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Computing conditional entropies for quantum
correlations
Peter Brown 1✉, Hamza Fawzi2 & Omar Fawzi1

The rates of quantum cryptographic protocols are usually expressed in terms of a conditional

entropy minimized over a certain set of quantum states. In particular, in the device-

independent setting, the minimization is over all the quantum states jointly held by the

adversary and the parties that are consistent with the statistics that are seen by the parties.

Here, we introduce a method to approximate such entropic quantities. Applied to the setting

of device-independent randomness generation and quantum key distribution, we obtain

improvements on protocol rates in various settings. In particular, we find new upper bounds

on the minimal global detection efficiency required to perform device-independent quantum

key distribution without additional preprocessing. Furthermore, we show that our construc-

tion can be readily combined with the entropy accumulation theorem in order to establish full

finite-key security proofs for these protocols.
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Quantum cryptography is one of the most promising
applications in the field of emerging quantum technolo-
gies having already seen commercial implementations.

Using quantum systems it is possible to execute cryptographic
protocols with security based on physical laws1—as opposed to
assumptions of computational hardness. To date, much progress
has been made in the development of new protocols and their
respective security proofs. However, in real-world implementa-
tions such protocols are not infallible. Side-channel attacks arising
from hardware imperfections or unreasonable assumptions in the
security analysis can render the protocols useless2. While
improvements in the hardware and more detailed security ana-
lyses can fix these issues, quantum theory also offers an alter-
native approach: device-independent (DI) cryptography.

Pioneered by the work of Mayers and Yao3, device-
independent cryptography circumvents the majority of side-
channel attacks by offering security while making minimal
assumptions about the hardware used in the protocol. Typically,
we treat the devices used within an implementation of a DI
protocol as black boxes. The remarkable fact that one can still
securely perform certain cryptographic tasks on untrusted devices
is a consequence of Bell-nonlocality4. In short, if an agent
observes nonlocal correlations between two or more devices then
they can infer restrictions on the systems used to produce them. It
is then possible for the agent to infer additional desirable prop-
erties of their devices by analyzing this restricted class of systems.
For example, it is known that all nonlocal correlations are
necessarily random5. As a consequence, we can construct pro-
tocols for randomness generation (RNG)6–8 and quantum key
distribution (QKD)3,9 with device-independent security.

A central problem in the development of new DI protocols is
the question of how to calculate the rate of a protocol. That is, in
DI-RNG how much randomness is generated or in DI-QKD how
much secret key is generated per use of the device. For many DI
protocols, including DI-RNG and DI-QKD, this problem reduces
to minimizing the conditional von Neumann entropy over a set of
quantum states that are characterized by restrictions on the
correlations they can produce. Unfortunately, directly computing
such an optimization is a highly non-trivial task. First, condi-
tional entropies are non-linear functions of the states of a system
and so the resulting optimization is in general non-convex and a
naive optimization is not guaranteed to return a global optima.
Moreover, as we are working device-independently we cannot
assume any a priori bound on the dimensions of the systems used
within the protocol. Nevertheless, in certain special cases the
problem can be solved analytically10. However, the techniques
used in the analysis of ref. 10 rely on particular algebraic prop-
erties of devices with binary inputs and binary outputs. As such,
they do not generalize to more complex protocols with more
inputs or outputs. This prompts the development of general
numerical techniques to tackle this problem.

Simple numerical lower bounds on the von Neumann entropy
minimization can be obtained through the min-entropy11. It was
shown in refs. 12,13 that the analogous optimization of the min-
entropy can be expressed as a noncommutative polynomial of
measurement operators. This problem can then be relaxed to a
semidefinite program (SDP) using the NPA hierarchy14 which
can then be solved efficiently. This approach gives a simple and
efficient method to lower bound the rates of various DI tasks and
has found widespread use in the analysis of DI protocols.
Unfortunately, the min-entropy is in general much smaller than
the von Neumann entropy and so this approach usually produces
suboptimal results. More recently, the authors of ref. 15 extended
the work of Coles et al.16 to the device-independent setting. By
viewing the objective function as an entropy gain between the

systems producing the correlations they were able to construct a
method to derive a noncommutative polynomial of the mea-
surement operators that lower bounds the conditional von Neu-
mann entropy. As in the case of the min-entropy approach, this
can be approximated efficiently by an SDP. The numerical results
presented in ref. 15 are very promising, providing significant
improvements in the rates when compared to the min-entropy
approach and also improving over the analytical results of ref. 10.
However, their approach is relatively computationally intensive
requiring the optimization of a degree 6 polynomial in the sim-
plest setting. For comparison, in protocols involving two devices,
the min-entropy can always be computed using a polynomial of
degree no larger than 2.

In this work we take a different approach, defining a new
family of quantum Rényi divergences, the iterated mean (IM)
divergences. The IM divergences are defined as solutions to
certain SDPs and their constructions are inspired by the
semidefinite representations of the weighted matrix geometric
means17. These divergences define a corresponding family of
conditional entropies that we show can be optimized device-
independently using the NPA hierarchy and crucially they all
form lower bounds on the conditional von Neumann entropy.
We then apply these conditional entropies to the task of
computing rates of DI randomness expansion (RE) and DI-
QKD protocols. We compare the rates certified by our techni-
ques with those certified by the min-entropy, the method of
Tan et al.15 and an analytical bound on H(A∣E) derived for the
CHSH game10. Compared to the min-entropy bound, as will be
shown in the examples we consider throughout the paper, our
method almost always gives a significantly improved bound at a
minor additional computational cost. Compared to the known
analytical bound for CHSH, our method can be applied to a
large family of protocols and this allows us to search for pro-
tocols that improve the various properties of interest. For
example, by optimizing over a family of protocols with two
inputs and two outputs per device we find a new upper bound
on the minimal detection efficiency required to perform DI-
QKD with a two-qubit system when we do not have an addi-
tional noisy preprocessing of the raw key18,19 (see Fig. 1).
Compared to the numerical work of Tan et al.15, we find
improvements in some regimes in the examples in which we
could compare. However, it would appear that our method is
more computationally efficient and hence can be applied to
analyze a wider range of protocols. Finally, we demonstrate that
our method can be used directly with the entropy accumulation
theorem (EAT)20,21 by constructing explicit min-tradeoff
functions from the solutions of our optimizations. Applying
the security proof blueprints developed in refs. 22,23 our tech-
niques can be readily used together with the EAT to construct
complete security proofs of many DI protocols. This property is
again due to the simplicity of our method and it is unclear
whether this can be done with the numerical method presented
in ref. 15. For all these reasons, we anticipate that the numerical
tools developed here will lead to the development of better
device-independent protocols.

Results
In the following, we start by defining the IM divergences and their
corresponding conditional entropies. We then show that the
conditional entropies can be optimized in a device-independent
manner and apply them to compute the rates of several device-
independent tasks. In order to aid understanding, let us briefly
introduce some notation. If H is a Hilbert space then LðHÞ
denotes the set of linear operators from H to H, PðHÞ � LðHÞ
denotes the set of positive-semidefinite operators on H and
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DðHÞ � PðHÞ denotes those with unit trace (quantum states).
We write ρ≪ σ to indicate that the support of ρ is contained
within the support of σ.

Semidefinite programs for the iterated mean divergences. The
main technical contribution of this work is the introduction of a
family of Rényi divergences that are amenable to device-
independent optimization. Throughout the remainder of this
work we define the sequence αk :¼ 1þ 1

2k�1
for k 2 N. We note

that the name “iterated mean” comes from the expression that we
establish later in Eq. (36).

