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Abstract. In multiagent systems, agents often have to rely on other
agents to reach their goals, for example when they lack a needed resource
or do not have the capability to perform a required action. Agents there-
fore need to cooperate. Some of the questions then raised, such as, which
agent to cooperate with, are addressed in the field of coalition formation.
In this paper we go further and first, address the question of how to com-
pute the solution space for the formation of coalitions using a contextual
reasoning approach. We model agents as contexts in Multi-Context Sys-
tems (MCS) and dependence relations among agents as bridge rules. We
then systematically compute all potential coalitions using algorithms for
MCS equilibria. Finally, given a set of functional and non-functional re-
quirements, we propose ways to select the best solutions. We illustrate
our approach with an example from robotics.

1 Introduction

In multiagent systems, agents have goals to satisfy. Typically, agents cannot
reach all their goals by themselves, without any help. Instead, agents need to
cooperate with other agents, for example because they need a specific resource
to satisfy a goal, or do not have the capability required to perform a task.

The questions then, are: Which agent to cooperate with? Which group of
agents to join? The problem of assembling a group of cooperating agents in order
for all agents to reach their goals, shared or not, is referred to as coalition forma-
tion, and has been on the focus of many recent works in the area of multiagent
systems (e.g., [31, 32, 30, 18, 3, 17, 7]). This paper introduces a novel contextual
reasoning approach to address the problem based on the use of Multi-Context
Systems (MCS).

Multi-Context Systems (MCS ) [16, 15, 6] are logical formalizations of dis-
tributed context theories connected through a set of bridge rules, which enable
information flow between different contexts. A context can be thought of as a
logical theory - a set of axioms and inference rules - that models local knowledge
of an agent. Intuitively, MCS can be used to represent any information system
that consists of heterogeneous knowledge agents including peer-to-peer systems,
distributed ontologies or Ambient Intelligence systems. Several applications have



already been developed on top of MCS or other similar formal models of con-
text including (a) CYC common sense knowledge base [21], (b) contextualized
ontology languages, such as Distributed Description Logics [4] and C-OWL [5],
(c) context-based agent architectures [25, 26], and (d) distributed reasoning al-
gorithms for Mobile Social Networks [1] and Ambient Intelligence systems [2].

Here we address the question of how to find and evaluate coalitions among
agents while taking advantage of the MCS model and algorithms. The main ad-
vantages of this approach are: (a) MCS can represent heterogenous multiagent
systems, i.e. systems containing agents with different knowledge representation
models; (b) bridge rules can represent different kinds of inter-agent relationships
such as dependencies, constraints and conflicting goals; (c) there are both cen-
tralized and distributed algorithms that can be used for computing the potential
coalitions. We formulate our main research question as:

– How to find and evaluate coalitions among agents in multiagent systems
using MCS tools?

This breaks down into the following two sub-questions:

1. How to formally compute the solution space for coalition formation using
MCS tools?

2. How to select the best solution given a set of requirements?

Our methodology is the following. We start with modeling dependencies
among agents using dependence relations as described in [32]. We then model
the system as a MCS: each agent is modeled as a context with a knowledge
base with an underlying logic and dependence relations are modeled as bridge
rules. Third, we use appropriate algorithms to compute MCS equilibria. Each
equilibrium corresponds to a different coalition. Finally, given a set of require-
ments, we show how to select the best solutions. The requirements we consider
may be of two kinds. They may be domain related. For example in robotics,
power consumption is a key concern that must be carefully dealt with. They
may also be system related. For example in multiagent systems, the efficiency
and conviviality of the system may be considered.

The rest of the paper is structured as follows. Section 2 introduces our run-
ning example from robotics. Section 3 presents background information on de-
pendence networks, coalition formation and MCS. Section 4 describes our ap-
proach: how we use MCS to represent agents and their dependencies; how we
systematically compute the coalitions; and how we then select the best coali-
tions with respect to given requirements. Section 5 presents related research,
and Section 6 concludes with a summary and a perspective on future works.

2 Running Example

We now present a scenario to illustrate how our approach works. Consider an
office building, where robots assist human workers. As typically, there are not
enough office supplies, such as cutters, glue, etc., for everyone, they have to be



shared among the workers. Furthermore, as it is considered inefficient and unpro-
ductive for a worker to contact other colleagues and get supplies by themselves,
the worker can submit a request to the robots to get and/or deliver the needed
supplies for her, while she/he keeps on working at her desk. We refer to a request
submitted to the robots as a task.

