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motivated in part by practical considerations. Among 
the many areas treated in the recent literature are sorting 
[2, 3, 7, 12, 15], the evaluation of  arithmetic expressions, 
linear recurrences and polynomials [4, 8, 10], matrix 
algorithms [5, 6, 13], and graph theory [9, 14, 15]. In this 
paper we present a parallel algorithm C O N N E C T  which 
determines the connected components of  an undirected 
graph with n vertices in time O(log2n) using n 2 processors. 
Next, we modify the algorithm to demonstrate an obser- 
vation due to F.P. Preparata and R.L. Probert, viz., 
n[n/lg n] processors 1 suffice to achieve a time bound of  
O(log2n). Finally, we show that CO NNEC T can be 
modified to compute the transitive closure of  an nxn 
symmetric Boolean matrix in time O(log2n) us ing  
n[n/lg n] processors. We use the single instruction 
stream-multiple data stream (SIMD) model of  parallel 
processors. It is assumed that the processors have access 
to a common memory, and that simultaneous access to 
the same location is permitted for fetch instructions but 
not for store instructions. 

The Algorithm Connect  

We present a parallel algorithm which u s e s  n 2 

processors to find the connected components  of  an 
undirected graph with n vertices in time O(log2n). An 
O0og2n) time bound also can be achieved using only 
n[n/[log2n]] processors. The algorithm can he used to 
find the transitive closure of  a symmetric Boolean 
matrix. We  assume that the processors have access  to 
a common memory. Simultaneous access to the same 
location is permitted for fetch instructions but not for 
store instructions. 

Key Words and Phrases: graph theory, parallel 
processing, algorithms, transitive closure, connected 
component 

CR Categories: 5.25, 5.32, 6.22 

Introduction 

Parallel algorithms for solving various computational 
problems have received substantial attention recently, 
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Let V = {0, 1, 2 . . . . .  n - 1), and let G = (V, E) 
denote an undirected graph with vertex set V and edge 
set E. We represent G by its adjacency matrix A which 
is an nxn symmetric Boolean matrix where A(i,j) = 1 if 
(i, j )  E E and A(i, j )  = 0 otherwise. A connected com- 
ponent of  G is a maximal subgraph of  G such that there 
exists a path between every pair of vertices in the 
subgraph. Each vertex belongs to exactly one connected 
component, and we use a vector D of  length n to specify 
the connected components of  G as follows. If  Gc -- 
(Vc, Ec) is any connected component, then for all i E 
V,, D(/) equals the least element of  V~. The parallel 
algorithm C O N N E C T  given below iteratively computes 
the vector D from the adjacency matrix A for an undi- 
rected graph on n vertices. 

Algorithm CONNECT 

Input: The nXn adjacency matrix .4 for an undirected graph. 
Output: The vector D of  length n such that D(i) equals the smallest- 

numbered vertex in the connected component to which i 
belongs. 

Comment: Each of  the following steps is executed in parallel for all 
i, 0 _< i < n. The assignments in the various steps are 
considered to be done simultaneously for all i. 

1. for all i do D(i) <-- i 
do steps 2 through 6 for lg n iterations 

2. for all i do C(i) ~-- m)n{D(j)l.4(i,j) = 1 AND D(j) # D(i)} 

if none then D(i) 
3. for all i do C(i) ~ mjin { C(j)[D(j) = i AND C(j) # i} 

if none then D(i) 
4. for all i do D(/) <--- C(i) 
5. for lg n iterations do 

for all i do C(i) ~-- C(C(i)) 
6. for all i do D(i) ~- min{C(i), D(C(i))} 

1 In this paper we denote [log2n~ by lg n. 
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An informal description of  the actions of CONNECT 
is as follows. During the first iteration, the edges con- 
necting each vertex to neighboring vertices are examined 
(steps 2 and 3), and sets of  vertices which are known to 
be connected are identified (steps 4-6). In effect, each 
such set of  vertices is merged into a "supervertex," which 
is specified by the vector D as follows. For each i in a 
supervertex, D(i) equals the smallest-numbered vertex in 
the supervertex. In succeeding iterations, the edges con- 
necting each supervertex to neighboring supervertices are 
examined in steps 2 and 3, and sets of  supervertices are 
merged in steps 4-6. The process continues until all the 
vertices in a connected component have been merged 
into one gigantic supervertex. Further iterations have no 
effect on this supervertex because there are no edges 
connecting it to other supervertices. We will show later 
that lg n iterations are sufficient to collapse each con- 
nected component into a single supervertex. 

The following definitions and lemmas are used in 
proving that Algorithm C O N N E C T  finds the connected 
components of  an undirected graph. 