Definition 1 (Iterated mean divergences). Let H be a Hilbert
space, ρ 2 DðHÞ, σ 2 PðHÞ with ρ≪ σ and let αk ¼ 1þ 1

2k�1
for

each k 2 N. Then for each k ≥ 1, we define the iterated mean
divergence of order αk as

DðαkÞðρkσÞ :¼
1

αk � 1
logQðαkÞðρkσÞ ; ð1Þ

with QðαkÞðρ k σÞ defined as

max
V1;¼ ;Vk;Z

αkTr ρ
ðV1þV*

1 Þ
2

h i
� ðαk � 1ÞTr½σZ�

s:t V1 þ V*
1 ≥ 0

I Vi

V*
i

ðViþ1þV*
iþ1Þ

2

 !
≥ 0

I Vk

V*
k Z

� �
≥ 0

ð2Þ

where the penultimate constraint is for all 1 ≤ i ≤ k - 1 and the
optimization varies over V1, …, Vk ∈ L Hð Þ and Z 2 PðHÞ. We
may assume further that Z ≪ σ and Vi ≪ σ for each
i ∈ {1, 2, …, k}. Note that we may equivalently write the

constraints as

V1 þ V�
1 ≥ 0;

V2 þ V�
2

2
≥V�

1V1; � � � Z ≥V�
kVk :

Remark 1 (Important property for device-independent opti-
mization). The crucial property that makes these divergences
well-adapted for device-independent optimization is the fact that
QðαkÞðρkσÞ has a free variational formula as a supremum of linear
functions in ρ and σ. We say that Q has a free variational formula
if there exists m; n 2 N and noncommutative Hermitian
polynomials p1, …, pn in the variables (V1, …, Vm) such that
for any dimension d ≥ 1, ρ 2 DðCdÞ and σ 2 PðCdÞ

QðρkσÞ ¼ max
ðV1;V2;¼ ;VmÞ2SðdÞ

Tr V1ρ½ � þ Tr V2σ½ � ; ð3Þ
where the family of sets fSðdÞgd2N are all defined using the same
polynomials p1, …, pn, i.e.,

SðdÞ ¼ fðV1; ¼ ;VmÞ 2 ðCd ´ dÞm : pjðV1; ¼ ;VmÞ≥ 0 8j 2 f1; ¼ ; ngg :
ð4Þ

We repeat that the important property is that the sets S(d)
describing the linear functions have a uniform description that is
independent of the dimension d (the polynomials pj are the same
for all dimensions d). Such families of sets are studied in the area of
free semialgebraic geometry (see e.g., refs. 24,25). Note that the
measured Rényi divergences have such a formulation as expressed
in Eq. (29) (for rational values of α), but these divergences can be
smaller than the Umegaki divergence and thus cannot be used to
give lower bounds on the von Neumann entropy. It remains an
important open problem whether the sandwiched or the Petz
divergences can be expressed using free variational formulas of the
form (3). Here, we have introduced new divergences DðαkÞ that have
this property by construction. Note that a representation as in Eq.
(3) immediately establishes joint convexity of Q (regardless of the
freeness of the representation). As such finding a free variational
formula for the sandwiched or the Petz divergences would provide a
“dimension-free” proof of joint convexity and as these families are
known to converge to D as α→ 1, such free variational formulas
would lead to converging approximations for the von Neumann
entropy that we aim to approximate. With the divergences DðαkÞ, we
can only guarantee convergence as k→∞ to the von Neumann
entropy in the commuting case. In the general case, it remains open
to determine the limit as k→∞ of DðαkÞ.

Given a bipartite quantum state ρ 2 DðABÞ and a divergence
D we may define a corresponding conditional entropy as
H#ðAjBÞ ¼ �DðρAB k IA � ρBÞ and its optimized version
as H"ðAjBÞ ¼ supσ2DðBÞ �DðρAB k IA � σBÞ. The following pro-

position gives an explicit characterization of H" for the iterated
mean divergences. We defer the proof of this proposition to the
“Methods” section.

Proposition 1. Let ρ 2 DðABÞ. Then
H"

ðαkÞðAjBÞρ ¼
1

1� αk
logQ"

ðαkÞðρÞ ð5Þ

with Q"
ðαkÞðρÞ defined as

max
V1;¼ ;Vk

Tr ρ
ðV1þV*

1 Þ
2

h i� �αk
s:t TrA V*

k Vk

� �
≤ IB

V1 þ V*
1 ≥ 0

I Vi

V*
i

ðViþ1þV*
iþ1Þ

2

 !
≥ 0;

ð6Þ

where the final constraint is for all 1 ≤ i ≤ k – 1.
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Fig. 1 Comparing key rates of DI-QKD protocols without noisy
preprocessing. We compare the asymptotic key rates of a DI-QKD
protocol based on the CHSH game, a DI-QKD protocol for 2-input 2-output
devices and a DI-QKD protocol for 2-input 3-output devices when the
respective devices used in the protocol are subject to inefficient detectors.
Note that the key rates for the 3-output protocol can be smaller than the 2-
output protocol in the regime of high noise as they were evaluated using
different entropies from the iterated mean family. However, for low
detection efficiency, we see that the 3-output protocol can achieve key
rates of up to log ð3Þ bits.
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It can be shown (see the “Methods” section) that for
each αk and any pair (ρ, σ), DðαkÞðρkσÞ≥ eDαk

ðρkσÞ where eDα

denotes the sandwiched Rényi divergence of order α26,27. In turn,
we have that for any bipartite state ρ 2 DðABÞ;H"

ðαkÞðAjBÞρ ≤eH"
αk
ðAjBÞρ. Thus as eH"

αðAjBÞ≤HðAjBÞ for all α > 1 we also have
that the IM conditional entropies lower bound the conditional
von Neumann entropy. Therefore we may use them to compute
lower bounds on the rates of various device-independent
protocols.

Application to device-independent cryptography. In the fol-
lowing, we consider the setup wherein there are two devices
(which we refer to as Alice and Bob) that receive inputs X and Y
from some finite alphabets X and Y and produce outputs A and
B in some finite alphabets A and B, respectively. We restrict to a
bipartite setting for simplicity but our techniques can be
readily extended to multipartite settings. During a single
interaction, we assume that the devices operate in the following
way. A bipartite quantum state ρQAQB

2 DðQAQBÞ is shared
between the two devices and in response to the inputs x 2
X ; y 2 Y the devices perform the POVMs fMajxga2A; fNbjygb2B
on their respective systems. Inputs are chosen according
to some fixed distribution μ : X ´Y ! ½0; 1� that is known to
all parties. The conditional probability distribution that
describes the input–output behavior of the two devices is then
given by

pða; bjx; yÞ ¼ Tr ρQAQB
ðMajx � NbjyÞ

h i
: ð7Þ

In addition, we allow for the presence of an adversarial
party (Eve) who holds a purification of the quantum state
initially shared between Alice and Bob, i.e., there is some pure
quantum state ψj iψh j 2 DðQAQBEÞ such that
TrE ψj iψh j½ � ¼ ρQAQB

. Formally, this setting may be characterized
by a tuple ðQA;QB; E; ψj i; fMajxg; fNbjygÞ which we shall refer
to as a strategy.

Let C be another finite alphabet and let C : A ´B ´X ´Y ! C
be some function—this function will act as a statistical test on the
devices. Given a probability distribution q : C ! ½0; 1� we say that
a conditional distribution pAB∣XY is compatible with q if for all
c 2 C we have X

abxy:Cða;b;x;yÞ¼c

μðx; yÞpða; bjx; yÞ ¼ qðcÞ: ð8Þ

More generally we say that a strategy S is compatible with the
statistics q if the conditional distribution induced by the strategy
(cf. Eq. (7)) is compatible with q. For a given statistical test C we
denote the collection of all strategies that are compatible with the
statistics q by ΣC(q). The post-measurement state of a strategy
S ¼ ðQA;QB; E; ψj i; fMajxg; fNbjygÞ is

ρABXYE ¼
X
abxy

μðx; yÞ abxyj iabxyh j � ρabxyE ð9Þ

where

ρabxyE ¼ TrQAQB
ðMajx � Nbjy � IEÞ ψj iψh j
h i

: ð10Þ
Let PðCÞ denote the set of all probability distributions on the

alphabet C. A global tradeoff function for the statistical test C is a
function f : PðCÞ ! R such that

f ðqÞ≤ inf
ΣCðqÞ

HðABjXYEÞ; ð11Þ
where the infimum is taken over post-measurement states of all
strategies that are compatible with the statistics q. Similarly, we

say a function f : PðCÞ ! R is a local tradeoff function for the
statistical test C if it satisfies

f ðqÞ≤ inf
ΣCðqÞ

HðAjXEÞ: ð12Þ
We shall now demonstrate how to compute device-

independent lower bounds on Eqs. (11) and (12) using the
conditional entropies H"

ðαkÞðABjXYEÞ. Furthermore, by replicat-
ing the tradeoff function constructions presented in ref. 28 for the
min-entropy, we can also derive explicit affine tradeoff functions
from the results of our optimizations. Therefore, the present
analysis can be readily extended to a full security proof of a
device-independent protocol through an application of the
entropy accumulation theorem20,21.

