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Abstract

LetK be a field and φ, f = (f1, . . . , fs) inK[x1, . . . , xn] be multivariate polynomials
(with s < n) invariant under the action of Sn, the group of permutations of {1, . . . , n}.
We consider the problem of computing the points at which f vanish and the Jacobian
matrix associated to f , φ is rank deficient provided that this set is finite.

We exploit the invariance properties of the input to split the solution space accord-
ing to the orbits of Sn. This allows us to design an algorithm which gives a triangular
description of the solution space and which runs in time polynomial in ds,

(
n+d
d

)
and

(
n

s+1

)
where d is the maximum degree of the input polynomials. When d, s are fixed,

this is polynomial in n while when s is fixed and d ≃ n this yields an exponential
speed-up with respect to the usual polynomial system solving algorithms.

1 Introduction

Our main motivation in this paper is the problem of finding the critical points of a polynomial
map φ restricted to an algebraic set V (f ), where f = (f1, . . . , fs) and φ come from the
multivariate polynomial ringK[x1, . . . , xn], withK a field of characteristic zero. The problem
of computing such points appears in many application areas including for example polynomial
optimization and real algebraic geometry.

In our case we consider the closely related problem of computing a description of the set
W (φ, f ) defined by the following equations:

〈f1, . . . , fs〉+ 〈Ms+1(Jac(f , φ))〉 (1)

where, Jac(f , φ) is the Jacobian matrix of (f1, . . . , fs, φ) with respect to (x1, . . . , xn), and
Mr(G) denotes the set of all r-minors of a matrix G. If we assume that the Jacobian matrix
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Jac(f ) has full rank s at any point of V (f ), then, the Jacobian criterion [11, Theorem 16.19]
implies that the algebraic set V (f ) is smooth and (n−s)-equidimensional, and that W (φ, f )
is indeed the set of critical points of φ on V (f ).

When φ is linear, there exist algorithms for determining critical points using dO(n) oper-
ations in K [2, Section 14.2]. More precisely, using Gröbner basis techniques, the paper [16,
Corollary 3] establishs that, if the polynomials f1, . . . , fs are generic enough of degree d, then
this computation can be done using

O
((n +Dreg

n

)ω

+ n

(

ds (d− 1)n−s

(
n− 1

s− 1

))3 )

operations in K. Here Dreg = d(s− 1) + (d− 2)n+ 2, and ω is the exponent of multiplying
two (n × n)-matrices with coefficients in K (see [40] for a generalization to systems with
mixed degrees).

In this paper, we consider the important case where the polynomials f1, . . . , fs and φ are
all invariant under the action of the symmetric group Sn. As we will show later, the set
W (φ, f ) is then also invariant under Sn.

There has been considerable work on solving symmetric algebraic systems. Indeed, while
it is always possible to compute the Gröbner basis of a set of symmetric polynomials, symme-
tries of the initial system are lost during the computation. In [7], for a finite symmetry group,
Colin proposed to use primary and secondary invariants [41] to reformulate the problem. For
the particular case of Sn-invariant equations, in [15], the authors compute a SAGBI-Gröbner
basis in the ring K[e1, . . . , en], where ei is a variable corresponding to i-th elementary sym-
metric polynomial ηi in (x1, . . . , xn). However, even if f1, . . . , fs and φ are Sn-invariant, the
equations in (1) are usually not invariant, so these technique cannot be directly applied to
our problem.

It is possible to prove that the system of equations in (1) is globally invariant: for all
σ ∈ Sn, and any g among either f1, . . . , fs or the (s+ 1)-minors of Jac(f , φ), either σ(g) or
−σ(g) belongs again to the same set of equations. This implies that W (φ, f ) is Sn-invariant,
as we claimed above. As an example, with n = 3 and s = 1, in order to determine the critical
points of φ = x1x2x3 − 3x1 − 3x2− 3x3 over the sphere defined by f = x2

1 + x2
2 + x2

3 − 6, one
has to solve the globally invariant set of equations defined by

{f = 0 , x2
1x3−x2

2x3−3x1+3x2 = 0, x2
1x2−x2x

2
3−3x1+3x3 = 0, x1x

2
2−x1x

2
3−3x2+3x3 = 0}.

For such systems, following [14], the authors in [17] used divided differences to construct a
new system which is Sn-invariant. Our work is inspired by this reference, but the specific
type of the equations that we solve, involving minors of a Jacobian matrix, requires us to
extend the work from [17] (in addition, no complexity analysis is given in that reference).

The global invariance property allows us to split the set W = W (φ, f ) into orbits under
the action of the symmetric group. The size of the orbit of a point in W will depend on the
number of pairwise distinct coordinates of that point. For example, for f and φ as above, the
points (2, 1, 1), (0,

√
3,
√
3), (−2,−1,−1) are solutions with three elements in their respective

S3-orbits, while the point (
√
2,
√
2,
√
2) is also a solution, with only one point in its orbit
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(this is the whole decomposition of W into orbits). To devise a fast algorithm, the different
sizes of orbits needs to be taken into consideration. This phenomenon is to be expected for
systems such as (1), but is not discussed for the particular family of equations in [17] (on
the other hand, that reference takes into consideration further properties of the family of
equations considered therein).

The structure of these orbits is determined by the number of pairwise distinct coordinates
of the points they contain. To study them, we make use of partitions of n. A sequence
λ = (nℓ1

1 nℓ2
2 . . . nℓr

r ), with the ℓi and ni positive integers and n1 < · · · < nr, is called a
partition of n if n1ℓ1 + n2ℓ2 + · · · + nrℓr = n. Partitions of n will be used to parameterize
orbits, with λ as above parameterizing those points in W having ℓ1 distinct sets of n1 equal
coordinates, ℓ2 distinct sets of n2 equal coordinates and so on. We will write Wλ for the set
of such orbits contained in W , so that W is the disjoint union of all Wλ, for all partitions λ
of n.

For instance, for the φ and f mentioned previously, our algorithm will determine that
the set W(13) of orbits parameterized by λ = (13), which corresponds to the orbits with all
distinct coordinates (ξ1, ξ2, ξ3), is equal to the zero set of

(f, −4, −2(x1 + x2 + x3), 2(x2
1 + x2

2 + x2
3) + 8(x1x2 + x2x3 + x1x3)− 36)

(and so W(13) is empty, as we saw above). The set W(11 21) of orbits parameterized by
λ = (11 21), that is, orbits of points of the form (ξ1, ξ2, ξ2), with ξ1 6= ξ2, is the orbit of the
zero set of

(x2
1 + 2x2

2 − 6, x2
2 + x1x2 − 3, x2 − x3),

where the first component is f restricted to the hyperplane x2 = x3. In particular, W(11 21)

is the union of the orbits of the points (2, 1, 1), (0,
√
3,
√
3), (−2,−1,−1) seen above.

In this paper we provide a procedure to determine invariant polynomials that describe
these Sn-orbits. For an orbit parameterized by the partition λ = (nℓ1

1 nℓ2
2 . . . nℓr

r ), we work
with points which have distinct coordinates (ξ1,1, . . . , ξ1,ℓ1, ξ2,1, . . . , ξ2,ℓ2, . . . , ξr,1, . . . , ξr,ℓr), so
that instead of n coordinates, there are only ℓ = ℓ1 + · · · + ℓr distinct coordinates for
points in this orbit. Then, invariance under of W permutations implies that single distinct
points are permuted, groups of two points are permuted, etc. This will allow us to work
with polynomials in K[e1, . . . , er] = K[e1,1, . . . , e1,ℓ1, e2,1, . . . , e2,ℓ2 , . . . , er,1, . . . , er,ℓr ], in order
to represent a certain “compressed” image W ′

λ ⊂ Kℓ of Wλ; here, ei,1, . . . , ei,ℓi are variables
standing for the elementary symmetric polynomial in ℓi indeterminates and K is an algebraic
closure of K. In our running example, for λ = (11 21), we have ℓ = 2 and W ′

(11 21) is the set

{(2, 1), (0,
√
3), (−2,−1)}.

Throughout the paper, we will assume that W , and thus all Wλ and W ′
λ, are finite. Then,

for λ as above, the cardinality of W ′
λ is smaller than that of Wλ by a factor

γλ =

(
n

n1, . . . , n1, . . . , nr, . . . , nr

)

,

where each ni is repeated ℓi times. Altogether, if d is the maximum of the degrees of the
input of polynomials, then we will prove some bounds, which will be denoted by cλ, on the
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cardinality of the finite set W ′
λ; we will see that, in practice, each of the cλ provides an

accurate bound on the cardinality of W ′
λ. The sum of the cλ’s then gives us an upper bound

on the size of the output of our main algorithm. We did not find a closed formula for this
sum, but we can prove that it is bounded above by

c = ds
(
n+ d− 1

n

)

. (2)

We will see that, in practice, this is a rather rough upper bound but in several cases, it
compares well to the upper bound

c̃ = ds (d− 1)n−s

(
n

s

)

(3)

from Nie and Ranestad [34, Theorem 2.2] on the size of W . For example, when d = 2, we
have c = 2s(n + 1) while c̃ = 2s

(
n

s

)
. More generally, when d and s are fixed, c is polynomial

in n (since it is bounded above by ds(n + d − 1)d) while c̃ is exponential in n (since it is
greater than (d− 1)n). When s is fixed and d = n, c is nO(1)2n, whereas c̃ is nO(1)(n− 1)n−s.

In view of this discussion, our algorithm will naturally compute descriptions of the sets
W ′

λ rather than Wλ (we will also explain how one would recover the later knowing the
former). There are a number of ways to represent algebraic sets; in our case we make
use of a representation based on univariate polynomials. In particular, if Y ⊂ Km is a
zero-dimensional variety defined by polynomials in K[z1, . . . , zm], then a zero-dimensional
parametrization R = ((q, v1, . . . , vm), µ) of Y consists of

(i) a squarefree polynomial q in K[y], with y a new indeterminate and deg(q) = |Y |,

(ii) polynomials (v1, . . . , vm) in K[y] with deg(vi) < deg(q) for all i, and satisfying Y =
{(v1(τ), . . . , vm(τ)) ∈ Km | q(τ) = 0},

(iii) a vector µ = (µ1, . . . , µm) in Km such that µ1v1 + · · ·+ µmvm = y.

When these conditions hold, we write Y = Z(R).
The last condition says that the roots of q are the values taken by the linear form

µ1z1 + · · · + µmzm on Y . In particular, this linear form takes pairwise distinct values on
the points of Y . This representation was first introduced in the works of Kronecker and
König [30] and has been widely used in computer algebra [1, 19, 20, 21, 22, 38]. The output
of our algorithm will thus be a collection of zero-dimensional parameterizations, one for each
of the sets W ′

λ; we will call such a data structure a symmetric representation of W (precise
definitions are in Section 2).

However, rather than using Gröbner bases to compute such descriptions, we will use a
symbolic homotopy continuation, so as to control precisely the cost of the algorithm. Homo-
topy continuation has become a foundational tool for numerical algorithms while the use of
symbolic homotopy continuation algorithms is more recent. Such algorithms first appeared
in [5, 25], for general inputs, and later for sparse [29, 26, 27, 28] and multi-homogeneous
systems [39, 24, 23].
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In our case we can make use of a recent sparse symbolic homotopy method given in [31]
specifically designed to handle determinantal systems over weighted polynomial rings, that
is, multivariate polynomial rings where each variable has a weighted degree, which is a
positive integer. These domains arise naturally for our orbits: the domain arising from an
orbit parameter λ has variables ei,k which are defined corresponding to elementary symmetric
polynomials ηi,k; since ηi,k has degree k, the variable ei,k will naturally be assigned weight k.

Theorem 1.1. Suppose f = (f1, . . . , fs) and φ are Sn-invariant polynomials in K[x1, . . . , xn],
with degree at most d ≥ 2, and suppose that W = W (φ, f ) is finite. There exists a random-
ized algorithm that takes f , φ as input and outputs a symmetric representation for the set W ,
and whose runtime is polynomial in ds,

(
n+d

d

)
,
(

n

s+1

)
. The total number of points described

by the output is at most ds
(
n+d−1

n

)
.

Note that the runtime is polynomial in the bound we give on the output size, as well as the
number

(
n

s+1

)
of maximal minors in the matrix Jac(f , φ). Section 4 gives a more precise

estimate on the runtime of the algorithm.
We use standard notions and notations of commutative algebra and algebraic geometry

which can be found for example in [8, 11]. We will assume that the reader is familiar with
concepts such as dimension, Zariski topology, equidimensional algebraic set and the degree of
an algebraic set, with definitions found in [8, 11].

The remainder of the paper is organized as follows. In the next section, we provide several
properties of invariant polynomials and discuss in detail the sets Wλ and W ′

λ mentioned
above. Section 3 contains our main algorithm, called Critical Points Per Orbit and includes
a proof of correctness. The runtime of this algorithm is analysed in Section 4, finishing
the proof of Theorem 1.1. Experiments to validate our new algorithm is given in Section 5
followed by a section which gives topics for future research. The latter section also includes
a discussion on how our results can decide emptiness of Sn-invariant algebraic sets over a
real field. The appendices include a proof of two technical propositions.

2 Partitions and distinct coordinates of Sn-invariants
One of our key observations, formalized in the next section, is that the special nature of our
set of critical points allows us to split W (φ, f ) into subsystems defined by the orbits of the
symmetric group Sn.

More precisely, in this paper an orbit is a set of the form Sn(ξ), for some point ξ in Kn,
that is, it is the set of all Sn-conjugates of ξ. As mentioned in the introduction, the size of
an orbit Sn(ξ) will depend on the number of pairwise distinct coordinates of ξ. For example,
with n = 3, a point of the form (ξ1, ξ2, ξ2) will have an orbit of size 3, unless we have ξ1 = ξ2
(in which case the orbit has size 1).

