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ABSTRACT
Data Exchange is the problem of inserting data structured
under a source schema into a target schema of different
structure (possibly with integrity constraints), while reflect-
ing the source data as accurately as possible. We study com-
putational issues related to data exchange in the setting of
Fagin, Kolaitis, and Popa (PODS’03). We use the technique
of hypertree decompositions to derive improved algorithms
for computing the core of a relational instance with labeled
nulls, a problem we show to be fixed-parameter intractable
with respect to the block size of the input instances. We
show that computing the core of a data exchange prob-
lem is tractable for two large and useful classes of target
constraints. The first class includes functional dependen-
cies and weakly acyclic inclusion dependencies. The second
class consists of full tuple generating dependencies and ar-
bitrary equation generating dependencies. Finally, we show
that computing cores is NP-hard in presence of a system-
predicate NULL(x), which is true iff x is a null value.

1. INTRODUCTION
Data Exchange Settings. A clear and comprehensive

framework for data exchange in the relational context was
recently developed by Fagin, Kolaitis, Miller, and Popa [13,
14], and a schema mapping tool Clio based on these ideas
was implemented at the IBM Almaden Research Center [33,
34]. In the present paper we study computational ques-
tions concerning the data exchange problem in this frame-
work. According to [13, 14], a data exchange setting σ =
〈S,T,Σst,Σt〉 consists of two relational database schemas S
and T, called the source and the target schema, respectively,
a set Σst of logical source-to-target constraints expressing re-
lationships between source and target data, and a set Σt of
target constraints (see also Section 2). The associated data
exchange problem consists in finding an appropriate target
instance J for a given source instance I. If 〈I, J〉 satisfies
all constraints of Σst and Σt, then J is called a solution to
the data exchange problem. However, in most cases there
are multiple solutions to a data exchange problem, and the
goal is to compute one that best reflects the source data.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODS 2005 June 13-15, 2005, Baltimore, Maryland.
Copyright 2005 ACM 1-59593-062-0/05/06 . . . $5.00.

Example. Consider a source schema S = (student,emplo-
yee) where the source relations

student(STUDNAME,BIRTHDATE,SSN) and
employee (EMPNAME,SSN,PHONE)

store data on students and employees of a university, respec-
tively, and where the target schema T has a single relation
person(NAME,BIRTHDATE,SSN,PHONE) which should
hold the data of both students and employees. The source-
to-target constraints are expressed through the following two
formulas (which are tuple-generating dependencies [7] over
the combined source-target schema):
d1 : ∀x∀y∀z(student(x,y, z)→ (∃u person(x, y, z, u))),
d2 : ∀x∀y∀z(employee(x,y, z)→ (∃u person(x, u, y, z))).
The target constraints Σt consist of the two functional de-
pendencies SSN → NAME and SSN → BIRTHDATE.

Now, consider the following source instance I, where Mor-
ris is both a student and an employee, say, a TA.

student:

STUDNAME BIRTHDATE SSN
Maxwell 1980 12345
Morris 1982 10022
Bolte 1979 25555

employee:
EMPNAME SSN PHONE

Lempel 99999 2020
Morris 10022 3030

Formally, the following relations person1, person2, and
person3 are all solutions to this data exchange problem. The
variables xi are so called labeled null values (short: nulls):

person1:

NAME BIRTHDATE SSN PHONE
Maxwell 1980 12345 x1

Morris 1982 10022 x2

Bolte 1979 25555 x3

Lempel 1980 99999 2020

Morris 1982 10022 3030
Tarski 1902 77777 0665

person2:

NAME BIRTHDATE SSN PHONE
Maxwell 1980 12345 x1

Morris 1982 10022 x2

Bolte 1979 25555 x3

Lempel x4 99999 2020
Morris 1982 10022 3030

person3:

NAME BIRTHDATE SSN PHONE
Maxwell 1980 12345 x1

Bolte 1979 25555 x3

Lempel x4 99999 2020
Morris 1982 10022 3030

Clearly, person1, containing “invented” data not stem-
ming from the source (the Tarski record and the birthdate



for Lempel) has to be rejected.
Universal Solutions. To avoid such solutions, Fagin et

al. [13] define the concept of universal solutions. A solution
J is universal if it can be homomorphically mapped into
each other solution, i.e., if for each other solution J ′, there
is a substitution h mapping each variable of J into a variable
or constant of J ′ such that h applied to J is contained in J ′,
denoted by h(J) ⊆ J ′. Note that the solution person1 is not
universal, because every image of person1 by a homomoro-
hism (i.e., a variable substitution) h will still contain e.g.
the constant Tarski and thus cannot be a subset of other
solutions such as person2 or person3. It can be seen, on
the other hand that both person2 and person3 are universal
solutions.

Fagin et al. [13] have shown that under rather general con-
ditions on the type of dependencies allowed to occur in Σst

and Σt, a universal solution to a data exchange problem ex-
ists, and a canonical universal solution can be computed in
polynomial time from a source instance I by chasing these
dependencies over the schemas S and T starting with I and
an empty relation for T. The chase procedure [7, 32] is a
well known method for enforcing dependencies on instances
with nulls. In particular, it was shown in [13] that if Σst

consists of tuple-generating dependencies (TGD’s) [7] (gen-
erating target tuples from source tuples), and if Σt consists
of TGDs and equality-generating dependencies (EGDs) [7],
and if the TGDs of Σt are weakly acyclic (see Section 2),
then a universal solution, if one exists, can be generated
in polynomial time by first chasing Σst over S and T and
then chasing Σt over T. In our example, where the de-
pendencies are of the required types, this procedure yields
relation person2 as result (or an isomorphic copy of it with
renamed variables). Intuitively, this is not quite the most
“natural” solution, because the first Morris-tuple in person2
is redundant and can be eliminated. Moreover, in general,
a universal solution is not unique, and (logically equivalent)
universal solutions can substantially differ in size. In our ex-
ample, solution person3 is clearly preferrable to person2. To
formally capture this type of preference, Fagin et al. in [14]
establish minimality as a key criterion for the quality of a
universal solution and thus resort to the concept of the core.

The concept of Core. A core J of an instance I with
labeled nulls is a minimal substructure of I which is also
a homomorphic image of I, i.e., such that J = Iθ for a
uniform replacement θ of the variables of I by variables or
constants. Since all cores of I are isomorphic (i.e., equal up
to variable renaming), we usually speak of the core of an
instance I and write Core(I). As shown in [14], all universal
solutions to a data exchange problem have the same core
(up to isomorphism). The core of any solution to a data
exchange problem π is called the core of π and denoted by
Core(π). In our example, the instance person3 constitutes
the core.

Cores were recently also considered in the context of the
Semantic Web. In particular, it was shown that computing
cores of RDF graphs can be useful for obtaining minimal
representations and normal forms of such graphs [23].

Fagin et al. [13, 14] have shown that universal solutions,
and in particular the core of a data exchange problem, can
be used very profitably for query answering. Let Q be a
union of conjunctive queries over the target schema of a
data exchange problem π. The certain answers of Q for π
consist of all tuples t such that t is ground (i.e., is made
of constants only and does not contain nulls) and t occurs
in each query answer Q(J) for each solution J to π. These
certain answers can be simply obtained from Core(π) by

first evaluating Q over Core(π) and then taking the ground
tuples of this result [13, 14] .

Since the core is in many contexts apparently the most
satisfactory solution to a data exchange problem, it makes
sense to study computational issues and the complexity of
“getting to the core”. This is a topic of [14] and the main
topic of the present paper.

Computing Cores of Arbitrary Instances. A first
important question is how to compute the core of an ar-
bitary instance J with labeled nulls. As noted in [14], com-
puting Core(I) for an instance I is the same as minimizing
a conjunctive query, which is a well-known NP-hard prob-
lem [9]. Thus, computing Core(I) is NP-hard. However,
Fagin et. al [14] identified as an important parameter, the
block size of I, whose boundedness implies the tractability
of the core computation problem. Let us briefly define the
notion of block size. The connection graph G(I) of an in-
stance I is the undirected graph whose vertices are the nulls
(=variables) of I and which contains an edge {x, y} if x and
y jointly appear in a tuple (=atom) of I. Each connected
component of G(I) is called a block of I. The maximum size
of a block of I is termed the block size of I and is denoted
by blocksize(I) . Fagin et. al [14] showed the following:

Proposition 1.1 ([14]). The core of an instance I of
size n having blocksize(I) ≤ b can be computed in time
O(nb+3).

Fagin et al. [14] ask whether there are better algorithms for
computing Core(I) for an instance I. This is one of the
problems we address in the present paper.