Workers and robots communicate via a simple web-based application, which
transmits the workers’ requests to the robots and keeps track of their status. The
robots have limited computational resources: they only keep track of their recent
past. Furthermore, not all robots know about the exact locations of supplies.
Therefore, robots rely on each other for information about the location of the
supplies: the last robot having dealt with a supply is the one knowing where it
is. We assume the availability of such an application, and a stable and reliable
communication network. A depiction of the scenario is presented in Figure 1.

Fig. 1. A depicted scenario of robots in office building.

We consider a set of 4 robots A = {ag1, ag2, ag3, ag4} and four tasks: T =
{t1, t2, t3, t4}, where: t1 is to deliver a pen to desk A, t2 is to deliver a piece of
paper to desk A, t3 is to deliver a tube of glue to desk B, and t4 is to deliver a
cutter to desk B. We assume that a robot can perform a task if it can carry the
relevant supply and knows its source and destination. Due to their functionalities,
robots can carry the following supplies: ag1 the pen or the glue, ag2 the paper,
ag3 the glue or the cutter, and ag4 the pen or the cutter. Each robot knows who
has the information about the source and the destination of each supply, but the
actual coordinates are only revealed after an agreement on a coalition among
the robots has been made. This involves interdependency among robots.

To start, robots get the information concerning the locations of the supplies
and the distances between the supplies and their destinations. Tables 1 and 2
present the knowledge of the robots about the tasks and the current distances
among the robots, the supplies and the destinations, respectively. The table
should be read as follows. Robot ag1, regarding task t1, knows nothing about
the source of the pen, i.e., where it currently is, but does know the destination



for the pen, i.e., where it must be delivered. Regarding task t2, robot ag1 knows
where the paper is, but knows nothing about its destination.

Upon receiving information about the tasks, robots generate plans to carry
out the tasks based on the knowledge and the capabilities of each robot. For ex-
ample, there are two different plans for delivering the pen to desk A )t1: ag1 can
deliver it after receiving information about its location from robot ag2; alterna-
tively, ag4 can deliver it after receiving information about its location from ag2
and about its destination from ag1. Given the plans, the robots then need to de-
cide how to form coalitions to execute the tasks. We refer to a coalition as a group
of robots executing a task. For example to accomplish all tasks t1, t2, t3, t4, the
following coalitions may be formed: C0 : {(ag1, t3), (ag2, t2), (ag3, t4), (ag4, t1)}
and C1 : {(ag1, t1), (ag2, t2), (ag3, t3), (ag4, t4)}.

After forming coalitions, each robot has to generate its own plan to carry out
the assigned tasks, e.g. plan the optimal route to get the supply and carry it to its
destination. Optimal route planning is a typical shortest path finding algorithm,
i.e., implementations are available and can be deployed on the robots. Therefore,
the robots can generate plans for themselves after they have been given tasks.
Details about generating plans for the robots is out of the scope of the paper.

Robot ag1 ag2

Task t1 t2 t3 t4 t1 t2 t3 t4

Source x x

Destination x x x

Robot ag3 ag4

Task t1 t2 t3 t4 t1 t2 t3 t4

Source x x

Destination x
Table 1. Robots’ knowledge and capabilities

Robot Pen Paper Glue Cutter

ag1 10 15 9 12
ag2 14 8 11 13
ag3 12 14 10 7
ag4 9 12 15 11

Destination Pen Paper Glue Cutter

Desk A 11 16 9 8
Desk B 14 7 12 9

Table 2. Distances among locations

3 Background

3.1 Dependence Networks and Coalition Formation

Our model for dependencies among agents in mutliagent systems is based on
dependence networks. According to Conte and Sichman [34], dependence net-
works can be used to represent the pattern of relationships that exist between
agents, and more specifically, interdependencies among agents goals and actions.
They can be used to study emerging social structures such as aggregates of het-
erogeneous agents. They are based on a social reasoning mechanism, on social
dependence and on power [32]. Power, in this context, means the ability to fulfill
a goal. Multi-agent dependence allows one to express a wide range of interde-
pendent situations between agents.