Following the device-independent setup described above, we
look to evaluate the conditional entropies for classical-quantum
states that arise from a measurement on some subsystem.
Considering this scenario, the following lemma explains how
we can rewrite H"

ðαkÞðABjXYEÞ into a form which can then be
relaxed to a semidefinite program via the NPA hierarchy and
hence optimized in a device-independent manner. The basic idea
is that if we have a cq-state ρAE then it is sufficient to consider
variables that are block diagonal, i.e., Vi ¼

P
a aj iah j � Vi;a.

Furthermore, we can rewrite the objective function such that it
explicitly depends on the POVM and the state ψj iψh j used to
generate the classical register. We defer the proof of this lemma to
the “Methods” section.

Lemma 1. Let ψj iψh j 2 DðQAEÞ, fMaga2A be a POVM on QA

and ρAE ¼Pa aj i ah j � ρEðaÞ be a cq-state where ρEðaÞ ¼
TrQA

ðMa � IÞ ψj iψh j½ �. Then, for each k 2 N we have

H"
ðαkÞðAjEÞ ¼

αk
1� αk

logQDI
ðαkÞ ð13Þ

with QDI
ðαkÞ defined as

max
Vi;a:1≤ i≤ k;a;2Ak

P
a
Tr Ma �

ðV1;aþV*
1;aÞ

2

� �
ψj i ψh j

h i
s:t

P
a
V*
k;aVk;a ≤ IE

V1;a þ V*
1;a ≥ 0

2V*
i;aVi;a ≤Viþ1;a þ V*

iþ1;a

ð14Þ

where the final two sets of constraints are for all a ∈ A and 1 ≤ i ≤
k – 1.

Example 1. For the post-measurement state of a strategy S ¼
ðQA; QB; E; jψi; fMajxg; fNbjygÞ we have that

2�
1
2H

"
ð2ÞðAB Xj ¼x;Y¼y;EÞ is equal to

max
Va;b:a2A;b2B

P
ab Tr Majx � Nbjy �

ðVa;bþV*
a;bÞ

2

� �
ψj i ψh j

� 	
s:t

P
a V

*
a;bVa;b ≤ IE

Va;b þ V*
a;b ≥ 0

: ð15Þ

Comparing this with the analogous optimization for the
conditional min-entropy, 2�HminðABjX¼x;Y¼y;EÞ,

max
Wa;b:a2A;b2B

P
ab Tr Majx � Nbjy �Wab

� �
ψj i ψh j

h i
s:t

P
a Wab ≤ IE

Wab ≥ 0

ð16Þ

we see several similarities in the structure of the optimization.
The rewriting of H"

ðαkÞðAjEÞ in Lemma 1 still refers to an
explicit pair of Hilbert spaces QA, E, and an explicit state
ψj i 2 QAE. In order to compute device-independent lower
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bounds on the various entropic quantities we also take the
supremum in Eq. (14) over all pairs of Hilbert spaces, and all
operators and states on those Hilbert spaces. As mentioned
previously, in order to approximate this extended optimization in
an efficient manner it is possible to relax the optimization
problem to a semidefinite program using the NPA hierarchy14.
Indeed, we can optimize over moment matrices generated by the
monomials fIg∪ fMaga2A ∪ fVi;a;V

�
i;ag1≤ i ≤ k;a2A. The operator

inequalities can be replaced by localizing moment matrices and
we can enforce that all ½Ma;Vi;a0 � ¼ 0 for all a; a0 2 A and 1 ≤ i ≤
k. We are also free to impose statistical constraints on our devices,
e.g., a Bell-inequality violation. When calculating H"

ð2Þ there are
also additional constraints that we may add in certain cases to
help speed up convergence. These are analogous to assuming that
the POVM operators are projective when computing Hmin (see
Remark 4 for further details).

A more detailed explanation of the SDP implementation is
given in the Supplementary Information. To help facilitate the use
of our techniques we also provide a few coded examples29. The
NPA hierarchy relaxations were computed using the python
package NCPOL2SDPA30 and all SDPs were solved using the
Mosek solver31. For simplicity we shall only consider the entropy
of some fixed inputs (X, Y)= (x0, y0)—this reflects the scenario
usually considered in device-independent protocols where certain
inputs are dedicated to generating secret key or randomness. For
this reason, in the following application subsections, we will abuse
notation and for a conditional entropy H, we will write
HðABjEÞ and HðAjEÞ instead of HðABjX ¼ x0;Y ¼ y0; EÞ and
HðAjX ¼ x0; EÞ, respectively, where the choice of x0, y0 will be
clear from the context or otherwise explicitly stated. To
distinguish devices with different numbers of inputs and outputs
we use the shorthand abcd-scenario to denote the situation
wherein Alice’s device has a inputs and c outputs and Bob’s
device has b inputs and d outputs.

Application: Randomness certification. We applied the semi-
definite relaxations of QDI

ðαkÞ to compute device-independent lower

bounds on H"
ð4=3ÞðABjEÞ and H"

ð2ÞðABjEÞ for different statistical
constraints. First, we considered the CHSH game which is defined
by the function

CCHSHða; b; x; yÞ ¼
1 if a� b ¼ xy

0 otherwise:



ð17Þ

In addition to this we also considered the situation where the
devices are constrained by their full conditional distribution, i.e.,
we record each input–output tuple as a separate score
C: (a, b, x, y)↦ (a, b, x, y). We compared these to a tight ana-
lytical bound on the local von Neumann entropy H(A∣X= 0, E)
which is known for the CHSH game10,22, numerical lower bounds
on Hmin and the recent numerical lower bounds on the von
Neumann entropy which were developed in ref. 15 (we refer to
these latter bounds as the TSGPL bounds). For both devices
constrained by the CHSH game and devices constrained by their
full conditional distribution we evaluate the entropy for the
inputs (x0, y0)= (0, 0).

In Fig. 2, we plot lower bounds on the global entropies of Alice
and Bob when their devices are constrained to achieve a minimal
CHSH score. In the plot we observe a separation between the
three curves that we compute numerically. That is, as we decrease
αk toward 1 we see visible improvements on the certifiable rates.
For larger CHSH scores we observe that the lower bounds for
both H"

ð4=3ÞðABjEÞ and H"
ð2ÞðABjEÞ can be used to certify

substantially more randomness than HminðABjEÞ. However, all
three curves eventually drop below the randomness certified by
the tight analytical bound on H(A∣E).

Recent device-independent experiments32,33 have relied on
measuring entangled photons in order to generate nonlocal
correlations. A major source of noise in these systems comes from
inefficient detectors or losses during transmission of the photons.
We model this noise by a single parameter η∈ [0, 1] which
characterizes the probability that after a photon has been
produced by the source it is successfully transmitted and detected.
For simplicity, we use the same η for the photons of each party. In
order to avoid a detection loophole in the experiment34, all failed
detection events are recorded as the outcome 0. This noise
transforms the noiseless conditional probability distribution
produced by the two parties in the following way

pða; bjx; yÞ 7! η2pða; bjx; yÞ þ ηð1� ηÞðδa0pðbjyÞ
þδb0pðajxÞÞ þ δa0δb0ð1� ηÞ2; ð18Þ

where δij is the Kronecker delta function. In order to generate valid
quantum probability distributions we consider a two-qubit setup
with a state ψθ

�� � ¼ cosðθÞ 00j i þ sinðθÞ 11j i with θ∈ (0, π/4] and
two-outcome qubit POVMs of the form {M, I−M} where M ¼
vj ivh j with vj i ¼ cosðϕ=2Þ 0j i þ sinðϕ=2Þ 1j i and ϕ∈ (−π, π]. We
assume that A ¼ B ¼ X ¼ Y ¼ f0; 1g.

In Fig. 3, we compare lower bounds on the randomness
certified by the different conditional entropies when the devices
operate with inefficient detectors. We see that as before
H"

ð4=3ÞðABjEÞ and H"
ð2ÞðAjEÞ can be much larger than

HminðABjEÞ and that the difference is more pronounced in this
case. Moreover, by constraining the devices by the full conditional
distribution we find a much larger improvement over the
analytical bound on H(A∣E) which is only constrained by the
CHSH game. Through our optimization over two-qubit systems
we were also able to find systems that can certify the upper bound
of two bits of randomness in the noiseless case. Unlike in Fig. 2
we find in this case a negligible difference between the
randomness certified by H"

ð4=3ÞðABjEÞ and H"
ð2ÞðABjEÞ. Compar-

ing with the TSGPL bound we find that our optimized curves can
certify more randomness in the lower noise regimes (η > 0.92).
However for higher noise the TSGPL bound outperforms our
method in this setting.

