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Abstract

Covariant vectors, Lyapunov vectors, or Oseledets vectors are increasingly being
used for a variety of model analyses in areas such as partial differential equations,
nonautonomous differentiable dynamical systems, and random dynamical systems.
These vectors identify spatially varying directions of specific asymptotic growth
rates and obey equivariance principles. In recent years new computational methods
for approximating Oseledets vectors have been developed, motivated by increasing
model complexity and greater demands for accuracy. In this numerical study we in-
troduce two new approaches based on singular value decomposition and exponential
dichotomies and comparatively review and improve two recent popular approaches
of Ginelli et al. [17] and Wolfe and Samelson [34]. We compare the performance of
the four approaches via three case studies with very different dynamics in terms of
symmetry, spectral separation, and dimension. We also investigate which methods
perform well with limited data.

1 Introduction

The asymptotic behaviour of a linear ODE ẋ(t) = Ax(t), x(t) ∈ Rd is completely deter-
mined by the spectral properties of the d×d matrix A. Similarly, the long-term behaviour
of a nonlinear ODE ẋ(t) = f(x(t)) in a small neighbourhood of a fixed point x0, for which
f(x0) = 0, is completely determined by the spectral properties of the linearisation of f
at x0. Well-known extensions of these facts can be constructed when x0 is periodic via
Floquet theory. However, for general time-dependent linear ODEs ẋ(t) = A(t)x(t), the
eigenvalues of A(t) contain no useful information about the asymptotic behaviour as the
simple example of [6, p. 30] illustrates. On the other hand, if the A(t) are generated
by a process with well-defined statistics, there is a good spectral theory for the system
ẋ(t) = A(t)x(t), and this is the content of the celebrated Oseledets Multiplicative Ergodic
Theorem (MET) ([23], see also Arnold [1] for a thorough treatment), which we state and
explain shortly. The “well-defined statistics” are often generated by some underlying
(typically ergodic) dynamical system.

For clarity of exposition, we will discuss discrete-time dynamics; it is trivial to convert
a continuous-time system to a discrete-time system by creating eg. time-1 maps flowing

1

ar
X

iv
:1

20
4.

08
71

v1
  [

m
at

h.
D

S]
  4

 A
pr

 2
01

2



from time t to time t+1. Let X denote our base space, the space on which the underlying
process that controls the time-dependence of the matrices A occurs. As we will place a
probability measure on X, we formally need a σ-algebra X of sets that we can measure1.
We denote the underlying process on X by T : X 	 and assume that T is invertible. One
formally requires that T is measurable2 with respect to X. The “well-defined statistics”
are captured by a T -invariant probability measure µ on X; that is, µ = µ ◦ T−1, and we
say that T preserves µ. Finally, it is common to assume that the underlying process is
ergodic, which means that any subsets X ′ ∈ X of X that are invariant (T−1(X ′) = X ′,
implying that trajectories beginning in X ′ stay in X ′ forever in forward and backward
time) have either µ-measure 0 (they are trivial), or µ-measure 1 (up to sets of µ-measure
0 they are all of X).

Now we come to the matrices A, which are generated by a measurable matrix-valued
function A : X → Md(R), where Md(R) is the space of d × d real matrices. We choose
an initial x ∈ X and begin iterating T to produce an orbit x, Tx, T 2x, . . .. Concurrently,
we multiply · · ·A(T 2x) ·A(Tx) ·A(x), and we are interested in the asymptotic behaviour
of this matrix product. In particular, we are interested in (i) the growth rates

λ(x, v) := lim
n→∞

1

n
log ‖A(T n−1x) · · ·A(Tx) · A(x)v‖

as v varies in Rd and (ii) the subspaces W (x) ⊂ Rd on which the various growth rates
occur. Throughout, ‖·‖ denotes the standard Euclidean vector norm or the associated
matrix operator norm ‖A‖ = max‖v‖=1 ‖Av‖; whether ‖·‖ is a vector or matrix norm
will be clear from the context. Surprisingly, the “well-defined statistics” and ergodicity
ensures that these limits exist, and that there are at most d different values λ1 > λ2 >
· · · > λℓ ≥ −∞ that λ(x, v) can take, as v varies over Rd and x varies over µ-almost
all of X (note we allow λℓ = −∞ to include the case of non-invertible A). We can also
decompose Rd pointwise in X as Rd =

⊕ℓ
i=1Wi(x), where for all v ∈ Wi(x) \ {0}, one

has

lim
n→∞

1

n
log ‖A(T n−1x) · · ·A(x)v‖ = λi.

The subspaces Wi are equivariant (or covariant) with respect to A over T ; that is, they
satisfy

Wi(Tx) = A(x)Wi(x)

for 1 ≤ i < ℓ.
We use the following stronger version of the MET, which guarantees an Oseledets

splitting even when the matrices A are non-invertible.

Theorem 1.1 ([14], Theorem 4.1). Let T be an invertible ergodic measure-preserving
transformation of the probability space (X,X, µ). Let A : X → Md(R) be a measurable
family of matrices satisfying

∫

log+ ‖A(x)‖ dµ(x) <∞.

1for example, if X is a topological space, we can set X to be the standard Borel σ-algebra generated
by open sets on X.

2if X is a topological space, and T is continuous, then T is measurable with respect to the standard
Borel σ-algebra generated by open sets.
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Then there exist λ1 > λ2 > · · · > λℓ ≥ −∞ and dimensions m1, . . . ,mℓ with m1 + · · · +
mℓ = d, and a measurable family of subspaces Wi(x) ⊂ Rd such that for µ-almost every
x ∈ X, the following hold.

1. dimWi(x) = mi,

2. Rd =
⊕ℓ

i=1Wi(x),

3. A(x)Wi(x) ⊂ Wi(Tx) with equality if λi > −∞,

4. For all v ∈ Wi(x) \ {0}, one has

lim
n→∞

1

n
log ‖A(T n−1x) · · ·A(x)v‖ = λi.

The range of applications of the MET to the analysis of dynamical systems is vast.
Below, we mention just of few of the settings in which the MET is used.

Example 1.2.

1. Differentiable dynamics: One of the first applications of the MET was to differ-
entiable dynamical systems T : X 	 on smooth d-dimensional compact manifolds.
The matrix function A is the spatial derivative of T , denoted DT . The space Rd

is associated with the tangent space of X and the equivariance condition becomes
Wi(Tx) = DT (x) ·Wi(x). If T is uniformly hyperbolic,

⊕

i:λi>0Wi(x) = W u(x),
the unstable subspace at x ∈ X and

⊕

i:λi<0Wi(x) = W s(x), the stable subspace
at x. The spaces Wi(x) provide a refinement of W u(x) and W s(x) into subspaces
with different growth rates.

2. Hard disk system: Consider a fixed number N of hard disks in a region Lx ×Ly

moving freely between collisions. In each collision a pair of disks change their
velocities [22]. The region may be finite (hard walls) or periodic (toroidal) in
either coordinate direction. The quasi-one-dimensional system studied here is a
two-dimensional system with Ly less than twice the particle diameter so that the
disks remain ordered in the x direction. Here X = ([0, Lx]× [0, Ly])

N × R2N (with
the appropriate equivalence classes depending on the choice of hard wall or toroidal
boundary conditions) is the collection of 4N -tuples containing all the coordinates
and momenta of the N particles.

The map T : X → X, x 7→ C ◦ F τ(x)(x) is the composition of a free-flow map F τ(x)

and a collision map C. The free-flow map moves the disks in straight lines according
to their momentum while none of the disks are colliding. The time between collisions
is the free-flow time τ(x) which depends on the initial condition x ∈ X. Collisions
occur when the boundary of two disks (or one disk and a wall) touch, and the
collision map exchanges velocities along the direction of collision (since all disks are
of equal mass). Again, the matrix function A is the spatial derivative of T , so that
A(x) = DT (x) = D

(
C ◦ F τ(x)

)
(x). Precise details may be found in [5].

3. PDE: The Kuramoto-Sivashinski equation is a model for weakly turbulent fluids
and flame fronts

ηt = (η2)x − ηxx − νηxxxx,
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where ν is a damping coefficient. Another familiar example is the complex Ginzburg-
Landau equation

ηt = η − (1 + iβ)|η|2η + (1 + iα)ηxx

where η(x, t) is complex and α and β are parameters. In both of these cases it is
possible to approximate solutions of the partial differential equations using Fourier
spectral methods (see [8] for details). For instance, in the case of the 1-dimensional
Kuramoto-Sivashinski PDE we look for solutions of the form

η(x, t) =
∞∑

k=−∞

ak(t)e
ikx/L̃,

where L̃ is a unitless length parameter, then solve the following system of ODEs
for the Fourier coefficients ak(t):

ȧk = (q2k − q4k)ak − i
qk
2

∞∑

m=−∞

amak−m,

where qk = k/L̃. Since the ak decrease rapidly with k, truncating the above system
of ODEs is justified.

In the setting of this review we treatX as the space of Fourier coefficients (a1, . . . , ad)
of the truncated PDE, and consider the transformation T : X → X defined by
choosing some τ > 0 and letting T ((a1, . . . , ad)) = (a1(τ), . . . , ad(τ)) where the
ak(t) are solutions to the system of ODEs with initial conditions ak(0) = ak. The
matrix function A is again the spatial derivative of T so that

A(x) = DT (x) =






∂a1(τ)
∂a1

∂a1(τ)
∂a2

· · ·
∂a2(τ)
∂a1

∂a2(τ)
∂a2

...
. . .




 .