A dependence network consists of a finite set or sets of actors and the relation
or relations between them [33]. Actors can be people or organizations. They are
linked together by goals, behaviors and exchanges such as hard currency or in-
formation. The structural similarity between dependence networks and directed
graphs is such that a dependence network can be represented as a dependence
graph. Informally, the nodes in the graph represent both the agents themselves,
and the actions they have to perform to reach a goal. The directed edges in the
graph are labelled with goals, and link agents with actions.

When agents cooperate to achieve some of their goals, they form groups or
coalitions. Coalitions are topological aspects of a dependence network. They are
indicative of some kind of organization, for example, the cooperation between
agents in the dependence network. The coalition is supposed to ensure individual
agents a sufficient payoff to motivate them to collaborate. In a coalition, agents
coordinate their behaviors to reach their shared or reciprocal goals, for example
in [27, 34]. All the agents in the coalition somehow benefit from the goals being
reached. A coalition can achieve its purpose if its members are cooperative, i.e.,
if they adopt the goals of the coalition in addition to their own goals.

3.2 Multi-Context Systems

Multi-Context Systems (MCS) [16, 15, 6] has been the main effort to formalize
context and contextual reasoning in Artificial Intelligence. We use here the def-
inition of heterogeneous nonmonotonic MCS given in [6]. The main idea is to
allow different logics to be used in different contexts, and to model information
flow among contexts via bridge rules. According to [6], a MCS is a set of contexts,
each composed of a knowledge base with an underlying logic, and a set of bridge
rules. A logic L = (KBL, BSL, ACCL) consists of the following components:

– KBL is the set of well-formed knowledge bases of L. Each element of KBL

is a set of formulae.
– BSL is the set of possible belief sets, where the elements of a belief set is a

set of formulae.
– ACCL: KBL → 2BSL is a function describing the semantics of the logic by

assigning to each knowledge base a set of acceptable belief sets.

As shown in [6], this definition captures the semantics of many different logics
both monotonic, e.g. propositional logic, description logics and modal logics,
and nonmonotonic, e.g. default Logic, circumscription, defeasible logic and logic
programs under the answer set semantics.

A bridge rule refers in its body to other contexts and can thus add information
to a context based on what is believed or disbelieved in other contexts. Bridge
rules are added to those contexts to which they potentially add new information.
Let L = (L1, . . ., Ln) be a sequence of logics. An Lk-bridge rule r over L,
1 ≤ k ≤ n, is of the form

r =(k : s)← (c1 : p1), . . . , (cj : pj),

not(cj+1 : pj+1), . . . ,not(cm : pm).
(1)



where ci, 1 ≤ i ≤ n, refers to a context, pi is an element of some belief set of
Lci , and k refers to the context receiving information s. We denote by hb(r) the
belief formula s in the head of r.

A MCS M = (C1, . . . , Cn) is a set of contexts Ci = (Li, kbi, bri), 1 ≤ i ≤ n,
where Li = (KBi, BSi, ACCi) is a logic, kbi ∈ KBi a knowledge base, and
bri a set of Li-bridge rules over (L1, . . ., Ln). For each H ⊆ {hb(r)|r ∈ bri} it
holds that kbi∪H ∈ KBLi

, meaning that bridge rule heads are compatible with
knowledge bases.

A belief state of a MCS is the set of the belief sets of its contexts. Formally,
a belief state of M = (C1, . . . , Cn) is a sequence S = (S1, . . . , Sn) such that
Si ∈ BSi. Intuitively, S is derived from the knowledge of each context and the
information conveyed through applicable bridge rules. A bridge rule of form (1) is
applicable in a belief state S iff for 1 ≤ i ≤ j: pi ∈ Sci and for j < l ≤ m: pl /∈ Scl .
Equilibrium semantics selects certain belief states of a MCS M = (C1, . . . , Cn)
as acceptable. Intuitively, an equilibrium is a belief state S = (S1, . . . , Sn) where
each context Ci respects all bridge rules applicable in S and accepts Si. Formally,
S = (S1, . . . , Sn) is an equilibrium of M , iff for 1 ≤ i ≤ n,

Si ∈ ACCi(kbi ∪ {hb(r)|r ∈ bri applicable in S}).