Application: Quantum key distribution. Continuing the com-
parison of entropy bounds for systems with inefficient detectors,
we look at how this noise affects the rates of DI-QKD. Again we
will consider devices that are constrained by the full conditional
probability distribution, as was the case in Fig. 3. However, here
we consider two separate setups. First, we look at the 2322-sce-
nario, i.e., A ¼ B ¼ X ¼ f0; 1g and Y ¼ f0; 1; 2g. We give Bob
a third input which will act as his key-generation input, e.g., the
key will be generated from the outputs of the devices on the input
pair (X, Y)= (0, 2). Ideally, the correlations between Alice and
Bob on this input pair are such that H(A∣B) is small. We generate
the correlations of these devices with the same two-qubit model
introduced previously. As a novel comparison, we also look at the
2333-scenario, i.e., A ¼ B ¼ f0; 1; 2g, X ¼ f0; 1g, and
Y ¼ f0; 1; 2g. We generate probability distributions for these
devices using a two-qutrit model. As before, we assume an
explicit model for the devices in order to generate valid quantum
conditional probability distributions. A parametrization also
allows us to optimize the distribution in order to maximize the
rates. However, the bounds on the rates are still device-
independent as the SDP is only constrained by the conditional
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probability distribution and is not concerned with the model used
to generate it. For the two-qutrit state, we consider the following
family

sinðθÞ cosðϕÞ 00j i þ sinðθÞ sinðϕÞ 11j i þ cosðθÞ 22j i; ð19Þ
where θ∈ [0, π] and ϕ∈ [0, 2π). Furthermore, we assume that
each measurement is a three-outcome projective qutrit mea-
surement and we use the parametrization given in ref. 35. When
considering no-click events, Alice and Bob both record these as
the outcome 0, except when Bob receives his key-generating input
y= 2. When Bob inputs y= 2, he no longer records a no-click as
the outcome 0 but rather as a new outcome ⊥. This means that
Bob has the potential to receive three or four outcomes whenever
he inputs his key-generating input. Retaining this information
allows us to reduce H(A∣B, X= 0, Y= 2) and further improve the
key rate36.

We consider a DI-QKD protocol with one-way error correc-
tion22. The asymptotic rate of such a protocol is given by the
Devetak–Winter rate37

HðAjEÞ �HðAjBÞ: ð20Þ
Note that this asymptotic rate does not assume that the adversary
acts in an i.i.d. manner. Taking the asymptotic limit of the general
finite round DI-QKD rates found in ref. 22 and noting that the
optimal one-way error correction leaks approximately nH(A∣B)
bits in an n round protocol we recover the asymptotic i.i.d. rate10.
We apply our lower bounds on H(A∣E) to compute lower bounds
on the asymptotic key rates. We compare our results again with
the analytical bound on H(A∣E) and numerical bounds on
HminðAjEÞ. The results for devices with two outputs are presented
in Fig. 4 and for devices with three outputs in Fig. 5.

Producing high rates in DI-QKD is more difficult than just
certifying randomness as the randomness needs to also be
correlated between the two devices. In this application, we see an
even larger separation between the rates certified by the different
entropies. In particular, the minimal detection efficiency required
to produce a positive rate differs substantially between the
different entropies. In Fig. 4, the curve generated by Hmin has a
detection efficiency threshold is just below 0.91, for H"

ð2Þ it is just

above 0.87, for H"
ð4=3Þ it is just below 0.85, and for H"

ð8=7Þ it is
around 0.843. On the inset plot, we zoom in on the region

[0.84, 0.88] × [0.0, 0.05] and find that the detection efficiency
threshold for the protocols based on H"

ð8=7Þ and H"
ð4=3Þ are

significantly smaller than the protocol based on the CHSH game.
Moreover, the rates certified by H"

ð8=7Þ are larger than those
certified by the analytical bound on H(A∣E) for all η < 0.92.
Similarly the rates certified by H"

ð4=3Þ are larger than the rates
certified by the analytical bound for all η < 0.91.

For devices with two outputs, the rates are capped at one bit.
However, for devices with three possible outputs we see in Fig. 5
that it is possible to achieve a key rate of up to �log ð1=3Þ 	 1:59
bits. For the curves based on H"

ð4=3ÞðAjEÞ and H"
ð2ÞðAjEÞ at

around η= 0.97 and for the curve generated by HminðAjEÞ at
around η= 0.985 we see a sharp turn in the rates. This appears to
correspond to a transition point where the optimal state found by
our optimization transitions from having a Schmidt rank of three
to a Schmidt rank of two. Therefore, to the left of these points the
optimal strategy found by the optimization could be implemented
using a two-qubit system and qubit POVMs. However, when
moving from devices with two outputs to three outputs we do not
see a significant change in the detection efficiency thresholds. For
the curve generated by Hmin the threshold is below 0.91. For the
curve generated by H"

ð2Þ the threshold is around 0.87 and for

H"
ð4=3Þ the threshold detection efficiency is again just below 0.85.

From our results it seems that the detection efficiency thresholds
do not improve for two-qubit systems by moving from two-
outcome protocols to three-outcome protocols. However, this
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Fig. 3 Global randomness vs. detection efficiency (η) in the 2222-
scenario. We compare lower bounds on different measures of the global
randomness produced by 2-input 2-output devices that have some fixed
detection efficiency η∈ [0.7, 1]. The curves for H"

ð4=3ÞðABjEÞ, H"
ð2ÞðABjEÞ, and

HminðABjEÞ were computed numerically, the red curve representing
infHðAjEÞ was computed using the analytical expression from ref. 10 and the
TSGPL bound uses data from the authors of ref. 15. The red curve (analytic)
was computed by maximizing the CHSH score over two-qubit systems with
a fixed η. All other curves constrained the devices to satisfy some fixed
probability distribution. For the TSGPL bound this distribution was chosen
by maximizing the CHSH score for a fixed η. For the remainder of the
curves we optimized our choice of distribution using the method of ref. 52.
Note that this optimization is important when in the presence of inefficient
detectors. For example, if we always use the two-qubit system which
achieves Tsirelson’s bound for the CHSH game in the noiseless case then
we could not certify any entropy for detection efficiencies lower than η≈
0.83. However, by allowing ourselves to optimize over partially entangled
states we can certify entropy down to detection efficiencies of η≈ 0.67.
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Fig. 2 Global randomness vs. expected CHSH score. We compare lower
bounds on different measures of the global randomness produced by
devices that achieve some minimal expected CHSH score. The curves for
H"
ð4=3ÞðABjEÞ, H"

ð2ÞðABjEÞ, and HminðABjEÞ were computed numerically, and
the red curve representing infHðAjEÞ is computed using the analytical
expression from ref. 10.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-20018-1

6 NATURE COMMUNICATIONS |          (2021) 12:575 | https://doi.org/10.1038/s41467-020-20018-1 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


may also be a consequence of the system optimization finding a
local optima. Regardless our results show that we can implement
DI-QKD protocols with two-qubit systems with smaller detection
efficiencies. The achievability with two-qubit systems is of
particular importance to experimental implementations where
we seek robust protocols with simple setups.