4. Nonautonomous ODEs and transfer operators: Consider an autonomous
ODE ẋ(t) = f(x(t)) on X (for example, the Lorenz flow on X = R3), and its flow
map ξ(τ, x) which flows the points x forward τ time units. We think of the coordi-
nates x as a “generalised time” and the ODE ẋ(t) = f(x(t)) is our base system. We
use this base ODE (the driving system) to construct a nonautonomous ODE or skew
product ODE as ẏ(t) = F (ξ(t, x), y(t)). Given an initial time t and a flow time τ ,

one may construct finite-rank approximations P
(τ)
x (t) of the Perron-Frobenius op-

erator P (τ)(x(t)) that track the evolution of densities from base “time” x(t) to

x(t+τ); see [15] for details. The matrices P
(τ)
x (t) form a cocycle and Oseledets sub-

space computations enable the extraction of coherent sets in the nonautonomous
flow (see [15]). Coherent sets are time-dependent analogues of almost-invariant
sets for autonomous systems; see [9, 13, 12]. Finite-time constructions for coherent
sets are described in [16]. In the setting of this review, T : X → X is defined as

T (x) = ξ(τ, x), and A(x) = P
(τ)
x (t).
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From now on, we denote A(T n−1x) · · ·A(x) as A(x, n). The proof of the classical
MET [23] proves that the matrix limit

Ψ(x) = lim
n→∞

((A(x, n))∗A(x, n))
1/2n

(1)

exists for µ-almost all x ∈ X. The matrix Ψ(x) is symmetric, depends measurably on x,
and its eigenvalues are eλ1(x) > · · · > eλℓ(x). The corresponding eigenspaces are denoted
U1(x), . . . , Uℓ(x) and one has

Vi(x) :=
ℓ⊕

j=i

Wj(x) =
ℓ⊕

j=i

Uj(x).

Thus Vi(x) captures growth rates from λi(x) down to λℓ(x); the “U”decomposition of
Vi(x) is orthogonal, while the “W” decomposition (the Oseledets splitting) is equivariant
(or covariant).

An alternative notion of stability for non-autonomous systems is the so called Sacker-
Sell spectrum, cf. [28]. It is based on exponential dichotomies, cf. [7, 24] which we briefly
introduce for linear difference equations of the form

wn+1 = Anwn, n ∈ Z, An ∈Md(R) invertible. (2)

In the current context we associate the sequence of matrices {An}n∈Z with an invertible
matrix cocycle over a single orbit, e.g. for some x ∈ X let An = A(T nx). We restrict
the introduction of exponential dichotomies to invertible systems only, and note that a
justification of our algorithm for computing dichotomy projectors strongly depends on
this assumption. Theory defining exponential dichotomies for non-invertible matrices is
contained in eg. [2]. Numerical experiments indicate that Algorithms 3.1 and 3.2 also
apply in the non-invertible case, however, the corresponding analysis is a topic of future
research.

We denote by Φ the solution operator of (2), defined as

Φ(n,m) :=







An−1 . . . Am, for n > m,

I, for n = m,

A−1
n . . . A−1

m−1, for n < m.

Definition 1.3. The linear difference equation (2) has an exponential dichotomy

with data (K,αs, αu, P
s
n, P

u
n ) on J ⊂ Z, if there exist two families of projectors P s

n and
P u
n = I − P s

n and constants K,αs, αu > 0, such that the following statements hold:

P s
nΦ(n,m) = Φ(n,m)P s

m ∀n,m ∈ J, (3)

‖Φ(n,m)P s
m‖ ≤ Ke−αs(n−m)

‖Φ(m,n)P u
n ‖ ≤ Ke−αu(n−m)

∀n ≥ m, n,m ∈ J.

Consider the scaled equation

wn+1 = e−λAnwn, n ∈ Z. (4)
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Definition 1.4. The Sacker-Sell or dichotomy spectrum is defined as

σED := {λ ∈ R : (4) has no exponential dichotomy on Z}.

The complementary set R \ σED is called the resolvent set.

The Sacker-Sell spectrum consists of at most d disjoint, closed intervals, where d
denotes the dimension of the space, cf. [28], i.e. there exists an ℓ < d such that

σED =
ℓ⋃

i=1

[λ−i , λ
+
i ], where λ+i+1 < λ−i for i = 1, . . . , ℓ− 1.

It is well known that the Lyapunov spectrum, when it exists, is a subset of the Sacker-
Sell spectrum, see [10]. While the Lyapunov spectrum provides information on bounded
solutions of Φ(n, 0), n ≥ 0, the Sacker-Sell spectrum answers this question for Φ(n,m),
n ≥ m. These answers may be different for different initial n because, in contrast to the
MET setting, there is no a priori stationarity assumption on a base dynamical system
generating the matrix cocycle. Note that for λ ∈ R \ σED it follows from [24, Lemma 2.7]
that the inhomogeneous equation wn+1 = e−λAnwn + rn has for every bounded sequence
rZ a unique bounded solution on Z.

Dichotomy projectors of the scaled equation (4) are constant in resolvent intervals
Ri := (λ+i , λ

−
i−1), i = 1, . . . , ℓ + 1, where λ−0 = ∞ and λ+ℓ+1 = −∞, see Figure 1. We

denote these families of projectors by (P i,s
n , P i,u

n ).

Ri

σED σED

λ−i λ+i λ−i−1 λ+i−1

Figure 1: Spectral setup.

In analogy to the MET we obtain the family of subspaces

W i
n = R(P i,s

n ) ∩R(P i+1,u
n ), n ∈ Z, i = 1, . . . , ℓ

that decompose Rd for each n ∈ Z

Rd =
ℓ⊕

i=1

W i
n,

and using the cocycle property (3) it follows for all i = 1, . . . , ℓ that

AnW
i
n = W i

n+1, n ∈ Z.
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Furthermore, for each w ∈ W i
m, there exists a constant K = K(w) > 0 such that the

following equations hold

‖Φ(n,m)w‖ = Ke(λ
+
i +r+i (n−m))(n−m), for n ≥ m, where lim sup

n→∞
r+i (n) = 0,

‖Φ(n,m)w‖ = Ke(λ
−

i +r−i (n−m))(n−m), for n < m. where lim sup
n→∞

r−i (n) = 0.

When working with data over a finite time interval, one has access only to a fi-
nite sequence A0, A1, . . . , An−1. In this case, one either assumes there is an underlying
ergodic process generating the sequence A0, A1, . . . , An−1 or one considers exponential
dichotomies.

An outline of the paper is as follows. In Sections 2 and 3, we introduce two new
methods for computing Oseledets vectors. The first method is based on the proof of the
generalised MET in [14] and is particularly simple to implement and fast to execute.
The second method is an adaptation of an approach to compute dichotomy projectors
[18]. In Section 4 we review the approaches by Ginelli et al [17] and Wolfe and Samelson
[34]. In Sections 2, 3, and 4 we provide MATLAB code snippets to implement the
algorithms presented. Section 5 contains numerical comparisons of the performance of
the four methods on three dynamical systems. The first case study is a dynamical systems
formed via composition of a sequence of 8× 8 matrices constructed so that all Oseledets
vectors are known at time 0; we thus compare the accuracy of the methods exactly in
this case study. The second case study is an eight-dimensional system generated by two
hard disks in a quasi-one-dimensional box. The third case study is a nonlinear model
of time-dependent fluid flow in a cylinder; the matrices are generated by finite-rank
approximations of the corresponding time-dependent transfer operators. The three case
studies have been chosen to represent a cross-section of a variety of features of systems
that either help or hinder the computation of Oseledets vectors, and we draw out the
advantages and disadvantages of each of the four methods considered.

2 An SVD-based approach

The approach outlined in this section is simple to execute and exhibits quick convergence.
However, as the length of the sample orbit becomes too large this approach fails.

In [14, proof of Theorem 4.1] it is proven that the limit

lim
N→∞

A(T−Nx,N)Ui(T
−Nx)

exists and is equal to the ith Oseledets subspace Wi(x). That is, if one computes Ui in
the far past and pushes forward to the present, the result is a subspace close to Wi(x).
Thus, the strategy in [14] is to first estimate Ui in the past and push forward.

The numerical method of approximating Wj(x), x ∈ X, is implemented in the follow-
ing steps:

Algorithm 2.1 (To estimate Wj(x)).

7



1. Choose M,N > 0 and form the matrix

Ψ(M)(T−Nx) =
(
A(T−Nx,M)∗A(T−Nx,M)

)1/2M
(5)

as an approximation of (1) at T−Nx ∈ X.

2. Compute U
(M)
j (T−Nx), the jth orthonormal eigenspace of Ψ(M)(T−Nx) as an ap-

proximation of Uj(T
−Nx).

3. Define W
(M,N)
j (x) = A(T−Nx,N)U

(M)
j (T−Nx), approximating the Oseledets sub-

space Wj(x).

Listing 1 shows part of a MATLAB implementation of Algorithm 2.1. The array
A=

[
A(T−Nx) | A(T−N+1x) | · · · | A(TM−1x)

]
contains the d×d matrices which generate

the cocycle A : X × Z+ → Md(R), and the matrix Psi is formed by multiplying the
matrices contained in A. Step 1 of Algorithm 2.1 is performed prior to the code in Listing
1, Step 2 is performed in lines 1-3 and lines 4-7 perform Step 3. The function returns Wj
as its estimate to Wj(x).

Listing 1: Sample MATLAB code of Algorithm 2.1 to approximate Wj(x)

1 [ ˜ , s , v ] = svd (Psi ) ;
2 [ ˜ , p ] = sort (diag (s ) , ’ descend ’ ) ;
3 Wj = v ( : , p (j ) )/ norm (v ( : , p (j ) ) ) ;
4 for h = 1 : N
5 Wj = A ( : , ( h−1)∗dim+1:h∗dim )∗Wj ;
6 Wj = Wj/norm (Wj ) ;
7 end

The values ofM and N can be chosen with relative freedom and in our examples that
follow we have chosen M = 2N to compute over a time window centred on x, from T−Nx
to TNx. Unfortunately, we cannot chooseM and N arbitrarily large and expect accurate
results. If A(T−Nx,M) is constructed via the product

A(T−Nx,M) = A(TM−N−1x) · · ·A(T−N+1x)A(T−Nx)

then with larger M the numerical inaccuracies of matrix multiplication compound and
this product becomes more singular and thus a poorer approximation of A(T−Nx,M).
Because of this, Ψ(M)(T−Nx) cannot be expected to accurately approximate Ψ(T−Nx) for
large M . However, even if we suppose Ψ(M)(T−Nx) accurately approximates Ψ(T−Nx),

the small, but non-zero, difference in U
(M)
j (T−Nx) and Uj(T

−Nx) grows roughly as

O
(
eN(λ1−λj)

)
during the push-forward in step 3 above. For these reasons M and N

must be chosen carefully.

