenvalue can be
reducible.

Let A be an n × n nonnegative matrix. Its leading eigenvector v is called min-
imal if there is no other leading eigenvector that possesses a strictly smaller (by
inclusion) support. A minimal leading eigenvector can be found by Frobenius factor-
ization (4.10). For this, we need to take the biggest m such that ρ(Am) = ρ(A) (i.e.,
the “lowest” block with the maximal spectral radius); then the minimal eigenvector
is the leading eigenvector of the submatrix with blocks A1, . . . , Am.

The case of a strictly positive leading eigenvector, when v possesses a full support,
is characterized by the following statement.

Proposition 4.13. If a nonnegative n×n matrix A has a strictly positive minimal
leading eigenvector v, then the leading eigenvalue λmax is simple and there exists a
permutation P of the basic vectors such that A gets the block upper-triangular form

(4.11) P−1AP =

(
B ∗
0 C

)

,

where B and C are square matrices such that C is irreducible with ρ(C) = λmax, and
ρ(B) < λmax (the block B may be empty, in which case P = In and C = A).

Proof. Without loss of generality it can be assumed that λmax = 1. Since Akv = v
for all k, and v is positive, it follows that the sequence ‖Ak‖, k ∈‖, is bounded and
hence the eigenvalue 1 has only one-element Jordan blocks. If there are at least two
of those blocks, then A has at least two leading eigenvectors v1 and v2. Denoting

α = min {
v
(i)
1

v
(i)
2

| v
(i)
2 > 0} we see that v1 − αv2 is a leading eigenvector, which has

a zero component. This contradicts the minimality of v. Therefore, the leading
eigenvalue has a unique one-element Jordan block, i.e., it is simple. Further, consider
the Frobenius factorization of A generated by a suitable permutation matrix P (called
also Frobenius normal form; see [11]). In this factorization, matrix P−1AP has an
upper-triangular block form with irreducible blocks. Since the leading eigenvalue λmax

is simple, there exists a unique block with this leading eigenvalue. Since the leading
eigenvector of A is strictly positive, it follows that this block takes the last position
in the diagonal (i.e., in the lower right corner of the matrix). It remains to denote
this block by C and the union of all other blocks by B.

The basis vectors corresponding to the block C in factorization (4.11) span an
invariant coordinate subspace of matrix AT , on which this matrix is irreducible with
spectral radius equal to λmax. Thus, we obtain the following consequence.

Corollary 4.14. If a nonnegative n× n-matrix A has a minimal leading eigen-
vector v > 0, then there exists a unique nonempty subset H ⊂ Ω such that VH is
an invariant subspace of AT on which this matrix is irreducible and has the spectral
radius equal to ρ(A).

One can note that this statement is similar to Lemma 4.3. However, in Lemma 4.3
the vector v is arbitrary and does not have to be an eigenvector of A. Moreover, in
contrast to Lemma 4.3, Corollary 4.14 states the existence and uniqueness of the
common invariant subspace of AT on which A is irreducible and has the spectral
radius equal to ρ(A).
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We call the subset H ⊂ Ω from Corollary 4.14 the basic set of the matrix A and
VH the basic subspace. Thus, the matrix with a strictly positive minimal leading
eigenvector possesses a unique basic set. By Proposition 4.13, the permutation P
maps the set {n− |H|+ 1, . . . , n} to the set H.

4.5. Greedy spectral simplex method to find the closest stable matrix
in ℓ∞-norm. For every τ > 0, problem (4.9) can be solved by the greedy spectral
simplex method presented in this section. We describe and analyze the algorithm for
a more general problem of minimizing the spectral radius over a product family F =
F (1) × · · · × F (n) with arbitrary polyhedral uncertainty sets F (i) ⊂ R

n
+:

ρ(X) → min : X ∈ F .(4.12)

For finding the closest stable matrix, we set F (i) = B−
τ (A

(i)) = Bτ (A
(i))∩R

n×n
+ and

obtain problem (4.9).
The idea of the greedy spectral simplex method naturally follows from Proposi-

tions 4.5 and 4.7. Let us take arbitrary matrix X0 ∈ F and start the iterative scheme.
In the beginning of kth iteration, k ≥ 0, we have a matrix Xk. Let us find its leading
eigenvector vk and for every i = 1, . . . , n solve the problem 〈x, vk〉 → minx∈F(i) . This
can be done using the standard linear programming technique. In particular, the
solution x is always attained at a vertex of the polyhedron F (i). Denote this solution