Computing Cores of Data Exchange Problems. The
next question is how to compute cores of data exchange
problems, more precisely, of universal instances of data ex-
change problems. Such universal instances are produced
from ground (i.e., null-value free) relations through the ap-
plication of dependencies and may thus have certain prop-
erties that may lead to polynomial core computation algo-
rithms. We always assume a fixed data exchange setting σ.
The problem is then to compute Core(π) for the data ex-
change problem π = 〈σ, I〉 where I is a (variable) source
instance. Since σ is fixed, the size n of π can be identified
with the size ‖I‖ of the source instance I. Fagin et al. [14]
proved the following result:

Proposition 1.2. Let σ = 〈S,T,Σst,Σt〉 be a fixed data
exchange setting. If Σst consists of source-to-target TGDs
and Σt consists of EGDs, then the core of 〈σ, I〉 can be com-
puted in polynomial time from a source instance I.

The key finding for establishing Proposition 1.2 was the ob-
servation that under the premises of this proposition, the
block size of the canonical solution of a data exchange prob-
lem is bounded by a constant b, and thus, by Proposition 1.1,
the core can be computed in polynomial time.

Of course it would be interesting to know whether the core
computation problem remains tractable when Σt contains
TGDs in addition to EGDs (assuming that the chase ter-
minates), or at least practical subclasses of TGDs. A more
specific question asked in [14] is whether the core computa-
tion problem is tractable for EGDs and full TGDs, that is,
TGDs which create no new null values (see Section 2).

New Results. The present paper takes the above open
problems as starting point for an investigation into the com-
plexity of core computation in the context of data exchange.
We first study core computation from arbitrary instances
and then turn our attention to instances that arise in the



context of data exchange problems. The following is a short
summary of our results:

I In Section 3 we improve the bound of O(nb+3) of Propo-

sition 1.1 to O(nbb/2c+2), thus halfing the exponent. We
show this by using a reduction of core computation to the
conjunctive query containment problem and using an algo-
rithm for query containment that decides whether a query
Q contains a query Q′ in time O(nbv/2c+1), where v is the
number of variables in Q. The algorithm uses recently in-
troduced methods of hypertree decompositions [18] and ex-
ploits the fact that the hypertree-width of each conjunctive
query having v variables is bounded by bv/2c + 1.

As an intermediate result, which may be if independent
interest, we establish that each conjunctive query Q with v
variables can be answered in time O(‖Q‖)+O(|Q|×abv/2c+1)
over a database whose largest relation has size a.

I In Section 4 we show that the problem of computing
the core of an instance J is fixed-parameter intractable [11]
w.r.t. the block size b of J , and this is even so if J is the
canonical solution of a data exchange problem. This shows
that there is little hope to eliminate the parameter b from
the exponent of the upper bound of core computation.

I In Section 5 we define the simple TGDs as a class of
TGDs whose left sides underly some restrictions. Simple
TGDs are, however, more expressive than the well-known
inclusion dependencies [8]. We prove that the core compu-
tation problem is tractable for data exchange settings where
Σst consists, as usual, of source-to-target TGDs, and where
the set Σt of target constraints consists of a set of weakly
acyclic simple TGDs. In particular, it follows that the prob-
lem is tractable if Σt contains functional dependencies and
acyclic (actually, even weakly acyclic) inclusion dependen-
cies. Note that functional and inclusion dependencies are
considered by many as the most important dependencies
cf. [8, 6, 28, 29]. Together, they can be used, e.g., to express
foreign key constraints and other referential integrity condi-
tions. We further show in Section 5 that the hypertree width
of an instance is essentially preserved while chasing weakly
acyclic simple TGDs, which leads to improved methods for
dealing with TGDs. Hence, we believe to have identified
a relevant practical tractable framework, which widens the
range of applicability of the approach of Fagin et al. [14].

I In Section 6 we show that computing cores of data
exchange problems whose target constraits consists of full
TGDs and arbitrary EGDs is tractable. This solves an open
problem of [14]. We start by showing the result for full
TGDs alone. The proof uses a new algebraic interchange
lemma stating that a full-TGD chase commutes with a ho-
momorphism in case the homomorphism is idempotent. The
result is extended to cover full TGDs plus EGDs by a new
method of simulating EGDs by full TGDs. This tractable
class includes both join dependencies (and thus, in particu-
lar, multivalued dependencies) and functional dependencies.

I Finally, in Section 7, we study a slight extension of the
data exchange framework defined by Fagin et al. [13, 14].
We assume that there exists a predefined system predicate
NULL(x) which evaluates to true only if x is (bound to) a
null value, in short, which can be used to distinguish nulls
from non-nulls. Obviously, to make sense, such a predicate
is not to be considered part of the source or target schema,
and is not to be altered by homomorphisms or dependen-
cies (EGDs or TGDs). Considering such a NULL predi-
cate is not unrealistic, since similar features exist in classical

databases. We show that the core computation problem in
such an extended setting is NP hard, even when the target
dependencies consist of a single acyclic full TGD. What this
shows at least is that one has to be careful when deviating
from the framework proposed in [13, 14]. Adding a simple
polynomially computable predicate such as NULL(x) may
dramatically enhance the expressive power of the constraints
so to make the core computation problem intractable.

Future work. In the present paper we show that com-
putating cores is tractable for two important classes of data
exchange problems involving TGDs. We suspect that there
are larger tractable classes, and hope to determine them.
Another important issue is query answering. It was shown
that the positive results concerning the computation of the
certain answers for unions of plain conjunctive queries (un-
doubtedly the most important class of queries) do not carry
over to more complex types of queries [14], not even if ac-
ceptable methods of query rewriting are used [5]. We be-
lieve that more work is needed to extend the current data
exchange framework to deal with more complex queries.

2. PRELIMINARIES AND NOTATION
We adhere to the usual terminology of database research [1,

39] and to the concepts and notions on data exchange used
in [13, 14], many of which were already introduced in Sec-
tion 1. In this section, we introduce additional notation,
conventions, and definitions.

We use the expressions variable and labeled null value as
synonyms. An instance is a finite relation over constants and
variables. Each tuple 〈t1, . . . , tr〉 of a relation r is identified
with the logical atom r(t1, . . . , tr). If ξ is an object (e.g.,
an atom, tuple, formula, instance etc.) in which variables
and/or constants occur, then var(ξ) denotes the set of vari-
ables in ξ, and const(ξ) the set of constants in ξ. We define
dom(ξ) = const(ξ)∪ var(ξ). If ξ contains no variables, then
ξ is said to be ground. As in [13], we assume that source
instances of a data exchange problem are ground. We adopt
the RAM model for our complexity bounds. The cardinality
of a set S is denoted by |S|, while the size of an object ξ is
denoted by ‖ξ‖. For an instance K and a set of variables
B ⊆ var(K), denote by K[B] all non-ground atoms A of
K such that in var(A) ⊆ B. If K is an instance and x a
variable, then atoms(x,K) denotes the set of all atoms of
K in which x appears as argument.

Let K and M be instances. A maping f : dom(K) →
dom(M) is legal if for each constant c ∈ const(K), f(c) =
c. We denote the set of legal mappings from K to M by
legal(K,M). A legal mapping h : dom(K) −→ dom(M) is
a homomorphism if ∀A ∈ K : h(A) ∈M . An endomorphism
of M is a homomorphism from M to M . The set of all
endomorpohisms of M is denoted by end(M).

Recall the notion of blocks of variables introduced in [13],
and already explained in the introduction. The set of all
blocks of K is denoted by blocks(K). Let x ∈ var(K)
then block(x,K) denotes the block of K containing x. Let
V ⊆ var(K), then blocks(V,K) =

S

x∈V {block(x,K)}, i.e.,
blocks(V,K) is the set of all blocks of K that contain at least
one variable from V . If B is a block of K, then atoms(B,K)
denotes the set of atoms A ∈ K, such that var(A) ⊆ B.
Such a set atoms(B,K) is called an atom-block of K. The
block size of an instance K, denoted by blocksize(K) is the
maximum number of variables appearing in a block of K.
The block width blockwidth(K) of K is the maximum number
of atoms appearing in an atom-block of K.

Throughout the paper, we assume that the set Σst of a



data exchange problem σ = 〈S,T,Σst,Σt〉 consists of TGDs
of the form ∀x(φS(x)→ ∃yψT(x,y), where φS(x) is a con-
junction of atomic formulas over S with variables x and
ψT(x,y) is a conjunction of atomic formulas over T whose
variables are among those in x and y. Such TGDs are also
referred to as source-to-target TGDs. Each target constraint
from Σt is either a TGD on T, i.e. a formula of the form
∀x(φT(x) → ∃yψT(x,y)), or an EGD, i.e., an equality-
generating dependency [7] of the form ∀x(φT(x) → (x1 =
x2)). In these dependencies, φT and ψT(x,y) are conjunc-
tions of atomic formulas over T, and x1, x2 are among the
variables in x. As in [13, 14], we may drop the universal
quantifiers in front of a dependency.