2.1 Improving the basic SVD-based approach

We present a simple improvement that can overcome one of the sources of numerical
instability, namely the push-forward process in step 3 above.
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xT−Nkx· · ·T−N1x TMx· · ·

...

Ψ(M)(x)

Ψ(M)(T−Nkx)

Ψ(M)(T−N1x)

...

U
(M)
j (T−N1x) W

(M,Nk)
j (T−Nkx)· · · W

(M,0)
j (x)· · ·

Figure 2: Schematic of the re-orthogonalisation described in Section 2.1. The black line
represents the orbit centred at x ∈ X and the points T−Nkx are those points at which
we ensure orthogonality with the subspaces Vj(T

−Nkx)⊥. To do this we use the (blue)
approximations Ψ(M)(T−Nkx) to approximate Vj(T

−Nkx)⊥ and perform the (red) push-

forward and orthoganlisation steps starting with U
(M)
j (T−N1x) and ending withW

(M,0)
j (x)

(see Algorithm 2.2).

Recall that the subspace Vj(x) = Uj(x) ⊕ · · · ⊕ Uℓ(x) = (U1(x)⊕ · · · ⊕ Uj−1(x))
⊥ is

A-invariant and that for v ∈ Vj(x)\Vj+1(x) (with Vℓ+1(x) = {0}) we have

λj(x) = lim
n→∞

1

n
log ‖A(x, n)v‖ .

The subspace Vj(x) contains Wj(x),Wj+1(x), . . . ,Wℓ(x), and so the Oseledets sub-
spaceWj(x) is necessarily perpendicular to all U1(x), . . . , Uj−1(x). To solve the numerical
instability of step 3 we enforce this condition periodically.

The amended algorithm is implemented as follows:

Algorithm 2.2 (To estimate Wj(x)).

1. Choose M,N1 > N2 > · · · > Nn = 0 and form the matrices

Ψ(M)(T−Nkx) =
(
A(T−Nkx,M)∗A(T−Nkx,M)

)1/2M
, k = 1, . . . , n.

2. Compute all the orthonormal eigenspaces U
(M)
i (T−Nkx), i = 1, . . . , j − 1 of (5)

(replacing N with Nk in (5)) and the eigenspace U
(M)
j (T−N1x).

3. Let projV : Rd → Rd be the orthogonal projection onto the subspace V so

that ker (projV ) = V ⊥ and V
(M)
j (x) =

(

U
(M)
1 (x)⊕ · · · ⊕ U

(M)
j−1 (x)

)⊥

. Define

W
(M,N1)
j (T−N1x) = U

(M)
j (T−N1x), and then define iteratively by pushing forward

and taking orthogonal projections:

W
(M,Nk+1)
j

(
T−Nk+1x

)
= proj

V
(M)
j (T−Nk+1x)

(

A
(
T−Nkx,Nk+1 −Nk

)
W

(M,Nk)
j

(
T−Nkx

))

4. W
(M,Nn)
j (x) = W

(M,0)
j (x) is our approximation of Wj(x).
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Listing 2 shows an example implementation of Algorithm 2.2 in MATLAB. Lines 1-
18 are responsible for performing Steps 1 and 2, whilst the push forward procedure of
Step 3 is performed in lines 20-30. Again, the matrix cocycle is stored in A=

[
A(T−Nx)

∣
∣

A(TN−1x)
∣
∣ · · · | A(TM−1x)

]
and the function returns Wj as its approximation ofWj(x).

The variable Nk is a one-dimensional array containing the elements of {Nk} and is counted
by k.

Listing 2: Sample MATLAB code of Algorithm 2.2 to approximate Wj(x)

1 k=0;
2 for n = Nk ,
3 Psi = eye (dim ) ;
4 for i=0:M−1,
5 Psi = A ( : , ( n + i − 1)∗dim + 1 : ( n + i )∗dim )∗Psi ;
6 Psi = Psi/normest (Psi ) ;
7 end

8 [ ˜ , s , u ] = svd (Psi ) ;
9 [ ˜ , p ] = sort (diag (s ) , ’ descend ’ ) ;
10 if n==1,
11 Wj = u ( : , p (j ) )/ norm (u ( : , p (j ) ) ) ;
12 else

13 for i = 1 : j−1,
14 k = k+1;
15 U ( : , i , k ) = u ( : , p (i ) )/ norm (u ( : , p (i ) ) ) ;
16 end

17 end

18 end

19 k=0;
20 for n = 1 : N ,
21 Wj = A ( : , ( n−1)∗dim+1:n∗dim )∗Wj ;
22 Wj = Wj/norm (Wj ) ;
23 if any (Nk == n+1) ,
24 k = k+1;
25 for i = 1 : j−1,
26 Wj = Wj − dot (Wj , U ( : , i , k ) )∗U ( : , i , k ) ;
27 Wj = Wj/norm (Wj ) ;
28 end

29 end

30 end

Remark 1. Unfortunately, some numerical issues with this approach remain. They stem
primarily from the long multiplication involved in building the variable Psi of Listings 1
and 2. This results in Psi becoming too singular and hence U

(M)
j (T−nx) (j 6= 1) poorly

approximates Uj(T
−nx). As can be seen in Section 5, Algorithm 2.2 works superbly for

W2(x) as U
(M)
1 (T−nx) is well approximated for large n. However when estimating Wj(x),
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j > 2, a good estimate of U
(M)
j−1 (x) is required for an accurate projection proj

V
(M)
j

and for

large n such an estimate becomes unreliable.

3 A dichotomy projector approach

We derive an approach for the computation of a vector wj
n ∈ W j

n = R(P j,s
n )∩R(P j+1,u

n ).
For this task, we first need a guess of Λright ∈ Ri and of Λleft ∈ Ri+1 in two neighbouring
resolvent intervals that lie close to the common spectral interval, see Figure 3.

Λleft Λright

R3 R2

λ1

Figure 3: Choice of Λleft/right in case i = 2.

Numerical experiments indicate that we get the best results by choosing Λright and
Λleft close to (but outside) the second Sacker-Sell interval. This conclusion is supported
by theoretical estimates on the approximation error for Algorithm 3.2, discussed at the
end of Section 3.

The following observation from [18, 19] allows the computation of dichotomy projec-
tors by solving

wi
n+1 = Anw

i
n + δn,m−1ei, n ∈ Z, ei i-th unit vector. (6)

With Green’s function, cf. [24], the unique bounded solution wi
Z of (6) has the explicit

form

wi
n = G(n,m)ei, n ∈ Z, where G(n,m) =

{

Φ(n,m)P s
m, n ≥ m,

−Φ(n,m)P u
m, n < m,

(7)

and consequently

P s
m =





| |
w1

m · · · wd
m

| |



 .

Numerically, we approximate the unique bounded solution on Z by the least squares
solution of (6) on a sufficiently long interval. For an error analysis of this approximation
process, we refer to [19, Theorem 4].

The algorithms that we propose in this section compute a vector w ∈ W j
0 in analogy

to Wj(x) in the previous sections. For simplicity, we restrict the representation to the
case j = 2 and assume that W 1

n and W 2
n are one-dimensional subspaces.

11



In the absence of information about the dichotomy intervals, one may proceed as
follows. Given a finite sequence of matrices, one can estimate a point in the spectral
interval [λ−q , λ

+
q ], q = 1, 2, 3 by computing the (logarithmic) growth rates of one-, two-,

and three-dimensional subspaces using direct multiplication; these growth rates should
approximate λ1, λ1+λ2, and λ1+λ2+λ3, respectively. By taking differences to obtain esti-
mates λ̂q, q = 1, 2, 3, (the caret indicating estimated quantities) one should obtain values

in the interior of [λ−q , λ
+
q ], q = 1, 2, 3. We then estimate Λleft = λ̂2 − (λ̂2 − λ̂3)/10 / λ−2

and Λright = λ̂2 − (λ̂2 − λ̂1)/10 ' λ+2 .
In the first step of our first algorithm, we compute a basis of the two-dimensional

space R(P 3,u
0 ). Then, in the second step, we search for the direction w in this subspace

that additionally lies in R(P 2,s
0 ) and assure in this way that w ∈ R(P 2,s

0 )∩R(P 3,u
0 ) = W 2

0 .

Algorithm 3.1 (A Dichotomy Projector approach to estimateW2(x) by computingW 2
0 ).

1. Suppose N ∈ N and consider n ∈ [−N,N ] ∩ Z. Let An = A(T nx).

Solve the least squares problem

w̃i
n+1 = e−Λleft

Anw̃
i
n + δn,−1r

i, n = −N, . . . , N − 1, i = 1, 2 (8)

such that ‖(w̃i
−N , . . . , w̃

i
N)‖2 is minimised,

where the ri are chosen at random and ‖·‖2 is the ℓ2-norm. Define pi := A−1w̃
i
−1,

i = 1, 2.

2. Solve for w̃[0,N ] and κ the least squares problem

w̃n+1 = e−Λright

Anw̃n, n = 0, . . . , N − 1, (9)

w̃0 + κp1 + p2 = 0, (10)

such that ‖(w̃0, . . . , w̃N , κ)‖2 is minimised.

Then w̃0 is our approximation of w2(x) ∈ W2(x).

The unique bounded solutions on Z of these two steps satisfy p1, p2 ∈ R(P 3,u
0 ) and

these vectors are generically linear independent. Furthermore w̃0 ∈ R(P 2,s
0 ) due to (9)

and w̃0 ∈ R(P 3,u
0 ) due to (10). Thus w̃0 ∈ R(P 3,u

0 ) ∩R(P 2,s
0 ) = W 2

0 .
Note that (8) has the form

Bw̃ = r, with B ∈M2dN,d(2N+1)(R), r ∈ R2dN ,

where

B =






−e−Λleft
A−N I

. . . . . .