[6] presents also an analysis on computational complexity, focusing on MCS
with logics that have poly-size kernels such as propositional logic, propositional
Defeasible Logic, Autoepistemic Logic and Nonmonotonic Logic Programs. Ac-
cording to this analysis, for a MCS M , deciding whether a literal p is in a belief
set Si for some (or each) equilibrium of M is in Σp

k+1
(resp. Πp

k+1
= co−Σp

k+1
).

4 Computing and evaluating coalitions

One question that arises in scenarios such as the one that we present in Section
2 is how to compute the alternative coalitions that may be formed to achieve a
set of given goals. Here we present a solution based on the use of heterogeneous
nonmonotonic MCS [6], described in Section 3. The main reasons for choosing
the MCS model are: (a) it enables representing systems consisting of agents with
different knowledge representation models; (b) it can represent different kinds
of relationships among agents such as goal-based dependencies, constraints and
conflicting goals; and (c) it provides both centralized and distributed reasoning
algorithms, which can be used for computing goal-based coalitions. Our solution
consists, roughly, of representing agent dependencies and inter-agent constraints
using bridge rules and computing the potential coalitions using algorithms for
MCS equilibria.

4.1 Modeling dependencies

We model each agent in a multiagent system as a context in a MCS. The knowl-
edge base of the context describes the goals of the agent and the actions that it



can perform. Goals and actions are represented as literals of the form gk, aj , re-
spectively. Bridge rules represent the dependencies of the agent on other agents
to achieve its goals. According to the definition given by [34], a dependence
relation

dp : basic dep(agi, agj , gk, pl, am)

denotes that agent agi depends on agent agj to achieve goal gk, because agj may
perform action am needed in the plan pl, which achieves the goal. For a goal gk
of agent agi, which is achieved through plan pl = (ag1 : a1, ag2 : a2, ..., agn :
an), where agj : aj represents action aj performed by agent agj , the following
dependence relations hold:

dpj : basic dep(agi, agj , gk, pl, aj), j = {1, ..., n}

We denote this set of dependencies as DP (agi, gk, pl). One way to represent
dependencies is by using rules of the form: Head ← Body, where the Head
denotes the goal of agent agi that is to be achieved (gk), and the Body describes
the actions of plan pl that will lead to the achievement of the goal. Based on
this intuition, we define bridge rules representing dependence relations among
agents as follows:

Definition 1. For an agent agi with goal gk achieved through plan pl = (ag1 :
a1, ag2 : a2, ..., agn : an), the set of dependencies DP (agi, gk, pl) is represented
by a bridge rule of the form:

(ci : gk)← (c1 : a1), (c2 : a2), ..., (cn : an)

where cj, j = 1, ..., i, ..., n is the context representing agent agj.

Based on the above representation of agents as contexts, and goal-based depen-
dencies among agents as bridge rules, we represent multiagent systems as MCS
as follows.

Definition 2. A MCS M(A) corresponding to a multiagent system A is a set
of contexts ci = {Li, kbi, bri}, where Li = (KBi, BSi, ACCi) is the logic of
agent agi ∈ A, kbi ∈ KBi is a knowledge base that describes the actions that
agi can perform and its goals, and bri is a set of bridge rules, a subset of which
represents the dependencies DP (agi, gk, pl) of agi on other agents in A for all
goals gk of agi and all plans pl, with which these goals can be achieved.

Example 1. In our example, we assume that all four robots use propositional
logic as their knowledge representation model. We model the four robots, ag1-
ag4, as contexts c1-c4, respectively, with the following knowledge bases:

kb1 ={a2s, a1d, a3d, a1c ∨ a3c}

kb2 ={a1s, a4d, a2c}

kb3 ={a4s, a2d, a3c ∨ a4c}

kb4 ={a3s, a1c ∨ a4c}



where aij represents the actions that a robot can perform. i stands for the object
to be delivered: 1 stands for the pen, 2 for the paper, 3 for the glue and 4 for
the cutter. j stands for the kind of action that the agent can perform: c stands
for carrying the object, s stands for providing information about the current
location (source) of the object, while d stands for providing information about
the destination of the object. For example, ag1 can provide information about
the source of the paper (a2s) and the destinations of the pen (a1d) and the glue
(a3d), and can carry the pen and the glue (a1c ∨ a3c).