(vertex of F (i)) by X
(i)
k+1 and compose the next matrix Ak+1 by the optimal rows

X
(i)
k+1, i = 1, . . . , n. Then compute the leading eigenvector of the new matrix, do the

next iteration, etc. The algorithm terminates when the matrix Xk is optimal in each
row. In this case, we can set XN+1 = XN . By Proposition 4.5, XN provides a global
minimum to the problem (4.12).

Applying Corollary 4.6, we come to the following conclusion.

Corollary 4.15. If all the uncertainty sets F (j) are strictly positive, then the
spectral radius ρ(Xk) of the sequence of matrices, arising in the greedy spectral simplex
method, decreases in k. In particular, the algorithm never cycles.

On the other hand, since each row X
(i)
k is a vertex of the polyhedron F (j), the

total number of states is finite. Hence the algorithm finds the global minimum in a
finite number of iterations. Thus, we have proved the following.

Theorem 4.16. If all the uncertainty sets F (j) are strictly positive, then the
greedy spectral simplex method finds the optimal solution in finite number of itera-
tions.

However, if some vectors from F (j) have zero entries, then the spectral radius
ρ(Xk) may not be strictly decreasing in k. In this case, ρ(Xk) may stay unchanged
for many iterations and the algorithm may cycle [22]. Moreover, without the positivity
assumption, matrices Xk may have multiple leading eigenvalues, which complicates
their computation and causes an uncertainty in choosing the leading eigenvector vk
from the corresponding root subspace. This is the reason why the greedy spectral
simplex method needs to be modified for avoiding these issues. We present below its
modified version, which works efficiently for all nonnegative polyhedral uncertainty
sets including the case of sparse matrices.

Notation for Algorithm 1. We denote Ω = {1, . . . , n}, S is the support of the min-
imal eigenvector, and H is the basic set. For an arbitrary K ⊂ Ω, VK = span {ej | j ∈
K} is the corresponding coordinate subspace, and Y |K is the restriction of a matrix
Y to the subspace VK , i.e., the principal submatrix of Y corresponding to indices
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in K. Let Y be an n × n matrix from the product family F , v be its leading eigen-
vector, and K ⊂ supp (v). We use the same notation X(i) for the ith row of matrix
X = Y |K (this is a vector of dimension |K|) and for the corresponding row Y (i) ∈ Fi

of the matrix Y (of dimension n). Thus, we identify Y (i) with X(i) = Y (i)|K . Since
K ⊂ supp(v), we have 〈v,X(i)〉 = 〈v, Y (i)〉, and this identification will not cause any
confusion.

Comments. In each iteration, the algorithm deals with the following sets of in-
dices: Ω is the set of all indices {1, . . . , n}, S is the support of the minimal leading
eigenvector, and H is the basic set. We have H ⊂ S ⊂ Ω. The relation between these
sets is seen from the following picture:

(4.13) Xk =

S
︷ ︸︸ ︷

X ∗

0 ∗

︸ ︷︷ ︸

Ω

; X =

S
︷ ︸︸ ︷

B ∗

0 C

︸ ︷︷ ︸

H

Here ρ(Xk) = ρ(X) and X has a positive minimal leading eigenvector; ρ(X) = ρ(C)
and C is irreducible, as in Proposition 4.13.

In Algorithm 1 we have three main components:
(1) Invariants. In each iteration we have a matrix X ∈ F , its minimal leading

eigenvector v, and a set of indices S = supp (v).
(2) Progress measure. After each step of the algorithm, we have either ρ(Xk) <

ρ(Xk−1) or ρ(Xk) = ρ(Xk−1) and |Sk| < |Sk−1|. The index set S is al-
ways nonincreasing unless ρ(Xk) < ρ(Xk−1). When ρ strictly decreases, we
recompute the set S for the new matrix Xk and start with this set Sk = S.