As a result, we need to consider the separation of distinct coordinates in an orbit, which
is what we do in this section. We do this through a discussion of the geometry of (finite)
Sn-invariant subsets of Kn and the data structures we can use to represent them. Much of
what follows is preliminary for our description of orbits presented in the next section.
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2.1 Partitions

Partitions play a major role in describing our orbits. In this subsection, we gather the basic
definitions of partitions and of a few notions attached to them, which will be used throughout
this section.

A sequence λ = (nℓ1
1 nℓ2

2 . . . nℓr
r ), with ℓi’s and ni’s positive integers and n1 < · · · < nr,

is called a partition of n, sometimes denoted by λ ⊢ n, if n1ℓ1 + n2ℓ2 + · · ·+ nrℓr = n. The
number ℓ =

∑r

i=1 ℓi is called the length of the partition λ. We remark that to a partition
such as λ = (nℓ1

1 nℓ2
2 . . . nℓr

r ) we can associate (in a one-to-one manner) the ordered list
(n1, . . . , n1, . . . , nr, . . . , nr), with each ni repeated ℓi times.

We will make use of the refinement order on partitions. To describe this we first need to
define the union of partitions: if λ and λ′ are partitions of a and a′, respectively, then λ∪ λ′

is the partition of a+ a′ whose ordered list is obtained by merging those of λ and λ′. Then,
consider two partitions λ = (nℓ1

1 nℓ2
2 . . . nℓr

r ) and λ′ = (mk1
1 mk2

2 . . . mks
s ) of the same integer

n. As in [33, p. 103] (or e.g. [3, p. 16]), we write λ ≤ λ′, and we say that λ refines λ′, if λ is
the union of some partitions (λi,j)1≤i≤s,1≤j≤ki, where λi,j is a partition of mi for all i, j.

Example 2.1. For the partitions of n = 3, we have (13) ≤ (1121) ≤ (31).

Let λ = (nℓ1
1 nℓ2

2 . . . nℓr
r ) be a partition of n having length ℓ. For k = 1, . . . , r, we

will denote by Zk = (zk,1, . . . , zk,ℓk) a sequence of ℓk indeterminates. When convenient,
we will also index the entire sequence of indeterminates (Z1, . . . ,Zr) = (z1,1, . . . , zr,ℓr) as
(z1, . . . , zℓ), so that z1 = z1,1, . . . , zℓ = zr,ℓr . From this point of view, introducing τ0 = 0 and

τk =
∑k

i=1 ℓi, for k = 1, . . . , r, any index i in 1, . . . , ℓ can be written uniquely as i = τk−1+u,
for some k in 1, . . . , r and u in 1, . . . , ℓk. Thus, the indeterminates zk,1, . . . , zk,ℓk are numbered
zτk−1+1, . . . , zτk , with τr = ℓ.

We will let Sλ be the group

Sλ = Sℓ1 × · · · × Sℓr .
Sλ acts naturally on K[Z1, . . . ,Zr], and we will denote by K[Z1, . . . ,Zr]

Sλ the K-algebra of
Sλ-invariant polynomials. Note that Sλ can be seen as a subgroup of the permutation group
Sℓ of {1, . . . , ℓ}, where Sℓ1 acts on the first ℓ1 indices, Sℓ2 acts on the next ℓ2 ones, etc.

Finally, for i = 1, . . . , r, we will let ηi = (ηi,1, . . . , ηi,ℓi) denote the vector of elementary
symmetric polynomials in variables Zi, where ηi,j has degree j for all i, j.

2.2 Sλ-invariant polynomials: the Symmetric Coordinates algorithm

Let λ = (nℓ1
1 nℓ2

2 . . . nℓr
r ) be a partition of n having length ℓ, and, for i = 1, . . . , r, let

ei = (ei,1, . . . , ei,ℓi) be a set of ℓi new variables. Then, by the fundamental theorem of
symmetric polynomials [9, Theorem 3.10.1], for any f in K[Z1, . . . ,Zr]

Sλ , there exists a
unique f̄ in K[e1, . . . , er] with

f(Z1, . . . ,Zr) = f̄(η1, . . . ,ηr), (4)

for η1, . . . ,ηr as defined in the previous subsection. We will need a quantitative version of
this existence result, which gives an estimate on the cost of computing f̄ from f .
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Lemma 2.2. There exists an algorithm Symmetric Coordinates(λ, f) which, given a partition
λ of n and f of degree at most d in K[Z1, . . . ,Zr]

Sλ, returns f̄ such that f = f̄(η1, . . . ,ηr),
using O (̃

(
ℓ+d

d

)
2) operations in K.1

Proof. Algorithm Symmetric Coordinates is a slight generalization of the procedure described
in the proof of Bläser and Jindal’s algorithm [4, Theorem 4], which was written only for the
case of r = 1, and for polynomials represented as straight-line programs.

The key to the algorithm is the following. Assume we know an integral domain L

containing K[e1, . . . , er], and vectors ζ1, . . . , ζr of elements in L, where for each i, ζi =
(ζi,1, . . . , ζi,ℓi) ∈ Lℓi are the ℓi pairwise distinct roots of

Pi(T ) = T ℓi − (ei,1 + ρi,1)T
ℓi−1 + · · ·+ (−1)ℓi (ei,ℓi + ρi,ℓi),

and where ρi,1, . . . , ρi,ℓi are the elementary symmetric polynomials evaluated at 1, . . . , ℓi.
Then, f̄ satisfies f̄(e1,1 + ρ1,1, . . . , er,ℓr + ρr,ℓr) = f(ζ1, . . . , ζr).

As in Bläser and Jindal’s algorithm, we take for L a ring of multivariate power series,
namely L = K[[e1, . . . , er]]. Our construction, involving the shifts by (ρ1,1, . . . , ρr,ℓr) shows
that at e1 = · · · = er = 0, Pi(T ) factors as (T − 1) · · · (T − ℓi).

Applying Newton’s iteration, we deduce the existence of the requested power series roots
ζi = (ζi,1, . . . , ζi,ℓi). In order to obtain the polynomial f̄ , we only need truncations of these
roots at precision d. For i = 1, . . . , r, we can obtain the truncation of ζi using O (̃ℓi

(
ℓi+d

d

)
)

operations in K, where the factor
(
ℓi+d

d

)
accounts for the cost of multivariate power series

arithmetic [32]. Taking all i’s into account, this adds up to O (̃ℓ
(
ℓ+d

d

)
) arithmetic operations.

We then evaluate f at these truncated power series. Since f has degree at most d, this
can be done using O(

(
ℓ+d

d

)
) (+,×) operations on ℓ-variate power series truncated in degree

d, for a total of O (̃
(
ℓ+d

d

)
2) operations in K. This gives us f̄(e1,1 + ρ1,1, . . . , er,ℓr + ρr,ℓr). We

then apply the translation (ei,j)i,j ← (ei,j − ρi,j)i,j in order to obtain the polynomial f̄ , also
at a cost of O (̃

(
ℓ+d

d

)
2) operations in K: through successive multiplications, we incrementally

compute the translates of all monomials of degree up to d and then, before combining, using
the coefficients of f̄(e1,1 + ρ1,1, . . . , er,ℓr + ρr,ℓr).

2.3 Sλ-equivariant polynomials: the Symmetrize algorithm

As before we let λ = (nℓ1
1 nℓ2

2 . . . nℓr
r ) denote a partition of n of length ℓ =

∑r

i=1 ℓi. The
aim of this subsection is to define Sλ-equivariant systems of polynomials and give a detailed
description of an algorithm, called Symmetrize, that turns an Sλ-equivariant system into one
which is Sλ-invariant.

Consider a sequence of polynomials q = (q1, . . . , qℓ) in K[Z1, . . . ,Zr]. We say that q is
Sλ-equivariant if for any σ in Sλ and i in 1, . . . , ℓ, we have σ(qi) = qσ(i), or equivalently

q(zσ(1), . . . , zσ(ℓ)) = qσ(i)(z1, . . . , zℓ);

1 Throughout this paper we use O (̃·) to indicate that polylogarithmic factors are omitted, that is, f is
O (̃g) if there exists a constant k such that f is O(g logk(g)).
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here, we are implicitly seeing the elements of Sλ as permutations of {1, . . . , ℓ}, as explained
in Section 2.1.

In geometric terms, the zero-set V (q) ⊂ Kℓ of such a system is Sλ-invariant, even though
the equations themselves may not be invariant. In what follows, we describe how to derive
equations p = (p1, . . . , pℓ) that generate the same ideal as q (in a suitable localization of
K[Z1, . . . ,Zr]) and are actually Sλ-invariant. We will need an assumption, discussed below,
that zi − zj divides qi − qj for all pairwise distinct indices i, j.

Example 2.3. Let n = 3 and λ = (12 21) so r = 2, ℓ1 = 2, ℓ2 = 1 and ℓ = 3; we have
Sλ = S2 × S1. We take q = (q1, q2, q3), where

q1 = z2z
2
3(z1 + z2 + 2z3) + z1z2z

2
3 ,

q2 = z1z
2
3(z1 + z2 + 2z3) + z1z2z

2
3 ,

q3 = z1z2z3(z1 + z2 + 2z3) + z1z2z
2
3 .

These polynomials satisfy both the equivariance property and the divisibility property. Our
procedure will produce the following polynomials:

p1 = (z1 + z2 + 2z3)z3,

p2 = (z1 + z2 + 2z3)z2z3 + (z1 + z2 + 2z3)z1z3,

p3 = z1z2z3(z1 + z2 + 2z3) + z1z2z
2
3 .

The polynomials (p1, p2, p3) are symmetric in (z1, z2) and (z3), that is, are S2×S1-invariant.
They generate the same ideal as (q1, q2, q3) in the localization K[z1, z2, z3](z1−z2)(z1−z3)(z2−z3).

In order to construct a set of invariant generators we make use of divided differences of
q = (q1, . . . , qℓ). These are defined as q{i} = qi for i in {1, . . . , ℓ}, and for each set of k
distinct integers I := {i1, . . . , ik} ⊂ {1, . . . , ℓ}, with k ≥ 2,

qI =
q{i1,...,ir−1,ir+1,...,ik} − q{i1,...,iq−1,iq+1,...,ik}

zir − ziq
, (5)

for any choice of ir, iq in I, with ir 6= iq. Indeed, it is known (see e.g. [17, Theorem 1]) that
this defines qI unambiguously (independently of the choice of ir, iq). Another useful property
of divided differences is the following:

(i) if zi−zj divides qi−qj for all 1 ≤ i < j ≤ ℓ, then qI is a polynomial for all I ⊂ {1, . . . , ℓ}.

The following proposition then gives our construction of the polynomials p. In what follows,
for i ≥ 0, ηi(y1, . . . , ys) denotes the degree i elementary symmetric function in variables
y1, . . . , ys.

Proposition 2.4. Suppose the sequence q = (q1, . . . , qℓ) in K[Z1, . . . ,Zr]
ℓ is Sλ-equivariant

and satisfies zi − zj divides qi − qj for 1 ≤ i < j ≤ ℓ. For 0 ≤ k ≤ r − 1 and 1 ≤ j < ℓk+1,
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define

pτk+1
=

τk+1∑

i=τk+1

q{i,τk+1+1,...,τr},

pτk+j =

j
∑

s=1

ηj−s(zτk+s+2, . . . , zτk+1
)
(

τk+s∑

i=τk+1

q{i,τk+s+1,...,τr}

)
.

Then the sequence

p =
(
p1, . . . , pτ1 , pτ1+1, . . . , pτ2 , . . . , pτr−1+1, . . . , pτr

)

is in K[Z1, . . . ,Zr]
Sλ. If all qi’s have degree at most d, then deg(pi) ≤ d − ℓ + i holds for

i = 1, . . . , ℓ. In particular, if ℓ ≥ d+ 2, then pi = 0 for all i = 1, . . . , ℓ− d− 1.

The degree bound comes by inspection. We defer the rest of the proof (which follows by
induction) to Appendix A.

We can also show that q can be written as a linear combination of p, that is, we can find
an ℓ× ℓ matrix polynomial U such that pU = q. The construction of U proceeds as follows.
Let M be the block-diagonal matrix with blocks M1, . . . ,Mr given by

Mk+1 =













1 η1(zτk+3, . . . , zτk+1
) η2(zτk+3, . . . , zτk+1

) · · · ηℓk+1−2(zτk+3, . . . , zτk+1
) 0

0 1 η1(zτk+4, . . . , zτk+1
) · · · ηℓk+1−3(zτk+4, . . . , zτk+1

) 0
0 0 1 · · · ηℓk+1−4(zτk+5, . . . , zτk+1

) 0
...

...
...

...
...

0 0 0 · · · 1 0

0 0 0 · · · 0 1













,

for all 0 ≤ k ≤ r − 1. Note that det(Mk+1) = 1 for all k, hence det(M) = 1.
For a non-negative integer u, denote by Iu the identity matrix of size u and by 0 a zero

matrix. Then for k = 0, . . . , r − 1 and j = 1, . . . , ℓk+1, we define the following τr × τr
polynomial matrices. Set Bτ0+1 = Iτr , Cτ0+1 = Iτr , Dτ0+j = Iτr , and

Bτk+j =





Iτk 0 0

0 Ek,j 0

0 0 Iτr−τk+1



 , with Ek,j =










Ij−1

zτk+j − zτk+1
...

zτk+j − zτk+j−1

0

0 . . . 0 −1 0

0 0 Iℓk+1−j










, (6)

Cτk+j =





Iτk 0 0

0 Fk,j 0

0 0 Iτr−τk+1



 , with Fk,j =





diag(zτk+j − zτk+t)
j−1
t=1 0 0

−1
j

. . . −1
j

−1
j

0

0 0 Iℓk+1−j



 , (7)
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Dτk+j =





diag(zτk+j − zt)
τk
t=1 0 0

Gk,j Iℓk+1
0

0 0 Iτr−τk+1



 , Gk,j : jth row is (1, . . . , 1), rest zeros.