We represent the four tasks that the robots are requested to perform, ti, as
goals, gi. For example g1 represents the task of delivering the pen to desk A
(t1). We also assume that a robot agj can fulfil goal gi, i.e. deliver object i to its
destination, if it can perform action aic, i.e. carry object i. For example, g1 can
be fulfilled by robots ag1 and ag4, because these robots can carry the pen (a1c).

Given the knowledge and capabilities of robots, as described in Table 1, the
robots can fulfil goals g1 − g4 as follows. For g1, there are two alternative plans:

p11 =(ag2 : a1s, ag1 : a1c)

p12 =(ag2 : a1s, ag1 : a1d, ag4 : a1c)

According to p11, robot ag2 must provide information about the source of the pen
(ag2 : a1s) and ag1 must carry the pen to its destination (ag1 : a1c). According to
p12, robot ag2 must provide information about the source of the pen (ag2 : a1s),
ag1 must provide information about its destination (ag1 : a1d), and ag4 must
carry the pen to its destination (ag4 : a1c).

For g2 there is only one plan, p21; for g3 there are two alternative plans: p31
and p32; and for g4 there are two plans as well: p41 and p42:

p21 =(ag1 : a2s, ag3 : a2d, ag2 : a2c)

p31 =(ag4 : a3s, ag1 : a3c)

p32 =(ag4 : a3s, ag1 : a3d, ag3 : a3c)

p41 =(ag2 : a4d, ag3 : a4c)

p42 =(ag3 : a4s, ag2 : a4d, ag4 : a4c)

Each plan implies dependencies among robots. For example, from p11 the fol-
lowing dependency is derived: dp1 : basic dep(ag1, ag2, g1, p11, a1s), namely ag1
depends on ag2 to achieve goal g1, because ag2 can provide information about
the source of the pen (a1s). Figure 2 represents the dependencies derived from
all plans, abstracting from plans, similarly to [32]. The figure should be read as
follows: The pair of arrows going from node ag1 to the rectangle box labeled a1s
and then to node ag2 indicates that agent ag1 depends on agent ag2 to achieve
goal g1, because the latter can perform action a1s.

Bridge rules r1-r7 represent the same dependencies. Each rule represents the
dependencies derived by a different plan. For example r1 corresponds to plan
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Fig. 2. Dependencies among the four robot agents.

p11 and represents dependency dp1.

r1 = (ag1 : g1)← (ag1 : a1c), (ag2 : a1s)

r2 = (ag4 : g1)← (ag4 : a1c), (ag2 : a1s), (ag1 : a1d)

r3 = (ag2 : g2)← (ag2 : a2c), (ag1 : a2s), (ag3 : a2d)

r4 = (ag1 : g3)← (ag1 : a3c), (ag4 : a3s)

r5 = (ag3 : g3)← (ag3 : a3c), (ag4 : a3s), (ag1 : a3d)

r6 = (ag3 : g4)← (ag3 : a4c), (ag2 : a4d)

r7 = (ag4 : g4)← (ag4 : a4c), (ag3 : a4s), (ag2 : a4d)

One system constraint is that two robots cannot carry the same object at the
same time. This can be described with bridge rules of the form:

¬agl : aic ← agk : aic

where i, k, l = {1...4} and k 6= l. For example, the following rules describe that
ag1 will not carry the pen if one of the other three robots is already carrying it.

¬(ag1 : a1c)← (ag2 : a1c)

¬(ag1 : a1c)← (ag3 : a1c)

¬(ag1 : a1c)← (ag4 : a1c)

Note that using MCS enables us to represent agents that are heterogeneous with
respect to the knowledge representation model that they use. In our running



example, we assumed (for reasons of simplicity) that the four agents use propo-
sitional logic. However, we can also represent any agent using a logic that can be
captured by Definition 2. Note also that we use a rather simplistic representation
for plans, because our goal is not to represent and reason with plans; we are only
interested in the dependencies derived from plans.

4.2 Computing coalitions

An equilibrium in MCS represents an acceptable belief state of the system. Each
belief set in this state is derived from the knowledge base of the corresponding
context and is compatible with the applicable bridge rules. For a MCS M(A)
that corresponds to a multiagent system A, an equilibrium S = {S1, ..., Sn}
represents a coalition in which agents of A can achieve their goals. Specifically,
each belief set Si in the equilibrium contains the actions that agent agi can
perform and the goals that it will achieve in this coalition. If there is more than
one ways with which the goals can be achieved, the MCS will have more than
one equilibria, each one representing a different coalition. If a certain goal does
not appear in any of the equilibria, this means that there is no coalition with
which the goal can be achieved.