Inside one step of the algorithm (in the inner loop), the progress measure is the
spectral radius of the perturbed matrix: Xε = X + εJm, where m = |S|, Jm is the
m ×m matrix of ones and ε > 0 is a small number. During one step, the algorithm
produces a sequence of matrices with the same ρ(X) and with the same set S, but
the value ρ(Xε) strictly decreases (see the proof of Theorem 4.17).

(3) Stopping criterion. The algorithm stops when the current matrix Xk is opti-
mal in every row, in which case Xk is the matrix with the minimal spectral
radius in F .

Theorem 4.17 below provides the theoretical base of the algorithm.

Theorem 4.17. Algorithm 1 is well defined. It finds the global solution of prob-
lem (4.12) in a finite number of steps.

The well-definedness means that at each iteration matrix X ′ has a leading eigen-
vector, which is unique up to a normalization. We are proving more: X ′ has a simple
leading eigenvalue. The finite-time termination means that the algorithm does not
cycle. For proving both properties, we need one auxiliary result.

Proposition 4.18. Let a nonnegative matrix A have a minimal leading eigen-
vector v > 0 and let H be the corresponding basic set. Let a nonnegative matrix A′

and a set I ⊂ Ω be such that
{

A(i)′ = A(i), i ∈ I,

〈A(i)′, v〉 < 〈A(i), v〉, i /∈ I.
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Algorithm 1. For minimizing the spectral radius over a product family.

Data: F (i) ⊂ R
n
+, i = 1, . . . , n, are the polyhedral uncertainty sets;

F = F (1) × · · · × F (n) is the corresponding matrix family. Each F (i) is given either
by a finite set of vertices or by a system of linear inequalities.
Result: X̄ ∈ F such that ρ(X̄) = minX∈F ρ(X).
begin

Choose arbitrary X1 ∈ F .
1 (*) kth iteration. For a nonnegative n × n-matrix Xk, compute its minimal

leading eigenvector v (take any of them, if there are several), set S = Sk =
supp (v), X = Xk|S , and go to (**);

2 (**) Main loop. We have a set S ⊂ Ω, a square nonnegative matrix X of size
|S|, which is the principal submatrix of Xk on the set S, and the minimal leading
eigenvector v > 0 of X. Denote by H the basic set of X. For each i ∈ S solve

(4.14) 〈x, v〉 → min : x ∈ F (i).

Denote by I the set of indices i such that the ith row of matrix X provides the
global minimum for this problem:

I = {i ∈ S : 〈X(i), v〉 = minx∈F(i)〈x, v〉}.

3 if I = S then
ρ(X) = minY ∈F ρ(Y ), and STOP. Go to Return;

else
4 Define the next matrix X ′ as follows:

(4.15) X(i)′ =

{

X(i), i ∈ I,
arg min

x∈F(i)
〈x, v〉, i /∈ I, i = 1, . . . , n.

Thus, we leave all optimal rows of X untouched and replace all other rows
by solutions of problem (4.15);

5 if H ⊂ I then
ρ(X ′) = ρ(X), the leading eigenvalue of X ′ is simple and is attained on VH;

6 We compute the leading eigenvector v′ of X ′.
7 if v′ > 0 then

set X = X ′, v = v′. The set S is not changed. Go to (∗∗);
else

8 set S = supp (v′), X = X ′|S , and v = v′|S . Go to (∗∗).

else
9 we have H 6⊂ I and ρ(X ′) < ρ(X). Define the next matrix Xk+1:

(4.16) (Xk+1)
(i) =

{

X(i)′, i ∈ S,

X
(i)
k , i /∈ S ,

i = 1, . . . , n.,

and go to the next (k + 1)st iteration (*);

10 Return Define the n×n matrix X̄ as follows: X̄(i) = X(i) for i ∈ S and X̄(i) = X
(i)
k

for i /∈ S. Then X̄ is a solution;
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Then ρ(A′) ≤ ρ(A), and the equality ρ(A′) = ρ(A) holds if and only if H ⊂ I. In
this case, matrix A′ has a block upper-triangular form (4.11) in the same basis with
diagonal blocks B′ and C ′ such that C ′ = C and ρ(B′) < ρ(A).