Definition. A k-tree-loop, k >_ O, is a directed graph in 
which every vertex has outdegree 1 (i.e. exactly one edge 
leaves each vertex) and in which there is exactly one 
cycle, the length of  the cycle being k + 1. A tree-loop is 
a k-tree-loop for some k. 

Notice that a k-tree-loop has at least k + 1 vertices. 
The reason for the name tree-loop is that if one of  the 
edges in the cycle is deleted, we obtain a rooted tree, the 
root being the vertex with no edge leaving it. The direc- 
tion of  all the edges in this tree is the reverse of  that 
given in the usual definition (see e.g. [1, p. 52] of  rooted 
trees. We are interested in the sequel in l-tree-loops, 
which are defined by the vector C in the algorithm, and 
in a special case of  0-tree-loops (called clubs) which are 
defined by the vector D in the algorithm. 

Definition. The root of  a 0-tree-loop is the vertex v 
such that the edge (v, v) is the cycle of  length 1. A club 
is a 0-tree-loop in which all the edges enter the root. 

LEMMA 1. Let Gc = ( Vc, Ec) denote a connected com- 
ponent of  G such that IV  c[ >- 2 and define the function C: 
Vc ---~ Vc by C(i) = min(j lA[i ,  j] = 1 A N D  j #  i). The 

function C defines a directed graph G~( C) = (V  c, E") where 
E" = {(i, C(i))[i E V~). Then G~(C) is a collection of  l- 
tree-loops, and the smallest-numbered vertex in each tree- 
loop is in the cycle of  the tree-loop. 

PROOF. From the fact that C is a function, it is easy 
to see that Go(C) is a collection of  tree-loops. Since 
C(i) # i, none of  the tree-loops can be a 0-tree-loop. If  a 
tree-loop in G~(C) is a k-tree-loop, let Vo, vl, v2 . . . . .  
vk, v0 denote the successive vertices in the cycle (i.e. 
C(v i )  -~- V/+l for i = 0, 1 . . . . .  k - 1 and C(vk) = Vo) where, 
without loss of  generality, v0 = min{vo, vl . . . . .  vk). How- 
ever, in the graph G~, both Vo and v2 are neighbors of  
vl. Hence C(v~) = v2 > Vo which contradicts the defini- 
tion of  C except when k = 1. In this case, the two vertices 
in the loop are Vo and vl with C(vo) = v~ and C(vl) = vo. 
A similar argument shows that the smallest-numbered 

462 

vertex in the tree-loop must be in the cycle of  the tree- 
loop. [] 

Let us make the usual definition of  Ck(v) as Cl(v) = 
C(v) and Ck(v) = C(Ck-l(v)) for k > 1. 

LEMMA 2. Let C be defined as in Lemma 1 and let v 
be any vertex in a tree-loop of  Go(C). Let vo and vl denote 
the two vertices in the cycle of  the tree-loop. Then, for  all 
N >_ n - 2, one of  the two numbers CN(v) and CN+I(v) 
equals Vo and the other equals Vx. 

PROOF. The result follows easily from the fact that 
the path from v to the nearer of  v0 and vl is of  length at 
most n - 2. []  

The two lemmas above are the basis of  the method 
used in the algorithm to identify vertices in the same 
connected component. The function C sets up tree-loops 
in each connected component,  the function C N is com- 
puted iteratively, and then D(v) ~--min{CN(v), CN+I(v)} 
sets up clubs (supervertices) with roots v0. There are, of  
course, numerous bookkeeping details to be settled, and 
we take up these in the proof  of  the following theorem. 

THEOREM. Algorithm C O N N E C T  computes the con- 
nected components of  the undirected graph G specified by 
the symmetric Boolean matrix A. 

PROOF. It is easy to verify that for the trivial con- 
nected components consisting of  isolated vertices L D(i) 
is set to i at step 1 and remains unchanged throughout 
the execution of  the algorithm. In the remainder of  this 
proof, we consider connected components with two or 
more vertices only. 

Let G(D) = (V, ED) denote the directed graph defined 
by D where Eo = {(i, D(/))Ii ~ V}. After the execution 
of  step 1, and just prior to the execution of  step 2, G(D) 
satisfies the following properties: 

(i) G(D) is a set of  clubs (with disjoint vertex sets). 
(ii) The root of  each club is the smallest-numbered 

vertex in the club. 
(iii) The vertex set of  any club is a subset of  the vertex 

set of  some connected component. 

We show that if G(D) satisfies properties (i)-(iii) just 
prior to the execution of  step 2, then after executing steps 
2-6, the new function D (computed at step 6) is such that 
the new G(D) also has properties (i)-(iii). Furthermore, 
the numbers of  clubs in each connected component is 
reduced by a factor of  at least 2, provided that there were 
at least two clubs in the connected component just prior 
to step 2. 