(8)
Then we have:

Proposition 2.5. Suppose the sequence q = (q1, . . . , qℓ) in K[Z1, . . . ,Zr]
ℓ satisfies the con-

ditions of Proposition 2.4. Let ∆ =
∏

1≤i<j≤ℓ(zi − zj) be the Vandermonde determinant

associated with z1, . . . , zℓ. Then the matrix U in K[Z1, . . . ,Zr]
ℓ×ℓ, defined by

M ·U =

(
r−1∏

k=0

ℓk+1∏

j=1

Bτk+j Cτk+j Dτk+j

)

has determinant a unit in K[Z1, . . . ,Zr, 1/∆] and satisfies pU = q.

The proof of Proposition 2.5 follows by induction and is deferred to Appendix B.

Example 2.6. Consider again the polynomials q = (q1, q2, q3) and p = (p1, p2, p3) of Exam-
ple 2.3. The matrix U which relates p to q is constructed as follows. For k = 0 and j = 1, 2
let

B1 =





1 0 0
0 1 0
0 0 1



 , C1 =





1 0 0
0 1 0
0 0 1



 D1 =





1 0 0
0 1 0
0 0 1



 ,

B2 =





1 z2 − z1 0
0 −1 0
0 0 1



 , C2 =





z2 − z1 0 0
−1

2
−1

2
0

0 0 1



 , D2 =





1 0 0
0 1 0
0 0 1





while for k = 1 and j = 1 we have

B3 =





1 0 0
0 1 0
0 0 −1



 , C3 =





1 0 0
0 1 0
0 0 −1



 , D3 =





z3 − z1 0 0
0 z3 − z2 0
1 1 1



 .

In the case λ = (12 21),

M =





1 0 0
0 1 0
0 0 1





and hence

U = (B1C1D1)(B2C2D2)(B3C3D3) =





1
2
(z3 − z1)(z2 − z1)

−1
2
(z2 − z1)(z3 − z2) 0

1
2
(z3 − z1)

1
2
(z3 − z2) 0

1 1 1



 .

Note that det(U) = 1
2
(z3 − z1)(z3 − z2)(z2 − z1).

10



The formulas defining p are straightforward to implement. The following proposition
describes the resulting algorithm, called Symmetrize, and gives the cost of this procedure.

Proposition 2.7. There exists an algorithm Symmetrize(λ, q) which takes as input q as in
Proposition 2.4 and a partition λ of n, and returns p as defined in that proposition. For q

of degree at most d, the runtime is O (̃ℓ3
(
ℓ+d

d

)
) operations in K.

The proof occupies the rest of this section. Write q = (q1, . . . , qℓ), and recall the expres-
sions defining p = (p1, . . . , pℓ): for k = 0, . . . , r − 1, we have

pτk+ℓk+1
=

τk+1∑

i=τk+1

q{i,τk+1+1,...,τr}

and for j = 1, . . . , ℓk+1 − 1,

pτk+j =

j
∑

s=1

ηj−s(zτk+s+2, . . . , zτk+1
)
(

s∑

i=1

q{τk+i,τk+s+1,...,τr}

)
.

The main issue is to compute the divided differences q{τk+i,τk+s+1,...,τr} appearing in these
expressions, for k = 0, . . . , r − 1 and 1 ≤ i ≤ s ≤ ℓk+1. Once this is done, the combinations
necessary to obtain pτk+j are easily carried out. The main ingredient in the proof is the
following lemma which describes the computation of a single divided difference.

Lemma 2.8. There exists an algorithm Divided Difference(q, I) that takes as input q as in
Proposition 2.7 and a subset I = {i1, . . . , ik} of {1, . . . , ℓ}, and returns qI . For q of degree
at most d, the runtime is O (̃ℓ

(
ℓ+d

d

)
) operations in K.

Proof. For j = 1, . . . , k − 1, we claim that given q{i1,...,ij−1}, we can obtain q{i1,...,ij} using

O (̃
(
ℓ+d

d

)
) operations in K.

To see this note that q{i1,...,ik−1} has degree at most d. In order to compute q{i1,...,ij},

we use evaluation / interpolation. Choosing
(
ℓ+d

d

)
points as prescribed in [6], the algorithm

given there allows us to compute the values of both numerator and denominator in (5) in
O (̃
(
ℓ+d

d

)
) operations, then compute their ratio, and finally interpolate q{i1,...,ij} in the same

asymptotic runtime. The result then follows.

Our Symmetrize algorithm then proceeds as follows. Apply algorithm Divided Difference

from Lemma 2.8 to all [τk + i, τk + s + 1, . . . , τr], for k = 0, . . . , r − 1 and 1 ≤ i ≤ s ≤ ℓk+1.
There are O(ℓ2) such indices, so this step takes O (̃ℓ3

(
ℓ+d

d

)
) operations in K, allowing us to

compute all sums
∑s

i=1 q{τk+i,τk+s+1,...,τr} for the same asymptotic cost.
For k = 0, . . . , r−1, j = 1, . . . , ℓk+1−1 and s = 1, . . . , j, we then compute the elementary

symmetric polynomial ηj−s(zτk+s+2, . . . , zτk+1
), which does not involve any arithmetic opera-

tions. We multiply it by the above sum, with cost O (̃
(
ℓ+d

d

)
), since the polynomials involved

in the product have degree sum at most d and at most ℓ variables. Taking all indices k, j, s
into account, this adds another O (̃ℓ3

(
ℓ+d

d

)
) steps to the total.
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2.4 Symmetric representations

In this subsection we describe the geometry of Sn-orbits in Kn, we define the data structure
we will use to represent Sn-invariant sets, and present some basic algorithms related to it.

The mapping Eλ and its fibers. For a partition λ = (nℓ1
1 nℓ2

2 . . . nℓr
r ) of n, we define the

following two subsets of Kn:

(i) Cλ : the set of all points ξ in Kn that can be written as

ξ =
(
ξ1,1, . . . , ξ1,1
︸ ︷︷ ︸

n1

, . . . , ξ1,ℓ1, . . . , ξ1,ℓ1
︸ ︷︷ ︸

n1

, . . . , ξr,1, . . . , ξr,1
︸ ︷︷ ︸

nr

, . . . , ξr,ℓr , . . . , ξr,ℓr
︸ ︷︷ ︸

nr

)
. (9)

(ii) Cstrictλ : the set of all ξ in Cλ for which the ξi,j’s in (9) are pairwise distinct.

To any point ξ in Kn we can associate its type: this is the unique partition λ of n such
that there exists σ in Sn for which σ(ξ) lies in Cstrictλ . Since all points in an orbit have the
same type, we can then define the type of an orbit as the type of any point in it. Any orbit
of type λ = (nℓ1

1 nℓ2
2 . . . nℓr

r ) has size

γλ =

(
n

n1, . . . , n1, . . . , nr, . . . , nr

)

=
n!

n1!
ℓ1 · · ·nr!

ℓr

since the stabilizer of a point in Cstrictλ is Sℓ1
n1
× · · · × Sℓr

nr
.

Clearly all points in Cstrictλ have type λ, but this is not necessarily true for all points in Cλ.
This can be understood with the help of the refinement order we introduced in Subsection 2.1,
as Cλ contains points of type λ′ for all λ′ ≥ λ. More precisely, Cλ is the disjoint union of all
Cstrictλ for all λ′ ≥ λ.

Example 2.9. For the partitions of n = 3, we have (13) < (1121) < (31). In addition,

(a) C(13) is K3, while Cstrict(13) is the set of all points ξ with pairwise distinct coordinates.

(b) C(1121) is the set of points that can be written ξ = (ξ1,1, ξ2,1, ξ2,1), while Cstrict(1121) is the
subset of it where ξ1,1 6= ξ2,1.

(c) C(31) = Cstrict(31) is the set of points ξ whose coordinates are all equal.

For λ as above, we define a mapping Eλ : Cλ → Kℓ by

Eλ : ξ as in (9) 7→ (ηi(ξi,1, . . . , ξi,ℓi), . . . , ηℓi(ξi,1, . . . , ξi,ℓi))1≤i≤r,

where for i = 1, . . . , r and j = 1, . . . , ℓi, ηj(ξi,1, . . . , ξi,ℓi) is the degree j elementary symmetric
function in ξi,1, . . . , ξi,ℓi. One should see this mapping as a means to compress orbits: through
the application of Eλ, one can represent a whole orbit O of type λ, which has size γλ, by the
single point Eλ(O ∩ Cλ) = Eλ(O ∩ Cstrictλ ).

12



To put this into practice, we need to be able to recover an orbit from its image. Note
that the mapping Eλ is onto: for ε = (ε1,1, . . . , εr,ℓr) in Kℓ, one can find a point ξ in the
preimage E−1

λ (ε) by finding the roots ξi,1, . . . , ξi,ℓi of

Pi(T ) = T ℓi − εi,1T
ℓi−1 + · · ·+ (−1)ℓiεi,ℓi,

for i = 1, . . . , r. Since we will use this idea often, we will write E∗
λ(ε) = Sn(ξ) for the orbit of

any such point ξ in E−1
λ (ε). This is well-defined, as all points in this fiber are Sn-conjugate.

More generally, for a set G in Kℓ, we will write E∗
λ(G) for the union of the orbits E∗

λ(ε), for
ε in G.

The image Eλ(Cstrictλ ) of those points having type λ is an open subset Oλ ( Kℓ, defined
by the conditions that the polynomials Pi above are pairwise coprime and squarefree. For
ε in Kℓ \ Oλ, the orbit E∗

λ(ε) does not have type λ, but rather type λ′, for some partition
λ′ > λ.

Example 2.10. With n = 3 and λ = (1121), we have ℓ = 2 and Eλ maps points of the form
(ξ1,1, ξ2,1, ξ2,1) to (ξ1,1, ξ2,1). The polynomials P1, P2 defined in the previous paragraph are
respectively given by P1(T ) = T − ε1,1 and P2(T ) = T − ε2,1, and Oλ is defined by ε1,1 6= ε2,1.

The point ε = (2, 3) is in Oλ; the orbit E∗
λ(2, 3) is {(2, 3, 3), (3, 2, 3), (3, 3, 2)}. On the

other hand, ε = (1, 1) is not in Oλ; the orbit E∗
λ(1, 1) is the point {(1, 1, 1)}, and it has

type (31) > (1121). Finally, if we define G = {(1, 1), (2, 3)}, then E∗
λ(G) is the set W =

{(1, 1, 1), (2, 3, 3), (3, 2, 3), (3, 3, 2)}.

We will need an algorithm that computes the type λ′ of the orbit E∗
λ(ε), for a given ε

in Kℓ, and also computes the value that the actual compression mapping Eλ′ takes at this
orbit. The algorithm’s specification assumes inputs in K (since our computation model is
a RAM over K) but the procedure makes sense over any field extension of K. We will use
this remark later in the proof of Lemma 2.16.

Lemma 2.11. There exists an algorithm Type Of Fiber(λ, ε) which takes as input a partition
λ of n with length ℓ and a point ε in Kℓ, and returns a partition λ′ of n of length k and a
tuple f in Kk, such that

(i) λ′ is the type of the orbit O := E∗
λ(ε)

(ii) Eλ′(O ∩ Cstrictλ′ ) = {f}.

The algorithm runs in time O (̃n).

Proof. Write ε = (ε1,1, . . . , εr,ℓr). The points in E−1
λ (ε) are obtained as permutations of

ξ =
(
ξ1,1, . . . , ξ1,1
︸ ︷︷ ︸

n1

, . . . , ξ1,ℓ1, . . . , ξ1,ℓ1
︸ ︷︷ ︸

n1

, . . . , ξr,1, . . . , ξr,1
︸ ︷︷ ︸

nr

, . . . , ξr,ℓr , . . . , ξr,ℓr
︸ ︷︷ ︸

nr

)
,

where for i = 1, . . . , r, ξi,1, . . . , ξi,ℓi are the roots of

Pi(T ) = T ℓi − εi,1T
ℓi−1 + · · ·+ (−1)ℓiεi,ℓi = 0.
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Finding the type of such a point ξ amounts to finding the duplicates among the ξi,j’s. Finding
such duplicates can be done by computing the product

P =
(
T ℓ1 − ε1,1T

ℓ1−1 + · · ·+ (−1)ℓ1ε1,ℓ1
)n1 · · ·

(
T ℓr − εr,1T

ℓr−1 + · · ·+ (−1)ℓrεr,ℓr
)nr

and its squarefree factorization P = Qm1

1 · · ·Qms
s , with m1 < · · · < ms and all Qi’s squarefree

and pairwise coprime. If ki = deg(Qi) then ξ has type λ′ = (mk1
1 mk2

2 . . .mks
s ) with λ′ > λ. If

we write
Qi = T ki − fi,1T

ki−1 + · · ·+ (−1)kifi,ki, 1 ≤ i ≤ s,

then our output is (λ′, f ), where f = (f1,1, . . . , fs,ks).
Using subproduct tree techniques [18, Chapter 10] to compute P and fast GCD [18,

Chapter 14], all computations take quasi-linear time O (̃n).

Example 2.12. Let n = 3 and λ = (1121), with Eλ(ξ1,1, ξ2,1, ξ2,1) = (ξ1,1, ξ2,1). We saw that
for ε = (1, 1) in K2, the orbit E∗

λ(1, 1) is {(1, 1, 1)}, which has type λ′ = (31).
Since n1 = 1 and n2 = 2, the above algorithm first expands the product (T −1)(T −1)2 as

T 3−3T 2+3T −1, then computes its squarefree factorization as (T −1)3. From this, we read
off that s = 1, m1 = 3 and k1 = 1, so that λ′ is indeed (31). The output is (λ′, Eλ′(1, 1, 1)),
the latter being equal to (1).

A data structure for Sn-invariant sets. The previous setup allows us to represent
invariant sets in Kn as follows. Let W be a set in Kn, invariant under the action of Sn. For
a partition λ of n with ℓ, we write

Wλ = Sn(W ∩ Cstrictλ ) ⊂ Kn and W ′
λ = Eλ(W ∩ Cstrictλ ) ⊂ Kℓ, (10)

where Sn(W ∩ Cstrictλ ) is the orbit of W ∩ Cstrictλ under Sn, or, equivalently, the set of points
of type λ in W (so this matches the notation used in the introduction).