Proof. Without loss of generality we assume ρ(A) = 1. Thus, Av = v. Since
A′v ≤ Av and therefore A′v ≤ v with v > 0, it follows that ρ(A′) ≤ 1.

If H ⊂ I, then A(i)′ = A(i) for all i ∈ H. Therefore, the restrictions of the
matrices AT and (A′)T on the subspace VH coincide. By definition of H, the spectral
radius of the matrix AT on this subspace is equal to one. Hence, so is the spectral
radius of (A′)T on this subspace. Thus, the spectral radius of the restriction of the
matrix (A′)T to the subspace VH is one. Therefore, ρ(A′) ≥ 1, and hence ρ(A′) = 1.

Assume now that ρ(A′) = 1 and show that in this case H ⊂ I. The set of active
inequalities in the system A′v ≤ v coincides with I. Applying Lemma 4.3 to the
matrix A′ and to the vector v, we see that if ρ(A′) = 1, then there is a subset I ′ ⊂ I
such that the subspace V = VI′ is invariant for the matrix (A′)T and ρ

(
(A′)T |V

)
= 1.

However, all columns of the matrix (A′)T with indices from I are the same as in the
matrix AT . Therefore, the space V is invariant for the matrix AT and ρ

(
AT |V

)
= 1.

By Corollary 4.14, we see that I ′ contains H and hence H ⊂ I. Therefore,

A(i)′ = A(i) for all i ∈ I. So, matrix A′ has the block upper-triangular form (4.11) in
the same basis with C ′ = C.

It remains to prove that ρ(B′) < 1. Denote by u the part of the vector v sup-

ported on the set Ω \ H. Since 〈B(i)′, u〉 ≤ 〈A(i)′, v〉 for all i, we see that the set of
active inequalities for Bu ≤ u is a subset of I, which does not intersect H. Apply-
ing Lemma 4.3 again, we see that this subset must contain H. This contradiction
completes the proof.

Proof of Theorem 4.17. We need to establish two properties.
(1) (well-definiteness) Every matrix X has a unique simple leading eigenvalue.
(2) (finite termination) The algorithm does not cycle.
The first statement follows directly from Proposition 4.13. For proving non-

cyclicity, we note that the spectral radii ρ(Xk) strictly decrease in k. Hence, it suffices
to show that the algorithm cannot cycle within one iteration. Furthermore, the sets
S form a nonincreasing embedded sequence. Therefore, cycling may happen only
within one set S = Sk on the kth iteration. In this case, the greedy spectral simplex
method generates a sequence of matrices X on the set S. Denote these matrices by
Xk,1, Xk,2, . . .. Each of these matrices Xk,j has a simple leading eigenvalue λmax, the
same for all j.

If this sequence is cycling, then the algorithm for a perturbed family Fε = {Y +
εJn | Y ∈ F} is also cycling whenever ε > 0 is small enough (Jn ∈ R

n×n is the matrix

of all ones). Indeed, all the rows X
(i)
k,j , j ∈ N, run over the finite set of vertices of

the polytope F (i). Hence, all Xk,j , j ∈ N, run over a finite set of matrices extr (F).
The same is true for the perturbed family Fε: the matrices run over the finite set of
vertices extrFε.

Furthermore, the leading eigenvector of Xk,j corresponds to the simple eigen-
value λmax and hence it depends continuously on the coefficients of Xk,j . Since
the total set of matrices Xk,j is finite, all their leading eigenvectors vk,j are uni-
formly close to the leading eigenvectors of the perturbed matrices Xk,j,ε, when-
ever ε is small enough. Therefore, all strict inequalities 〈X ′(i), v〉 < 〈X(i), v〉, for
X = Xk,j , X

′ = Xk,j+1, v = vk,j , involved in the construction of matrixX ′ = Xk,j+1

by formula (4.16), remain strict after the ε-perturbation. Hence, the perturbed
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algorithm runs over the same sequence of perturbed matrices Xj,ε. If the algorithm
cycles, it follows that Xj = Xj+m for some j and m, and hence Xj,ε = Xj + εJn =
Xj+m + εJn = Xj,ε. However, the algorithm, as applied to strictly positive matrices,
does not cycle (Theorem 4.16). Hence, the equality Xj+m,ε = Xj,ε is impossible.