Using the entropy accumulation theorem20,21 it would also be
possible to calculate explicit lower bounds on the key rates for
protocols with a finite number of rounds. In order to apply the
EAT we must construct a min-tradeoff function (see Eqs. (11)
and (12)). By Lagrangian duality, we can extract from the dual
solution to our NPA SDPs, an affine function

f : pABjXY 7!αþ
X
a;b;x;y

λabxypða; bjx; yÞ: ð21Þ

We discuss in further detail how to construct min-tradeoff
functions from our SDPs and the application to the EAT in
the Supplementary Information. For example, let us consider the
two-outcome protocols plotted in Fig. 4. For each curve and each
value of η we searched a two-qubit system to generate a
conditional distribution that maximized the rate. Let us take the
two-qubit system used for H"

ð2ÞðAjEÞ at the point η= 0.95. This
system is parameterized by six real numbers (θ, a0, a1, b0, b1, b2).
The state of the system is ψj i ¼ cosðθÞ 00j i þ sinðθÞ 11j i, Alice’s
measurements are defined by the projectors M0jx ¼ ðI þ
cosðaxÞσz þ sinðaxÞσxÞ=2 and Bob’s measurements by the
projectors N0jy ¼ ðI þ cosðbyÞσz þ sinðbyÞσxÞ=2. For this parti-
cular system the parameters were (0.579, −0.161, 1.509,
−1.207, 0.660, −0.177) and according to the solutions of the
optimization we can use it to certify 0.415 bits of entropy and a
DI-QKD rate of 0.282 bits when η= 0.95. Looking at the dual
solution we can extract the function

gðpÞ :¼� 2log ð93:340� 1:558 pð0; 0j0; 0Þ � 1:599 pð0; 0j0; 1Þ
þ 93:940 pð0; 0j1; 0Þ�1:709 pð0; 0j1; 1Þ þ 1:596 pAð0j0Þ
� 92:340 pBð0j0Þ � 92:334 pAð0j1Þ þ 1:706 pBð0j1ÞÞ

ð22Þ
which should lower bound inf HðAjEÞ. To obtain a min-tradeoff
function we can take a first-order Taylor expansion about some
distribution, for example, the distribution parametrizing the SDP,
which gives us affine lower bounding function28. Note that for
brevity we have only written the coefficients to three decimal
places. As such, this function can likely only guarantee a lower
bound up to one or two decimal places, however, this precision
can be increased by retaining the precision of the SDP solution.

Application: Qubit randomness from sequential measure-
ments. As a final application, we consider the question of how
much local entropy can be device-independently certified from a
two-qubit system. For example, it is well known that a score of
cos ðπ=8Þ2 in the CHSH game self tests a maximally entangled
two-qubit state38. In such a case, the local statistics are uniformly
distributed over {0, 1} and so this allows us to certify one bit of
randomness using a two-qubit system. It has also been shown
that up to two bits of local randomness can be certified from a
two-qubit system using strategies that include four-outcome qubit
POVMs39.

It is also possible to consider scenarios wherein one party
measures multiple times on their half of the two-qubit system. By
using unsharp measurements40 it is possible to measure a two-
qubit state such that the post-measurement state remains
entangled. Therefore, a two-qubit state can be used to generate
multiple instances of nonlocal correlations41 and in turn a
sequence of certifiably random outcomes. The entropy of the
sequence of measurement outcomes can then be lower bounded
in a device-independent way by using an extension of the NPA
hierarchy to sequential correlations42. In ref. 42 the authors give
an example (ref. 42, Section 4.1) of a two-party scenario in
which Bob measures his system twice. They gave an explicit two-
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Fig. 4 Asymptotic key rate vs. detection efficiency (η) in the 2322-
scenario.We compare lower bounds on the asymptotic key rate for devices
that have some fixed detection efficiency η∈ [0.84, 1]. The curves based on
the entropies H"

ð8=7ÞðAjEÞ, H"
ð4=3ÞðAjEÞ, H"

ð2ÞðAjEÞ, and HminðAjEÞ were
computed numerically using the NPA hierarchy, the red curve representing
infHðAjEÞ � HðAjBÞ was computed using the analytical expression from
ref. 10. The curves computed in the NPA hierarchy constrained the devices
to satisfy some conditional probability distribution. We optimized the
choice of distribution for each detection efficiency and entropy separately
using a parametrization of two-qubit systems together with the method of
ref. 52.
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Fig. 5 Asymptotic key rate vs. detection efficiency (η) in the 2333-
scenario.We compare lower bounds on the asymptotic key rate for devices
that have some fixed detection efficiency η∈ [0.84, 1]. The curves based on
the entropies H"

ð4=3ÞðAjEÞ, H"
ð2ÞðAjEÞ, and HminðAjEÞ were computed

numerically using the NPA hierarchy, the red curve representing
infHðAjEÞ � HðAjBÞ was computed using the analytical expression from
ref. 10. The curves computed in the NPA hierarchy constrained the devices
to satisfy some conditional probability distribution. We optimized the
choice of distribution for each detection efficiency and entropy separately
using a parametrization of two-qutrit systems together with the method of
Assad et al.52.
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qubit setup, with a state p ϕþj iϕþh j þ ð1� pÞI=4 where ϕþj i ¼
1ffiffi
2

p ð 00j i þ 11j iÞ and p∈ [0, 1] such that HminðB1B2jEÞ>2 for a

range of p. Here B1 refers to the outcome of Bob’s first
measurement and B2 to his second. As before we look at the
entropy only on particular inputs to the devices.

In Fig. 6, we reproduce Fig. 3 from ref. 42 which computes a
lower bound on HminðB1B2jEÞ and compares with the random-
ness certified by HminðAjEÞ for a single two-outcome projective
measurement. To illustrate our technique we also include a lower
bound on H"

ð2ÞðB1B2jEÞ. We see that for low noise the

randomness as measured by H"
ð2ÞðB1B2jEÞ can be noticeably

larger than HminðB1B2jEÞ. Unlike the previous two examples no
concrete protocol or security proof was studied for this scenario
and thus neither H"

ð2ÞðB1B2jEÞ nor HminðB1B2jEÞ correspond to
actual rates. However, the example does illustrate that our
conditional entropies can also be computed in more exotic
scenarios where previously bounds on Hmin have been used.

Discussion
In this work we introduced a new family of Rényi divergences
that correspond to convex optimization problems. We showed
that the conditional entropies defined by these divergences are
amenable to device-independent optimization and can be used as
tools to derive numerical lower bounds on the conditional von
Neumann entropy. We applied this to the task of computing
lower bounds on the rates of device-independent randomness
generation and quantum key distribution protocols. We com-
pared the protocol rates derived from our techniques to the
analytical bound of refs. 10,22, the numerical techniques of ref. 15,
and bounds established via the min-entropy11–13. We found
improvements over all three of these bounds in various settings.

In particular, when looking at randomness generation in low
noise regimes we found improvements over all the previous
methods. But in the higher noise regimes, our bounds typically
were outperformed by the numerical techniques of ref. 15 in the
scenarios where we could compare. However, this comparison
has only been performed for some simple protocols where the
data for ref. 15 is available. We suspect that our approach is more
computationally efficient and thus could be used to analyze a
wider range of scenarios. For example, the noncommutative
polynomial optimization problems that we evaluated were of
degree at most 3 regardless of the number of inputs and outputs
of the devices whereas for ref. 15, the degree is six for the smallest
possible setting and it grows with the number of inputs and
outputs. In addition, the coefficients appearing in the SDPs are
explicit small integers for our method whereas for ref. 15, they
involve closed-form solutions to integrals of the β functions
appearing in the multivariate trace inequality of ref. 43. Finally,
our method is flexible to use as it has a parameter k 2 N that can
be increased to improve the bounds at the cost of increasing the
size of the resulting SDP. The computational efficiency of our
method allowed us to iteratively optimize over two-qubit proto-
cols to improve the randomness certification rates up to the
maximum of two bits. It is also possible that a combination of the
two approaches could yield even higher rates. That is, our tech-
niques could be used to search for optimized protocols and then if
the TSGPL bound could be computed it may yield further
improvements on the rates.

When computing key rates for DI-QKD, we also looked at
bipartite protocols using devices with two and three outputs.
There we found significant improvements in the minimal
detection efficiency required to generate key in protocols

without noisy preprocessing. Moreover, in the regimes of
higher noise, all of these protocols were still implementable
using entangled states of two qubits. It is possible that by fur-
ther increasing the number of inputs/outputs or by searching
for protocols compatible with higher dimensional systems that
additional improvements could be made but we leave such an
investigation to future work. Reducing the minimal detection
efficiency is important for practical experiments, recent
works18,19 have shown that noisy preprocessing of the raw key
could also be used to improve minimal detection efficiency for a
protocol based on the CHSH game. It would be interesting to
see if this could be combined with our numerical techniques to
further improve the detection efficiency threshold and design
more robust device-independent protocols.

We also demonstrated that min-tradeoff functions could be
derived directly from solutions to our device-independent opti-
mizations. These functions can be combined with the entropy
accumulation theorem in order to construct simple security
proofs for device-independent protocols22,23. Therefore, not only
can our conditional entropies be used to derive lower bounds on
the rates of various protocols but they can also be used directly
with the EAT to establish their security proofs and compute
finite-key rates. We note that it is not clear if the TSGPL method
can be used in the same way.