A TGD is full if no existential quantifier occurs in it. The
relation graph RG(Σ) of a set Σ of TGDs is the directed
graph whose vertices are the relations mentioned in Σ and
which contains an edge R → S if relation R appears in the
lhs of a TGD of Σ and S in the rhs of the same TGD. A set
Σ of TGDs is acyclic if RG(Σ) is acyclic.

A similar, but more general concept is the notion of a
weakly acyclic set of TGDs [14]. Let Σ be a set of TGDs
over a fixed schema. The dependency graph DG(Σ) of Σ has
as vertices all positions of Σ, i.e., all pairs (R,A), where R
is a relation symbol of the schema and A an attribute of
R. The set of edges is defined as follows: for every TGD
φ(x)→ ∃yψ(x,y) in Σ and for every x that occurs in ψ:

For every occurrence of x in Φ in position (R,Ai)

(a) For every occurrence of x in ψ in position (S,Bj),
add an edge (R,Ai) → (S,Bj) (if it does not al-
ready exist).

(b) In addition, for every existentially quantified vari-
able y and for every occurrence of y in ψ in posi-
tion (T,Ck), add a special edge (R,Ai)⇒ (T,Ck)
(if it does not already exist).

Σ is weakly acyclic if the dependency graph has no cycle
going through a special edge.

The chase procedure “enforces” EGDs by unifying labeled
nulls with other labeled nulls or with constants, and TGDs
by creating new target tuples where necessary. If a new tuple
is created via a TGD, the existentially quantified variables in
the corresponding atom in the rhs of the TGD are reflected
by new labeled nulls in the new tuple. We refer the reader
to [13] for a formal definition of the chase procedure in the
context of data exchange. Chasing a set Σ of dependencies
on an instance K may produce various results, depending on
the order of application of the dependencies. We denote the
result by CHASEΣ(K), assuming some arbitrary, but fixed
order. Note that the result of chasing a set of full TGDs on
an instance K is order-independent and thus unique.

3. CORE COMPUTATION USING
HYPERTREE DECOMPOSITIONS

Logically, a database instance I with nulls represents an
existentially quantified conjunction of atoms (=tuples) whose
arguments are constants or variables. Boolean Conjunctive
queries (BCQs) are defined the same way. The difference is
just in the use: An instance affirms that a conjunction of
atoms is true, a BCQ asks whether a conjunction of atoms
is true in a database. For the aims of this section this dif-
ference is not essential, and we will thus identify instances
with Boolean conjunctive queries. Via this trivial identifica-
tion it is clear that, as already noted in [14], computing the
core of instance I is the same as minimizing the query I. A

query or instance I contains a query or instance J , denoted
by I.J , if for each database db the result J(db) of evaluating
J over db is set-theoretically contained in the result I(db) of
evaluating I over db. As shown in [9], I.J iff there exists a
homomorphism from I to J .

The following algorithm computes the core Core(I) of an
instance I by reducing this task to |var(I)| calls of a query
containment check by exploiting the blocks of I.

Algorithm 3.1. CORECOMP
Input: An instance I.
Output: The core of I (up to isomorphism).

1. Identify the blocks of I, and let B(x) be the block of x
in I for each variable x ∈ var(I).

2. K:= I;

3. FOR each x ∈ var(I) DO
IF x ∈ var(K) AND K[B(x)].(K − atoms(x,K))
THEN K := K − atoms(x,K);

4. Output K

The correctness of the CORECOMP algorithm follows
from results in [14]. Lemma 3.2, whose proof is available
in [16], asserts this correctness and states a complexity
bound for CORECOMP modulo containment checks.

Lemma 3.2. The CORECOMP algorithm is correct and
runs in time O(n2)+|var(I)|×C., where C. is the maximum
cost for a test K[B(x)].(K − atoms(x,K)) performed by
CORECOMP.

We are thus looking for a good algorithm for query contain-
ment checks K[B(x)].(K − atoms(x,K)), where the per-
formance is measured in terms of the block size of B(x),
i.e., in terms of the variables of the query K[B(x)]. While
there are several papers describing methods for conjunctive
query evaluation, query containment, and query minimiza-
tion, (e.g. [9, 3, 4, 36, 10, 30]), some of which also dis-
cuss polynomial special cases, to our best knowledge, none
of these papers presents or suggests an algorithm which,
for queries of b variables has a worst case behaviour better
than O(nb), and whose use would thus significantly improve
the worst case bound of O(nb+3) for computing cores of in-
stances having maximum block size b. However,in [17], in
the context of automated theorem proving, an algorithm
Division into Components (DC) for clause subsumption was
presented (a problem algorithmically equivalent to conjunc-
tive query containment, cf. [19]), which can solve the sub-
sumption test and thus query containment in time O(pol(n)×

nbb/2c+1) for some polynomial pol. This shows that sig-

nificantly better bounds than the bound O(nb+3) stated in
Proposition 1.1 can be obtained for core computation. While
the DC algorithm has been successfully used in practice, it
has a somewhat large polynomial overhead (pol(n)) and is
not perfectly suited for deriving our desired upper bounds.
Rather than using DC, we will thus use methods based on
the more recent concept of hypertree decomposition [18], also
studied in [20, 21, 22]. For the purposes of the present pa-
per, it is sufficient to formally define a restricted version of
hypertree decomposition.

Definition 3.3. Let Q be a conjunctive query.

• A hypertree for Q is a tree whose vertices are sets of
query atoms. These vertices are often referred to as
hypernodes.



• A restricted hypertree decomposition (rhd) for Q is a
hypertree T for Q such that:

– Each query atom is contained in at least one hy-
pernode of T .

– For each variable x ∈ var(Q), the subgraph of T
induced by those hypernodes of T containing x is
connected.

• The width of a rhd T is defined as maxv∈T |v|.

• The restricted hypertree width rhw(Q) of Q is the min-
imum width over all rhds of Q.

The more general concept of hypertree decomposition [18]
allows partial atoms to occur at hypernodes, too. A formal
definition is given in [18, 16]. For the associated notion of
hypertree width hw(Q) of a query Q, it holds that hw(Q) ≤
rhw(Q), and in some cases hw(Q) < rhw(Q) [18].
The next proposition follows from results in [18] (or also [10,

21]) and from the fact that joins and semijoins can be per-
formed in linear time on a RAM (cf. the Appendix of [15]).

Proposition 3.4. Let T be a given rhd or hd of width k
for a query Q, then then Q can be evaluated over a database
db in time O(t×ak), where a is the size of the largest relation
in db, and t is the number of hypernodes of T .

Theorem 3.5. For each conjunctive query Q having b
variables, hw(Q) ≤ rhw(Q) ≤ bb/2c + 1.

Proof. It suffices to show the bound for rhw. Construct
a set R ⊆ Q as follows. Let R initially be the empty set and
repeat as long as possible the following: Choose “greedily”
an arbitrary atom A from Q−R where A contains two vari-
ables x and y such that x 6∈ var(R) and y 6∈ var(R) and add
A to R. Observe that R consists of at most bb/2c atoms,
given that the number |var(R)| of vertices (=variables) of
R is at least twice the number of atoms in R. Note that in
case all atoms have arity 2, R is just a maximal matching of
the query graph. Observe that, by construction of R, every
atom A ∈ Q − R has at most one variable not matched by
R, i.e., |var(A)− var(R)| ≤ 1.

For each variable x ∈ var(Q) − var(R), let S(x) = {A ∈
Q|x ∈ var(A)} be the set of all atoms of Q containing x.
Note that for x 6= y it holds that S(x) ∩ S(y) = ∅. A rhd T
for Q is constructed as follows:

• The root of T is the set R. For each atom A ∈ Q−R
such that var(A) ⊆ var(R), we attach a separate child
{A} to R; this child will be a leaf in T .

• For each variable x ∈ var(Q)−var(R), we construct a
hypernode H(x) by picking an arbitrary atom A(x) ∈
S(x) and letting H(X) = R ∪ {A(x)}. Note that
|H(x)| ≤ bb/2c+1. For each x ∈ var(Q)− var(R), we
attach H(x) as a child of R.

• The third level of T is constructed as follows. For each
x ∈ var(Q) − var(R) and for each atom A ∈ S(x) −
A(x), i.e., for each remaining atom not yet covered
containing x, we create a singleton hypernode {A} and
attach it as a child to H(x).