4.6. Implementation details of Algorithm 1. Each step of Algorithm 1 in-
volves one computation of the minimal leading eigenvector of a square matrix X and
the solution of minimization problem (4.14) for each row of X. The size m of this
matrix is equal to |S|, where S is the support of the leading eigenvector of the matrix
obtained at the previous step. Let us look at these operations.

Computing the leading eigenvector of X is the most expensive operation.
It can be done in two steps: Frobenius factorization of X (O(m2) operations) and
computing the leading eigenvalues of the blocks. Note that by the construction of
the algorithm, the leading eigenvalue λmax of X is simple and hence λmax is Lipschitz
continuous in matrix coefficients. The computation of λmax can be done as suggested
in section 3.

Solving the problem (4.14) in each row of X can be implemented for ev-
ery polyhedral set F (i) as a usual linear programming problem, or just by inspection
of the finite number of vertices. If F (i) is ℓ∞-ball, then it can be done much more
simply. We show this below.

Let us look now at the implementation details for the problem of finding the
closest nonnegative stable matrix (4.8). Assume that A ≥ 0 and ρ(A) > 1. We set
τ0 = 1

2 ‖A‖ and start the bisection method in τ . For each τ , we solve problem (4.12)
for the uncertainty sets being positive parts of ℓ∞-balls of radius τ centered at the
rows of matrix A. Thus, F (i) = B−

τ (A
(i)) = Bτ (A

(i)) ∩ R
n×n
+ .

We apply Algorithm 1 for this problem. Its implementation is basically the same
as for the usual polyhedral sets. However, there are some simplifications.

1. Realization of Algorithm 1 for ℓ∞-balls F (i) = B−
τ (A

(i)). Solving
minimization problem (4.14) at each iteration can be done explicitly. First, we order
the entries of the leading eigenvector v with indices from S: v(j1) ≥ · · · ≥ v(jm), where
{j1, . . . , jm} = S. Then the problem (4.14) becomes as follows:

(4.17)
∑m

k=1 v
(jk)x(jk) → min :

∑m
k=1 x

(jk) ≥ −τ +
∑m

k=1A
(i,jk).

Define by ℓ = ℓ(τ) the minimal index such that
∑ℓ

s=1A
(i,js) > τ . If

∑m
s=1A

(i,js) ≤ τ ,
then we set ℓ = m+ 1. The solution to the problem (4.17) is then

(4.18) x(jk) =







0, k < ℓ ,

−τ +
∑ℓ

s=1A
(i,js), k = ℓ ,

A(i,jk), k > ℓ ,

and for all j /∈ S we set x(j) = A(i,j). If ℓ = m+ 1, then x = 0.
Applying bisection, we produce a sequence {τi}i≥0 converging to the optimal

point. For each i, we minimize the spectral radius ρ(X) on the ℓ∞-ball B−
τi(A) by

applying Algorithm 1. Denote by Xi ∈ B−
τi(A) the solution of this problem. When

the step length of the bisection |τi+1 − τi| becomes small enough, we can stop it
and find the exact solution in one step. The following method can be applied either
when the step length of the bisection becomes small or when the ordering of entries
of v stays unchanged for several τi. Suppose we stop at some τj . It can always be
assumed that the values ρ(Xk) and ρ(Xk+1) are on opposite sides of 1; otherwise we
do several further iterations of the bisection. So, letting ρ(Xk) > 1 and ρ(Xk+1) < 1,
the opposite case is considered in the same way.
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2. Finding min τ for which ρ(X) = 1, ‖X −A‖∞ = τ. We assume that the
ordering of entries of the current leading eigenvector v coincides with the ordering for
the final v (of the optimal matrix X). Consequently, we try to obtain the exact value
of τ∗ within one iteration by assuming ρ(X) = 1 for the matrix X constructed by the
formula (4.18). We have X = C − τR, where

(4.19) C(i,jk) =







0, k < ℓi,
∑ℓi

s=1A
(i,js), k = ℓi,

A(i,jk), k > ℓi;

i, jk ∈ S, k = 1, . . . ,m .