It is instructive to observe what happens during the 
first iteration of  steps 2-6. Since D is the identity func- 
tion, the function C defined at step 2 is exactly the 
function of  Lemma 1, and sets up 1-tree-loops in each 
connected component of  G. Step 3 does not change C 
because the only j satisfying D(j) = i is i itself, and 
C(i) # i. In step 4, the function C is copied into D, while 
in step 5, C is transformed to C N where N = 2 ~g" _> n. 
Step 6 sets D(i) to min(CN(/), D(ClV(i))} which is the 
same as min(C/V(i), cN+t(i)}. It follows from Lemma 2 
that for all i, D(i) equals the smallest-numbered vertex in 
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the tree-loop that contained i. Thus the set of  vertices in 
each tree-loop has been merged into a club. It is easy to 
see that after the first iteration, G(D) satisfies properties 
(i)-(iii). Since each 1-tree-loop contained at least two 
vertices, the number of  clubs in each nontrivial con- 
nected component is no more than half  the number of  
vertices (dubs) that it contained originally. 

As mentioned earlier, further iterations of  steps 2-6 
merge supervertices, i.e. clubs. Connections between su- 
pervertices may be defined as follows. Let Vr denote the 
set of  roots of  clubs in G(D) and let Gr = (Vr, Er) denote 
an undirected graph where for i ~ j, (vi, vi) E Er if and 
only if there exist vertices v~ and v~ in the clubs of  vi and 
vj, respectively, such that (v~, v~ ~ E. In other words, 
supervertices are neighbors if and only if there is an edge 
connecting some pair of  member vertices. The function 
C is set up in steps 2 and 3. In step 2, each vertex i 
examines the club memberships of  its neighbors and sets 
C(i) to the smallest-numbered neighboring club. In step 
3, each i E Vr examines its own club members (specified 
by D(j)  = i) and picks the smallest-numbered of  all the 
smallest-numbered clubs that the members found. In 
short, the function C: Vr ---) Vr is such that for all i E Vr, 
C(0 equals the smallest-numbered vertex that is adjacent 
to i in Gr. As in Lemma 1, C defines a collection of  l- 
tree-loops on Gr. Next let us consider vertices i ~ Vr. For 
such vertices, there is n o j  such that D(j)  = i and thus at 
step 3, C(/) is reset to D(/). Hence, C: V ~ V defines a 
collection of  1-tree-loops on G because each nonroot is 
pointing to a root and the roots are in 1-tree-loops. It 
follows (as in the discussion of  the first iteration of  steps 
2-6) that after step 6, the new function D is such that 
G(D) satisfies properties (i)-(iii). Furthermore, each 1- 
tree-loop involves two or more vertices in Gr, i.e. two or 
more clubs, and hence in each connected component 
that contained at least two clubs, the number of  clubs is 
decreased by a factor of at least 2. 

From the above discussion, it is clear that the number 
of  clubs in each connected component decreases by a 
factor of  at least 2 at each iteration until the connected 
component consists of  a single club. It is easy to verify 
that further iterations do not affect such single clubs. 
Since there are at most n vertices (clubs) to begin with, 
lg n iterations suffice to reduce each connected compo- 
nent to a single club, where club membership is defined 
by D. [] 

We have shown that CONNECT computes the con- 
nected components of  the graph G specified by the 
symmetric Boolean matrix A. The transitive closure of  
A, denoted by A*, is given by A*(i , j)  = 1 if and only if 
there is a path in G from i to j ,  i.e. if  and only if i and j 
are in the same connected component. Hence we obtain 
an algorithm for the transitive closure of  symmetric 
matrices by adding the following step to CONNECT:  

7. for all i, j flo if  D(0 = D(j)  thenA*(i , j )  ~ 1 

and by changing the input-output specifications appro- 
priately. 
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T i m e  a n d  P r o c e s s o r  B o u n d s  

The main loop of  the program is executed lg n times, 
while within the loop, the iteration at step 5 is executed 
lg n times. Thus the algorithm requires ~(log2n) time 
regardless of  the number of  processors used. Let us 
suppose that n 2 processors are available. Steps 1, 4, and 
6 require only O(1) time whenever ~(n) processors are 
available, while step 5 requires O(log n) time with the 
same processor requirements. We now show that steps 2 
and 3 also can be programmed to execute in time 
O(log n) to give an O(log2n) time bound using n 2 proc- 
essors. The program for step 2 is 

Step 2. The following steps are performed in parallel for 0 _< i, j < n. 