The conditions of Def. 3.3 for a rhd are clearly satisfied.
Thus T constitutes a rhd of width ≤ bb/2c + 1.

q(x, y, z), q(u, v, w), q(w, s, t), q(z, r)

q(t, r, y)

q(t, u)

q(r, w)

q(x, y, z), q(u, v, w), q(w, s, t)

H(r) :

R :

Figure 1: Decomposition of query Q1

Example 3.6. To illustrate the proof of Theorem 3.5, con-
sider the query Q1 : q(x, y, z) ∧ q(z, r) ∧ q(u, v, w) ∧ q(t, u) ∧
q(r, w) ∧ q(w, s, t) ∧ q(t, r, y). A restricted hypertree decom-
position of Q1 generated by the method described in the proof
of Theorem 3.5 is depicted in Figure 1.

The same result holds if, instead of hypertree width, we
use the related concept of query width (qw)[10]. However,
for the better-known concept of treewidth (tw) [37, 27, 10],
no similar upper bound can be achieved. In fact, a query Q
having n variables can have tw(Q) = n − 1. In the sequel,
we concentrate on the concept of hypertree width because,
as shown in [18], determining whether hw(Q) ≤ k for a
fixed constant k is tractable, while determining qw(Q) = k
is NP hard. Moreover, for each query Q, hw(Q) ≤ qw(Q) ≤
tw(Q), but for some queries Q we have hw(Q) < qw(Q) <
tw(Q). Thus, hypertree decompositions are preferrable to
the other decomposition methods.

Lemma 3.7. 1. Let Q be a Boolean conjunctive query
with at most b variables and let db be a database. De-
note by a the size of the largest relation of db. Evalu-
ating Q over db is feasible in time O(‖Q‖) + O(|Q| ×

abb/2c+1).

2. Let Q and Q′ be conjunctive queries where Q has b
variables. The check Q.Q′ can be performed in time
O(‖Q‖) +O(|Q| × ‖Q′‖bb/2c+1).

Proof. (Sketch) (1) If we just combined Proposition 3.4
with Theorem 3.5, we would get as upper bound somethig
like O(‖Q‖2) +O(|Q2| × ‖Q′‖bb/2c+1), where the first term
accounts for computing an rhd T and the second for eval-
uating Q using T . This is because the size ‖T‖ of the rhd
T of Q from the proof of Theorem 3.5 can be quadratic
in ‖Q‖ in the worst case. Let us roughly sketch a smarter
method which yields the desired bound. A detailed proof
is given in [16]. Consider a rhd T as constructed for Q in
the proof of Theorem 3.5. The “normal” way of evaluating
Q based on this decomposition T is by associating a rela-
tion relv to each hypernode v of T (consisting of the join
of all relations corresponding to the atoms of v) and then
performing semijoins in a bottom up fashion and answer yes
(no) if the root is nonempty (empty) after this process. We
will shortcut the intermediate level. Let r be the root re-
lation relroot. First, for each v containing a singleton atom
A, such that var(A) ⊆ var(R), we reduce r via the semijoin
r�<relv. Next, let x ∈ var(Q) − var(R). We expand r
by joining it with the relation corresponding to an arbitrary
atom Ax ∈ S(x). We then reduce r via semijoins with the
(relations corresponding to the) remaining atoms A from
S(x), and then we project out the x-column from r. We



repeat this for each x ∈ var(Q) − var(R). The final r is
nonempty iff the query Q has a positive answer.

(2) Statement (2) follows from (1) and the well-known fact
that query containment can be trivially reduced to Boolean
query evaluation [9] (see [16] for more details).

By combining Lemma 3.2 and Lemma 3.7, we get:

Theorem 3.8. Using algorithm CORECOMP, the core
of a structure of size n and of block size b can be computed
in time O(nbb/2c+2).

From Proposition 3.4 and Lemma 3.2 we get similarily:

Theorem 3.9. Let T be a given hd of width k for an in-
stance I of size n, then Core(I) can be computed in time
O(t × nk+1), where t is the number of hypernodes of t.

While, by Theorem 3.5, the hypertree with of a query with
b variables is in the worst case bb/2c+ 1, it is in practice of-
ten much smaller [38]. Many queries, and most likely also
many relational instances with nulls that arise in practice
are of hypertree width 2 or 3. Testing whether an instance
has hypertree width k, where k is a constant, and com-
puting – in the positive case – a hypertree decomposition
of width k is feasible in polynomial time [18]. In practical
contexts, it may thus make sense to recognize whether an
instance with nulls has a very small hypertree width, or to
try to use heuristics for obtaining hypertree decompositions
of reasonably small width. Note that in a number of rele-
vant cases, the hypertree width of a universal solution of a
data exchange problem 〈σ, I〉 does not depend on the source
instance I but just on the fixed data exchange setting σ. An
example will be given at the end of Section 5.

4. FIXED-PARAMETER INTRACTABILITY
The improvement of the worst case upper bound for com-

puting Core(J) from O(nb+3) to O(nbb/2c+2) is certainly
substantial, however, it would be interesting to know whether
we could make a much more drastic improvement and elimi-
nate the parameter b from the exponent of n. This amounts
to ask whether the core computation problem is fixed pa-
rameter tractable (fp-tractable) or fixed parameter intractable
(fp-intractable) wrt. parameter b [11]. The problem is fp-
tractable if there exists a function f and a constant c such
that the core of each instance J f can be computed in time
O(f(b)×nc), where n = ‖J‖ is the size of J , and where f(b)
depends only on b and c is independent of J and b. On the
other hand, if the problem is fp-intractable, then it is most
likely that the parameter b has to remain in the exponent of
n, for otherwise unexpected collapses of parametrized com-
plexity classes would happen. To prove that a problem is
fp-intractable one usually reduces another problem, known
to be fp-intractable, to it via a parametric reduction (see [12,
35] or also [16]for more details ). Such a reduction involves a
standard polynomial time reduction f between problem in-
stances, and a mapping g between the parameters. A well-
known fp-intractable problem is the k-CLIQUE problem:
given a graph G = (V,E) and a positive integer k ≤ |V |, the
parameter, decide whether G has a clique of size k. From
k-clique it was shown that Boolean conjunctive queries with
k variables are fp-intractable [12, 35]. See [24] for other
interesting fp-intractability results on query evaluation. Be-
cause of the close relationship between core computation
and conjunctive query evaluation, the following is not very
surprising.

Theorem 4.1. For an instance J having blocksize(J) ≤
k (where k is the parameter), and a ground set C ⊆ J, it is
fp-intractable to decide whether Core(J) = C.

Proof. From an instance (G, k) of k-CLIQUE, where
G = (V,E), compute a relational instance J by the fol-
lowing parametric reduction: (G, k) → (J, k) where J =
E ∪ {(xi, xj) | 1 ≤ i, j ≤ k} such that x1, . . . , xk are mutu-
ally distinct variable symbols. Interpret the vertices of G as
constants of J . It is easy to see that G has a clique of size k
iff Core(J) = E. This is effectively a parametric reduction
(with parameter mapping g(k) = k2 ).

Note that from Theorem 3.9 and from the fact that a hy-
pertree decomposition of width c can be computed in poly-
nomial time for each fixed constant c [18], it follows that
the above problem (with the same block size parameter)
becomes fp-tractable for instances where hw(J) ≤ c. The
same is true for weaker notions than hypertree width, such
as treewidth (tw) [37, 27, 10]. In fact, as shown in [18, 21],
for each structure I, hw(I) ≤ tw(I).

We can extend the notion of fixed parameter intractability
to cover parameterized search problems by calling a search
problem A with parameter k fp-intractable if its solution in
time O(f(k) × nc), where f depends only on k, and c is
a fixed constant independent of k, would imply that some
fp-hard decision problem is fp-tractable.

Theorem 4.2. The following search problems are fixed
parameter intractable wrt. parameters blocksize(J) and `,
respectively:
P1: Given an instance J, compute Core(J).
P2: Given a data exchange problem σ = (S,T,Σst,Σt) with
no target constraints, where the maximum number of vari-
ables occurring in a TGD of Σst is bounded by parameter
`, and a source instance I for σ, compute the core of the
universal target instances of σ.

Proof. The fp-intractability of P1 is obvious by Theo-
rem 4.1. Now assume P2 is fp-tractable and can be solved in
time O(f(k)×nc). Let (G, k) be an instance of k-CLIQUE.
Transform (G, k) into the data exchange problem σ =
(S,T,Σst, ∅), where S = {g(., .)} and T = {g′(., .)}, and
where Σst consists of the following two TGDs:

ST1: ∀x∀y (g(x, y) → g′(x, y)).