As a final example, we also showed that our techniques could be
used in conjunction with the newly introduced semidefinite hier-
archy for sequentially generated quantum correlations42. Repeating
an example from ref. 42, which looked at the randomness generated
from two sequential measurements, we showed higher rate curves
could be obtained by using H"

ð2Þ as opposed to Hmin which was the
measure of randomness originally used in the example.

Several additional questions remain open from this work.
First, what can be said about the limit DðαkÞ as k→∞? We know
that it will be between the Umegaki divergence D and the
Belavkin–Staszewski divergence bD, and we also know that it
cannot always be equal to bD (there are some examples where
already Dð2Þ<bD). If one can show that lim k!1DðαkÞ ¼ D, then
this shows that our technique can approximate the conditional
von Neumann entropy arbitrarily well. However, certain
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Fig. 6 Certifiable randomness from sequential measurements. We
compare lower bounds on the certifiable randomness produced by two
sequential measurements on one half of the two-qubit state
p ϕþ
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ϕþ
� ��þ ð1� pÞI=4. All curves are computed numerically using the

sequential correlation hierarchy of ref. 42. This plot extends Fig. 3 from
ref. 42 to include the randomness certified by H"

ð2ÞðB1B2jEÞ.
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numerical evidence indicates that if these quantities do con-
verge to D then the convergence will be slow (see Fig. 2 in
the Supplementary Information for an example). More gen-
erally, a very interesting question is whether other divergences
that provide a tighter approximation to the Umegaki divergence
(e.g., the sandwiched Rényi divergence) have a free variational
expression as discussed in Remark 1.

Second, it would be interesting to see whether our computations
can be made more efficient. For example, we know that there exists
a particular dilation theorem can be applied to reduce the size of the
optimization H"

ð2Þ and speed up its convergence (see Supplementary
Information). It would be interesting to see whether one could
extend this dilation theorem to other H"

ðαkÞ to help improve their
convergence and efficiency also. In addition, it may be possible to
reduce the size of the H"

ðαkÞ optimizations by exploiting symmetries
of the problem44 or by optimizing the choice of monomial sets
generating the NPA moment matrices.

Methods
Here we state and prove some of the main properties of the iterated mean diver-
gences defined in Definition 1. Note that we refer to them as quantum Rényi
divergences as they match for commuting operators with the classical Rényi
divergence. As Rényi divergences are well-studied objects in information theory
and have found numerous operational interpretations the iterated mean diver-
gences may also be of independent interest. In fact, our new divergences have
already inspired the definition of other quantum divergences with different
information-theoretic applications45. The key property of iterated mean diver-
gences that makes them suited for DI optimization is that their SDP representation
does not explicitly refer to the dimension of the underlying quantum systems. With
this property, the corresponding conditional entropy of a state ρ can be written as a
maximization of a noncommutative Hermitian polynomial in some operators
V1, …, Vm evaluated on the state ρ and the operators V1, …, Vm are subject to
polynomial inequalities that are dimension independent. We refer to Remark 1 for
a more detailed discussion of this point.

Preliminaries. We define N to be the set of strictly positive integers. Let H be a
Hilbert space; we denote the set of linear operators on H by LðHÞ, the set of
Hermitian operators on H by HðHÞ, the set of positive-semidefinite operators on
H by PðHÞ and the set of positive-semidefinite operators with unit trace on H by
DðHÞ. All Hilbert spaces in this work are finite-dimensional unless otherwise
stated. Given a linear map E : LðH1Þ ! LðH2Þ, we say E is CPTP if it is com-
pletely positive and trace preserving. Given two Hilbert spaces H and K we write
HK as shorthand for H�K. Given two operators A;B 2 LðHÞ we write A ≤ B if
B� A 2 PðHÞ. The support of an operator A 2 LðHÞ, denoted supp(A), is the
orthogonal complement of its kernel, kerðAÞ ¼ fx 2 H : Ax ¼ 0g. For
A;B 2 LðHÞ, we write A≪ B if supp(A)⊆ supp(B). For A 2 LðHÞ, A* denotes
its adjoint and if A is nonsingular then A−1 denotes its inverse. If A is singular then
A−1 denotes the Moore–Penrose pseudo-inverse of A. We use the symbol I to
denote the identity operator. A collection of operators {M1, …, Mn} forms an n-
outcome POVM on H if

Pn
i¼1 Mi ¼ I and Mi 2 PðHÞ for all i= 1, …, n.

Throughout this work, we shall be interested in classical systems that arise from
measurements on some quantum system. To distinguish the classical and quantum
systems in such a measurement process we shall often write a single uppercase
Roman character to denote the classical system resulting from the measurement,
e.g., A, and denote the corresponding quantum system from which it is obtained by
QA.

The geometric mean of two positive definite matrices A and B is defined as

A#B ¼ A1=2ðA�1=2BA�1=2Þ1=2A1=2:

This definition can be extended to positive-semidefinite matrices A, B as
lim ϵ!0Aϵ#Bϵ where Xϵ= X+ ϵI. The geometric mean has the property that if C ≤
D then A#C ≤ A#D (ref. 46, Corollary 3.2.3).

Let α ∈ (0, 1) ∪ (1, ∞), ρ 2 DðHÞ and σ 2 PðHÞ with ρ≪ σ. The Petz–Rényi
divergence47 of order α is defined as

DαðρkσÞ :¼
1

α� 1
log Tr ρασ1�α

� �
: ð23Þ

The sandwiched Rényi divergence26,27 of order α is defined as

eDαðρkσÞ :¼
1

α� 1
log Tr σ

1�α
2α ρσ

1�α
2α

� �αh i
: ð24Þ

In the limit α→ 1 both the Petz–Rényi divergence and the sandwiched Rényi

divergence converge to the Umegaki relative entropy48

DðρkσÞ :¼ Tr ρðlog ρ� log σÞ½ �: ð25Þ
The geometric Rényi divergence49 of order α is defined as

bDαðρkσÞ :¼
1

α� 1
log Tr ρ1=2 ρ�1=2σρ�1=2

� �1�α
ρ1=2

� 	
: ð26Þ

In the limit α→ 1 the geometric Rényi divergence converges to the
Belavkin–Staszewski relative entropy Tr ρlog ðρ1=2σ�1ρ1=2Þ� �

50. The geometric
Rényi divergence is the largest Rényi divergence satisfying data processing. The
max divergence is defined as

DmaxðρkσÞ :¼ log inffλ>0 : ρ≤ λσg: ð27Þ
Finally, the measured Rényi divergence is defined as the largest classical divergence
obtained from measuring ρ and σ. For α∈ (1, ∞) this is formally defined as

DM
α ðρkσÞ :¼ 1

α� 1
log sup

fMigi

X
i
Tr Miρ½ �αTr Miσ½ �1�α; ð28Þ

where the supremum is taken over all POVMs {Mi}. This divergence also admits
the following variational characterization51

DM
α ðρkσÞ ¼ 1

α� 1
log sup

ω> 0
αTr ρω1�1

α

h i
þ ð1� αÞTr σω½ �: ð29Þ

Given bipartite state ρAB 2 DðABÞ and a Rényi divergence D we define a
corresponding conditional entropy

H#ðAjBÞρ :¼ �DðρAB k IA � ρBÞ ð30Þ
and a corresponding optimized conditional entropy

H"ðAjBÞρ :¼ sup
σB2DðBÞ

�DðρAB k IA � σBÞ: ð31Þ

The min-entropy is defined as

HminðAjBÞ ¼ sup
σB2DðBÞ

�DmaxðρAB k IA � σBÞ: ð32Þ

Properties of the iterated mean divergences. The following proposition
details some alternate formulations and properties of the iterated mean
divergences. We defer the proof of this proposition to the Supplementary
Information.