2(a) For all i, j do 
ifA(i,j) = 1 AND O(j) # D(i) then Temp(i,j) ~-- D(j) 

else Temp(i, j) ~-- on 
2(b) For k ~-- 0 until (lg n) - 1 do 

for all i, j do Temp(i, j) 
min { Temp(i, j), 

Temp(i,j + 2* mod n)} 
2(c) For all i do 

if Temp(i, 0) = ~ then C(i) ~ D(i) 
else C(i) ~ Temp(i, O) 

Here on means any number exceeding n - 1. In step 2(a) 
the numbers whose minimum is to be computed are 
stored in the array Temp. In step 2(b), the minimum is 
found as follows. At the first iteration Temp(i, 0) is 
compared with Temp(i, 1) as is Temp(i, 2) with Temp(i, 
3), Temp(i, 4) with Temp(i, 5) ... etc. At the second 
iteration, Temp(i, 0) is compared with Temp(i, 2), Temp(i, 
4) with Temp(i, 6) etc. The former comparison finds 
min(Temp(i,  j), 0 <_ j <-- 3}, while the latter finds 
min{Temp(i, j), 4 <_j <_ 7) etc. Thus, in lg n iterations 
the minimum is found. The method is simple but waste- 
ful of  processors in that, for example, the result of  
comparing Temp(i, 1) with Temp(i, 2) is not used at all. 
Obviously, for each value of  i, [n/2] processors would 
suffice for the first iteration, [[n/2]/2] for the second etc. 
The program for step 3 is similar and will not be stated 
separately. The net result is the following theorem. 

THEOREM. Algorithm C O N N E C T  finds the connected 
components of  an undirected graph with n vertices in time 
O(log2n) using n 2 processors. 

COROLLARY. The transitive closure of  an n×n sym- 
metric Boolean matrix can be found in time O(log 2n) using 
n z processors. 

The reduction in the number of  processors that was 
observed by Preparata and Probert occurs as follows. 
We partition the integers {0 ___j < n) into [n/lg n] subsets 
of  the form ( k l g n < _ j < ( k +  1) l gn )  w h e r e 0 _ < k <  
[n/lg n]. Each such subset (except possibly the one with 
k = [n/lg n] - 1) has lg n elements. The idea is to 
compute the n 2 entries of  the arr~iy Temp in time 
O(log n) using n[n/lg n] processors. In order to compute 
the minimum value of  Temp(i, j)  for 0 _< j < n, we 
first compute the minimum values for j in the range 
k lg n ___ j < (k + 1) lg n. These are found in time 
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O(log n) via sequential search. Then, the minimum of 
the [n/lg n] candidate minima is found (as in step 2(b) 
above) in time O(log n - log log n) using [n/lg n] 
processors at each step. The grubby details are as follows. 

Step 2. The following steps are performed in parallel for 0 _< i < n, 
and 0 -- k < [n/lg n]. 

2(a) For I ,,- 0 until (lg n) - 1 do 
for all i, k do 

if A(i, l + k lg n) = 1 AND D(i) ~ D(I + k lg n) 
then  Temp(i, 1 + k lg n) *-- D(I + k lg n) 
e l se  Temp(i, l + k lg n) ~ 

2(b) F o r l ~ l  un t i l ( l gn ) -  1 do 
for all i, k do 

Temp(i, k Ig n) ~ min{ Temp(i, k lg n), 
Temp(i, l + k lg n)} 

2(c) For 1 ~-- 0 until (lgrn/lg n'D - 1 do 
for all i, k do 

Temp(L k lg n) ~ min{ Temp(i, k lg n), 
Temp(i, (k + 2t)lg n mod n)} 

2(d) For all i do 
if  Temp(i, 0) = oo then  C(i) *-- D(i) 

e l se  C(i) ~ Temp(i, O) 

In the above program, we have ignored the fact that one 
of  the [n/lg n] subsets may contain fewer than lg n 
elements. One way around this is to pad the arrays ,4, C, 
and D approximately. Another possibility is to replace 
l + k lg n by (l + k lg n)mod n. The program for step 3 
is similar and we have the following theorem. 

THEOREM. Algorithm CONNECT finds the connected 
components of an undirected graph with n vertices in time 
O(log2n) using nrn/lg n] processors. 

COROLLARY. The transitive closure of an nXn sym- 
metric Boolean matrix can be found in time O(log 2n) using 
n[n/lg n] processors. 

Remark. In [5], it is shown that the transitive closure 
of an arbitrary nxn Boolean matrix can be found in time 
O(log2n) using O(nl°g27/log n) processors. Although the 
exponent of n may be reduced slightly by using some 
recent results of Pan [11], it is clear that symmetry 
reduces processor requirements significantly for the tran- 
sitive closure problem. 
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