ST2: ∃x1 · · · ∃xk(
V

1≤i,j≤k g
′(xi, xj)).

Let the graph G = (V,E) be the source instance of σ (where
there is an atom g(a, b) for each edge (a, b) in E). It is clear
that the core of the universal solutions of σ is G iff G has
a clique of size k. Note that the parameter ` of the re-
sulting problem-instance of P2 is precisely equal to k. The
reduction from k-CLIQUE to P2 requires time O(k2 +‖G‖).
Thus the k-CLIQUE problem would be solvable in time
O(f(k)×(k2 +‖G‖)c) which is O(f(k)×‖G‖max{2,c}), given
that k ≤ |V |. Thus the k-CLIQUE problem would be fp-
tractable. It follows that problem P2 is fp-intractable.

5. A TRACTABLE CLASS INVOLVING
EGDS AND SIMPLE TGDS

In this section we define the class of simple TGDs as TGDs
whose left sides consist of a single atom with no shared vari-
ables. We will show that weakly acyclic simple TGDs plus
arbitrary EGDs form a class of constraints for which the core
computation problem is tractable. This class is “practical”



because it encompasses functional dependencies and acyclic
inclusion dependencies, the arguably most widely used in
database design, cf. [8, 6, 28, 29].

Definition 5.1. A TGD is simple if it is of the form

∀x1 · · · ∀xk (R(x1, . . . , xk) →
∃y1, · · · ∃ym (R1[x1, . . . , xk, y1, . . . , ym]
∧ · · · ∧Rr[x1, . . . , xk, y1, . . . , ym])),

where the x1 . . . xk, y1, . . . ym are mutually distinct variables,
and R and the R1 . . . , Rr are database relation names, and
for 1 ≤ i ≤ r, Ri[x1, . . . , xk, y1, . . . , ym] is a database atom
whose arguments are among x1, . . . , xk, y1, . . . , ym.

Note that, in particular, inclusion dependencies (short:
INDs) are simple TGDs. For example the inclusion depen-
dency R[AB] ⊆ S[EF ] over the schemas R(A,B,C) and
S(D,E, F ) is equivalently expressed as the simple TGD

∀x∀y∀z (R(x, y, z) → ∃uS(u, x, y)).

Simple TGDs can also express some constraints on database
schemas that are not directly representable by INDs.

Before presenting new material, we summarize some im-
portant results from [13] and [14].

Proposition 5.2 ( [13]). Let Σ be the union of a weakly
acyclic set of TGDs with a set of arbitrary EGDs. Then
there exists a polynomial q depending only on Σ, such that
for each pair of instances I, J, whenever J is obtained by
chasing I with Σ, then |dom(J)| ≤ q(|dom(I)|). Moreover,
any such chase terminates in polynomial time.

Definition 5.3 ( [14]). An endomorphism h of J is
useful if h(J) ⊂ J, i.e., if h(J) 6= J.

Definition 5.4 ( [14]). Let K and M be two instances
such that the nulls of K form a subset of the nulls of M , that
is, var(K) ⊆ var(M). Let h be an endomorphism of M and
let B be a block of nulls for K. We say that h is K-local for
B if h(x) = x whenever x 6∈ B. We say that h is K-local if
it is K-local for B for some block B of K.

Proposition 5.5 ( [14]). Let L be an instance and let
M be the result of chasing a set ΣE of EGDs on L. Then
there exists a useful endomorphism of M iff there exists a
useful L-local endomorphism of M . Moreover, the core of
M can be computed by letting initially K := M and by then
successively identifying a useful L-local endomorphism h of
K and letting K := h(K) until no further useful L-local
endomorphism of K can be found; the final value of K is
the core of M .

Proposition 5.6 ( [14]). Let N be an instance, let M
be the result of chasing a set ΣE of EGDs on N , and let
b = blocksize(N). Computing the core of M by the method
stated in Proposition 5.5 takes at most time O(nb+3), where
n = ‖N‖ is the size of N .

A proof of this proposition1 is given in [16].
1Note that in [14] this result is stated in a slightly different
(but equivalent) form. There, n designates the maximum of
the total number #e of elements and the total number #t
of tuples of N . If α is the total number of columns in J (i.e.,
the sum of all arities of relations in J), we have: ‖N‖/α ≤
max{#e,#t} ≤ ‖N‖. Since α is a constant (because we
assume fixed schemas), the quantity n used here and the
n used in [14] are linearly related and do not substantially
differ.

The following algorithm computes the core of the uni-
versal solutions for a source instance I to a data exchange
setting σ = 〈S,T,Σst,Σt〉, where Σt = ΣT ∪ ΣE consists of
the union of a weakly acyclic set ΣT of simple TGDs, and
an arbitrary set ΣE of EGDs.

Algorithm 5.7.
Input: source instance I.
Output: the core of the universal solutions for I, if solu-
tions exist, and “fail” otherwise.

1. Compute an instance J, by chasing I with Σst.

2. Compute an instance J ′ from J by chasing J with ΣT .

3. Compute the blocks of J ′.

4. Compute an instance J ′′ by chasing J ′ with ΣE. If the
chase fails, then stop with “fail”. Otherwise, initialize
K with J ′′, i.e., K := J ′′.

5. Check whether there exists a useful J ′-local endomor-
phism h of K. If not, then stop with output K.

6. Update K to be h(K), and goto step 5.

Theorem 5.8. Algorithm 5.7 is correct and runs in poly-
nomial time.

Proof. By Proposition 5.2, chasing J with weakly acyclic
TGDs and arbitrary EGDs terminates in polynomial time.
We claim that after having enforced all simple TGDs from
ΣT (step 2) and then all EGDs from ΣE (step 4), the ob-
tained set J ′′ is already a result of chasing J with Σt =
ΣT ∪ ΣE , i.e., all dependencies from ΣT ∪ ΣE are satisfied
by J ′′. For dependencies from ΣE , this is obvious, given
that J ′′ is the result of chasing the dependencies of ΣE on
J ′. Now consider a TGD τ from ΣT . Note that chasing the
EGDs from ΣE on J ′ in Step 4 amounts to perform suc-
cessive substitutions, replacing variables by other variables
or by constants. Let θ : var(J ′) −→ var(J ′′) ∪ const(J ′′) ⊆
var(J ′)∪const(J ′) denote the global substitution performed
by the chase in step 4, such that J ′θ = J ′′; this substitu-
tion2 θ is obtained by suitably composing and combining
the single substitutions performed by this chase. Given that
τ is simple, it is of the form

∀x1 · · · ∀xk (R(x1, . . . , xk) →
∃y1, · · · ∃ym (R1[x1, . . . , xk, y1, . . . , ym]
∧ · · · ∧ Rr[x1, . . . , xk, y1, . . . , ym])),

as in Definition 5.1. To show that τ is satisfied in J ′′, it
suffices to prove that whenever there are terms t1, . . . , tk
such that R(t1, . . . , tk) ∈ J ′′, then there exist y1, . . . , ym

such that for 1 ≤ i ≤ r, Ri[t1, . . . , tk, y1, . . . , ym] ∈ J ′′. Thus
assume thatR(t1, . . . , tk) ∈ J ′′. There must exist a database
atom R(t∗1, . . . , t

∗
k) ∈ J ′ such that t1 = t∗1θ, . . . , tk = t∗kθ.

Since τ is satisfied in J ′, there must exist terms y′1, . . . , y
′
m

such that for 1 ≤ i ≤ r, Ri[t
∗
1, . . . , t

∗
k, y

′
1, . . . , y

′
m] ∈ J ′. Thus,

Ri[t
∗
1, . . . , t

∗
k, y

′
1, . . . , y

′
m]θ = Ri[t

∗
1θ, . . . , t

∗
kθ, y

′
1θ, . . . , y

′
mθ] =

Ri[t1, . . . , tk, y
′
1θ, . . . , y

′
mθ] ∈ J

′′ and therefore τ is satisfied
in J ′′. Hence J ′′ satisfies Σt and J ′′ is the final result of a
chase sequence, and is thus a universal instance3.

2For any object ξ and substitution λ, ξλ stands for λ(ξ).
3A similar distinction of two separate phases in the chase
procedure for the more restricted context of functional de-
pendencies and acyclic inclusion dependencies was already
observed by [25] and used in [31, 28, 29].



By Proposition 5.5, steps 5 and 6 of Algorithm 5.7 cor-
rectly compute the core of J ′′. Thus, Algorithm 5.7 is cor-
rect.