−e−Λleft
AN I




 , w̃ =






w̃−N
...

w̃N−1




 ,

and the nth entry of r is the vector δn,−1r
i ∈ Rd for i = 1, 2.

The least squares solution can be obtained, using the Moore-Penrose inverse:

w̃ = B+
r, where B+ = BT (BBT )−1,

12



Listing 3: Sample MATLAB code for Algorithm 3.1

1 % step 1
2 B = zeros (2∗N∗dim , 2∗ ( N+1)∗dim ) ;
3 for i = 1:2∗N
4 B (dim∗(i−1)+1:dim∗i , dim∗(i−1)+1:dim∗i )
5 = −exp(−Lambda_left )∗A ( : , dim∗(i−1)+1:dim∗i ) ;
6 B (dim∗(i−1)+1:dim∗i , dim∗(i )+1:dim∗(i+1))
7 = eye (dim ) ;
8 end

9 R = zeros (2∗dim∗N , 2 ) ;
10 R (dim∗(N−1)+1:dim∗N , : ) = rand (dim , 2 ) ;
11 y = (B∗B ’ ) \ R ;
12 u = B ’∗ y ;
13 p1 = A ( : , dim∗(N−1)+1:dim∗N )∗u (dim∗(N−1)+1:dim∗N , 1 ) ;
14 p2 = A ( : , dim∗(N−1)+1:dim∗N )∗u (dim∗(N−1)+1:dim∗N , 2 ) ;
15 p1 = v1/norm (v1 ) ; v2 = v2/norm (v2 ) ;
16 % step 2
17 B = zeros (dim∗(N+1) ,dim∗(N+1)+1);
18 for i = 0 : N−1
19 B (dim∗i+1:dim∗(i+1) ,dim∗i+1:dim∗(i+1))
20 = −exp(−Lambda_right )∗A ( : , dim∗(i+N )+1:dim∗(i+N+1)) ;
21 B (dim∗i+1:dim∗(i+1) ,dim∗(i+1)+1:dim∗(i+2))
22 = eye (dim ) ;
23 end

24 B (dim∗N+1:dim∗(N+1) ,1 :dim ) = eye (dim ) ;
25 B (dim∗N+1:dim∗(N+1) ,dim∗(N+1)+1) = p1 ;
26 R = zeros (dim∗(N+1) ,1) ;
27 R (dim∗N+1:dim∗(N+1) ,1) = −p2 ;
28 y = (B∗B ’ ) \ R ;
29 u = B ’∗ y ;
30 w2 = u (dim∗N+1:dim∗(N+1))/norm (u (dim∗N+1:dim∗(N+1)) ) ;

cf. [30]. Numerically, we find w̃ by solving the linear system BBTy = r; then w̃ = BTy.
Note that in the unlikely case where p1 ∈ W 2

0 , Algorithm 3.1 fails. An alternative
approach for computing vectors inW 2

0 that avoids this problem is introduced in Algorithm
3.2. The main idea of this algorithm is to take a random vector r, project it first to
R(P 3,u

0 ) and then eliminate components in the wrong subspaces, by projecting with P 2,s
0 .

Algorithm 3.2 (An alternate Dichotomy Projector approach).

1. Again, suppose N ∈ N and consider n ∈ [−N,N ] ∩ Z and let An = A(T nx) as
above. Solve the least squares problem

w̃n+1 = e−Λleft

Anw̃n + δn,−1r, n = −N, . . . , N − 1, (11)

such that ‖(w̃−N , . . . , w̃N)‖2 is minimised,

13



where r is chosen at random, and define r′ = A−1w̃−1.

2. Solve the least squares problem

w̃′
n+1 = e−Λright

Anw̃
′
n + δn,−1r

′, n = −N, . . . , N − 1, (12)

such that ‖(w̃′
−N , . . . , w̃

′
N)‖2 is minimised.

Then w̃′
0 is our approximation of w2(x) ∈ W2(x).

The solution w0 on Z of these two steps satisfies w0 = P 2,s
0 P 3,u

0 r ∈ R(P 2,s
0 )∩R(P 3,u

0 ) =
W 2

0 .

Listing 4: Sample MATLAB code for the second step of Algorithm 3.2

1 B = zeros (2∗N∗dim , 2∗ ( N+1)∗dim ) ;
2 for i = 1:2∗N
3 B (dim∗(i−1)+1:dim∗i , dim∗(i−1)+1:dim∗i )
4 = −exp(−Lambda_right )∗A ( : , dim∗(i−1)+1:dim∗i ) ;
5 B (dim∗(i−1)+1:dim∗i , dim∗i+1:dim∗(i+1)) = eye (dim ) ;
6 end

7 R = zeros (2∗dim∗N , 1 ) ;
8 R (dim∗(N−1)+1:dim∗N , : ) = p1 ;
9 y = (B∗B ’ ) \ R ;
10 u = B ’∗ y ;
11 w2 = u (dim∗N+1:dim∗(N+1))/norm (u (dim∗N+1:dim∗(N+1)) ) ;

3.1 Error estimate

We give an error estimate for the solution of Algorithm 3.2 for a finite choice of N . Details
on deriving this estimate are postponed to a forthcoming publication.

For Λleft and Λright close to the boundary of the second Sacker-Sell spectral interval,
we denote the dichotomy rates of

wn+1 = e−Λleft

Anwn, wn+1 = e−Λright

Anwn, n ∈ Z (13)

by (αℓ,s, αℓ,u) and (αr,s, αr,u), respectively. Let w0 be the solution of Algorithm 3.2 on Z

and let w̃0 be its approximation for a finite choice of N . Careful estimates show that the
approximation error in the “wrong subspace” R(Q), with Q := I − P 2,s

0 P 3,u
0 is given as

‖Q(w0 − w̃0)‖ ≤ CN(e−αℓ,sN + e−αr,uN), (14)

where the constant C > 0 does not depend on N .
The exponential dichotomy rates αℓ,s and αr,u of the difference equations (13) depend

on the choice of Λleft and Λright in the following way: for Λleft in the resolvent set R3 =
[λ+3 , λ

−
2 ] the difference equation

wn+1 = e−Λleft

Anwn, n ∈ Z
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has an exponential dichotomy with stable dichotomy rate αℓ,s for all αℓ,s with

0 < αℓ,s < Λleft − λ+3 .

Similarly, for Λright in the resolvent set R2 = [λ+2 , λ
−
1 ] the difference equation

wn+1 = e−Λright

Anwn, n ∈ Z

has an exponential dichotomy with unstable dichotomy rate αr,u for all αr,u with

0 < αr,u < λ−1 − Λright.

Note that both of the above inequalities are strict.
Inspecting equation (14), we get the best (smallest) maximal error if we choose Λleft ∈

R3 and Λright ∈ R2 so as to maximise αℓ,s and αr,u. Consequently, we get the best
numerical approximations, if Λleft and Λright are chosen close to, but not equal to, the
boundary of the common spectral interval [λ−2 , λ

+
2 ].

4 The Ginelli and Wolfe schemes

4.1 The Ginelli scheme

The Ginelli Scheme was first presented by Ginelli et al. in [17] as a method for accu-
rately computing the covariant Lyapunov vectors of an orbit of an invertible differentiable
dynamical system where the A(x) = DT (x) are the Jacobian matrices of the flow or map.

Estimates of the Wj(x) are found by constructing equivariant subspaces Sj(x) =
W1(x)⊕· · ·⊕Wj(x) and filtering the invariant directions contained therein using a power
method on the inverse system restricted to the subspaces Sj(x).

To construct the subspaces Sj(x) we utilise the notion of the stationary Lyapunov
basis [11]. Choose j orthonormal vectors s1(T

−nx), s2(T
−nx), . . . , sj(T

−nx), n ≥ 1, such
that si(T

−nx) /∈ Vj+1(T
−nx) for 1 ≤ i ≤ j and construct

s̃
(n)
i (x) = A(T−nx, n)si(T

−nx), i = 1, . . . , j.

Using the Gram-Schmidt procedure, construct the orthonormal basis
{s(n)1 (x), . . . , s

(n)
j (x)} from {s̃(n)1 (x), . . . , s̃

(n)
j (x)}, that is,

s
(n)
1 (x) =

1
∥
∥
∥s̃

(n)
1 (x)

∥
∥
∥

s̃
(n)
1 (x),

s
(n)
2 (x) =

1
∥
∥
∥

(

s̃
(n)
2 (x)−

(

s̃
(n)
2 (x) · s(n)1 (x)

)

s
(n)
1 (x)

)∥
∥
∥

(

s̃
(n)
2 (x)−

(

s̃
(n)
2 (x) · s(n)1 (x)

)

s
(n)
1 (x)

)

,

(15)

...
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Then as n→ ∞ the basis {s(n)1 (x), . . . , s
(n)
j (x)} converges to a set of orthonormal vectors

{s(∞)
1 (x), . . . , s

(∞)
j (x)} which span the j fastest expanding directions of the cocycle A [11],

that is, if the multiplicities m1 = · · · = mj = 1

Sj(x) := span
{

s
(∞)
1 (x), . . . , s

(∞)
j (x)

}

= W1(x)⊕ · · · ⊕Wj(x)

= V1(x)\Vj+1(x). (16)

If the Oseledets subspaces are not all one-dimensional, that is the Lyapunov spectrum
is degenerate, then we choose Sj(x) only for those j which are the sum of the first k
multiplicities, i.e., j = m1 + · · ·+mk. Then

Sj(x) = W1(x)⊕ · · · ⊕Wk(x)

= V1(x)\Vk+1(x).

In the interest of readability we assume the Oseledets subspaces are one-dimensional but
note that the approach may be extended to the multi-dimensional case.