For two distinct partitions λ, λ′ of n, Wλ and Wλ′ are disjoint, so that any invariant set W
can be written as the disjoint union W = ⊔λ⊢n Wλ. When W is finite, we then can represent
Wλ by describing the image W ′

λ. Indeed, the cardinality of the set W ′
λ is smaller than that

of the orbit Wλ by a factor of γλ, and we can recover Wλ as Wλ = E∗
λ(W

′
λ). Altogether, we

are led to the following definition.

Definition 2.13. Let W be a finite set in Kn, defined over K and Sn-invariant. A symmetric
representation of W is a sequence (λi,Ri)1≤i≤N , where the λi’s are all the partitions of n for
which Wλi

is not empty, and, for each i, Ri is a zero-dimensional parametrization of W ′
λi
.

Example 2.14. Suppose n = 3 and

W = {(1, 1, 1), (2, 3, 3), (3, 2, 3), (3, 3, 2)}.

Then with λ = (1121) we have Wλ = {(2, 3, 3), (3, 2, 3), (3, 3, 2)}, W ′
λ = {(2, 3)} ⊂ K2 and

γλ = 3, while with λ′ = (31), we have Wλ′ = {(1, 1, 1)}, W ′
λ′ = {(1)} ⊂ K1 and γλ′ = 1.

A symmetric representation of W would consist of (λ,Rλ) and (λ′,Rλ′), with Z(Rλ) =
{(2, 3)} and Z(Rλ′) = {(1)}.
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Our main algorithm will have to deal with the following situation. As input, we will be
given a representation of the set G in Kℓ; possibly, some points in G will not be in the open
set Oλ (that is, may correspond to orbits having type λ′, for some λ′ > λ). As usual, the
finite set G will be described by means of a zero-dimensional parametrization. Our goal will
then be to compute a symmetric representation of E∗

λ(G).

Example 2.15. Take n = 3, and again let λ = (1121), with Eλ(ξ1,1, ξ2,1, ξ2,1) = (ξ1,1, ξ2,1).
Assume we are given G = {(1, 1), (2, 3)} ⊂ K2. In this case, E∗

λ(G) is the set W seen in
Examples 2.10 and 2.14, and the output we seek is a distinct coordinates representation of
W , as discussed in Example 2.14.

Lemma 2.16. There exists a randomized algorithm Decompose(λ,R), which takes as input
a partition λ of n with length ℓ and a zero-dimensional parametrization R of a set G ⊂ Kℓ;
it returns a symmetric representation of E∗

λ(G). The expected runtime is O (̃D2n) operations
in K, with D = deg(R) = |G|.

Proof. In the first step, we apply our algorithm Type Of Fiber from Lemma 2.11 where the
input fiber is given not with coefficients in K, but as the points described by R. A general
algorithmic principle, known as dynamic evaluation, allows us to do this as follows. Let
R = ((q, v1, . . . , vℓ), µ), with q and the vi’s in K[y]. We then call Type Of Fiber with input
coordinates (v1, . . . , vℓ), and attempt to run the algorithm over the residue class ring K[y]/q,
as if q were irreducible.

If q is irreducible, K[y]/q is a field, and we encounter no problem. However, in general,
K[y]/q is only a product of fields, so the algorithm may attempt to invert a zero-divisor.
When this occurs, a “splitting” of the computation occurs. This amounts to discovering
a non-trivial factorization of q. A direct solution then consists of running the algorithm
again modulo the two factors that were discovered. Overall, this computes a sequence
(Ri, λi, fi)1≤i≤N , where for i = 1, . . . , N ,

(i) Ri = ((qi, vi,1, . . . , vi,ℓ), µi) is a zero-dimensional parametrization that describes a set
Fi ⊂ F . In addition F is the disjoint union of F1, . . . , FN ;

(ii) λi is a partitition of n, of length ℓi;

(iii) fi is a sequence of ℓi elements with entries in the residue class ring K[y]/qi;

(iv) for any ε in Fi, corresponding to a root τ of qi, Type Of Fiber(λ, ε) = (λi, fi(τ)).

Since Type Of Fiber takes time O (̃n), this process takes time O (̃D2n), with D = deg(R).
The overhead O (̃D2) is the penalty incurred by a straightforward application of dynamic
evaluation techniques.

For i = 1, . . . , N , let Vi = E−1
λ (Fi), so that W = Sn(V ) is the union of the orbits

Wi = Sn(Vi). Then, from (iv) above we see that all points in Wi have type λi and that (Wi)
′
λi

is the set Gi = {fi(τ) | qi(τ) = 0} ⊂ Kℓi. Using the algorithm of [35, Proposition 1], we can
compute a zero-dimensional parametrization Si of Gi in time O (̃D2

i n), with Di = deg(Ri).
The total cost is thus O (̃D2n).
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The λi’s may not be pairwise distinct. Up to changing indices, we may assume that
λ1, . . . , λs are representatives of the pairwise distinct values among them. Then, for i =
1, . . . , s, we compute a zero-dimensional parametrization Ti that describes the union of
those Z(Sj), for j such that λj = λi. Using algorithm [35, Lemma 3], this takes a total of
O (̃D2n) operations in K. Finally, we return (λi,Ti)1≤i≤s.

3 Algorithms for computing critical points

We can now turn to the main question in this article. Let f = (f1, . . . , fs) be polynomials in
K[x1, . . . , xn]

Sn, with s ≤ n, and with V = V (f ) ⊂ Kn denoting the algebraic set defined by
f1 = · · · = fs = 0. Given a polynomial φ in K[x1, . . . , xn]

Sn , we are interested in describing
the algebraic set W = W (φ, f ) defined by the simultaneous vanishing of the polynomials

f1, . . . , fs, Ms+1(Jac(f , φ)) (11)

where Ms+1(Jac(f , φ)) is the set of (s + 1)-minors of the Jacobian matrix Jac(f , φ) ∈
K[x1, . . . , xn]

(s+1)×n. Equivalently, this is the set of all x in V at which Jac(f , φ) has rank
less than s+ 1.

If we assume that Jac(f ) has full rank s at any point of V , then V is smooth of codi-
mension s (or empty) and W is the set of critical points of φ on it. However, most of our
discussion can take place without this assumption. For the sake of simplicity, in any case,
we will still refer to the solutions of (11) as critical points.

3.1 Description of the algebraic set W

Fundamental to our results is the fact that W is invariant under the action of the symmetric
group. This follows from the next lemma, being a direct consequence of the chain rule.

Lemma 3.1. Let g be in K[x1, . . . , xn] and σ in Sn. Then for k in {1, . . . , n}, we have

σ

(
∂g

∂xk

)

=
∂(σ(g))

∂xσ(k)

. (12)

Corollary 3.2. The algebraic set W is Sn-invariant.

Proof. Let ξ be inW and σ be in Sn. We need to show that σ(ξ) is inW , that is, fi(σ(ξ)) = 0
for all i and Jac(f , φ) has rank at most s at σ(ξ).

The first statement is clear, since ξ cancels f and f is Sn-invariant. For the second
claim, since all fi’s and φ are Sn-invariant, Lemma 3.1 implies that the Jacobian matrix
Jac(f , φ) at σ(ξ) is equal to (Jac(f , φ)(ξ))A−1, where A is the matrix of σ. Therefore, as
with Jac(f , φ)(ξ), it has rank at most s .

We remark that the proof of the corollary implies a slightly stronger property, which
we already mentioned in the introduction: the system f1, . . . , fs,Ms+1(Jac(f , φ)) is globally
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invariant (that is, applying any σ ∈ Sn permutes these equations, possibly changing signs).
However, our algorithm does not use this fact directly.

The corollary above also implies that the discussion in Section 2.4 applies to W . In
particular, for a partition λ of n, the sets Wλ and W ′

λ of (10) are well-defined. In what
follows, we fix a partition λ = (nℓ1

1 nℓ2
2 . . . nℓr

r ) of n and we let ℓ be its length; we explain how
to compute a description of W ′

λ along the lines of Section 2.4. For this, we let Z1, . . . ,Zr be
the indeterminates associated to λ, as defined in Section 2.1, with Zi = zi,1, . . . , zi,ℓi. As in
that section, we also write all indeterminates z1,1, . . . , zr,ℓr as z1, . . . , zℓ.

Definition 3.3. With λ and Z1, . . . ,Zr as above, we define Tλ, the K-algebra homomor-
phism K[x1, . . . , xn]→ K[Z1, . . . ,Zr] mapping x1, . . . , xn to

z1,1, . . . , z1,1
︸ ︷︷ ︸

n1

, . . . , z1,ℓ1 , . . . , z1,ℓ1
︸ ︷︷ ︸

n1

. . . , zr,1, . . . , zr,1
︸ ︷︷ ︸

nr

, . . . , zr,ℓr , . . . , zr,ℓr
︸ ︷︷ ︸

nr

. (13)

The operator Tλ extends to vectors or matrices of polynomials entrywise.

We can now define

f [λ] = Tλ(f ) = (f
[λ]
1 , . . . , f [λ]

s ) and J[λ] = Tλ(Jac(f , φ)) =
[
J
[λ]
i,j

]

1≤i≤s+1,1≤j≤n
. (14)

Notice that for f in K[x1, . . . , xn]
Sn, and for any indices j, k in {1, . . . , n} for which Tλ(xj) =

Tλ(xk), we have

Tλ

(
∂f

∂xj

)

= Tλ

(
∂f

∂xk

)

; (15)

this follows by applying Lemma 3.1 to f and the transposition (j k). Thus

Tλ

(
∂f

∂x1
, . . . ,

∂f

∂xn

)

=
(
f
[λ]
1,1, . . . , f

[λ]
1,1

︸ ︷︷ ︸

n1

, . . . , f
[λ]
1,ℓ1

, . . . , f
[λ]
1,ℓ1

︸ ︷︷ ︸

n1

, . . . , f
[λ]
r,1 , . . . , f

[λ]
r,1

︸ ︷︷ ︸

nr

, . . . , f
[λ]
r,ℓr

, . . . , f
[λ]
r,ℓr

︸ ︷︷ ︸

nr

)
,

(16)

where f
[λ]
i,j are polynomials in the variables (Z1, . . . ,Zr).

Lemma 3.4. The columns of the transformed Jacobian matrix J[λ] have the form:

J[λ] =
(
J
[λ]
1,1, . . . , J

[λ]
1,1

︸ ︷︷ ︸

n1

, . . . , J
[λ]
1,ℓ1

, . . . , J
[λ]
1,ℓ1

︸ ︷︷ ︸

n1

, . . . , J
[λ]
r,1, . . . , J

[λ]
r,1

︸ ︷︷ ︸

nr

, . . . , J
[λ]
r,ℓr

, . . . , J
[λ]
r,ℓr

︸ ︷︷ ︸

nr

)
, (17)

Proof. This follows directly from (16), since

(J
[λ]
s+1,1, . . . , J

[λ]
s+1,n) = Tλ

(
∂φ

∂x1

, . . . ,
∂φ

∂xn

)

and (J
[λ]
i,1 , . . . , J

[λ]
i,n) = Tλ

(
∂fi
∂x1

, . . . ,
∂fi
∂xn

)

for i = 1, . . . , s, and all polynomials f1, . . . , fs, φ are in K[x1, . . . , xn]
Sn.
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We will then let G[λ] = [G
[λ]
i,j ]1≤i≤s+1,1≤j≤ℓ be the matrix with entries in K[Z1, . . . ,Zr]

obtained from Jac(f , φ) by first applying Tλ and then keeping only one representative among
all repeated columns highlighted in the previous lemma.

Example 3.5. Let s = 1 and n = 5, so we consider two polynomials f1, φ in K[x1, . . . , x5],
and take λ = (11 22). Then

f
[λ]
1 (z1,1, z2,1, z2,2) = Tλ(f1) = f1(z1,1, z2,1, z2,1, z2,2, z2,2),

and

G[λ] =





Tλ(
∂f1
∂x1

) Tλ(
∂f1
∂x2

) Tλ(
∂f1
∂x4

)

Tλ(
∂φ

∂x1
) Tλ(

∂φ

∂x2
) Tλ(

∂φ

∂x4
)



 ∈ K[z1,1, z2,1, z2,2]
2×3.

It is easy to see that the polynomials f [λ] are Sλ-invariant, where Sλ is the permutation
group Sℓ1 × · · · × Sℓr introduced in the previous section. However, this is generally not the
case for the entries of G[λ].

Lemma 3.6. Let g[λ] = (g
[λ]
1 , . . . , g

[λ]
ℓ ) be a row of G[λ]. Then

(i) zi − zj divides g
[λ]
i − g

[λ]
j for 1 ≤ i < j ≤ ℓ;

(ii) g[λ] is Sλ-equivariant.

Proof. For the sake of definiteness, let us assume that g[λ] is the row corresponding to the
gradient of f1, with the other cases treated similarly.

For statement (i), we start from indices i, j as in the lemma and let S be the K-
algebra homomorphism K[Z1, . . . ,Zr]→ K[Z1, . . . ,Zr] that maps zi to zj , leaving all other

variables unchanged. Let u, v in {1, . . . , n} be indices such that g
[λ]
i = Tλ(∂f1/∂xu) and

g
[λ]
j = Tλ(∂f1/∂xv) and σ ∈ Sn the transposition (u v). From Lemma 3.1, we have that
σ(∂f1/∂xu) = ∂f1/∂xv and applying S ◦ Tλ gives S(Tλ(σ(∂f1/∂xu))) = S(Tλ(∂f1/∂xv)).
For any h ∈ K[x1, . . . , xn] we have, by construction, S(Tλ(σ(h))) = S(Tλ(h)). Applying this

on the left-hand side of the previous equality gives S(g
[λ]
i ) = S(g

[λ]
j ). As a result, zi − zj

divides g
[λ]
i − g

[λ]
j , as claimed.