For j /∈ S, i ∈ S, we set C(i,j) = A(i,j); for i /∈ S, we set C(i,j) = X
(i,j)
k (let us recall

that we assume ρ(Xk) > 1). Here ℓi is the smallest index such that
∑ℓi

s=1A
(i,js) > τ

(if
∑m

s=1A
(i,js) ≤ τ , then we set ℓi = m+ 1, and C(i,jk) = 0 for all k = 1, . . . ,m), R

is a Boolean matrix, which has in the ith row (i ∈ S) all zeros except a single 1 at
position ℓi (provided that ℓi ≤ m), and all zeros otherwise. If i /∈ S, then R(i) = 0.

Denote τ1 = mini∈S,ℓi≤m

∑ℓi
s=1A

(i,js). By construction, we have C − τ1R ≥ 0
and τ1 > τ . Hence ρ(C − τ1R) < 1. Since 1 = ρ

(
C − τR

)
= ρ

(
C − τ1R+ (τ1 − τ)R

)
,

it follows that det
(
I − (C − τ1R) − (τ1 − τ)R

)
= 0, and consequently

(4.20) det
(

1
τ1−τ I −

[
I − (C − τ1R)

]−1
R
)

= 0.

Note that the value ρ(C − τR) decreases in τ and hence there is a unique τ > 0
such that ρ(C − τR) = 1. Therefore, (4.20) has a unique solution τ . Note also that
[
I − (C − τ1R)

]−1
=
∑∞

k=0(C − τ1R)
k ≥ 0. Hence, (4.20) means that the number

λ = 1
τ1−τ is the leading eigenvalue of the nonnegative matrix

[
I − (C − τ1R)

]−1
R.

Hence, λ can be found numerically by the method described in section 3. Then we
set τ∗ = τ = τ1 −

1
λ , and the optimal value τ∗ is found.

Thus, we can briefly describe step 2. First we construct the Boolean matrix R by
the current τk such that ρ(Xk) > 1 and ρ(Xk+1) < 1. Then we solve (4.20), find τ ,
and check that this τ produces the same Boolean matrix R (all ℓi stay the same). If
this is the case, then τ∗ = τ is the optimal value.

5. Numerical examples and the complexity issue in ℓ∞- and ℓ1-norms.
Since the cases of ℓ∞- and ℓ1-norms are similar, we focus on the ℓ∞-norm.

The closest unstable matrix is found by the explicit formula (4.3), where τ∗ is
the reciprocal to the largest component of the vector (I − A)−1e and k is the index
of this component. Hence, finding the closest unstable matrix to a matrix A is fully
reduced to solving the linear system (I − A)x = e. In particular, the complexity of
this problem does not exceed the complexity of a linear system solver. As we know,
the solution can be efficiently found in dimensions of several thousands.

For the closest stable matrix, the situation is more difficult. We have no theoret-
ical results estimating the number of iterations of Algorithm 1. Complexity of each
iteration can easily be estimated because this is actually the complexity of comput-
ing the Perron eigenvector for a nonnegative matrix; all other operations are much
cheaper. This can be realized on a standard laptop for dimensions of several thou-
sands. So, the total complexity estimate is reduced to the number of iterations k of
Algorithm 1 times the number of steps of the bisection. The latter is known to be
logarithmic. As for the number of iterations k, we can estimate it only empirically,
by numerical experiments. They show a surprising efficiency of Algorithm 1. Table 1
demonstrates the results for randomly generated matrices of dimensions from 50 to
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Table 1

Average number of iterations and computing time for finding the closest stable matrix in ℓ∞-
norm. Positive matrices.

n 50 100 250 500 750 1000
# 7.6 8.2 10.4 10.8 18 14.2
t 0.15s 0.75s 9.08s 44.02s 215.03s 302.43s

Table 2

Average number of iterations and computing time for finding the closest stable matrix in ℓ∞-
norm. Sparse matrices.

n 50 100 250 500 750 1000
# 4.4 8.2 9 11.6 11.6 12.8
t 0.15s 3.31s 20.26s 140.9s 290.06s 717.25s

1000. We consider strictly positive randomly generated matrices. The first line is the
dimension, the second is the number of iterations, i.e., the total number of computa-
tions of the leading eigenvector, and the third line is the computer time in a standard
laptop. For each n, we made five experiments and show the average results.