Note that the Sj(x) are equivariant by construction:

A(x, n)Sj(x) = Sj(T
nx)

provided j ≤ m1 + · · ·+mℓ−1 if λℓ = −∞.
We describe the Ginelli approach to finding W2(x). Suppose dimW1(x) =

dimW2(x) = 1 and λ1 > λ2 > −∞ and that the basis {s(∞)
1 (x), s

(∞)
2 (x)} is known

at x ∈ X. Note first that span
{

s
(∞)
1 (x)

}

= W1(x). Let c(x) ∈ R2 denote the coefficients

of w2(x) ∈ W2(x) in the basis {s(∞)
1 (x), s

(∞)
2 (x)} (recall that the orthogonal projection of

w2(x) onto s
(∞)
i (x) is zero for i = 3, 4, . . . , d)

then

w2(x) = c1(x)s
(∞)
1 (x) + c2(x)s

(∞)
2 (x).

Lemma 4.1. Let Q(x) denote the d × 2 matrix whose ith column is s
(∞)
i (x). Then for

each n ≥ 0 there exists an upper triangular, 2× 2 matrix R(x, n) satisfying

A(x, n)Q(x) = Q(T nx)R(x, n). (17)

Proof. Note that

A(x, n)Q(x) = A(x, n)





| |
s
(∞)
1 (x) s

(∞)
2 (x)

| |





=





| |
A(x, n)s

(∞)
1 (x) A(x, n)s

(∞)
2 (x)

| |





= Q(T nx)R(x, n)

16



where

Q(T nx) =





| |
s
(∞)
1 (T nx) s

(∞)
2 (T nx)

| |





and

R(x, n) =





∥
∥
∥A(x, n)s

(∞)
1 (x)

∥
∥
∥

〈

s
(∞)
1 (T nx), A(x, n)s

(∞)
2 (x)

〉

0
∥
∥
∥A(x, n)s

(∞)
2 (x)

∥
∥
∥



 , (18)

using the equivariance of S1(x) = span{s(∞)
1 (x)} and S2(x) = span{s(∞)

1 (x), s
(∞)
2 (x)}.

Thus, the QR-decomposition of Lemma 4.1 is equivalent to the Gram-Schmidt or-
thonormalisation that defines the stationary Lyapunov bases. The columns of Q(T nx)
form the stationary Lyapunov basis at T nx.

We have chosen the above notation R(x, n) specifically since, defined in this way, R
forms a cocycle which is the restriction of A to the invariant subspaces Sj.

Lemma 4.2. The matrix R(x, n) defined above forms a cocycle over T .

Proof. Let n,m ≥ 0 then

A(x, n+m)Q(x) = Q(T n+mx)R(x, n+m) (19)

by Lemma 4.1. Since A(x, n+m) = A(T nx,m)A(x, n),

A(x, n+m)Q(x) = A(T nx,m)A(x, n)Q(x)

= A(T nx,m)Q(T nx)R(x, n)

= Q(T n+mx)R(T nx,m)R(x, n). (20)

Equating (19) and (20) gives

R(T nx,m)R(x, n) = R(x, n+m),

as Q(T n+mx) is left-invertible.

Since c(x) is the vector of coefficients of the second Oseledets vector of the cocycle A,
it is the second Oseledets vector of the cocycle R. To see this, recall w2(x) = Q(x)c(x) ∈
W2(x) so that

λ2 = lim
n→∞

1

n
log ‖A(x, n)Q(x)c(x)‖

which, due to (17), becomes

λ2 = lim
n→∞

1

n
log ‖Q(T nx)R(x, n)c(x)‖

= lim
n→∞

1

n
log ‖R(x, n)c(x)‖

since the columns of Q(T nx) are orthonormal.
We may approximate c(x) numerically using a simple power method on the inverse

cocycle R−1 (which exists since λ1 > λ2 > −∞).
The Ginelli method can be summarised by the following steps:
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Algorithm 4.3 (Ginelli method of approximating w2(x) ∈ W2(x)).

1. Choose x ∈ X and M > 0 and form {s(M)
1 (x), s

(M)
2 (x)} by first randomly se-

lecting two orthonormal vectors {s1(T−Mx), s2(T
−Mx)} then performing the push-

forward/Gram-Schmidt procedure given by (15). That is, define

s̃
(M)
i (x) = A(T−Mx,M)si(T

−Mx), i = 1, 2,

followed by setting

s
(M)
1 (x) = N

(

s̃
(M)
1 (x)

)

,

s
(M)
2 (x) = N

(

s̃
(M)
2 (x)−

(

s̃
(M)
2 (x) · s(M)

1 (x)
)

s
(M)
1 (x)

)

,

where N : v 7→ v/ ‖v‖. The vectors {s(M)
1 (x), s

(M)
2 (x)} form an approximation to

the stationary Lyapunov basis {s(∞)
1 (x), s

(∞)
2 (x)}.

2. Choose N > 0 and using the approximate basis {s(M)
1 (x), s

(M)
2 (x)} in (18), form an

approximation to R(x,N), denoted by R(M)(x,N).

3. Choose c′ ∈ R2 either at random, or by some guess at the second Oseledets vector
of R at TN(x) ∈ X, in this review we found c′ = (0, 1) to work well. Use the inverse
iteration method to approximate c(x), that is, define our approximation to c(x) as

c(M,N)(x) = R(M)(x,N)−1c′

= R(M)(TNx,−N)c′

4. Then

w
(M,N)
2 (x) =





| |
s
(M)
1 (x) s

(M)
2 (x)

| |



 c(M,N)(x)

is our approximation to w2(x) ∈ W2(x).

As before, there is some freedom of choice of both M and N as well as of the initial
orthonormal basis {s1(T−Mx), s2(T

−Mx)}, used to approximate S2(x), and of the 2-tuple

c′. The larger M and N are chosen, the more accurate w
(M,N)
2 (x) will be, provided

s2(T
−Mx) /∈ W1(T

−Mx)∪V3(T−Mx) and c′ /∈ E1(T
Mx) where E1 is the Oseledets subspace

of R with Lyapunov exponent λ1.
Listing 5 shows an example implementation of Algorithm 4.3 in MATLAB which

approximates wj(x) ∈ Wj(x) using M = N and s1(T
−Mx), . . . , sj(T

−Mx) are chosen
at random and c′ = ( 0, . . . , 0

︸ ︷︷ ︸

j−1 entries

, 1). Lines 2 through 6 construct the approximation of

the stationary Lyapunov basis,
{

s
(M)
1 (x), . . . , s

(M)
j (x)

}

which is stored as columns of

the matrix Q(x) represented as the variable Q0, while lines 7 through 11 construct the
cocycle R stored in AllR as [R(x) | R(Tx) | · · · | R(TNx)]. Lines 12 through 17 perform
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Listing 5: Sample MATLAB code for Algorithm 4.3

1 [ Q , ˜ ] = qr (rand (dim , j ) , 0 ) ; c = [ zeros (1 ,j−1) 1 ] ;
2 for i = 1 : N ,
3 QNew = A ( : , ( i−1)∗dim+1:i∗dim )∗Q ;
4 [ Q , ˜ ] = qr (QNew , 0 ) ;
5 end

6 Q0 = Q ;
7 for i = N+1:2∗N+1,
8 QNew = A ( : , ( i−1)∗dim +1: i∗dim )∗Q ;
9 [ Q , R ] = qr (QNew , 0 ) ;
10 AllR = horzcat (R , AllR ) ;
11 end

12 numOfR = size (AllR , 2 ) / j ;
13 for i = 1 : numOfR
14 R = AllR ( : , ( i−1)∗j+1:i∗j ) ;
15 cNew = R\c ;
16 c = cNew/norm (cNew ) ;
17 end

18 w = Q0∗c ;

a simple power method on R(x,N)−1 to find the coefficient vector c, which represents the

approximation of wj(x) in the basis
{

s
(M)
1 (x), . . . , s

(M)
j (x)

}

. Thus, the approximation is

given by Q(x)c. Although Algorithm 4.3 is specific to the case where j = 2, Listing 5 is
applicable to any j for which R(x,N)−1 exists.

It can be shown that, in this case where the top Lyapunov exponent has multiplicity
1, E1 = span{(1, 0)T}.
Lemma 4.4. If the first Lyapunov exponent has multiplicity 1, the dominant Oseledets
subspace of the cocycle R is E1 = span{(1, 0)T}.

Proof. Recall that s
(∞)
1 (x) ∈ W1(x) since span

{

s
(∞)
1 (x)

}

= S1(x) = V1(x)\V2(x) (from

(16)) and for all s ∈ V1(x)\V2(x)

λ1 = lim
n→∞

1

n
log ‖A(x, n)s‖ .

We may write s = Q(x)(a, 0)T for some a ∈ R then

λ1 = lim
n→∞

1

n
log
∥
∥A(x, n)Q(x)(a, 0)T

∥
∥

= lim
n→∞

1

n
log
∥
∥Q(T nx)R(x, n)(a, 0)T

∥
∥

and since ‖Q(T nx)s‖ = ‖s‖ (the columns of Q are orthonormal)

λ1 = lim
n→∞

1

n
log
∥
∥R(x, n)(a, 0)T

∥
∥ .

Since S1 is A-invariant, span{(1, 0)T} is R-invariant and the proof is complete.
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4.1.1 Limited Data Scenario

In the case where convergence isn’t satisfactory because the amount of cocycle data
available is too small (for anyM and N to be small), the approximations from Algorithm
4.3 can be improved by using better guesses at s1(T

−Mx), s2(T
−Mx) and c′.

Note that s
(∞)
1 (x) and s

(∞)
2 (x) are two orthonormal vectors optimised for maximal

growth over the time interval [−∞, 0] ∩ Z. In the situation where the values of M and
N are limited, one can choose those two vectors that are optimised for growth over the
shorter time interval [−M, 0] ∩ Z. In [34] this is achieved by computing the left singular
vectors of A(T−Mx,M). This approach works well for smallM but can become inaccurate
for very large M for the reasons in Remark 1.

In practice, we have observed that a combination of Step 1 in Algorithm 4.3 and the
above provides the most robust method of accurately approximating s

(∞)
1 (x) and s

(∞)
2 (x).