It remains to show that Algorithm 5.7 runs in polynomial
time. Steps 2 and 4 run in polynomial time by Proposi-
tion 5.2. Identifying the blocks of J ′ (step 3) amounts to
compute the connected components of the connection graph
G(J ′) of J ′ and can be done in polynomial time (see the
proof of Proposition 5.6).

By Proposition 5.6, for showing that the core computation
of steps 5 and 6 requires polynomial time only, it is sufficient
to prove that the blocks of J ′ are of bounded size. Towards
this goal we state the following key observation whose proof
is available in [16].

Fact A. There is a constant c such that for each block B
of J ′, either |J ′[B]| ≤ c or there is a block B0 of J and
an instance K obtained by chasing Σt on J [B0] such
that J ′[B] ⊆ K.

From Fact A and Proposition 5.2 it follows that each
|dom(J ′[B])| is bounded by q(|dom(J [B0])|) for some block
B0 of J , where q is a polynomial, and thus by a constant,
since I is ground and thus |dom(J [B0])| is obviously bounded
by a constant depending on Σst only. Since B consists of
the variables in dom(J ′[B]), the size of the blocks of J ′ is
bounded by a constant.

Corollary 5.9. Computing the core of the universal so-
lutions of data exchange problems whose target constraints
consist of weakly acyclic inclusion dependencies and arbi-
trary equality generating dependencies can be done in poly-
nomial time by Algorithm 5.7.

Let us now sketch how the concept of bounded hyper-
tree width can be exploited to significantly improve Algo-
rithm 5.7 and to obtain a very low polynomial upper bound
for the time complexity of core computation if Σt contains
weakly acyclic simple TGDs only (more general settings will
be explored in the future). Denote by mr(Σ) the maximum
number of atoms that occur in a rhs of a TGD of a set Σ of
TGDs. The next theorem states that the hypertree width
is (basically) preserved when chasing a weakly acyclic set of
simple TGDs over an instance.

Theorem 5.10. Let J be an instance and let Σ be a set of
weakly acyclic simple TGDs. Let K be obtained by chasing
Σ over J. Then hw(K) ≤ max{hw(J), mr(Σ)}.

Proof. (Rough Sketch.) Assume we have a hypertree
decomposition T of width k of Σ. We construct on the
fly a hypertree decomposition T ′ for K as follows. When-
ever a simple TGD of the form A0 → A1 ∧ A2 ∧ . . . ∧ Ar

fires with a left side atom A such that A = A0θ for a suit-
able substitution θ, then the generated new atoms among
A1θ, A2θ, . . . , Arθ are put together into a new hypernode
which is attached as a child to an already existing hypern-
ode which contains A (or at least covers all variables of A).
It is not hard to see that the resulting decomposition is effec-
tively a hypertree decomposition of the desired width.

As shown by the next theorem, the above result is ex-
tremely valuable for efficiently computing cores.

Theorem 5.11. Computing the core of a universal solu-
tion J ′ of data exchange problems whose target constraints
σt consist of weakly acyclic simple TGDs can be done in
time O(|J ′| × ‖J ′‖k+1), where k = max{mr(Σst),mr(Σt)}.

Proof. (Sketch.) If J is obtained (as in Algorithm 5.7)
by chasing a set Σst over a ground input instance I, then
it is trivial to see that hw(J) ≤ mr(Σst). When Σt =
ΣT is chased over J , yielding J ′, then, by Theorem 5.10,
hw(J ′) ≤ k = max{mr(Σst),mr(Σt)}. As explained in the
proof of Theorem 5.10, the hypertree decomposition of J ′

can be generated on the fly at no significant cost. The num-
ber of nodes in this decomposition is bounded by |J ′|. By
Theorem 3.9 we thus get the desired time bound of time
O(|J ′| × ‖J ′‖k+1).

6. ANOTHER TRACTABLE CLASS:
FULL TGDS AND EGDS AS TARGET
CONSTRAINTS

In this section we show that computing the core of data
exchange problems whose target constraints consist of full
TGDs and arbitrary EGDs is tractable. This answers an
open question of [14]. We start by deriving some useful
algebraic lemmas, then analyze full TGDs alone, and finally
add EGDs.

6.1 Some algebraic lemmas

Definition 6.1. Let K and M be two instances with K ⊆
M . We say that K is a nucleus of M if each legal mapping
f : dom(K) −→ dom(M), for which f(K) ⊆ M , extends
to an endomorphism f∗ ∈ end(M) such that for each x ∈
dom(K), f∗(x) = f(x) and for each x ∈ var(M)− var(K),
f∗(x) = x.

Definition 6.2. Let K and M be two instances with K ⊆
M . K controls M if K is a nucleus of M and var(K) =
var(M).

Note that control as just defined is a very strong relationship
between instances. In fact, if K controls M , then there is
a one-to-one correspondence between the endomorphisms of
M and the elements of legal(K,M). Thus, in particular,
each h ∈ end(M) is fully identified by its restriction to K.

Recall that Chasing a set Σ of full TGDs on an instance
K always produces a unique result and that we denote this
result by CHASEΣ(K).

Lemma 6.3. Let K,M be instances such that K ⊆M . If
h : dom(K) −→ dom(M) is a legal mapping, then
h(CHASEΣ(K)) ⊆ CHASEΣ(h(K)).

Proof. Consider any particular sequence of chasing the
TGDs of Σ on K. Since the chase procedure is finite, there
is a number m such that the procedure stops after m firings
of TGDs. (Here, by a “firing”, we understand a single appli-
cation of a TGDs which generates one or more new facts).
Let K0 = K and let, for 1 ≤ i ≤ m, Ki be the cumulative
set of all facts obtained via the chase after the i-th firing of
some TGD (we thus have K0 ⊂ K1 ⊂ K2 · · · ⊂ Km). It suf-
fices to show by induction on i that for 1 ≤ i ≤ m if A ∈ Ki,
then h(A) ∈ CHASEΣ(h(K)). For the base case this holds,
since obviously h(K0) = h(K) ⊆ CHASEΣ(h(K)). Now
assume the statement hols for j < m. We show that it also
holds for j + 1. Let A ∈ Kj+1. Then there is a TGD
d : L → R and a substitution θ such that θ(L) ⊆ Kj

and A ∈ θ(R). By the induction hypothesis, it follows
that h(θ(L)) ∈ CHASEΣ(h(K)), and thus d must also
fire with the substitution h ◦ θ and produce from facts in
CHASEΣ(h(K)) a fact h ◦ θ(R) = h(θ(R)) = h(A). Thus
h(A) ∈ CHASEΣ(h(K)).



Lemma 6.4. Let K be an instance and let M be the chase
of K w.r.t. a set Σ of full TGDs. Then K controls M .

Proof. Since var(K) = var(M), it suffices to show that
K is a nucleus of M , which, given that var(K) = var(M)
means that each legal mapping h : dom(K) −→ dom(M)
where h(K) ⊆ M is contained in end(M), i.e., h(M) ⊆ M .
SinceM = CHASEΣ(K) we have h(M) = h(CHASEΣ(K)).
From Lemma 6.3, we thus have h(M) ⊆ CHASEΣ(h(K)).
But by the monotonicity of CHASEΣ, since h(K) ⊆ M ,
we have CHASEΣ(h(K)) ⊆ CHASEΣ(M) = M . Thus, by
putting the last two inclusions together we obtain h(M) ⊆
M .

Definition 6.5. An endomorphism h ∈ end(M) is idem-
potent if h2 = h, i.e., if for each x ∈ h(M), h(x) = x.

Idempotent endomorphisms enjoy a nice interchange prop-
erty:

Lemma 6.6 (Interchange Lemma). Let K,M be in-
stances such that K ⊆ M and M = CHASEΣ(K), where
Σ is a set of full TGDs. If h ∈ end(M) is idempotent, then
CHASEΣ(h(K)) = h(CHASEΣ(K)) = h(M).

Proof. h(M) = h(CHASEΣ(K)) ⊆ CHASEΣ(h(K))
already follows from Lemma 6.3. Let us thus show that
CHASEΣ(h(K)) ⊆ h(CHASEΣ(K)). Since full TGDs do
not introduce new variables, each atom A in CHASEΣ(h(K))
contains variables from var(h(K)) only. Since h is idem-
potent, these variables are all invariant under h and thus
h(A) = A. Hence A ∈ h(M) = h(CHASEΣ(K)).

We will use the following simple corollary.

Corollary 6.7. Let M be an instance satisfying a set Σ
of full TGDs, and let h ∈ end(M) be idempotent. Then also
h(M) satisfies Σ, that is, CHASEΣ(h(M)) = h(M).

Proof. Use Lemma 6.6 letting K = M .