As we see, for positive matrices, the closest stable matrix is found in dimension
100 for less than one second and in dimension 1000 for about 302 seconds.

Table 2 show the numerical results for sparse matrices. We see that the compu-
tation time is bigger, but the method still works very fast.

Example 4. Computing the closest stable matrix for a positive matrix A. We
consider an integer 10× 10 matrix A with random independent components from the
set {1, . . . , 9}:

A =



















3 3 3 6 6 4 1 3 5 4
5 6 9 8 5 7 6 4 7 9
8 9 2 1 2 1 2 3 7 6
1 5 2 3 7 2 8 2 8 9
6 8 9 7 3 5 7 1 8 2
9 3 5 7 8 5 8 7 3 1
4 4 8 3 2 4 4 9 2 4
8 9 6 5 6 2 9 5 1 3
4 5 4 6 7 1 9 4 1 6
5 8 8 9 1 7 7 2 2 8



















.

We have ρ(A) = 50.458, so A is highly unstable. The algorithm computes the closest
stable nonnegative matrix:

X =



















1 0 0 0 0 0 0 0 0 0
5 0 9 0 0 0 6 2 7 0
4 0 0 0 0 0 0 0 0 0
1 0 2 0 0 0 7 0 0 0
6 0 9 0 0 0 4 0 0 0
9 0 5 0 0 0 5 0 0 0
4 0 3 0 0 0 0 0 0 0
8 0 6 0 0 0 3 0 0 0
4 0 4 0 0 0 2 0 0 0
5 0 8 0 0 0 7 0 0 0



















.

The computation takes 0.13 seconds.
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Example 5. Computing the closest stable matrix for a sparse matrix A. We con-
sider a sparse integer 10× 10 matrix A with at most four positive components (ran-
domly chosen) in each row. The positive components are from the set {1, . . . , 9}:

A =



















0 0 0 0 0 0 2 3 0 2
0 0 7 5 2 3 0 0 0 0
4 0 0 0 1 0 7 0 0 0
0 3 0 4 7 0 8 0 0 0
0 6 0 7 4 0 0 0 0 5
8 5 1 0 0 9 0 0 0 0
0 0 0 1 0 0 0 0 9 0
0 1 0 0 9 0 0 0 5 0
0 9 0 0 0 0 5 3 0 9
1 0 0 1 0 9 0 0 0 6



















.

We have ρ(A) = 17.59411, so A is unstable. The algorithm computes the closest
stable nonnegative matrix:

X =



















0 0 0 0 0 0 0 0 0 0
0 0 7 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0
0 3 0 1 0 0 8 0 0 0
0 6 0 1 0 0 0 0 0 5
8 5 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 5 0
0 9 0 0 0 0 5 0 0 9
1 0 0 0 0 9 0 0 0 0



















.

The computation takes 0.32 seconds.

6. Conclusion. We have presented methods of numerical solution for finding
the closest stable or closest unstable nonnegative matrix to a given matrix A. Three
possible cases of measuring distances are considered: the matrix max-norm (the max-
imal absolute value of entries), the ℓ∞ operator norm (the maximal sum of elements
of rows), and the ℓ 1 operator norm (the maximal sum of elements of columns). We
show that in all those cases the absolute minimum can be found efficiently. The clos-
est unstable matrix is computed by explicit formulas; the closest stable matrix can
be found by an iterative relaxation scheme that makes use of the recent “spectral
simplex method.”

From the practical point of view, we arrived at a curious conclusion: to increase
the spectral radius so that the sum of entries in each row of the matrix increases by at
most a, one needs to change by a all elements of one column. That “most sensitive”
column corresponds to the maximal component of the vector (I−A)−1e. In the Leon-
tief input-output model [15], this principle means that the economy suffers the worst
because of an appreciation in one sector. Moreover, that sector can be easily identi-
fied. In the matrix models of population dynamics (see, for instance, [17]), the same
principle means that if an ecological system (say, a forest) is dying, then to improve
the situation, one needs to support only one type of plants and to not touch the others.
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