As an alternative to Algorithm 4.3 the following may be used: For M ≥ M ′, compute
vectors optimised for growth from −M to −M +M ′, then push-forward these vectors
from −M +M ′ to 0.

Algorithm 4.5 ( Improved Algorithm 4.3).

1. Choose x ∈ X and M ≥ M ′ > 0. Compute the two left singular vectors
of A(T−Mx,M ′) corresponding to the two largest singular values and call them

s̃1(T
−M+M ′

x) and s̃2(T
−M+M ′

x). Now define
{

s
(M,M ′)
1 (x), s

(M,M ′)
2 (x)

}

as an ap-

proximation to
{

s
(∞)
1 (x), s

(∞)
2 (x)

}

by the Gram-Schmidt orthonormalisation of

A(T−M+M ′

x,M −M ′)s1(T
−M+M ′

x) and A(T−M+M ′

x,M −M ′)s2(T
−M+M ′

x) as in
(15).

Steps 2–4 as in Algorithm 4.3.

In practice, one should choose M ′ large enough so that enough data is sampled, but
not so large that A(T−Mx,M ′) is too singular.

4.2 The Wolfe scheme

The approach followed by Wolfe et al. [34] directly computes the subspace splitting
as the intersection of two sets of invariant subspaces. The description of the numerical
construction of the subspaces Sj(x) featured below differs slightly from [34], however,
the essential features of the approach are retained. In fact, the constructions featured
here improve upon those in [34] in terms of accuracy versus amount of cocycle data used

– in the notation of Algorithm 4.6 below, if M1 is made larger, w
(M1,M ′

1,M2)
2 (x) is more

accurate, which is not the case in [34] for the same reasons discussed in Remark 1.
Recall the eigenspace decomposition Uj(x) of the limiting matrix Ψ(x) presented in

Section 2 and define Vj(x) = Uj(x) ⊕ · · · ⊕ Uℓ(x). Recall that Vj(x) ⊃ Wj(x),Wj+1(x),
. . . ,Wℓ(x). Also recall from the previous section that Sj(x) ⊃ W1(x),W2(x), . . . ,Wj(x).
Thus

Wj(x) = Vj(x) ∩ Sj(x).
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Again, in the interest of readability we assume the Oseledets subspaces Wj(x), and
the eigenspaces Uj(x), are one-dimensional. As in the case of the previous section, the
ideas here may be extended to the case in which the Oseledets subspaces are not one-
dimensional. Let uj(x) be the singular vector spanning Uj(x) and let sj(x) = s

(∞)
j (x) be

the jth element of the stationary Lyapunov basis as in the previous section. Then note

wj(x) =

j
∑

i=1

〈wj(x), si(x)〉 si(x),

wj(x) =
d∑

i=j

〈wj(x), ui(x)〉 ui(x).

Taking inner products with uk(x) and sk(x) respectively gives

〈wj(x), uk(x)〉 =
j
∑

i=1

〈wj(x), si(x)〉 〈si(x), uk(x)〉 for k ≥ j, (21)

〈wj(x), sk(x)〉 =
d∑

i=j

〈wj(x), ui(x)〉 〈ui(x), sk(x)〉 for k ≤ j. (22)

Substituting (21) into (22) and rearranging gives

〈wj(x), sk(x)〉 =
j
∑

i=1

(
d∑

h=j

〈sk(x), uh(x)〉 〈uh(x), si(x)〉
)

〈si(x), wj(x)〉 . (23)

Note that
∑d

h=1 〈sk(x), uh(x)〉 〈uh(x), si(x)〉 = δki so

d∑

h=j

〈sk(x), uh(x)〉 〈uh(x), si(x)〉 = δki −
j−1
∑

h=1

〈sk(x), uh(x)〉 〈uh(x), si(x)〉 .

Then (23) becomes

〈wj(x), sk(x)〉 =
j
∑

i=1

δki 〈si(x), wj(x)〉 −
j
∑

i=1

j−1
∑

h=1

〈sk(x), uh(x)〉 〈uh(x), si(x)〉 〈si(x), wj(x)〉

= 〈sk(x), wj(x)〉 −
j
∑

i=1

j−1
∑

h=1

〈sk(x), uh(x)〉 〈uh(x), si(x)〉 〈si(x), wj(x)〉

0 =

j
∑

i=1

j−1
∑

h=1

〈sk(x), uh(x)〉 〈uh(x), si(x)〉 〈si(x), wj(x)〉 . (24)

Equation (24) may be considered as a j × j homogeneous linear equation by defining a
matrix entry-wise as

Dki =

j−1
∑

h=1

〈sk(x), uh(x)〉 〈uh(x), si(x)〉
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and solving

Dy = 0,

where yi = 〈si(x), wj(x)〉. The entries of y are then the coefficients of wj(x) with respect
to the basis s1(x) . . . , sj(x).

The Wolfe approach may be implemented as follows:

Algorithm 4.6 (Improved Wolfe approach to approximating wj(x) ∈ Wj(x)).

1. Choose x ∈ X and M1 ≥ M ′
1 > 0 and construct {s(M1,M ′

1)
1 (x), . . . , s

(M1,M ′

1)
j (x)} as

an approximation of the stationary Lyapunov basis vectors {s(∞)
1 (x), . . . , s

(∞)
j (x)}

using the methods outlined in Step 1 of Algorithm 4.5, that is, compute the left
singular vectors of A(T−M1x,M ′

1) corresponding to the j− 1 largest singular values

and call them s̃i(T
−M1+M ′

1x), i = 1, . . . , j − 1. Then form the s
(M1,M ′

1)
i (x) by the

Gram-Schmidt orthornormalisation of A(T−M1+M ′

1x,M1−M ′
1)s̃i(T

−M1+M ′

1x) for i =
1, . . . , j − 1.

2. Choose M2 > 0 and construct the one-dimensional eigenspaces U
(M2)
1 (x), . . . ,

U
(M2)
j−1 (x) as approximations to the eigenspaces U1(x), . . . , Uj−1(x) as in Step 1 of

Algorithm 2.1, that is, construct

Ψ(M2)(x) = (A(x,M2)
∗A(x,M2))

1/2M2 ,

and let U
(M2)
i (x) be the ith orthonormal eigenspace of Ψ(M2)(x). Define u

(M2)
i (x) ∈

U
(M2)
i (x), i = 1, . . . , j − 1.

3. Form the matrix D as above:

Dki =

j−1
∑

h=1

〈

s
(M1,M ′

1)
k (x), u

(M2)
h (x)

〉〈

u
(M2)
h (x), s

(M1,M ′

1)
i (x)

〉

.

4. Solve the homogeneous linear equation Dy = 0. Then w
(M1,M ′

1,M2)
j =

∑j
i=1 yisi(x)

forms our approximation of wj(x) ∈ Wj(x).

This approach suffers from the same numerical stability issue of Algorithm 2.2 of Sec-
tion 2.1. Namely, the vector spaces U

(M)
1 (x), . . . , U

(M)
j−1 (x) may only poorly approximate

U1(x), . . . , Uj−1(x) for M too large (see the final paragraph of Section 2.1).
A recent paper [20] provides alternative descriptions of both the Ginelli et al. and

Wolfe and Samelson methods, well-suited to those familiar with the QR-decomposition
based numerical method for estimating Lyapunov exponents due to Benettin et al. [3, 4]
and Shimada and Nagashima [29]. The discussion in [20] is restricted to invertible cocycles
generated by the Jacobian matrices of a dynamical system. Although this assumption
allows stable numerical methods to be constructed, i.e., better convergence obtained for
larger data sets, it means some important examples in which the matrix cocycle is non-
invertible are overlooked, for example the case study of Section 5.3. While the memory
footprint of the implementations discussed in [20] is estimated, there is no discussion
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of convergence rates or accuracy with respect to the amount of cocycle data available.
Finally, while the examples featured in [20] explain the methods presented in the context
of differentiable dynamical systems the case studies of Section 5 in the present paper
focus on comparative performance of the methods presented, via a broad range of possible
applications.

5 Numerical comparisons of the four approaches

We present three detailed case studies, comparing the four approaches for calculating
Oseledets subspaces. The first case study is a nontrivial model for which we know the
Oseledets subspaces exactly and can therefore precisely measure the accuracy of the
methods. The second case study produces a relatively low-dimensional matrix cocycle,
while the third case study generates a very high-dimensional matrix cocycle; in these case
studies we use two fundamental properties of Oseledets subspaces to assess the accuracy
of the four approaches.

5.1 Case Study 1: An exact model

In general the Oseledets subspaces cannot be found analytically which makes the task of
determining the efficacy of the above approaches difficult. However, the exact model de-
scribed below allows us to compare the numerical approximations with the exact solution
by building a cocycle in which the subspaces are known a priori.

We generate a system with simple Lyapunov spectrum λ1 > λ2 > · · · > λd > −∞.
We form a diagonal matrix

R =








eλ1 0
eλ2

. . .

0 eλd








and generate the cocycle by the sequence of matrices {An} where

An = SnRS
−1
n−1

Sn =







I + ǫZ, for n 6= −1, n ∈ [−N,N ] ∩ Z,

I +









0

z2 0
. . . . . .

zd 0









, for n = −1.
(25)

The entries of Z and the numbers z2, . . . , zd are uniformly randomly generated from the
interval [0, 1]. By construction, the columns of Sn−1 span the Oseledets subspaces at time
n ∈ [−N,N ] ∩ Z.

We compare the exact result at time n = 0 with the approximations computed by
the various algorithms for d = 8, {λ1, . . . , λ8} = {log 8, log 7, log 6, . . . , log 1} and ǫ = 0.1
for varying amounts of cocycle data

{
A(T−Nx), . . . , A(TNx)

}
. The exact model has a
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well separated spectrum, is generated using invertible matrices, and is of relatively low
dimension.

For this model we use the following choice of parameters to execute the algorithms:

• Algorithm 2.2: M = N and {Nk} = {1, 6, . . . , 5k − 4, . . . , 5K − 4, N} where
5K − 4 < N ≤ 5K + 1.