For statement (ii), we take indices k in {1, . . . , r} and j, j′ in {1, . . . , ℓk}. We let σ ∈ Sλ
be the transposition that maps (k, j) to (k, j′) and prove that σ(g

[λ]
k,j) = g

[λ]
k,j′. As before,

there exist indices u, v in {1, . . . , n} such that g
[λ]
k,j = Tλ(∂f1/∂xu) and g

[λ]
k,j′ = Tλ(∂f1/∂xv).

Without loss of generality, assume that u and v are the smallest such indices. Then Tλ maps
xu, . . . , xu+ℓk−1 to zk,j and xv, . . . , xv+ℓk−1 to zk,j′.

Let τ ∈ Sn be permutation that permutes (u, . . . , u+ℓk−1) with (v, . . . , v+ℓk−1). From
Lemma 3.1, we get τ(∂f1/∂xv) = ∂f1/∂xu. Then Tλ(τ(∂f1/∂xu)) = Tλ(∂f1/∂xv) = g

[λ]
k,j′.

By construction, the left-hand side is equal to σ(Tλ(∂f1/∂xu)), that is, σ(g
[λ]
k,j).
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Lemma 3.6 implies that we can apply Algorithm Symmetrize from Section 2.3 to each
row of G[λ]. The result is a polynomial matrix H[λ] in K[Z1, . . . ,Zr], whose rows are
all Sλ-equivariant, and such that H[λ] = G[λ]U[λ], for some polynomial matrix U[λ] in
K[Z1, . . . ,Zr]

ℓ×ℓ. Applying Algorithm Symmetric Coordinates from Lemma 2.2 to the en-
tries of both f [λ] and H[λ] gives polynomials f̄ [λ] and a matrix H̄[λ], all with entries in
K[e1, . . . , er], with variables ei = ei,1, . . . , ei,ℓ1 for all i, and such that f [λ] = f̄ [λ](η1, . . . ,ηr)
and H[λ] = H̄[λ](η1, . . . ,ηr).

The following summarizes the main properties of this construction. For the definitions
of the sets Cλ, Cstrictλ , the mapping Eλ and the open set Oλ ⊂ Kℓ, see Section 2.4.

Proposition 3.7. Let λ be a partition of n of length ℓ.

(i) If ℓ ≤ s, then Eλ(W ∩ Cλ) is the zero-set of f̄ [λ] in Kℓ.

(ii) If ℓ > s, then W ′
λ = Eλ(W ∩Cstrictλ ) is the zero-set of f̄ [λ] and all (s+1)-minors of H̄[λ]

in Oλ ⊂ Kℓ.

Proof. Let ξ be in the set Cλ defined in Section 2.4, and write

ξ =
(
ξ1,1, . . . , ξ1,1
︸ ︷︷ ︸

n1

, . . . , ξ1,ℓ1, . . . , ξ1,ℓ1
︸ ︷︷ ︸

n1

, . . . , ξr,1, . . . , ξr,1
︸ ︷︷ ︸

nr

, . . . , ξr,ℓr , . . . , ξr,ℓr
︸ ︷︷ ︸

nr

)
.

Set ζ = (ξ1,1, ξ1,2, . . . , ξr,ℓr) ∈ Kℓ and ε = Eλ(ξ) ∈ Kℓ. By definition, we have f (ξ) = f [λ](ζ)
and Jac(f , φ)(ξ) = J[λ](ζ). Thus, ξ is in W ∩Cλ if and only if it cancels f and Jac(f , φ) has
rank at most s at ξ, that is, if f [λ](ζ) = 0 and J[λ](ζ) has rank at most s. The point ξ is in
W ∩ Cstrictλ if all the entries of ζ are also pairwise distinct.

In addition, we have f [λ](ζ) = f̄ [λ](ε) and, by construction, rank(J[λ](ζ)) = rank(G[λ](ζ)).
If ℓ ≤ s then, since G[λ] has ℓ columns, we see that ξ is in W ∩ Cλ if and only if ε = Eλ(ξ)
cancels f̄ [λ]. Since Eλ : Cλ → Kℓ is onto, this implies our first claim.

Suppose further that ξ is in Cstrictλ , so that ε is in Oλ. From Proposition 2.4, we have
H[λ] = G[λ]U[λ]. Our assumption on ξ implies that U[λ](ζ) is invertible, so that G[λ] and
H[λ] have the same rank at ζ. Finally, we have H[λ](ζ) = H̄[λ](ε). All this combined shows
that ξ is in W ′

λ = Eλ(W ∩ Cstrictλ ) if and only if ε = Eλ(ξ) cancels f̄
[λ] and all (s+1)-minors

of H̄[λ]. Since the restriction Eλ : Cstrictλ → Oλ is onto, this implies the second claim.

3.2 The Critical Points Per Orbit algorithm

The main algorithm of this paper is Critical Points Per Orbit which takes as input symmetric
f = (f1, . . . , fs) and φ in K[x1, . . . , xn] and, if finite, outputs a symmetric representation
of the critical point set W = W (φ, V (f )). Using our notation from Section 2, this means
that we want to compute zero-dimensional parametrizations of W ′

λ = Eλ(W ∩ Cstrictλ ), for all
partitions λ of n for which this set is not empty. The algorithm is based on Proposition 3.7,
with a minor modification, as we will see that it is enough to consider partitions of n of
length ℓ either exactly equal to s, or at least s+ 1.

For any partition λ, we first need to transform f and φ, in order to obtain the polynomials
in Proposition 3.7.
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Lemma 3.8. There exists an algorithm Prepare F(f , λ) which takes as input f as above and
a partition λ, and returns f̄ [λ]. If f has degree at most d, the algorithm takes O (̃n

(
n+d

d

)
2)

operations in K. Similarly, there exists an algorithm Prepare F H(f , φ, λ) which takes as
input f , φ as above and a partition λ, and returns f̄ [λ] and H̄[λ]. If f and φ have degree at
most d, then the algorithm takes O (̃n4

(
n+d

d

)
2) operations in K.

Proof. In the first case, applying Tλ to f takes linear time in the number of monomials
O(n

(
n+d

d

)
) and gives us f [λ]. We then invoke Symmetric Coordinates(λ, f [λ]), using Lemma 2.2,

in order to obtain f̄ [λ] with the cost being O (̃n
(
n+d

d

)
)2 operations in K.

In the second case, we obtain f [λ] as above. We also compute the matrix Jac(f , φ),
which takes O(n2

(
n+d

d

)
) operations. For the same cost, we apply Tλ to all its entries and

remove redundant columns, as specified in Lemma 3.4, so as to yield the matrix G[λ]. We
then apply Algorithm Symmetrize from Proposition 2.7 to all rows of G[λ], which takes
O (̃n4

(
n+d

d

)
) operations, and returns H[λ]. Finally, we apply Symmetric Coordinates to all

entries of this matrix which gives H̄[λ] and takes O (̃n2
(
n+d

d

)
2) operations in K.

At the core of the algorithm, we need a procedure for finding isolated solutions of certain
polynomial systems. In our main algorithm, we solve such systems using procedures called
Isolated Points(g) and Isolated Points(g,H, k). Given polynomials g, the former returns a
zero-dimensional parametrization of the isolated points of V (g). The latter takes as input
polynomials g, a polynomial matrix H and an integer k, and returns a zero-dimensional
parametrization of the isolated points of V (g,Mk(H)), where Mk(H) denotes the set of k-
minors of H (note that the former procedure can be seen as a particular case of the latter,
where we take H to be a matrix with no row and k = −1). To establish correctness of the
main algorithm, any implementation of these procedures is suitable.

Apart from the subroutines discussed above and the function Decompose from Lemma 2.16,
our algorithm also requires a procedure Remove Duplicates(S). This inputs a list S =
(λi,Ri)1≤i≤N , where each λi is a partition of n and Ri a zero-dimensional parametriza-
tion. As all λi’s may not be distinct in this list, this procedure removes pairs (λi,Ri) from S
so as to ensure that all resulting partitions are pairwise distinct (the choice of which entries
to remove is arbitrary; it does not affect correctness of the overall algorithm).

Proposition 3.9. Algorithm Critical Points Per Orbit is correct.

Proof. The goal of the algorithm is to compute zero-dimensional representations of W ′
λ =

Eλ(W ∩ Cstrictλ ) for all partitions λ of n for which this set is not empty.
To understand the first loop, recall first that W is assumed to be finite. Hence this

also holds for all W ∩ Cλ, and thus for all Eλ(W ∩ Cλ). As a result, for λ of length s,
Proposition 3.7(i) implies that at Step 2b , Isolated Points(f̄λ) returns a zero-dimensional
parametrization of G := Eλ(W ∩ Cλ). Then, we recall from Lemma 2.16 that the output
of Decompose(λ,Rλ) is a symmetric representation of E∗

λ(G). Note that the latter set is
the orbit of W ∩ Cλ, that is, the set of all orbits contained in W whose type λ′ satisfies
λ′ ≥ λ. Taking into account all partitions λ of length s, the set of partitions λ′ ≥ λ covers
all partitions of length ℓ ∈ {1, . . . , s}, so that at the end of Step 2, we have zero-dimensional
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Algorithm 1 Critical Points Per Orbit(f , φ)

Input: f = (f1, . . . , fs) and φ in K[x1, . . . , xn]
Sn such that W = W (φ, V (f )) is finite.

Output: A symmetric representation of W .

1. S = [ ]

2. For λ ⊢ n of length s

(a) f̄ [λ] = Prepare F(f , λ)

(b) Rλ = Isolated Points(f̄ [λ])

(c) append the output of Decompose(λ,Rλ) to S

3. For λ ⊢ n of length in {s+ 1, . . . , n}

(a) f̄ [λ], H̄[λ] = Prepare F H(f , φ, λ)

(b) Rλ = Isolated Points(f̄ [λ], H̄[λ], s+ 1)

(c) (λi,Ri)1≤i≤N = Decompose(λ,Rλ)

(d) append (λi0,Ri0) to S, where i0 is such that λi0 = λ, if such an i0 exists

4. Return Remove Duplicates(S)

parametrizations of W ′
λ for all partitions of length ℓ ∈ {1, . . . , s} (with possible repetitions).

Calling Remove Duplicates(S) will remove any duplicates among this list.
The second loop deals with partitions λ of length at least s+1. Since we assume that W

is finite, W ′
λ is finite for any such λ. Proposition 3.7(ii) then implies that the points in W ′

λ

are isolated points of the zero-set of f̄ [λ] and of the (s+1)-minors of H̄[λ]. As a result, W ′
λ is

a subset of Z(Rλ), for Rλ computed in Step 3b with all other points in Z(Rλ) corresponding
to points in W with type λ′ > λ. In particular, after the call to Decompose, it suffices to
keep the entry in the list corresponding to the partition λ, to obtain a description of W ′

λ.

4 Cost of the Critical Points Per Orbit Algorithm

In this section we provide a complexity analysis of our Critical Points Per Orbit algorithm
and hence also complete the proof of Theorem 1.1.

At the core of the Critical Points Per Orbit algorithm is a procedure, Isolated Points. Recall
that on input polynomials g, a polynomial matrix H and an integer k, it returns a zero-
dimensional parametrization of the isolated points of V (g,Mk(H)), whereMk(H) denotes the
set of k-minors of H. We apply this procedure to polynomials with entries in K[e1, . . . , er] =
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K[e1,1, . . . , e1,ℓ1 , e2,1, . . . , e2,ℓ2, . . . , er,1, . . . , er,ℓr ].
Rather than using classical methods for solving these polynomial systems, we use the sym-

bolic homotopy method for weighted domains given in [31], as this algorithm is the best suited
to handle a weighted-degree structure exhibited by such systems. Indeed, the polynomial
ring arising from an orbit parameter λ, K[e1, . . . , er], is obtained through a correspondence
between the variable ei,k and the elementary symmetric polynomial ηi,k(xj1, . . . , xjm), for cer-
tain indices j1, . . . , jm. More precisely, for any f in K[Z1, . . . ,Zr]

Sλ , let f̄ be the polynomial
in K[e1, . . . , er] satisfying

f(Z1, . . . ,Zr) = f̄(η1, . . . ,ηr),

with ηi = (ηi,1, . . . , ηi,ℓi) for all i. Since each ηi,k has degree k, it is natural to assign a weight
k to variable ei,k, so that the weighted degree of f̄ equals the degree of f . Our vector of
variable weights is then is w = (1, . . . , ℓ1, 1, . . . , ℓ2, . . . , 1, . . . , ℓr).

4.1 Solving weighted determinantal systems

In this section, we briefly review the algorithm for solving determinantal systems over a ring
of weighted polynomials.

Suppose we work with polynomials in K[Y ] = K[y1, . . . , ym], where each variable yi has
weight wi ≥ 1 (denoted by wdeg(yi) = wi). The weighted degree of a monomial yα1

1 · · · yαm
m

is then
∑m

i=1wiαi, and the weighted degree of a polynomial is the maximum of the weighted
degree of its terms with non-zero coefficients. The weighted column degrees of a polynomial
matrix is the sequence of the weighted degrees of its columns, where the weighted degree of
a column is simply the maximum of the weighted degrees of its entries.

Let f = (f1, . . . , fτ ) be a sequence of polynomials in K[Y ] and G = [gi,j] ∈ K[Y ]p×q a
matrix of polynomials such that p ≤ q and m = q − p + τ + 1, and let Vp(G, f ) denote the
set of points in K at which all polynomials in f and all p-minors of G vanish. In [31], a
symbolic homotopy algorithm for weighted domains is presented which constructs a symbolic
homotopy from a generic start system to the system defining Vp(G, f ) and then uses this to
efficiently determine the isolated points of Vp(G, f ).

The main theorem of [31], in the special case of weighted polynomial rings, is given in
terms of a number of parameters. Let (γ1, . . . , γτ) be the weighted degrees of (f1, . . . , fτ ),
let (δ1, . . . , δq) be the weighted column degrees of G, let d be the maximum of the degrees
(in the usual sense) of all f ,G and set

Γ = m2

(
m+ d

m

)

+m4

(
q

p

)

.