Note that Lemma 2.6 and Corollary 2.7 do not work if
we drop the condition that h is idempotent. To see this, it
is sufficient to give an example showing that Corollary 2.7
does not work in asence of idempotency.

Example 6.8. Let M = {p(x, z), p(x, a), q(y, z), q(z, a),
q(a, a), s(a)}, where x, y, z are variables and a is a con-
stant. Let Σ = {∀u∀v∀w(p(u,w)∧q(v,w)∧s(w)→ p(u, v))},
and let h : var(M) → dom(M) be the mapping defined by:
h(x) = x, h(y) = z, and h(z) = a. Clearly, h(A) ∈ M for
each atom A of M , thus, h ∈ end(M). Moreover, M is
closed under Σ. Note that h is not idempotent, as, for ex-
ample, h(h(y)) = a whereas h(y) = z. We have: h(M) =
{p(x, a), q(z, a), q(a, a), s(a)}. Now, CHASEΣ(h(M)) con-
tains p(x, z) in addition to the facts from h(M). Thus,
CHASEΣ(h(M)) is not contained in h(M).

Lemma 6.9. There is an algorithm SMOOTHEN(M,h),
which in time O(|var(M)|2) for each instance M and endo-
morphism h ∈ end(M) computes an idempotent endomor-
phism h′ ∈ end(M) such that h′(M) ⊆ h(M).

Proof. We outline an algorithm SMOOTHEN(M,h) that
computes the desired h′ from h. If h is already idempo-
tent, then SMOOTHEN(M,h) outputs h. Otherwise, ob-
serve that the directed deterministic function graph defined
by h on h(M) is such that after no more than |var(h(M))|
edges each element of h(M) reaches a cycle or self-loop. The

algorithm proceeds as follows: First, the SMOOTHEN al-
gorithm computes h′ := hv where v = |var(h(M))|. Ob-
serve that h′ restricted to var(h′(M)), is an element of
the symmetric group S(dom(h′(M))), i.e., h′ restricted to
dom(h′(M)) is one-to-one on dom(h′(M)). It is well-known
that each such permutation can be written as a set of permu-
tation cycles. For example, the permutation {x1 → x2, x2 →
x3, x3 → x1, x4 → x5, x5 → x4, x6 → x6, a → a, b → b}
has the five cycles (x1, x2, x3)(x4, x5)(x6)(a)(b). Note that
since h′ is legal, only variables take part in cycles of length
> 1 of h′. While there are still cycles of length > 1, the
SMOOTHEN algorithm picks an arbitrary cycle C of length
c > 1 and computes h′ := h′c. Obviously, at the end of this
while loop, for each x ∈ var(C), h′(x) = x, i.e. h′ is idem-
potent. The final h′ thus leaves each element of var(M)
invariant and it clearly holds that h′(M) ⊆ h(M). Thus
the final h′ is output as the desired endomorphism. In to-
tal, SMOOTHEN has performed no more than 2× var(M)
homomorphism compositions. Each composition is feasi-
ble in time linear in var(M), hence the total runtime is
O(|var(M)|2).

6.2 Full TGDs alone

Definition 6.10. Let M be an instance and h ∈ end(M).
An improvement of h is an endomorphism g ∈ end(M) such
that g(M) ⊂ h(M).

The notion of improvement introduced here is related to
the one of useful endomorphism introduced in [14] (see also
Def. 5.3). In particular, h has an improvement iff there
is a useful endomorphism for h(M). As usual, if h is a
mapping (in particular, an endomorphism) we denote by
h−1 its set-valued inverse, i.e., the mapping that associates
to each value x the set h−1(x) = {z|h(z) = x}.

Definition 6.11. Let K,M be instances such that K con-
trols M and let h ∈ end(M). An improvement g of h is
called (K,h)-quasilocal if there exists a variable x0 such that:

- for each block B ∈ blocks(h−1(x0), K), g(B) ⊆ h(M) and
x0 6∈ var(g(B)); and

- for each block B 6∈ blocks(h−1(x0), K), for each x ∈ B
g(x) = h(x).

For an instance M , let us denote by CORE(M) the set
of all (isomorphic) cores of M .

Lemma 6.12. Let Σ is a set of full TGDs, let K,M be
instances such that M = CHASEΣ(K), and let h be an
idempotent endomorphism of M . If h(M) 6∈ CORE(M),
then there exists a (K,h)-quasilocal improvement of h.

Proof. Clearly, K ⊆ M . Moreover, by Lemma 6.4, K
controls M . Since h(M) 6∈ CORE(M), there exists an
improvement f of h and an element x0 ∈ var(M) such
that x0 ∈ var(h(M)) − var(f(M)). Clearly for each block
B ∈ blocks(h−1(x0), K), f(B) ⊆ h(M) and x0 6∈ var(f(B)).
Let g be the endomorphism of M defined as follows:

- for each x ∈ var(blocks(h−1(x0), K)), g(x) = f(x); and

- for each x ∈ var(M) − var(blocks(h−1(x0), K)), g(x) =
h(x).

Since K controls M , g is effectively an endomorphism of
M . By Lemma 6.3, we have:

(1) g(M) = g(CHASEΣ(K)) ⊆ CHASEΣ(g(K)).



Since g(K) ⊆ h(M), by the monotocicity of the Chase pro-
cedure for full TGDs, it follows that

(2) CHASEΣ(g(K)) ⊆ CHASEΣ(h(M)).

Because h is idempotent, by Corollary 6.7

(3) CHASEΣ(h(M)) = h(M).

Putting (1), (2), and (3) together, we obtain g(M) ⊆ h(M).
Since x0 does not occur in the image of g, this inclusion is
proper, i.e., g(M) ⊂ h(M). Thus g is a (K,h)-quasilocal
improvement of h.

Assume M = CHASEΣ(K) and h ∈ end(M) is idempo-
tent. The following algorithm IMPROVE(M,K, h) outputs
a (K,h)-quasilocal improvement of h if one exists, i.e., if
h(M) 6∈ CORE(M) and outputs fail if h(M) ∈ core(M).

ALGORITHM IMPROVE(M,K, h);
INPUT: Instances M , K ⊆M , s.t. M = CHASEΣ(K)

for some set Σ of full TGDs; and
an idempotent endomorphism h ∈ end(M).

OUTPUT: A (K,h)-quasilocal improvement g of h if
one exists, otherwise fail.

BEGIN
found := false;
vars := var(h(M));
REPEAT
pick a variable x0 ∈ vars;
goodx = x0;
vars := vars− {x0};

BEGIN
compute blocks := blocks(h−1(x0), K);
matches := true;
Let θ = {} be the empty substitution;
REPEAT

pick a block B from blocks;
blocks := blocks − {B};
search for a substitution
λ : var(B) −→ (dom(M)− {x0})

such that λ(B) ⊆ h(M);
IF such a λ can be found

THEN θ := θ ∪ λ
ELSE matches := false;

UNTIL not matches OR blocks = ∅.
IF matches THEN found := true;

UNTIL found OR vars = ∅;
IF not found THEN OUTPUT(fail)
ELSE BEGIN

Let g be defined by:
g(x) = θ(x) if x ∈ var(blocks(h−1(goodx),K)),
and g(x) = h(x) otherwise;

OUTPUT(g)
END

END.

The algorithm systematically explores whether some x0 ∈
var(h(M)) gives rise to a quasi-local improvement and if so,
outputs the first such improvement. The following lemma,
whose proof is available in [16], states its correctness and a
bound on its complexity.

Lemma 6.13. Algorithm IMPROVE on input (M,K, h)
outputs an improvement of h if h(M) 6∈ CORE(M) and
“fail” otherwise. The algorithm runs in time O(|var(M)|2×

|M |blockwidth(K)).

We are now ready for stating our new algorithm FAST-
CORE that computes in polynomial time the core of a data
exchange problem < σ, I >, for some fixed data exchange
setting σ = (S,T,Σst,Σt), where Σt consiste of full TGDs
only, and a source instance I.

ALGORITHM FASTCORE
INPUT: Source instance I to σ.
OUTPUT: The core of σ, i.e., of a canonical universal

solution J ′ of < σ, I >.
BEGIN

Compute a canonical solution J for < σ, I >;
J := CHASEΣst

(I);
J ′ := CHASEΣt

(J);
g := identity on var(J ′) = var(J);
REPEAT

h:=g;
g:= IMPROVE(J ′, J, g)
IF g 6= fail THEN g := SMOOTHEN(J ′, g);

UNTIL g = fail;
OUTPUT(h(J ′));

END.

The FASTCORE algorithm successively performs quasilo-
cal improvements until no further such improvement is pos-
sible and thus the core has been attained. In the extended
version [16] of this paper we prove:

Theorem 6.14. The algorithm FASTCORE is correct
and runs in polynomial time.