In order to compute the potential coalitions in a multiagent system A, one
then has to formulate the MCS M(A) that corresponds to A, and compute the
equilibria S of M(A). The computation of equilibria can either be done by a
central entity that monitors the bridge rules of all agents [6]; or in a distributed
fashion using the distributed algorithm proposed in [11].

Example 2. In our example, the MCS that corresponds to the system of the four
robots, M(A), has two equilibria: S0 and S1:

S0 ={{a2s, a1d, a3d, a3c, g3}, {a1s, a4d, a2c, g2},

{a4s, a2d, a4c, g4}, {a3s, a1c, g1}}

S1 ={{a2s, a1d, a3d, a1c, g1}, {a1s, a4d, a2c, g2},

{a4s, a2d, a3c, g3}, {a3s, a4c, g4}}

S0 represents coalition C0, according to which ag1 delivers the glue to desk B
(g3), ag2 delivers the paper to desk A (g2), ag3 delivers the cutter to desk B (g4)
and ag4 delivers the pen to desk A (g1). S1 represents coalition C1, according
to which ag1 delivers the pen to desk A (g1), ag2 delivers the paper to desk A
(g2), ag3 delivers the glue to desk B (g3) and ag4 delivers the cutter to desk B
(g4). Using the previous abstraction of plans, the two coalitions are graphically
represented in Figure 3.

In order to achieve their goals, the robots then have to carry out the actions
in the plans that are associated to these goals. For example, for coalition C0 the
associated plans are: p12 (for goal g1), p21 (for g2), p31 (for g3) and p41 (for g4),
while the plans associated to C1 are p11, p21, p32 and p42.
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Fig. 3. Coalitions C0 (a), and C1 (b) in bold; remaining dependencies in dotted lines.

4.3 Selecting the best coalition

Selecting the best among the coalitions in which agents can achieve their goals
requires evaluating and comparing them. Efficiency and stability metrics are
commonly used to evaluate coalitions (e.g., [24, 29, 28, 19]). The former giving
an assurance on the economical gain reached by being in the coalition, the later
giving a certainty that the coalition is viable on the long term.

Generally speaking, efficiency in a coalition is a relation between what agents
can achieve as part of the organization compared to what they can do alone or in
different coalitions. Furthermore, a coalition is economically efficient iff i) no one
can be made better off without making someone else worse off, ii) no additional
output can be obtained without increasing the amount of inputs, iii) production
proceeds at the lowest possible per-unit cost [24].

In our example, we can associate efficiency to the distances that the four
robots must cover to perform the required actions. From Table 2 we can compute
the distance for each robot to do each task, and, by adding them up, the cost of
executing tasks in a given coalition. For instance, the cost of C0 is Cost(C0) = 81
whereas the cost of C1 is Cost(C1) = 87. If we compare C0 and C1, C0 is
economically efficient as at least one agent is better off without making anyone
worse off, all else being equal; C0 is also more cost efficient than C1.

Stability of coalitions is related to the potential gain in staying in the coalition
or quitting the coalition for more profit (i.e., free riding). Hence, several elements
come to play for the evaluation of a coalition’s stability such as the characteristic
function [23], Shapley value [29], nucleolus [28], Satisfactory Nucleolus [19] and
others.

Depending on the application domain, other functional and non-functional
requirements, e.g., security, user-friendliness or conviviality, may also play an
important role in the choice of a coalition. In [8], we compared coalitions in
terms of conviviality, which we measured by the number of reciprocity based



coalitions that can be formed within an overall coalition. Given the dependence
network (DN) that corresponds to a given coalition, the conviviality of the
coalition Conv(DN) was measured as follows:

Conv(DN) =

∑
coal(a, b)

Ω
, (2)

Ω = |A|(|A| − 1)×Θ, (3)

Θ =

L=|A|∑

L=2

P (|A| − 2, L− 2)× |G|L, (4)

where |A| is the number of agents in the system, |G| is the number of goals, P is
the usual permutation defined in combinatorics, coal(a, b) for any distinct pair
of agents a, b ∈ A is the number of cycles that contain both a and b in DN , L is
the cycle length, and Ω denotes the maximal number of pairs of agents in cycles.
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Fig. 4. Goal dependencies in coalitions C0 (a), and C1 (b).