Proposition 2. Let ρ 2 DðHÞ, σ 2 PðHÞ and k 2 N. Then the following all
hold:

1. (Rescaling)

QðαkÞðρkσÞ ¼ max
V1 ;¼ ;Vk ;Z

Tr ρ
ðV1 þ V�

1Þ
2

� 	� �αk

s:t: Tr σZ½ � ¼ 1

V1 þ V�
1 ≥ 0

I Vi

V�
i

ðViþ1þV�
iþ1Þ

2

 !
≥ 0 for 1≤ i≤ k� 1

I Vk

V�
k Z

� �
≥ 0 :

ð33Þ
2. (Dual formulations) We have

QðαkÞðρkσÞ ¼ min
A1 ;¼ ;Ak ;C1 ;¼ ;Ck

1

2k � 1

Xk
i¼1

2k�iTr Ai½ �

s:t: C1 ≥ ρ

Ai Ci

Ci Ciþ1

� �
≥ 0 for 1≤ i≤ k� 1

Ak Ck

Ck σ

� �
≥ 0 :

ð34Þ

Or also

QðαkÞðρkσÞ ¼ min
A1 ;¼ ;Ak ;C1 ;¼ ;Ck

Tr A1½ �
s:t: C1 ≥ ρ

Tr A1½ � ¼ Tr A2½ � ¼ � � � ¼ Tr Ak½ �
Ai Ci

Ci Ciþ1

� �
≥ 0 for 1≤ i≤ k� 1

Ak Ck

Ck σ

� �
≥ 0 :

ð35Þ
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Finally and eponymously

QðαkÞðρkσÞ ¼ min
A1 ;¼ ;Ak

Tr A1½ �
s:t: Tr A1½ � ¼ Tr A2½ � ¼ � � � ¼ Tr Ak½ �

ρ≤A1#ðA2#ð¼#ðAk#σÞ¼ ÞÞ:
ð36Þ

3. (Submultiplicativity) Let ρ1 2 DðH1Þ, σ1 2 PðH1Þ, ρ2 2 DðH2Þ and
σ2 2 PðH2Þ. Then,

DðαkÞðρ1 � ρ2 kσ1 � σ2Þ≤DðαkÞðρ1 kσ1Þ þ DðαkÞðρ2 kσ2Þ : ð37Þ
4. (Relation to other Rényi divergences)

DM
αk
ðρkσÞ≤ eDαk

ðρkσÞ≤DðαkÞðρkσÞ≤ bDαk
ðρkσÞ ð38Þ

5. (Decreasing in k) For all k ≥ 2,

DðαkÞðρkσÞ≤Dðαk�1ÞðρkσÞ: ð39Þ
6. (Data processing) Let K be another Hilbert space and let E : LðHÞ !

LðKÞ be a CPTP map, then

DðαkÞðρkσÞ≥DðαkÞðEðρÞkEðσÞÞ: ð40Þ
7. (Reduction to classical divergence) If [ρ, σ]= 0 then

DðαkÞðρkσÞ ¼
1

αk � 1
log Tr ραk σ1�αk

� �
: ð41Þ

Remark 2 (Relation to D2ðρ k σÞ). We can show that D(2)(ρ∥σ) is no larger

than the Petz–Rényi divergence D2ðρ k σÞ. Note that we have A B
B� C

� �
≥ 0 ()

C ≥ 0; ðI � CC�1Þ B� ¼ 0 and A ≥ BC�1 B� . Applying this identity to the second
dual form (34) we find the optimal choice for the Ai variables is Ai ¼ CiC

�1
iþ1Ci for

1 ≤ i ≤ k− 1 and Ak= Ckσ−1Ck. For this particular choice, the objective function
becomes Xk�1

i¼1

2k�i

2k � 1
Tr C2

i C
�1
iþ1

� �þ 1

2k � 1
Tr C2

kσ
�1

� �
: ð42Þ

This expression is a convex combination of terms of the form
Q2ðAkBÞ ¼ Tr A2B�1½ �, i.e., the Petz generalized mean of order 2. We see for αk=
2 the problem reduces to

min
C1

Tr C2
1σ

�1
� �

s:t: C1 ≥ ρ:
ð43Þ

For the feasible point C1= ρ we recover Q2ðρkσÞ ¼ Tr ρ2σ�1½ � and so Q2ðρkσÞ≥
Qð2ÞðρkσÞ and therefore by monotonicity of the logarithm D2ðρkσÞ≥Dð2ÞðρkσÞ.
Furthermore, if we drop the constraint V1 þ V�

1 ≥ 0 from the definition of
D(2)(ρ∥σ) then one can show that Dð2ÞðρkσÞ ¼ D2ðρkσÞ.

Proof of Proposition 1. We now provide a proof of Proposition 1 which gives a
variational characterization of H"

ðαkÞðAjBÞ. More explicitly, it states for a bipartite

state ρ 2 DðABÞ we can write

H"
ðαkÞðAjBÞρ ¼

1
1� αk

logQ"
ðαkÞðρÞ ð44Þ

where

Q"
ðαkÞðρÞ ¼ max

V1 ;¼ ;Vk

Tr ρ
ðV1 þ V�

1Þ
2

� 	� �αk

s:t: TrA V�
kVk

� �
≤ IB

V1 þ V�
1 ≥ 0

I Vi

V�
i

ðViþ1þV�
iþ1Þ

2

 !
≥ 0 for 1 ≤ i≤ k� 1:

ð45Þ

Proof. By the definition of H"
ðαkÞðAjBÞ we have H"

ðαkÞðAjBÞ ¼ supσB �
DðαkÞðρAB k IA � σBÞ which in turn is equal to

1
1� αk

log inf
σB

max
V1 ;¼ ;Vk ;Z

αkTr ρ
ðV1 þ V�

1Þ
2

� 	
� ðαk � 1ÞTr ðIA � σBÞZ½ �

s:t: V1 þ V�
1 ≥ 0

I Vi

V�
i

ðViþ1þV�
iþ1Þ

2

 !
≥ 0 for 1≤ i≤ k� 1

I Vk

V�
k Z

� �
≥ 0:

Now consider the set M of points ðV1; ¼ ;Vk;ZÞ 2 LðABÞkþ1 such that
ðV1; ¼ ;Vk;ZÞ is a feasible point of the above optimization and the function

f : DðBÞ ´M ! R defined as

f ðσB;V1; ¼ ;Vk;ZÞ ¼ αkTr ρ
ðV1 þ V�

1Þ
2

� 	
� ðαk � 1ÞTr ðIA � σBÞZ½ �:

Note that M is a convex set, DðBÞ is a compact and convex set and f is a
continuous function. In addition, f is both convex and concave in each argument—
treating (V1, …, Vk, Z) as one argument. Now we have

inf
σB

max
V1 ;¼ ;Vk ;Z

f ðσB;V1; ¼ ;Vk;ZÞ ≥ max
V1 ;¼ ;Vk ;Z

inf
σB

f ðσB;V1; ¼ ;Vk;ZÞ

¼ max
V1 ;¼ ;Vk ;Z

min
σB

f ðσB;V1; ¼ ;Vk;ZÞ

¼ min
σB

max
V1 ;¼ ;Vk ;Z

f ðσB;V1; ¼ ;Vk;ZÞ

≥ inf
σB

max
V1 ;¼ ;Vk ;Z

f ðσB;V1; ¼ ;Vk;ZÞ

where the second line follows from the fact that DðBÞ is compact and f is
continuous on DðBÞ and the third line from Sion’s minimax theorem. Thus, we
have

inf
σB

max
V1 ;¼ ;Vk ;Z

f ðσB;V1; ¼ ;Vk;ZÞ ¼ max
V1 ;¼ ;Vk ;Z

min
σB

f ðσB;V1; ¼ ;Vk;ZÞ

and so we can interchange the inf max in our optimization for a maxmin. Now as
maxσBTr ðIA � σBÞZ½ � ¼ λmaxðTrA Z½ �Þ we can write H"

ðαkÞðAjBÞ as
1

1� αk
log max

V1 ;¼ ;Vk ;Z
αkTr ρ

ðV1 þ V�
1Þ

2

� 	
� ðαk � 1ÞλmaxðTrA Z½ �Þ

s:t: V1 þ V�
1 ≥ 0

I Vi

V�
i

ðViþ1þV�
iþ1Þ

2

 !
≥ 0 for 1≤ i≤ k� 1

I Vk

V�
k Z

� �
≥ 0:

Finally, by applying the same rescaling arguments used in the proof of property 1
in Proposition 2 we can homogenize the objective function to remove the second
term and add the constraint λmaxðTrA Z½ �Þ ¼ 1. After doing so we arrive at the
expression

Q"
ðαkÞðρÞ ¼ max

V1 ;¼ ;Vk ;Z
Tr ρ

ðV1 þ V�
1Þ

2

� 	� �αk

s:t: λmaxðTrA Z½ �Þ ¼ 1

V1 þ V�
1 ≥ 0

I Vi

V�
i

ðViþ1þV�
iþ1Þ

2

 !
≥ 0 for 1≤ i≤ k� 1

I Vk

V�
k Z

� �
≥ 0:

ð46Þ

To derive the second expression we first note that the final positive-
semidefinite constraint in Eq. (46) is equivalent to the operator inequality
Z ≥V�

kVk . This condition, together with the fact that V�
kVk ≥ 0, implies that

1 ¼ λmaxðTrA Z½ �Þ≥ λmaxðTrA V�
kVk

� �Þ≥ 0. Now notice that for any feasible

point (V1, …, Vk, Z) of Eq. (46), the point ðV1; ¼ ;Vk;
V�

kVk

λmaxðTrA V�
kVk½ �ÞÞ is also

feasible and has the same objective value, we may therefore restrict our
consideration to feasible points of this latter form. Furthermore, we have
λmaxðTrA V�

kVk

� �Þ≤ 1 () TrA V�
kVk

� �
≤ IB . We now have a bijection between

feasible points (V1,…, Vk) of Eq. (6) and feasible points ðV1; ¼ ;Vk;
V�

kVk

λmaxðTrA V�
kVk½ �ÞÞ

of Eq. (46) which preserves objective values and therefore the two optimizations are
equivalent and the proof is complete.