6.3 Adding EGDs
In order to extend the above results to full TGDs plus

EGDs, we use a new trick, which consists in simulating the
effect of EGDs by special full TGDs and by exploiting im-
plicit endomorphisms for the core computation. Let us il-
lustrate this by an example.

Assume the target signature T contains two unary rela-
tions P and Q and a binary relation R and no other relation.
Assume Σt contains an EGD e : ∀x, y, z (R(x, x)∧R(y,x)→
x = y). Then we can simulate this EGD through the follow-
ing eight full TGDs:

∀x, y(R(x, x) ∧R(y, x) ∧ P (x)→ P (y));
∀x, y(R(x, x) ∧R(y, x) ∧ P (y)→ P (x));
∀x, y(R(x, x) ∧R(y, x) ∧Q(x)→ Q(y));
∀x, y(R(x, x) ∧R(y, x) ∧Q(y)→ Q(x));
∀x, y, u(R(x, x) ∧R(y, x) ∧ R(x, u)→ R(y, u));
∀x, y, u(R(x, x) ∧R(y, x) ∧ R(y, u)→ R(x, u));
∀x, y, u(R(x, x) ∧R(y, x) ∧ R(u, x)→ R(u, y));
∀x, y, u(R(x, x) ∧R(y, x) ∧ R(u, y)→ R(u, x)).

In summary, for the EGD e, and for each target predicate
Π, and argument position i, we create a new TGD which
specifies under the premise that the EGD e applies, that,
whenever x occurs at position i in a Π-atom, then another
Π atom should be generated by substituting y for x at this
position. Moreover, we create another TGD that performs
the inverse substitution. Note that, since there is a constant
number of EGDs in Σt and a constant number of predicate
symbols in the target schema T, each of which has a constant
number of argument positions, the overall number of new
TGDs created is thus constant.

Obviously, whenever, through the enforcement of an equal-
ity, a new fact is generated via the EGD e, then the same
fact is also generated via the above TGDs. In this sense,
the above full TGDs simulate the EGD e. But note that



some additional facts will be generated by the TGDs. For
example, assume we want to apply e on the set of facts
{R(z, z), R(a, z), P (z), P (z′)}. Thus, we infer z = a by
e and have to enforce the substitution z ← a. As a re-
sult we obtain the set S = {R(a, a), P (a), P (z′)}. If, in-
stead, we chase the above TGDs, on the same set of facts
{R(z, z), R(a, z), P (z), P (z′)}, we obtain the larger instance
S′ = {R(a, a), R(z, a), R(a, z), R(z, z), P (a), P (z), P (z′)}.
However, the smaller set S is an endomorphic image of larger
set S′ under the endomorphism h defined by h(z) = a and
h(z′) = z′. Note that this endomorphism is defined precisely
by the substitution obtained by enforcing the EGD e. So,
the core {R(a, a), P (a)} of the smaller instance S is equal to
the core of the larger instance S′. Thus, in order to compute
(an isomorphic image of) the core of the smaller set, it suf-
fices to compute the core of the larger (full-TGD-generated)
set. This can be done using the polynomial algorithm FAST-
CORE presented in the last sesction.

We have shown for a simple example that for computing
the core it is sufficient to replace an EGD by a set of full
TGDs. That this works generally is proven in the extended
version of the paper [16]. We thus have:

Theorem 6.15. Let σ = (S,T,Σst,Σt), be a data ex-
change setting, where Σt is allowed to contain both EGDs
and full TGDs. Given an input instance I for σ, computing
the core of a universal solution for I is feasible in polynomial
time.

7. INTRACTABILITY IN PRESENCE OF
THE NULL PREDICATE

In many query languages and/or database management
systems, a builtin predicate of the syntactic form NULL(x)
or similar is available, which distinguishes null values from
definit values (i.e., non-nulls). For example, in SQL, the log-
ical expression “x IS NULL” evaluates to true iff x is a null
value. Such null-checks can also be used within integrity
constraints. Note also that such a null-check is usually con-
ceived as a builtin predicate which is evaluated ad hoc rather
than being part of a relational signature. In fact, if a null
value X is equated with a constant a, say, by an FD enforce-
ment, of course, NULL(a) does not become true. Thus,
the NULL predicate is not subject to variable-replacements
or homomorphisms. In the present paper, we deal with
database instances with labeled nulls and not with standard
nulls. Nevertheless it is interesting to see what happens
in case we allow a NULL predicate to occur in the target
itegrity constraints.

Let us thus assume that a monadic NULL predicate as
described is available. That is, during the evaluation of a
rule body, NULL(x) evaluates to true if x is matches a null
value, and false if x matches a constant. We show that the
core computation problem becomes intractable, even if the
set of target constraints consists of a single full TGD. This
contrasts with our result that the core computation prob-
lem is tractable for arbitrary TGDs (plus EGDs). Thus, the
non-ability of distinguishing between nulls and constants in
the integrity constraints of data exchange settings as defined
by Fagin et al. in [13, 14] turns out to be an essential re-
quirement for the tractability of core computation (at least
in the case of full TGDs).

Theorem 7.1. If the NULL predicate is available, com-
puting the core of data exchange problems where Σst consists
of TGDs and Σt consists of full TGDs only is NP-hard. The

problem remains NP-hard even if Σt is acyclic and consists
of a single full TGD.

Proof. Let σ = 〈S,T,Σst,Σt〉, where

• S = 〈 v(.) , e(., .), red(.), green(.) , blue(.) 〉

• T = 〈 w(., .), e′(., .), g(., .)〉

• Σst contains the dependencies

ST1: ∀x (v(x) → ∃y w(x, y)).

ST2: ∀x∀y (e(x, y) → e′(x, y)).

ST3: ∀x∀y (red(x) ∧ green(y) → g(x, y)).

ST4: ∀x∀y (red(x) ∧ green(y) → g(y, x)).

ST5: ∀x∀y (red(x) ∧ blue(y) → g(x, y)).

ST6: ∀x∀y (red(x) ∧ blue(y) → g(y, x)).

ST7: ∀x∀y (green(x)∧ blue(y) → g(x, y)).

ST8: ∀x∀y (green(x)∧ blue(y) → g(y,x)).

ST9: ∀x∀y ( v(x) ∧ red(y) → w(x, y)).

ST10: ∀x∀y ( v(x) ∧ green(y) → w(x, y)).

ST11: ∀x∀y ( v(x) ∧ blue(y) → w(x, y)).

• Σt contains the single dependency

T1: ∀x∀y ∀x′ ∀y′ ( (w(x, x′) ∧ w(y, y′) ∧ e′(x, y)) ∧
NULL(x′) ∧NULL(y′) → g(x′, y′)).

We now transform the graph three-colorability problem
3COL in polynomial time into a source instance I for the
above data exchange setting σ.

Let G = (V,E) be an instance of 3COL. Then the vocab-
ulary of I consists of the set Const := V ∪{cr , cg , cb}, where
cr, cg , cb are constant symbols not occurring in V , which in-
tuitively denote the colors red, green, and blue. The tuples
in the relation instances of I according to the source schema
S are obtained as follows:

• For each vertex a ∈ V , add a tuple v(a).

• For each edge {a, b} ∈ E, add the tuples e(a, b) and
e(b, a)4.

• Add tuples red(cr), green(cg), and blue(cb).

The source instance I is thus well-defined. Note that Σt

is acyclic and therefore also weakly acyclic. It follows that
a universal solution can be computed by a chase procedure
in polynomial time [13]. Let J denote the universal solution
produced by this chase. Let CV = {w(a, xa)|a ∈ V } where
for each a, xa is the null created by ST1. Let Rep(G) =
{g(xa, xb), g(xb, xa)| {a, b} ∈ E}. It can be seen (and is
formally shown in [16]) that Core(J) = J − (CV ∪Rep(G))
iff G is 3-colorable.

The data exchange problem constructed in the above proof
shows that even a single full TGD can have a detrimental
effect on the block size. This remains true even if without
use of the NULL predicate (e.g. if we drop the NULL atoms
from rule T1). This means that in presence of TGDs with
more than one atom in the left side, a universal solution to a
data exchange problem can have unbounded blockwith, even

4It would be sufficient to add only one of these two tuples to
I, but we found it conceptually simpler to add both tuples,
thus explicitly representing an undirected graph.



if no EGDs are applied. Thus, neither the metods for poly-
nomial core computation described in [14] nor our methods
for simple TGDs will work, because both methods require a
bounded blockwidth after the application of the TGDs. This
may be seen as a justification of the more complex proof of
the tractability of core computationin the case of TGDs.
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