The following quantities are all related to the degrees of some geometric objects present
in the algorithm. We define

c =
γ1 · · ·γτ · ηm−τ (δ1, . . . , δq)

w1 · · ·wm

and e =
(γ1 + 1) · · · (γτ + 1) · ηm−τ (δ1 + 1, . . . , δq + 1)

w1 · · ·wm

,
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where where ηn−s is the elementary symmetric polynomial of degree n − s. For a subset
i = {i1, . . . , im−τ} ⊂ {1, . . . , q}, we further let (di,1, . . . , di,m) denote the sequence obtained
by sorting (γ1, . . . , γτ , δi1 , . . . , δim−τ

) in non-decreasing order, and we write

κi = max
1≤k≤m

(di,1 · · · di,kwk+1 · · ·wm) and κ =
∑

i={i1,...,im−τ}⊂{1,...,q}

κi. (18)

Note that without loss of generality, in these equations, we may also assume that the weights
w1, . . . , wm are reordered to form a non-decreasing sequence.

Theorem 4.1. [31, Theorem 5.3] Let G be a matrix in K[Y]p×q and f = (f1, . . . , fτ ) be
polynomials in K[Y] such that p ≤ q and m = q − p + τ + 1. There exists a randomized
algorithm which takes G and f as input and computes a zero-dimensional parametrization
of these isolated solutions using

O˜
((

c(e+ c5) + d2
( κ

w1 · · ·wm

)2)
m4Γ

)

operations in K. Moreover, the number of solutions in the output is at most c.

When there is no matrix G, so τ = m, then the runtimes reported above remain the same
with the term Γ becoming Γ = m2

(
m+d

m

)
. In this case, the term κ is simply equal to

κ = max1≤k≤m(γ1 · · · γkwk+1 · · ·wm), assuming that the degrees γ1, . . . , γk are given in non-
decreasing order.

We finish this subsection with an observation in those cases with m > q − p+ τ + 1.

Remark 4.2. Note that when m > q − p + τ + 1, then there are no isolated points in
Vp(G, f ). Indeed if we let I ⊂ K[Y] be the ideal generated by the p-minors of G then a
result due to Eagon and Northcott [10, Section 6] implies that all irreducible components of
V (I) have codimension at most q − p+ 1. By Krull’s theorem the irreducible components of
Vp(G, f ) = V (I+〈f1, . . . , fτ 〉) then have codimension at most q−p+1+τ . This implies that
the irreducible components of Vp(G, f ) in K

m
have dimension at least m− (q − p+ τ + 1),

which is positive when m > q − p+ τ + 1.

4.2 The complexity of the Isolated Points procedure

Estimating the runtimes for the Isolated Points algorithms follows from Theorem 4.1, for the
weighted domains associated to various partitions of n. Thus we let λ = (nℓ1

1 nℓ2
2 . . . nℓr

r ) be
a partition of length ℓ, with ℓ ≥ s.

The parameters that appear in Theorem 4.1 can be determined as follows. The weights
of variables (e1, . . . , er) are w = (1, . . . , ℓ1, . . . , 1, . . . , ℓr). For i = 1, . . . , s, the weighted

degree of f̄
[λ]
i is the same as the degree of f

[λ]
i and so is at most d.

For j = 1, . . . , ℓ, the weighted column degree of the jth column of H̄[λ] is at most
δj = d − 1 − ℓ + j (note that all entries of the Jacobian matrix of f , φ have degree at most
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d−1; then apply Proposition 2.4). In particular, if ℓ > d, then all entries on the j-th column
of H̄[λ] equal zero for j = 1, . . . , ℓ− d. Finally, in what follows, we let

Γ = n2

(
n + d

d

)

+ n4

(
n

s+ 1

)

.

Partitions of length s. We recall that when the length ℓ of the partition λ equals s, we
do not need to deal with a matrix H̄[λ]. In this situation, one only needs to compute the
isolated points of V (f̄ [λ]).

Consider such a partition λ = (nℓ1
1 nℓ2

2 . . . nℓr
r ) and the corresponding variables (e1, . . . , er),

with wdeg(ei,k) = k for all i = 1, . . . , r and k = 1, . . . , ℓi. We make the following claim: if
there exists i such that ℓi > d, then there is no isolated point in V (f̄ [λ]). Indeed, in such a
case, variable ei,ℓi does not appear in f̄ [λ], for weighted degree reasons, so that the zero-set
of this system is invariant with respect to translations along the ei,ℓi axis. In particular, it
admits no isolated solution.

Therefore we can suppose that all ℓi’s are at most d. In this case, the quantities c, e, κ
used in Theorem 4.1 become respectively

cλ =
ds

wλ

, eλ =
n(d+ 1)s

wλ

, κλ = ds = wλcλ,

with wλ = ℓ1! · · · ℓr!. In this case Theorem 4.1 implies that V (f̄ [λ]) contains at most cλ

isolated points, and that and one can compute all of them using

O˜
((
cλ(eλ + c

5
λ) + d2c2λ

)
n4Γλ

)
⊂ O˜

(
d2cλ(eλ + c

5
λ)n

4Γ
)

operations in K.

Partitions of length greater than s. For a partition λ of length ℓ greater than s, we
have to take into account the minors of the matrix H̄[λ]. Note that the assumptions of
Theorem 4.1 are satisfied: the matrix H̄[λ] is in K[e1, . . . , er]

(s+1)×ℓ, with ℓ ≥ s + 1, and
we have s equations f̄ [λ] in K[e1, . . . , er], so the number of variables ℓ does indeed satisfy
ℓ = ℓ− (s+ 1) + s+ 1.

We claim that if ℓ > d, then the algebraic set Vs+1(H̄
[λ], f̄ [λ]) does not have any isolated

point. Indeed, in this case, we pointed out above that the columns of indices 1 to ℓ−d in H̄[λ]

are identically zero. After discarding these zero-columns from H̄[λ], we obtain a matrix L[λ]

of dimension (s + 1)× d such that Vs+1(H̄
[λ], f̄ [λ]) = Vs+1(L

[λ], f̄ [λ]), and using Remark 4.2
with p = s+ 1, q = d, τ = s and m ≥ ℓ shows that this algebraic set has no isolated points.

Thus, let us now assume that ℓ ≤ d. The matrix H̄[λ] has weighted column degrees
(δ1, . . . , δℓ) = (d − ℓ, . . . , d − 1), whereas the weighted degrees of all polynomials in f̄ [λ] is
at most d. To estimate the runtime of Isolated Points(H̄[λ], f̄ [λ]), we will need the following
property.
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Lemma 4.3. Let κ be defined as in (18) with m = ℓ, τ = s, p = s+ 1, q = ℓ, (δ1, . . . , δℓ) =
(d− 1− ℓ, . . . , d− 1), and (γ1, . . . , γs) = (d, . . . , d). Then, for partitions of length ℓ at most
d, one has

κ = dsηℓ−s(d− 1, . . . , d− ℓ).

Proof. Without loss of generality, we reorder the weights w as w′ = (w′
1, . . . , w

′
ℓ) such that

w′
1 ≤ · · · ≤ w′

ℓ.
Take i = (i1, . . . , iℓ−s) ⊂ {1, . . . , ℓ}, and let di = (di,1, . . . , di,ℓ) be the sequence obtained

by reordering (d, . . . , d, δi1, . . . , δiℓ−s
) in non-decreasing order; we first compute the value of

κi from (18). If di,1 = 0 (which can happen only if ℓ = d), then κi = 0. Otherwise, the
sequence di starts with di,1 ≥ 1 and increases until index ℓ−s, after which it keeps the value
d. On the other hand, the ordered sequence of weights never increases by more than 1, so
that for all k = 1, . . . , ℓ, we have w′

k ≤ di,k. In this case,

κi = max
1≤k≤ℓ

(di,1 · · · di,kwk+1 · · ·wm) = di,1 · · · di,ℓ = dsδi1 · · · δiℓ−s
;

note that this equality also holds if di,1 = 0, since then both sides vanish. Since κ =
∑

i={i1,...,iℓ−s}⊂{1,...,q} κi, we get

κ =
∑

i={i1,...,iℓ−s}⊂{1,...,ℓ}

dsδi1 · · · δiℓ−s
= dsηℓ−s(d− 1, . . . , d− ℓ). (19)

as claimed.

The procedure Isolated Points
(
f̄ [λ], H̄[λ]

)
then uses the algorithm in Theorem 4.1 with

input
(
f̄ [λ], H̄[λ]

)
. Writing as before wλ = ℓ1! · · · ℓr!, the quantities used in the theorem

become

cλ =
dsηℓ−s(d− 1, . . . , d− ℓ)

wλ

,

eλ =
n(d+ 1)sηℓ−s(d, . . . , d− ℓ+ 1)

wλ

,

κλ = dsηℓ−s(d− 1, . . . , d− ℓ) = wλcλ.

This implies that running Isolated Points
(
f̄ [λ], H̄[λ]

)
uses

O˜
((
cλ(eλ + c

5
λ) + d2c2λ

)
n4Γ

)

operations which is again in
O˜
(
d2cλ(eλ + c

5
λ)n

4Γ
)
.

As before, the number of solutions in the output is at most cλ.
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4.3 Finishing the proof of Theorem 1.1

We can now finish estimating the runtime of the Critical Points Per Orbit Algorithm. For
partitions of length s, at Step 2a, we only need to compute f̄ [λ] which takes O (̃n

(
n+d

d

)
2)

operations in K as per Lemma 3.8. At Step 2b, the procedure Isolated Points(f̄ [λ]) takes
at most O˜(d2cλ(eλ + c

5
λ)n

4Γ) operations in K, as we saw in Subsection 4.2. The output
of this procedure contains at most cλ points; then, by Lemma 2.16, the cost of the call to
Decompose at Step 2c is O (̃c2λ n), which is negligible compared to the previous costs.

For partitions of length greater than s, computing f̄ [λ] and H̄[λ] at Step 3a takes O (̃n4
(
n+d

d

)
2)

operations in K, by Lemma 3.8. The procedure Isolated Points
(
f̄ [λ], H̄[λ]

)
at Step 3b requires

at most O˜(d2cλ(eλ + c
5
λ)n

4Γ) operations in K, as we saw in Subsection 4.2. Again, since
the number of solutions in the output is at most cλ, the cost of Decompose at Step 3c is still
O (̃c2λ n) which, as before, is negligible in comparison to the other costs. To complete our
analysis, we need the following lemma.

Lemma 4.4. With all notation being as above, the following holds
∑

λ⊢n,ℓλ≥s

cλ ≤ c and
∑

λ⊢n,ℓλ≥s

eλ ≤ e,

where c = ds
(
n+d−1

n

)
and e = n (d+ 1)s

(
n+d

n

)
.

Proof. The proof relies on the combinatorics of integer partitions and properties of elemen-
tary symmetric functions. Details are given in Appendix C.

As a result, the total cost incurred by our calls to Isolated Points and Decompose is

O˜

(

c(e+ c
5)n9d2

((
n+ d

d

)

+

(
n

s+ 1

)))

.

Since
(
n+d

d

)
≤ (n + 1)

(
n+d−1

d

)
, we will simplify this further, by noticing that for d ≥ 2 we

have e = n (d+ 1)s
(
n+d

n

)
≤ n(n+ 1)d5s

(
n+d−1

n

)5
= n(n+ 1)c5 so this is

O˜

(

c
6n11d2

((
n + d

d

)

+

(
n

s+ 1

)))

.

For the remaining operations, the total cost of Prepare F and Prepare F H is

n4
∑

λ⊢n,ℓλ≥s

(
n+ d

d

)2

.

Since
(
n+d

d

)
≤ (n + 1)

(
n+d−1

d

)
, the binomial term in the sum is in O(n2

c
2), so the total

is O(n5
c
3), and can be neglected. Similarly, the cost of Remove Duplicates is negligible.

Therefore, the total complexity of Critical Points Per Orbit is then in

O˜

(

n11d6s+2

(
n+ d

d

)6((
n+ d

d

)

+

(
n

s+ 1

)))

⊂
(

ds
(
n + d

d

)(
n

s+ 1

))O(1)

.

Finally, the total number of solutions reported by our algorithm is at most
∑

λ⊢n,ℓλ≥s cλ,
which itself is at most c.
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5 Experimental results

In this section, we report on an implementation and set of experimental runs supporting the
results in this paper. We compare our Critical Points Per Orbit algorithm from Section 3.2
with a naive algorithm which computes a zero-dimensional parametrization of V (I), where
I is the ideal generated by f and the (s + 1)-minors of Jac(f , φ). Since no implementation
of the weighted sparse determinantal homotopy algorithm is available at the moment, both
algorithms use Gröbner bases computations to solve polynomial systems. Furthermore,
using Gröbner bases computations is sufficient to see the advantage of our algorithm when
the symmetric structure is exploited in our algorihm.

Our experiments are run using the Maple computer algebra system running on a computer
with 16 GB RAM; the Gröbner basis computation in Maple uses the implementation of the
F4 and FGLM algorithms from the FGb package [13]. The symmetric polynomials f and φ
are chosen uniformly at random in K[x1, . . . , xn], with K = GF(65521), and have the same
degree n as the number of variables, that is, deg(f1) = · · · = deg(fs) = deg(φ) = n; the
number s of equations f ranges from 2 to n− 1.

Our experimental results support the theoretical advantage gained by exploiting the
symmetric structure of the input polynomials. In Table 1, we first report the number of
points, denoted by D, that we compute using our algorithm; that is, D is the sum of the
degrees deg(Rλ) that we obtain for all partitions λ of length at least s. The next column is
⌈∑

ℓλ≥s cλ

⌉
, which is an upper bound on D (here, cλ is as in Subsection 4.2); as we can see,

this bound is quite sharp in general. We next give the upper bound c from (2), which we
proved in Lemma 4.4. While this bound is sufficient to prove asymptotic results (for fixed
input degree, for instance, see the discussion in the introduction), we see that it is far from
sharp.