Abstracting from plans and actions, Figures 4.a and 4.b represent the depen-
dence networks for coalitions C0 and C1 respectively. By applying formula 2 on
the two dependence networks, we can compute the conviviality of the two coali-
tions: Conv(C0) = 0.0000897, Conv(C1) = 0.000143. C1 is therefore preferred
to C0 in terms of conviviality.

In cases of agents with conflicting goals, coalitions differ in the set of goals
that they can fulfil and the selection of a coalition depends on the priorities
among the conflicting goals. It is among our future plans to integrate in the pro-
posed model a preference relation on the set of goals to represent such priorities
and develop algorithms for preference-based coalition formation.



5 Related works

This is not the first work that brings together agents and context logics. [25]
and [26] used Multi-Context Systems as a means of specifying and implementing
agent architectures. Both studies propose breaking the logical description of an
agent into a set of contexts, each of which represents a different component of
the architecture, and the interactions between these components are specified
by means of bridge rules between the contexts. [25] followed this approach to
simplify the construction of a BDI agent, while [26] extended it to handle more
efficiently implementation issues such as grouping together contexts in modules,
and enabling inter-context synchronization. The main difference of our approach
is that its focus is not on the internal representation of agents, but rather on
their interactions with other agents and the coalitions that they can form.

Our previous work on evaluating information exchange in distributed infor-
mation systems was based on modeling MCS as dependence networks where
bridge rules are represented as dependencies [9]. Here we do the opposite: we
use bridge rules to represent dependencies among agents, and model agents as
contexts in MCS.

Several works from different research areas have focused on the problem
of coalition formation including variants of the contract net protocol [14, 20],
according to which agents break down composite tasks into simpler subtasks
and subcontract subtasks to other agents via a bidding mechanism; formal ap-
proaches from multiagent systems, e.g. [18, 30]; and solutions from the field of
robotics based on schema theory, e.g. [35, 36] or synergy [22]. The distinct char-
acteristics of our approach are: (a) it allows agents to use different knowledge
representation models; (b) based on a non-monotonic reasoning model, it en-
ables representing and reasoning with agents with conflicting goals; and (c) it
provides both centralized and distributed algorithms for computing coalitions,
and can hence be applied in settings with different requirements for information
hiding and sharing.

6 Summary and Future Work

In multiagent systems agents often depend on each other and need to cooper-
ate in order to achieve their goals. In this paper we deal with the problem of
computing the alternative coalitions in which the agents may fulfil their goals.
Specifically, we propose a MCS-based representation of multiagent systems, in
which agents are modeled as contexts, and dependence relations among agents as
bridge rules. Based on this representation, we then compute the equilibria of the
MCS, which represent the coalitions in which the agents may fulfil their goals.
Finally, given a set of functional and non-functional requirements such as effi-
ciency, stability and conviviality, we select the best coalitions. We demonstrate
the proposed approach using an example from robotics, in which four different
robots need to cooperate in order to perform a given set of tasks. For simplicity
we assumed that all four robots use propositional logic. However, being based on



MCS, the proposed solution may also handle agents using different knowledge
representation models.

In further research, we contemplate the need to integrate preferences on
agents and goals into our model. Building on previous work on preference-
based inconsistency resolution in MCS [2, 12, 13], we will develop algorithms for
preference-based coalition formation in the presence of conflicting goals. We also
plan to extend our approach with elements of dynamic MCS [10], i.e. schematic
bridge rules that are instantiated at run time with concrete contexts. This will
enable us handling changes such as the failure of an agent, the arrival of a new
agent or any change in the operating environment. We will also look into applying
and testing our methods in different kinds of agent-based systems characterized
by heterogeneity of the participating agents, openness and dynamicity, such as
ubiquitous robots and Ambient Intelligence systems. To achieve this we will use
existing MCS implementations, such as DMCS1, a distributed solver for MCS,
and MCS-IE2, a tool for explaining inconsistencies in MCS.
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