Remark 3 (Relation to HminðAjBÞ). In Proposition 2 (see Eq. (39)) it was shown
via an application of the Cauchy–Schwarz inequality that
DðαkÞðρkσÞ≤Dðαk�1ÞðρkσÞ, which in turn implies H"

ðαkÞðAjBÞ≥H
"
ðαk�1ÞðAjBÞ.

Applying the Cauchy–Schwarz inequality to the objective function of H"
ð2ÞðAjBÞ we

see that

�2 log max
V1

Tr ρðV1 þ V�
1Þ=2

� �
≤ � 2 log max

V1

Tr ρV�
1V1

� �1=2
¼ �log max

V1

Tr ρV�
1V1

� �
:

Therefore we have

H"
ð2ÞðAjBÞ≥ � log max Tr ρV�

1V1

� �
s:t: TrA V�

1V1

� �
≤ IB

V�
1 þ V1 ≥ 0:
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Let us compare this optimization with the min-entropy

HminðA Bj Þ ¼ � log max
M ≥ 0

Tr½ρM�
s:t TrA½M�≤ IB:

As V�
1V1 ≥ 0 we see that for each feasible point V1 of the first optimization V�

1V1 is
a feasible point of the second optimization with the same objective value.
Conversely, for any feasible point M of the second optimization, V1=M1/2 is a
feasible point of the first optimization with the same objective value and so
H"

ð2ÞðAjBÞ≥HminðAjBÞ. Thus, the sequence of conditional entropies H"
ðαkÞðAjBÞ are

each separated by a Cauchy–Schwarz inequality and first term H"
ð2ÞðAjBÞ is

separated by another application of the Cauchy–Schwarz inequality from
HminðAjBÞ.

Proof of Lemma 1. We now state a proof of Lemma 1 which gave an expression for
H"

ðαkÞðAjEÞ where A is a classical system resulting from some measurement on a

quantum system QA and E is a quantum system that may have been entangled with
QA. The form that H"

ðαkÞðAjEÞ takes in the lemma allowed us to optimize the

quantity in a device-independent manner using the NPA hierarchy.
Proof. From Proposition 1 we know that we can write H"

ðαkÞðAjEÞ as
αk

1� αk
log max

V1 ;¼ ;Vk

Tr ρAE
ðV1 þ V�

1Þ
2

� 	
s:t: TrA V�

kVk

� �
≤ IE

V1 þ V�
1 ≥ 0

I Vi

V�
i

ðViþ1þV�
iþ1Þ

2

 !
≥ 0 for 1 ≤ i≤ k� 1:

For 1 ≤ i ≤ k let Vi ¼
P

a;b aj i bh j � V̂ iða; bÞ for some V̂ iða; bÞ 2 LðEÞ. Taking the
partial trace over A in the objective function we can rewrite it as

Tr
V1 þ V�

1

2
ρAE

� 	
¼
X
a

Tr
V̂1ða; aÞ þ V̂

�
1ða; aÞ

2
ρEðaÞ

" #

¼
X
a

Tr
V̂1ða; aÞ þ V̂

�
1ða; aÞ

2
TrQA

ðMa � IÞ ψj iψh j½ �
" #

¼
X
a

Tr TrQA
Ma �

V̂1ða; aÞ þ V̂
�
1ða; aÞ

2

 !
ψj iψh j

" #" #

¼
X
a

Tr Ma �
V̂1ða; aÞ þ V̂

�
1ða; aÞ

2

 !
ψj iψh j

" #
:

Now for a linear operator X ¼Pa;bjaihbj � Xða; bÞ acting on AE consider the
pinching map defined by the action PðXÞ ¼Pa aj iah j � Xða; aÞ that pinches in the
classical basis of A defined by the cq-state ρAE. Note that P is both CP and unital
and so it preserves the semidefinite constraints, i.e.,

I Vi

V�
i

ðViþ1þV�
iþ1Þ

2

 !
≥ 0 )

I PðViÞ
PðViÞ� ðPðViþ1ÞþPðViþ1Þ�Þ

2

 !
≥ 0

and V1 þ V�
1 ≥ 0 ) PðV1Þ þ PðV1Þ� ≥ 0. Furthermore, the variableWk ¼ PðVkÞ

also satisfies the constraint TrA W�
kWk

� �
≤ I as

TrA W�
kWk

� � ¼X
a

V̂
�
kða; aÞV̂kða; aÞ

≤
X

a;b
V̂

�
kða; bÞV̂kða; bÞ

¼ TrA V�
kVk

� �
≤ I:

Finally, the objective function is invariant under the pinching as it only contains block
diagonal elements V̂kða; aÞ. As such, for any feasible point of the optimization
problem, we can replace the variables with their respective pinchings to obtain
another feasible point with the same objective function value. We may therefore
restrict all variables in the optimization to take the form Vi ¼

P
a aj iah j � V̂ iða; aÞ.

Applying the Schur complement lemma (see the Supplementary Information) to the
remaining block positive-semidefinite constraints we can rewrite them as operator
inequalities. Then by relabeling V̂ iða; aÞ to Vi,a, the result follows.

With Lemma 1 we can then consider device-independent optimizations of
H"

ðαkÞ . That is, we impose some statistical constraints on the classical system(s), e.g.,

a Bell-inequality violation, and we take the infimum of H"
ðαkÞðAjEÞ over all possible

states and measurements on finite-dimensional Hilbert spaces. Using the form of
H"

ðαkÞ given in Lemma 1, the resulting problem is a noncommutative polynomial

optimization which can be lower bounded by an SDP using the NPA hierarchy.
Much like we can use a Naimark dilation to assume the operators in a device-

independent optimization of Hmin are projections, we also found an analogous
dilation can be made for H"

ð2Þ under certain restrictions.

Remark 4. When k= 1 (i.e., αk= 2) and we are optimizing in the device-
independent setting we may impose some additional constraints on the operators
fV1;aga . Namely, we may assume that for all a; b 2 A,

V1;aV
�
1;b ¼ δabI: ð47Þ

This allows us to remove certain monomials from the moment matrix of the
relaxed problem, which makes the size of the SDP smaller. Moreover, this implies
that the operators V�

1;aV1;a form a set of orthogonal projections. As was shown in

Remark 3, we can recover HminðAjEÞ from H"
ð2ÞðAjEÞ by an appropriate application

of the Cauchy–Schwarz inequality. In that case the operators fV�
aVaga2A played

the role of Eve’s POVM fWaga2A . By adding the additional constraints (47) to the

optimization problem defining H"
ð2ÞðAjEÞ the operators fV�

aVaga2A now form a

projective measurement. This can be an important additional constraint as
imposing that measurements are projective when computing HminðAjEÞ often
speeds up its convergence in the NPA hierarchy. Thus, the constraints (47) can also
be helpful in this regard. However, in order to impose these constraints, we have to
remove or relax the constraint V1 þ V�

1 ≥ 0. In practice, when computing the rates
in the proceeding sections, we remove the constraint V1 þ V�

1 ≥ 0 as we did not
observe any change as a result. It is also possible to include these additional
constraints in the optimizations of H"

ðαkÞ for k ≥ 2. However, this requires additional

considerations. We discuss this further in the Supplementary Information.

Data availability
The datasets used in this work are available from the corresponding author upon
reasonable request.
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