Finally, we give the number of points deg(I) computed by the naive algorithm, together
with the upper bound c̃ from (3); in some cases, we did not complete computations with
the naive algorithm, so deg(I) was unavailable. We see that in all cases, the output of our
algorithm is significantly smaller than the one from the direct approach.

n s D
⌈∑

ℓλ≥s cλ

⌉
c deg(I) c̃

4 2 79 80 560 856 864
4 3 47 48 2240 744 768
5 2 425 432 3150 15575 16000
5 3 357 370 15750 18760 20000
5 4 143 157 78750 11160 12500
6 2 2222 2227 16632 - 337500
6 3 2439 2453 99792 - 540000
6 4 1482 1503 598752 - 486000
6 5 470 486 3592512 - 233280

Table 1: Degrees and bounds
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In Table 2, we report on our timings in a detailed fashion. Here, we give the time needed to
compute the zero-dimensional representations deg(Rλ) obtained by our algorithm, together
with their degrees; Time(total) denotes the total time spent in our algorithm. On the
other hand, Time(naive) is the time to compute a zero-dimensional parametrization for the
algebraic set V (I) using the naive algorithm. Experiments are stopped once the computation
has gone past 24 hours, with the corresponding time marked with a dash.

In our experiments, the output Rλ was always empty for partitions of length less than s.
Indeed, for any partition λ of length at most s− 1, Z(Rλ) = V (f̄

[λ]
1 , . . . , f̄

[λ]
s ), where the f̄

[λ]
i

are s polynomials in less than s variables derived from the input f . Since the polynomials f
are chosen at random, the evaluated block symmetric polynomials f

[λ]
1 , . . . , f

[λ]
s are generic.

Using [31, Proposition 2.1.(ii)] or modifiying slightly the proof of [31, Proposition 4.5], we
indeed expect Z(Rλ) to be empty for such partitions λ of length less than s. However, we
point out that this output can be non-trivial in the general, non-generic case.

6 Conclusion and topics for future research

In this paper we have provided a new algorithm for efficiently describing the critical point
set of a function φ a variety V (f ) with φ and the defining functions of the variety all
symmetric. The algorithm takes advantage of the symmetries and lower bounds for describing
the generators of the set of critical points and as a result is more efficient than previous
approaches.

When f = (f1, . . . , fs) ⊂ R[x1, . . . , xn], with R is a real field, then computing the critical
points of polynomial maps restricted to V (f ) finds numerous applications in computational
real algebraic geometry. In particular such computations provide an effective Morse-theoretic
approach to many problems such as real root finding, quantifier elimination or answering
connectivity queries (see [2]). We view the complexity estimates in this paper as a possible
first step towards better algorithms for studying real algebraic sets defined by Sn-invariant
polynomials.

For instance, let d be the maximum degree of the entries in f = (f1, . . . , fs) and assume
that f generates an (n− s)-equidimensional ideal whose associated algebraic set is smooth.
Then under these assumptions, we observe that the set W (φu, V (f )) with

φu : (x1, . . . , xn)→ (x1 − u)2 + · · ·+ (xn − u)2

and u ∈ R, has a non-empty intersection with all connected components of V (f ) ∩ Rn.
Hence, when W (φu, f ) is finite for a generic choice of u, then one can use our algorithm to
decide whenever V (f ) ∩Rn is empty. This is done in time polynomial in ds,

(
n+d

d

)
,
(

n

s+1

)
.

In such cases, for d, s fixed, we end up with a runtime which is polynomial in n as in
[42, 36, 37]. These latter references are restricted to situations when d < n is fixed. If
now, one takes families of systems where d = n and s is fixed, we obtain a runtime which is
polynomial in 2n. This is an exponential speed-up with the best previous possible alternatives
which run in time 2O(n log(n)) as in for example [2, Chap. 13] (but note that these algorithms
are designed for general real algebraic sets).
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n s Partition(λ) Time(Rλ) deg(Rλ) ⌈cλ⌉ Time(total) Time(naive) deg(I)

4 2

λ = (14)
λ = (12 21)
λ = (22)
λ = (1131)

1.524s
0.684s
0.200s
0.380s

7
48
8
16

8
48
8
16

3.136s 0.905s 856

4 3
λ = (14)
λ = (12 21)

2.497s
0.772s

15
32

16
32

4.468s 0.577s 744

5 2

λ = (15)
λ = (13 21)
λ = (12 3)
λ = (11 22)
λ = (11 41)
λ = (21 31)

9.236s
6.832s
2.128s
2.816s
0.316s
0.392s

9
142
112
112
25
25

11
146
113
113
25
25

34.944s 2143.144s 15575

5 3

λ = (15)
λ = (13 21)
λ = (12 3)
λ = (11 22)

18.829s
18.120s
4.607s
5.316s

31
202
62
62

37
209
63
63

48.019s 3423.660s 18760

5 4
λ = (15)
λ = (13 21)

17.080s
12.024s

44
99

53
105

37.372s 969.396s 11160

6 2

λ = (16)
λ = (14 21)
λ = (13 3)
λ = (12 22)
λ = (23)
λ = (12 41)
λ = (11 21 31)
λ = (11 51)
λ = (21 41)
λ = (32)

44.979s
94.240s
110.615s
413.351s
7.241s
15.208s
92.589s
0.756s
1.072s
0.956s

13
334
426
639
72
216
432
36
36
18

14
338
426
639
72
216
432
36
36
18

861.888s - -

6 3

λ = (16)
λ = (14 21)
λ = (13 3)
λ = (12 22)
λ = (23)
λ = (12 41)
λ = (11 21 31)

92.881s
773.924s
114.064s
495.432s
7.356s
9.236s
17.908s

63
756
504
756
36
108
216

68
765
504
756
36
108
216

1658.071s - -

6 4

λ = (16)
λ = (14 21)
λ = (13 3)
λ = (12 22)

98.312s
591.78s
26.196s
46.420s

142
800
216
324

153
810
216
324

842.256s - -

6 5
λ = (16)
λ = (14 21)

154.808s
121.768s

150
320

162
324

251.752s - -

Table 2: Algorithm Timings
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Obtaining an algorithm to decide whether V (f ) ∩ Rn is empty in time polynomial in
ds,
(
n+d

d

)
,
(

n

s+1

)
, without assuming that W (φu, f ) is finite for a generic u ∈ R, is still an open

problem.
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supported by an NSERC Discovery Grant. T.X. Vu is supported by a labex CalsimLab
fellowship/scholarship. The labex CalsimLab, reference ANR-11-LABX-0037-01, is funded
by the program “Investissements d’avenir” of the Agence Nationale de la Recherche, reference
ANR-11-IDEX-0004-02. M. Safey El Din and T.X. Vu are supported by the ANR grants
ANR-18-CE33-0011 Sesame, ANR-19-CE40-0018De Rerum Natura and ANR-19-CE48-
0015 ECARP, the PGMO grant CAMiSAdo and the European Union’s Horizon 2020
research and innovation programme under the Marie Sklodowska-Curie grant agreement N.
813211 (POEMA).

References

[1] M.-E. Alonso, E. Becker, M.-F. Roy, and T. Wörmann. Zeros, multiplicities, and idem-
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Joris Hoeven, Michael Joswig, and Nobuki Takayama, editors, Mathematical Software
- ICMS 2010, volume 6327 of Lecture Notes in Computer Science, pages 84–87, Berlin,
Heidelberg, September 2010. Springer Berlin / Heidelberg.

[14] J.-C. Faugère, M. Hering, and J. Phan. The membrane inclusions curvature equations.
Advances in Applied Mathematics, 31(4):643 – 658, 2003.

[15] J.-C. Faugère and S. Rahmany. Solving systems of polynomial equations with symme-
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A Proof of Proposition 2.4

The proof of Proposition 2.4 will be done in stages. We start with some rather straightforward
lemmas.

Lemma A.1. Consider an Sλ-equivariant sequence q = (q1, . . . , qℓ) in K[Z1, . . . ,Zr]. Then,
for any I ⊂ {1, . . . , ℓ} and any σ in Sλ, we have σ(qI) = qσ(I).

Proof. By induction on the size of I.

Lemma A.2. Consider a sequence q = (q1, . . . , qℓ) in K[Z1, . . . ,Zr], and suppose that

(i) zi − zj divides qi − qj for 1 ≤ i < j ≤ ℓ,

(ii) q is Sλ-equivariant.
Then, for k in {1, . . . , r} and s in {1, . . . , ℓk}, the polynomial

∑τk+s

i=τk+1 q{i,τk+s+1,...,ℓ} is in-
variant under any permutation of {zτk+1, . . . , zτk+s}.
Proof. For any σ ∈ Sλ permuting only {zτk+1, . . . , zτk+s}, we have, using the previous lemma,

σ
(
τk+s∑

i=1

q{i,τk+s+1,...,ℓ}

)
=

τk+s∑

i=τk+1

σ
(
q{i,τk+s+1,...,ℓ}

)
=

τk+s∑

i=τk+1

q{σ(i),τk+s+1,...,ℓ}.

Since σ permutes {zτk+1, . . . , zτk+s} and the last sum runs over all i = τk + 1, . . . , τk + s, it
equals

∑τk+s

i=τk+1 q{i,τk+s+1,...,ℓ}.
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We can now prove the proposition. The fact that all entries of p are polynomials follows
from our first assumption. Proving that they are Sλ-invariant requires more work, as we
have to deal with numerous cases. While most are straightforward, the last case does involve
nontrivial calculations.

Fix k ∈ {0, . . . , r − 1}. We first prove that for s in {1, . . . , ℓk+1}, i in {τk + 1, . . . , τk +
s}, and m in {0, . . . , r − 1}, with m 6= k, then the term q{i,τk+s+1,...,τr} is symmetric in
{zτm+1, . . . , zτm+1

}. Indeed, consider a permutation σ ∈ Sλ that acts on {zτm+1, . . . , zτm+1
}

only. By Lemma A.1, σ(q{i,τk+s+1,...,τr}) is equal to q{σ(i),σ(τk+s+1),...,σ(τr)}. If m < k, then all
indices i, τk+s+1, . . . , τr are left invariant by σ while form > k, [σ(i), σ(τk+s+1), . . . , σ(τr)]
is a permutation of [i, τk+s+1, . . . , τr]. In both cases, q{σ(i),σ(τk+s+1),...,σ(τr)} = q{i,τk+s+1,...,τr},
as claimed.

Consider first the invariance of pτk+1
. By Lemma A.2, the sum

∑τk+1

i=τk+1 q{i,τk+1+1,...,τr} is
symmetric in {zτk+1, . . . , zτk+1

}. Next, for i in {τk + 1, . . . , τk+1} and m in {0, . . . , r − 1},
with m 6= k, each term q{i,τk+1+1,...,τr} is symmetric in {zτm+1, . . . , zτm+1

}, making use of the
previous paragraph with s = ℓk+1. As a result, pτk+1

is Sλ-invariant.
Next, for j in {1, . . . , ℓk+1−1} and σ in Sλ, we prove that σ(pτk+j) = pτk+j. Assume first

that σ acts only on {zτm+1, . . . , zτm+1
}, for some m in {0, . . . , r − 1} with m 6= k. For s in

{1, . . . , j}, the polynomial ηj−s(zτk+s+2, . . . , zτk+1
) depends only on {zτk+1, . . . , zτk+1

} and so
is σ-invariant. Using our earlier argument we see that for i in {τk+1, . . . , τk+s} the divided
difference q{i,τk+s+1,...,τr} is σ-invariant. As a result, pτk+j itself is σ-invariant.

It remains to prove that pτk+j is σ-invariant for a permutation σ of {τk + 1, . . . , τk+1}.
We do this first for σ = (τk + 1, τk + 2), by proving that all summands in the definition
of pτk+j are σ-invariant. For any s in {2, . . . , j}, ηj−s(zτk+s+2, . . . , zτk+1) does not depend
on (zτk+1, zτk+2), so it is σ-invariant. For s in {2, . . . , j}, the sum

∑τk+s

i=τk+1 q{i,τk+s+1,...,τr} is
symmetric in (τk + 1, τk + 2), since σ just permutes two terms in the sum while for s = 1,
q{τk+1,τk+2,...,τr} is symmetric in (zτk+1, zτk+2) by Lemma A.1. Thus, our claim is proved for
σ = (τk + 1, τk + 2).

It remains to prove that pτk+j is invariant in (zτk+2, . . . , zτk+1
). For any t = 1, . . . , j, set

pτk+j,t =

j
∑

s=t

ηj−s(zτk+t+2, . . . , zτk+1
)
(

τk+s∑

i=τk+1

q{i,τk+s+1,...,τr}

)
. (20)

Then pτk+j = pτk+j,1 and we have the recursive identity

pτk+j,t−1 = pτk+j,t + ηj−t+1(zτk+t+1, . . . , zτk+1
)
(
τk+t−1∑

i=τk+1

q{i,τk+t,...,τr}

)
. (21)

For any t, set z:t = (zτk+1, . . . , zτk+t) and zt: = (zτk+t, . . . , zτk+1
). We will show that for

t = 1, . . . , j, the polynomial pτk+j,t satisfies:

pτk+j,t is block symmetric in z:t and zt+1: (22)

Taking t = 1 implies that pτk+j = pτk+j,1 is symmetric in z2: = (zτk+2, . . . , zτk+1
), as claimed.
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To prove statement (22) we use decreasing induction on t = j, . . . , 1. The statement is
true when t = j since in this case pτk+j,j =

∑τk+j

i=τk+1 q{i,τk+j+1,...,τr}, which is symmetric in
z:j by Lemma A.2, while each summand q{i,τk+j+1,...,τr} is symmetric in zj+1: by Lemma A.1.
Assume now that (22) is true for some index t in {2, . . . , j}; we show that it also holds for
t − 1. That is, we have pτk+j,t is block symmetric in z:t and zt+1: and need to show that
pτk+j,t−1 is block symmetric in z:t−1 and zt:.