• Algorithm 3.1: We estimate the three largest Lyapunov exponents λ1 > λ2 > λ3
and set Λright = λ2 + 0.1(λ1 − λ2) and Λleft = λ2 − 0.1(λ2 − λ3).

• Algorithm 3.2: As for Algorithm 3.1.

• Algorithm 4.5: M = N , M ′ = 5, and c′ = (0, 1).

• Algorithm 4.6: Let M1 = N , M ′
1 = 5 and M2 = N .
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Figure 4: Comparing the approximations of the second Oseledets subspace W
(N)
2 (x)

with the exact solution W2(x) which is known a priori. Each “N -approximation” is
computed using cocycle data {A(T−Nx), A(T−N+1x), . . . , A(TNx)}. The comparison is

simply the Euclidean norm of the separation of the two unit vectors w
(N)
2 (x) ∈ W

(N)
2 (x)

and w2(x) ∈ W2(x).

Figure 4 compares the approximations yielded from the various approaches outlined
in Sections 2, 3 and 4 with the known solution of Equation (25). Each algorithm exhibits
approximately exponential convergence with respect to the length of the sample cocycle
up to (almost) machine accuracy of about 10−16. Algorithm 4.3 is notably erratic whereas
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the other algorithms converge smoothly, which suggests that in the limited data scenario
(small N) it represents the less satisfactory choice.

Algorithm 2.2 is slightly more accurate than the other algorithms for large N , while
there is a limit to the accuracy of Algorithms 3.1 and 3.2.

It is worth noting that Algorithms 2.2 and 4.6 do not perform as well when approxi-
mating Oseledets subspaces corresponding to Lyapunov exponents λ3, . . . , λℓ. Whilst they
reach machine accuracy with ease for W1 and W2, forming A(x, n) = A(T n−1x) · · ·A(x)
via numerical matrix multiplication produces greater inaccuracies for subspaces W3

through Wℓ (see Remark 1). On the other hand, Algorithms 3.1, 3.2 and 4.5 do not
suffer from the same issue because they do not need to form A(x, n) but use only the
generating matrices A(x). As such, they still reach machine accuracy, although a greater
amount of data (larger N) is required.
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Algorithm 2.2
Algorithm 2.1

Figure 5: Comparing the approximation of the second Oseledets vector with the exact
solution for the two SVD based approaches, demonstrating the numerical instability which
is overcome in the adapted SVD approach.

Figure 5 is similar to Figure 4 except that it compares only Algorithms 2.1 and 2.2.
In doing so, it highlights the result of one of the numerical instabilities of Algorithm 2.1,
namely the pushing forward of U

(M)
j (T−Nx) in Step 3.

Finally, Figure 6 shows the execution times of Algorithms 2.2, 3.1, 3.2, 4.5 and 4.6,
which were timed using MATLAB’s timing functionality. The most time-consuming step
in Algorithm 4.5 is the SVD performed as part of the alterations from Section 4.1.1.
Algorithm 4.6 must perform two SVDs and Algorithm 2.2 must perform many more,
which accounts for their longer execution times.
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N
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Figure 6: Comparing the execution time τ of the various algorithms using MAT-
LAB’s timing functionality. Each algorithm is executed using the cocycle data
{
A(T−Nx), . . . , A(TNx)

}
.

5.2 Case Study 2: Particle dynamics - two disks in a quasi-one-

dimensional box

We consider the quasi-one-dimensional heat system studied extensively by Morriss et al.
[5, 22, 27, 33, 31, 32] which consists of two disks of diameter σ = 1 in a rectangular box,
[0, Lx] × [0, Ly], in which the shorter side, has length Ly < 2σ so that the disks may
not change order. The two disks interact elastically with each other and the short walls,
but periodic boundary conditions are enforced in the y-direction. The phase space of the
system is then the set X ⊂ R8

X = (([0, Lx]× [0, Ly]) / ∼)2 × R2 × R2

where ∼ is the equivalence class associated with periodic boundary conditions, that is,
(x1, y1), (x2, y2) ∈ [0, Lx]× [0, Ly] have (x1, y1) ∼ (x2, y2) if y1 = y2 mod Ly and x1 = x2.

The flow φτ : X → X consists of free-flight maps of time τ , F τ : X → X, and collision
maps C : X → X so that φτ (x) = C ◦ F τn ◦ · · · ◦ F τ2 ◦ C ◦ F τ1(x) where τ1 + · · ·+ τn = τ .
We consider a discrete-time version of the system by mapping from the instant after
collision to the instant after the next collision, that is x 7→ C ◦F τ(x)(x) where τ(x) is the
free-flight time in the continuous system. The matrix cocycle is generated by the 8 × 8
Jacobian matrices or the derivative of the flow evaluated instantly after each collision (i.e.
A(x) = D

(
C ◦ F τ(x)

)
(x), see [5] for details). Due to a number of dynamic symmetries the
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system has Lyapunov exponents λ1 > λ2 > 0 > −λ2 > −λ1 with multiplicities 1, 1, 4, 1
and 1 respectively. This system has some symmetry, a high variation in expansion rates
from iteration to iteration, a well separated spectrum, invertible Jacobian matrices, and
relatively low dimension. Numerical integration of an orbit consisting of 4646 collisions
yielded a sequence of Jacobian matrices {A(T−2323x), . . . , A(T 2322x)} which generate the
cocycle A.

For this model we use the same choice of parameters to execute the algorithms as
with the previous model:

• Algorithm 2.2: M = N and {Nk} = {1, 6, . . . , 5k − 4, . . . , 5K − 4, N} where
5K − 4 < N ≤ 5K + 1.

• Algorithm 3.1: We estimate the three largest Lyapunov exponents λ1 > λ2 > λ3
and set Λright = λ2 + 0.1(λ1 − λ2) and Λleft = λ2 − 0.1(λ2 − λ3).

• Algorithm 3.2: As for Algorithm 3.1.

• Algorithm 4.5: M = N , M ′ = 5, and c′ = (0, 1).

• Algorithm 4.6: Let M1 = N , M ′
1 = 5 and M2 = N .

5.2.1 Criteria to assess the accuracy of estimated Oseledets spaces

Since the Oseledets subspaces for this model are unknown, we test the approximations
for two properties of Oseledets subspaces, namely their equivariance and the expansion
rate, which defines the corresponding Lyapunov exponent.

Equivariance: To test for equivariance, we approximate the second Oseledets
vector, w

(N)
2 (T nx), at each time n = 0, 1, . . . , 30. We then compute∥

∥
∥N

(

A(x, n)w
(N)
2 (x)

)

− w
(N)
2 (T nx)

∥
∥
∥ and plot the result, where v

N7→v/ ‖v‖. If the ap-

proximations are equivariant this value would be zero.

Expansion Rate: To test the expansion rate, each approach is used to compute
the second Oseledets vector, w

(N)
2 (x) ∈ W

(N)
2 (x), at time n = 0 and we plot

1
m
log
∥
∥
∥A(x,m)w

(N)
2 (x)

∥
∥
∥ versus m. If W

(N)
2 (x) is accurate, elements of W

(N)
2 (x) should

grow at the correct rate: λ2.
Whilst the Oseledets vector w2(x) must satisfy the above two properties, we must be

careful when examining the results of these numerical experiments. For instance, (i) it is
possible to choose vectors that are equivariant despite not being contained in any single
Oseledets subspace, and (ii) any element of V2(x)\V3(x) ! W2(x) (a much larger set than
W2(x)) has Lyapunov exponent λ2.

5.2.2 Numerical Results

Figure 7 shows the results of the equivariance test for the quasi-one-dimensional two disk
model. At the lower end of cocycle data length (N = 75) all Algorithms except 3.2
display reasonable equivariance, although Algorithm 3.1 remains equivariant for only a

27



handful of steps. For N = 150 and N = 225 all approaches appear to produce close to
equivariant results (note the changing scales in the vertical direction), with Algorithms
3.1 and 3.2 lagging behind when N = 225.
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Figure 7: The equivariance test for the various algorithms on the quasi-one-dimensional
two disk model. Each approach is used to approximate the second Oseledets vector,
w

(N)
2 (T nx) ∈ W

(N)
2 (T nx) using cocycle data {A(T−Nx), . . . , A(TNx)}, at each time n =

0, 1, . . . , 30. We then compute
∥
∥
∥NA(x, n)w

(N)
2 (x)− w

(N)
2 (T nx)

∥
∥
∥ and plot the result. Note

the different scales on each vertical axis. The plots shown are for N = 75 (top left),
N = 150 (top right) and N = 225 (bottom).

Figure 8 shows the results of the expansion rate test for the quasi-one-dimensional two
disk model for various amounts of cocycle data

{
A(T−Nx), . . . , A(TNx)

}
. As expected,

when there is a limited amount of data available (N small) the approximations either
expand at the higher rate of λ1 or only expand at the rate of λ2 for a brief time before
the error grows too large. As N is increased, the approximations expand at λ2 for longer
periods, suggesting that they more accurately represent w2(x).

Most algorithms perform similarly regarding expansion rate. Note that the amount
of cocycle data (size of N) needed to perform well in the Expansion Rate test is less than
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Figure 8: The expansion rate test for the various approaches on the quasi-one-
dimensional two disk model. The second Oseledets vector, w

(N)
2 (x) ∈ W

(N)
2 (x), is approx-

imated using cocycle data {A(T−Nx), . . . , A(TNx)} and we plot 1
m
log
∥
∥
∥A(x,m)w

(N)
2 (x)

∥
∥
∥

versus m. If the approximation is accurate this quantity should tend to the value of
λ2 ≈ 0.210, otherwise it would tend to the value of λ1 ≈ 0.325 both of which are shown
in blue. The plots shown are for N = 25 (top left), N = 75 (top right) and N = 150
(bottom).

that needed to perform well in the Equivariance test - this demonstrates the importance
of good performance in both tests in order to assess whether or not the algorithms are
performing well.