From Lemma A.2, we have that
∑τk+t−1

i=τk+1 q{i,τk+t,...,τr} is symmetric in z:t−1. Further-
more, from our induction hypothesis, the polynomial pτk+j,t is symmetric in z:t−1, while
ηj−t+1(zτk+t+1, . . . , τk+1) depends only on zt:. Thus, in view of (21), we see that pτk+j,t−1 is
symmetric in z:t−1. It remains to prove that it is also symmetric in zt:.

We will prove this by showing σ(pτk+j,t−1) = pτk+j,t−1 for any σ = (τk + t + 1, τk + ǫ)
with ǫ ∈ {t, t+ 2, . . . , ℓk+1}. For any such σ with t+ 2 ≤ ǫ ≤ ℓk+1, our induction hypothesis
implies that σ(pτk+j,t) = pτk+j,t, while σ(ηj−t+1(zτk+t+1, . . . , τk+1)) = ηj−t+1(zτk+t+1, . . . , τk+1)
and σ

(
q{i,τk+t,...,τr}

)
= q{i,τk+t,...,τr} hold for all i. Together with (21), we get σ(pτk+j,t−1) =

pτk+j,t−1. Finally, if σ = (τk + t + 1, τk + t), then we have

σ(ηj−t+1(zτk+t+1, . . . , τk+1)) = ηj−t+1(zτk+t, zτk+t+2, . . . , τk+1)

and σ
(
q{i,τk+t,...,τr}

)
= q{i,τk+t,...,τr} for all i = τk + 1, . . . , τk + t− 1. Notice that

ηj−t+1(zτk+t, zτk+t+2, . . . , τk+1)−ηj−t+1(zτk+t+1, . . . , τk+1) = (zτk+t−zτk+t+1) ηj−t(zτk+t+2, . . . , zτk+1
).

Therefore,

σ(pτk+j,t−1)− pτk+ı̂,t−1 = σ(pτk+j,t)− pτk+j,t

+ (zτk+t − zτk+t+1) ηj−t(zτk+t+2, . . . , zτk+1
)
(
τk+t−1∑

i=τk+1

q{i,τk+t,...,τr}

)

= σ(pτk+j,t)− pτk+j,t + ηj−t(zτk+t+2, . . . , zτk+1
)

(
τk+t−1∑

i=τk+1

(q{i,τk+t+1,τk+t+2,...,τr} − q{i,τk+t,τk+t+2,...,τr})
)
, (23)

where the last equality follows from the definition of divided differences. In particular,

σ(pτk+j,j−1)− pτk+j,j−1 = σ(pτk+j,j)− pτk+j,j +

τk+j−1
∑

i=τk+1

(q{i,τk+j+1,...,τr} − q{i,τk+j,τk+j+2,...,τr}).

In addition, since pτk+j,j =
∑τk+j

i=τk+1 q{i,τk+j+1,...,τr}, then when σ = (τk + j + 1, τk + j), we

have σ(pτk+j,j) − pτk+j,j =
∑τk+j−1

i=τk+1 (q{i,τk+j,τk+j+2,...,τr} − q{i,τk+j+1,...,τr}). This implies that
σ(pτk+j,j−1)− pτk+j,j−1 = 0.

When t ≤ j − 1, from (21), taken at index t+ 1, if σ = (τk + t+ 1, τk + t), we also have

σ(pτk+j,t) = σ(pτk+j,t+1) + ηj−t(zτk+t+2, . . . , zτk+1
)
(
τk+t−1∑

i=τk+1

q{i,τk+t,τk+t+2,...,τr} + q{τk+t,τk+t+1,...,τk+1}

)
.
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Then, by subtraction:

σ(pτk+j,t)− pτk+j,t = σ(pτk+j,t+1)− pτk+j,t+1 + ηj−t(zτk+t+2, . . . , zτk+1
)

(
τk+t−1∑

i=τk+1

(q{i,τk+t,τk+t+2,...,τr} − q{i,τk+t+1,...,τr})
)

and so

σ(pτk+j,t+1)− pτk+j,t+1 =σ(pτk+j,t)− pτk+j,t + ηj−t(zτk+t+2, . . . , zτk+1
)

(
τk+t−1∑

i=τk+1

(q{i,τk+t+1,...,τr} − q{i,τk+t,τk+t+2,...,τr})
)
. (24)

Combining (23) and (24) gives σ(pτk+j,t−1)−pτk+j,t−1 = σ(pτk+j,t+1)−pτk+j,t+1. By induction,
we have that pτk+j,t+1 is symmetric in z:t+1 and so σ(pτk+j,t+1) = pτk+j,t+1 for σ = (τk + t +
1, τk + t) which in turn implies that σ(pτk+j,t−1) = pτk+j,t−1. This gives our result.

B Proof of Proposition 2.5

Define the row vector

h =
(
hτ0+1, . . . , hτ1 , . . . , hτr−1+1, . . . , hτr

)

where, for k = 0, . . . , r − 1 and j = 1, . . . , ℓk+1,

hτk+j =

τk+j
∑

i=τk+1

q{i,τk+j+1,...,τr}. (25)

Then for all i = 1, . . . , m, k = 0, . . . , r−1, pτk+ℓk+1
= hτk+ℓk+1

, and for j = 1, . . . , ℓk+1−1,

pτk+j =

j
∑

s=1

ηj−s(zτk+s+2, . . . , zτk+1
) hτk+s.

Then h = pM, where we recall that M is the block-diagonal matrix with blocks M1, . . . ,Mr

where

Mk+1 =













1 η1(zτk+3, . . . , zτk+1
) η2(zτk+3, . . . , zτk+1

) · · · ηℓk+1−2(zτk+3, . . . , zτk+1
) 0

0 1 η1(zτk+4, . . . , zτk+1
) · · · ηℓk+1−3(zτk+4, . . . , zτk+1

) 0
0 0 1 · · · ηℓk+1−4(zτk+5, . . . , zτk+1

) 0
...

...
...

...
...

0 0 0 · · · 1 0

0 0 0 · · · 0 1













.

36



Then det(M) = 1 and N = M−1 is also a polynomial matrix in K[Z] with det(N) = 1.
We construct a matrix J which defines the column operations converting h into q as

follows. Recall that for k = 0, . . . , r − 1 and j = 1, . . . , ℓk+1, we have defined the following
τr × τr polynomial matrices. Set Bτ0+1 = Iτr , Cτ0+1 = Iτr , Dτ0+j = Iτr , and

Bτk+j =





Iτk 0 0

0 Ek,j 0

0 0 Iτr−τk+1



 , with Ek,j =










Ij−1

zτk+j − zτk+1
...

zτk+j − zτk+j−1

0

0 . . . 0 −1 0

0 0 Iℓk+1−j










;

Cτk+j =





Iτk 0 0

0 Fk,j 0

0 0 Iτr−τk+1



 , with Fk,j =





diag(zτk+j − zτk+t)
j−1
t=1 0 0

−1
j

. . . −1
j

−1
j

0

0 0 Iℓk+1−j



 ;

Dτk+j =





diag(zτk+j − zt)
τk
t=1 0 0

Gk,j Iℓk+1
0

0 0 Iτr−τk+1



 , Gk,j : jth row is (1, . . . , 1); others are zeros.

Let

J =
r−1∏

k=0

ℓk+1∏

j=1

Bτk+j Cτk+j Dτk+j ∈ K[Z1, . . . ,Zr]
τr×τr .

We will prove that this matrix satisfies q = h J. Note first that, for k = 0, . . . , r − 1
and j = 1, . . . , ℓk+1 we have det(Bτk+j) = det(Ek,j) = −1, det(Cτk+j) = det(Fk,j) =
−1
j

∏j−1
t=1 (zτk+j − zt), and det(Dτk+j) =

∏τk
t=1(zτk+j − zt). This implies that

det(J) = α

r−1∏

k=0

ℓk+1∏

j=1

j−1
∏

t=1

(zτk+j − zt)

τk∏

t=1

(zτk+j − zt) = α∆ for some α ∈ K 6=0.

Define U = NJ. Then p = qU, and det(U) is a unit in K[Z1, . . . ,Zr, 1/∆], as claimed.
It remains to prove q = h J. For s = 0, . . . , τr, define

qs =
(
q{1,s+1,...,τr} . . . q{s,s+1,...,τr} hs+1 . . . hτr

)
,

so that for s = 0 we have q0 = h, whereas for s = τr we have qτr = q. We prove the
following: for k in {0, . . . , r − 1} and j in {1, . . . , ℓk},

qτk+j = qτk+j−1Bτk+j Cτk+j Dτk+j. (26)

Our claim q = h J then follows from a direct induction, taking into account the values of q0

and qτr given above.
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Take k in {0, . . . , r − 1} and j in {1, . . . , ℓk}. Right-multiplying qτk+j−1 by Bτk+j only
affects the entry at index τk + j. It replaces hτk+j by

j−1
∑

i=1

q{τk+i,τk+j,...,τr}(zτk+j − zτk+i) − hτk+j.

Using the defining relation of divided differences, we get

q{τk+i,τk+j,...,τr}(zτk+j − zτk+i) = q{τk+i,τk+j+1,...,τr} − q{τk+j,τk+j+1,...,τr}.

With the definition of hτk+j in (25), the new entry at index τk+j simplifies as−jq{τk+j,τk+j+1,...,τr}.
When we multiply the resulting vector by Cτk+j, we affect only entries from indices τk + 1
to τk + j. More precisely, the previous relation shows that we obtain the vector

(
q{1,τk+j,...,τr} . . . q{τk ,τk+j,...,τr} q{τk+1,τk+j+1,...,τr} . . . q{τk+j,τk+j+1,...,τr} hτk+j+1 . . . hτr

)
.

Finally, right-multiplication by Dτk+j affects entries of indices 1, . . . , τk. For i = 1, . . . , τk, it
replaces q{i,τk+j,...,τr} by

q{i,τk+j,...,τr}(zτk+j − zi) + q{τk+j,τk+j+1,...,τr} = q{i,τk+j+1,...,τr}.

Thus, the resulting vector is

(
q{1,τk+j+1,...,τr} . . . q{τk ,τk+j+1,...,τr} q{τk+1,τk+j+1,...,τr} . . . q{τk+j,τk+j+1,...,τr} hτk+j+1 . . . hτr

)

which is precisely qτk+j, as claimed in (26).

C Proof of Lemma 4.4

To simplify our notation, for all 1 ≤ s ≤ ℓ, we abbreviate ηℓ−s(d−1, . . . , d−ℓ) to gℓ−s. Then,
we claim that one has

gℓ−s < d(d− 1) · · · (d− ℓ+ 1).

Indeed, let f(t) = (t+ d− 1)(t+ d− 2) · · · (t+ d− ℓ), so that f(1) = d(d− 1) · · · (d− ℓ+1).
From Vieta’s formula we have

f(t) =
ℓ∑

s=0

gℓ−s t
s

and so we also have f(1) =
∑ℓ

s=0 gℓ−s. Therefore,

d(d− 1) · · · (d− ℓ + 1) =
ℓ∑

s=0

gℓ−s

and so gℓ−s < d(d− 1) · · · (d− ℓ + 1) for all 1 ≤ s ≤ ℓ.
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Now, for any partition λ = (nℓ1
1 . . . nℓr

r ) ⊢ n of length ℓλ, we have

cλ = ds
gℓλ−s

wλ

with wλ =

r∏

i=1

ℓi!

= ds
ℓλ!

∏r

i=1 ℓi!

gℓλ−s

ℓλ!

= dsh(λ)Fd,ℓλ,s,

where h(λ) = ℓλ!∏r
i=1

ℓi!
=
(

ℓλ
ℓ1,...,ℓr

)
and Fd,ℓλ,s =

gℓλ−s

ℓλ!
. From our previous inequality we have

Fd,ℓλ,s ≤
d(d− 1) · · · (d− ℓλ + 1)

ℓλ!
=

(
d

ℓλ

)

and so
∑

λ⊢n, ℓλ≥s

cλ ≤ ds

(
∑

λ⊢n, ℓλ≥s

h(λ)

(
d

ℓλ

))

. (27)

Let a be a sequence of m + 1 numbers (a0, a1, . . . , am) and let pa(t) =
∑m

i=0 ai t
i be its

generating polynomial. The polynomial coefficients associated to a are defined by

(
k

n

)

a

=

{

[tn] (pa(t)
k), if 0 ≤ n ≤ mk

0, if n < 0 or n > mk

where [tn]
∑

i citi = cn is the coefficient of tn in the series
∑

i citi. For any partition λ of n,
let further λ′ be its conjugate partition. By [12, Lemma 2.1], we have

(
k

n

)

a

=
∑

λ⊢n,
ℓλ′≤n

a
k−ℓλ′
0 h(λ)wa(λ)

(
k

ℓλ

)

, (28)

where wa(λ) is the function wa(λ) =
∏m

i=1 a
ℓi
i , and ℓλ, ℓλ′ are the respective lengths of λ and

λ′. If we consider m = n, a = (1, . . . , 1) = 1 and k = d, then equation (28) becomes
(
d

n

)

1

=
∑

λ⊢n,
ℓλ′≤n

h(λ)

(
d

ℓλ′

)

.

For any partition λ of n, the length of its conjugate satisfies ℓλ′ ≤ n and so

[tn](1 + t+ · · ·+ tn)d =

(
d

n

)

1

=
∑

λ⊢n

h(λ)

(
d

ℓλ

)

. (29)

Furthermore,

(1 + t+ · · ·+ tn)d = (1− tn+1)d (1− t)d =
( d∑

k=0

(−1)k
(
d

k

)

t(n+1)k
)( ∞∑

i=0

(
d+ i− 1

i

)

ti
)

,
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where tn appears only when k = 0 and i = n. In other words,

[tn] (1 + t + · · ·+ tn)d =

(
n + d− 1

n

)

. (30)

Combining (27), (29) and (30), gives

∑

λ⊢n, ℓλ≥s

cλ ≤ ds

(
∑

λ⊢n

h(λ)

(
d

ℓλ

))

≤ ds
(
n+ d− 1

n

)

.

We prove the inequality
∑

λ⊢n, ℓλ≥s eλ ≤ n(d+ 1)s
(
n+d

n

)
similarly.
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