5.3 Case Study 3: Time-dependent fluid flow in a cylinder; a

transfer operator description

An important emerging application for Oseledets subspaces is the detection of strange
eigenmodes, persistent patterns, and coherent sets for aperiodic time-dependent fluid
flows. In the periodic setting strange eigenmodes have been found as eigenfunctions of
a Perron-Frobenius operator via classical Floquet theory; [25, 21, 26]. However, in the
aperiodic time-dependent setting, Floquet theory cannot be applied. An extension to
aperiodically driven flows was derived in [15], based on the new multiplicative ergodic
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theory of [14]. Discrete approximations of a Perron-Frobenius cocycle representing the
aperiodic flow are constructed and in this aperiodic setting the leading sub-dominant Os-
eledets subspaces play the role of the leading sub-dominant eigenfunctions in the periodic
forcing case.

We review the four methods of approximating Oseledets subspaces with the aperiod-
ically driven cylinder flow from [15]. The flow domain is Y = [0, 2π]× [0, π], t ∈ R+ and
the flow is defined by the following forced ODE:

ẋ = c− Ã(z̃(t)) sin(x− νz̃(t)) cos(y) + εG(g(x, y, z̃(t))) sin(z̃(t)/2) mod 2π

ẏ = Ã(z̃(t)) cos(x− νz̃(t)) sin(y).
(26)

Here, z̃(t) = 6.6685z1(t), where z1(t) is generated by the standard Lorenz flow,
Ã(z̃(t)) = 1 + 0.125 sin(

√
5z̃(t)), G(ψ) := 1/(ψ2 + 1)

2
and the parameter function

ψ = g(x, y, z̃(t)) := sin(x−νz̃(t)) sin(y)+y/2−π/4 vanishes at the level set of the stream-
function of the unperturbed (ε = 0) flow at instantaneous time t = 0, i.e., s(x, y, 0) = π/4,
which divides the phase space in half.
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Figure 9: The second Oseledets subspace as determined by (a) Algorithm 2.2, (b) Algo-
rithm 3.1, (c) Algorithm 3.2, (d) Algorithm 4.3 and (e) Algorithm 4.6.

We set ε = 1 as this value is sufficiently large to ensure no KAM tori remain in the
jet regime, but sufficiently small to maintain islands originating from the nested periodic
orbits around the elliptic points of the unperturbed system.
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We construct the discretised Perron-Frobenius matrices P
(τ)
x (t) =: A(x) as described

in Section 3 of [15], and briefly recapped in Example 1.2, using a uniform grid of 120×60
boxes, τ = 8 and −32 ≤ t ≤ 32. In total, we generate 8 such matrices of dimension
7200 × 7200. Thus, in this case study we have a limited amount of data, no symmetry,
high dimension, and the matrices are non-invertible and sparse.

In order to obtain reasonable results we executed Algorithms 2.2, 3.1, 3.2, 4.3 and 4.6
with the following parameters:

• Algorithm 2.2: M = N = 4 and {Nk} = {2, 4}.

• Algorithm 3.1: We estimate the three largest Lyapunov exponents λ1 > λ2 > λ3
and set Λright = λ2 + 0.1(λ1 − λ2) and Λleft = λ2 − 0.1(λ2 − λ3).

• Algorithm 3.2: As for Algorithm 3.1.

• Algorithm 4.5: M ′ =M = 4 (so that only an SVD is used, and no push-forward
step), N = 4 and c′ = (0, 1).

• Algorithm 4.6: M1 =M ′
1 = 4 and M2 = 4.

The results of these numerical experiments are shown in Figures 9 and 10. Recall that
in this setting, the cocycle A(x, n) is a cocycle of discretised Perron-Frobenius operators
acting on piecewise constant functions defined on Y ; we identify these piecewise constant
functions (with 7200 pieces) with vectors in R7200. Figure 9 first shows the approximations
of the second Oseledets vector w2(x) at time t = 0. In this setting the Oseledets vectors
locate coherent structures : Figure 10 compares the push-forward of the approximations in
Figure 9 with independently computed approximations of w2(Tx) - the second Oseledets
vector at time t = 8.

In this study the data sample is insufficiently long for Algorithm 3.2 to work effectively,
but the other algorithms produce similar results. A visual inspection of Figure 10 shows
that the highlighted structures are approximately equivariant/coherent.

6 Conclusion

We introduced two new methods for computing Oseledets subspaces: one based on singu-
lar value decompositions and the other based on dichotomy projectors. We also reviewed
recent methods by Ginelli et al. [17] and Wolfe and Samelson [34], and presented an im-
provement to both of these approaches that intelligently selected initial bases when only
short time series were available to compute with. Finally, we carried out a comparative
numerical investigation involving all four methods.

Generally speaking, we found that Algorithms 2.2, 4.5, and 4.6 outperformed the
dichotomy projector methods (Algorithms 3.1 and 3.2) when limited to moderate amounts
of data were available, however, the dichotomy projector methods performed very well
when long time series of matrices were available. The Ginelli approach (in particular the
improved Algorithm 4.5) also worked very well with long time series.

The improvements made to Algorithm 2.1 in Section 2.1 (namely the orthogonalisation
step in Algorithm 2.2) produced an algorithm that could take advantage of longer matrix
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Figure 10: Comparing the approximations of the second Oseledets vector w2(Tx) at time
t = 8 with the push-forward of the approximations at time t = 0. Those labelled (a) are

the push-forwards A(x, 1)w
(4)
2 (x) whilst those labelled (b) are independently computed

approximations w
(4)
2 (Tx) of w2(Tx). The algorithms used are as follows: (1) Algorithm

2.2, (2) Algorithm 3.1, (3) Algorithm 3.2, (4) Algorithm 4.3 and (5) Algorithm 4.6.



sequences and return very accurate results. Of course, for each Algorithm one must
choose the associated parameters sensibly to ensure good results.

When only a short to moderate time series was available, we found mixed results in
terms of the best algorithm. The improved SVD approach (Algorithm 2.2) was best for
low to moderate length time series in the exact Toy model, while the improved Ginelli
(Algorithm 4.5) and improved Wolfe (Algorithm 4.6) were marginally best in terms of
equivariance and expansion rate, respectively for the 2-disk model. Each of these three
algorithms produced similar results in the fluid-flow system.

Choosing appropriate parameters for a particular application can be difficult. In the
present review, good values were chosen by educated experimentation. On the other
hand, the dichotomy projector methods, Algorithms 3.1 and 3.2, use parameters (Λright

and Λleft) which can be chosen in a deterministic manner - by estimating Lyapunov
exponents, which is a reasonably robust numerical procedure. Furthermore, a rigorous
error approximation exists for Algorithm 3.2, a feature currently lacking for Algorithms
2.2, 4.5 and 4.6.

The memory footprint of each approach scales quite differently with dimension. In
Section 5.3, Algorithms 2.2 and 4.6 could take advantage of the sparseness of the d ×
d generating matrices of the cocycle. However, since A(x, n) is formed by matrix
multiplication, for large n the matrix A(x, n) becomes dense and may require memory
of the order of d2 floating point numbers. The dichotomy projector Algorithms 3.1 and
3.2, need to form an Nd × (N + 1)d matrix, but with sparse generating matrices, this
requires memory much less than of the order of d2 floating point numbers. Algorithm 4.5
has the most conservative memory footprint, but depends on its initialisation parameter
M ′ and the Oselelets subspace number j. If M ′ is large, then A(T−Mx,M ′) in Step 1
can become dense and require O(d2) floating point numbers. On the other hand, the
stationary Lyapunov basis requires jd floating point numbers to be stored, so if j ≈ d
this can becomes comparable to d2.

Section 5.3 involves non-invertible generating matrices and apart from Algorithm 3.2,
each approach succeeded in producing a reasonable solution, showing that the Algorithms
can perform well in the non-invertible setting. Continuing with the non-invertible situa-
tion, if one wishes to approximate Oseledets subspaces corresponding to negative numbers
with very large magnitudes (λj ≈ −∞), then Algorithms 2.2 and 4.6 may struggle as
rapidly contracting directions (relative to the dominant direction corresponding to λ1) are
quickly squashed during the matrix multiplication used to approximate A(x, n) leading
to inaccurate numerical representation of A(x, n).

The dichotomy projector approaches of Algorithms 3.1 and 3.2 are able to compute Os-
eledets subspaces corresponding to smaller, sub-dominant Lyapunov exponents λ3, λ4, . . .
provided larger amounts of cocycle data is available. However, if λj ≈ −∞, we are forced
to choose Λright or Λleft ≈ −∞ which means either problem (8) or (9) (in Algorithm 3.1
which also feature in Algorithm 3.2) are ill-conditioned and fail.

The same problem manifests itself in Algorithm 4.5, even though it is able to compute
Oseledets subspaces corresponding to smaller, sub-dominant Lyapunov exponents. The
sum of the logarithm of the diagonal entries of the j×j generating matrices of the cocycle
R(x, n) average to the logarithmic expansion rate of the j-parallelepiped formed at x by

the stationary Lyapunov vectors s
(∞)
1 (x), . . . , s

(∞)
j (x) as it is pushed-forward. Thus, the

logarithm of the ith diagonal entry of the generating matrices of R(x, n) has a time

33



average of λi [4] and if λj ≈ −∞, R(x, n) will feature diagonal entries close to, or equal
to zero and R(x, n)−1 won’t exist.

In summary, Algorithms 2.2 and 4.6 are best suited to situations with limited cocycle
data when one of the most dominant Oseledets subspaces is desired. Algorithm 4.5
can be applied to both limited and high data situations by choosing M ′ appropriately,
and can compute most Oseledets subspaces provided their Lyapunov exponents are well-
conditioned. If ample data is available and information regarding the system is lacking
(making the choice of parameters for the other approaches difficult), the approaches of
Algorithms 3.1 and 3.2 may be preferred for their relatively deterministic parameter
selection.
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tions & Applications. Birkhäuser Boston Inc., Boston, MA, 2000. With an appendix
by Lars Grüne.
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[18] T. Hüls. Numerical computation of dichotomy rates and projectors in discrete time.
Discrete Contin. Dyn. Syst. Ser. B, 12(1):109–131, 2009.
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