
Computing Degree of Parallelism
for BPMN Processes�

Yutian Sun and Jianwen Su

Department of Computer Science,
University of California, Santa Barbara

{sun,su}@cs.ucsb.edu

Abstract. For sequential processes and workflows (i.e., pipelined tasks), each
enactment (process instance) only has one task being performed at each time
instant. When a process allows tasks to be performed in parallel, an enactment
may have a number of tasks being performed concurrently and this number may
change in time. We define the “degree of parallelism” of a process as the max-
imum number of tasks to be performed concurrently during an execution of the
process. This paper initiates a study on computing degree of parallelism for three
classes of BPMN processes, which are defined based on the use of BPMN gate-
ways. For each class, an algorithm for computing degree of parallelism is pre-
sented. In particular, the algorithms for “homogeneous” and acyclic “choice-less”
processes (respectively) have polynomial time complexity, while the algorithm
for “asynchronous” processes runs in exponential time.

1 Introduction

There has been an increasing interest in developing techniques for supporting busi-
ness processes in research communities (e.g., recent conferences/workshops including
BPM, COOPIS, ICSOC, ...). A business process is an assembly of tasks (performed
by human or systems) to accomplish a business goal such as handling a loan appli-
cation, approving a permit or treating a patient. The emergence of data management
tools in the early 1980’s brought the concept of workflow systems to assist execution of
business processes in an ad hoc manner. IT innovations in the last decade have been ex-
erting a growing pressure to increase automation in design, operation, and management
of business processes. Recent research in this area focused on modeling approaches
(e.g., [12,3,21,22,10,1]), verifying properties of business processes and workflow (e.g.,
[19,20,7]), etc. In this paper, we study the problem of computing the maximum number
of tasks that are to be performed in parallel, which can provide useful information to
execution planning for processes or workflow [14,24].

Performing business tasks requires resources [16,17] including data, software
systems, devices, and in particular human. Resource planning is essential in business
process (and workflow) execution management. For processes (workflow) with sequen-
tially arranged tasks (i.e., pipelined tasks), each process instance has at most one task to
be performed at one time; the amount of resources needed can be roughly determined

� Work supported in part by NSF grant IIS-0812578 and a grant from IBM.

G. Kappel, Z. Maamar, H.R. Motahari-Nezhad (Eds.): ICSOC 2011, LNCS 7084, pp. 1–15, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

2 Y. Sun and J. Su

by the process initiation rate, the number of tasks in the process, and the amount of
work needed for each task. In this paper we focus on calculating the number of tasks
that are performed simultaneously, this information provides a needed input to resource
estimation.

When a process allows tasks to be performed in parallel, an enactment (process in-
stance) may have a number of tasks to be performed concurrently and this number may
change in time. We introduce a new concept “degree of parallelism” as the maximum
number of tasks to be performed concurrently during a process execution, i.e., the peak
demand on tasks to be performed. This paper initiates a study on computing degree of
parallelism for business processes specified in BPMN [4].

Degree of parallelism is a worst case metric for business processes and can provide
useful guidance to process modeling and execution planning. For example, some pro-
cesses may have unbounded degrees, i.e., their peak use exceeds any fixed number. It is
quite likely that such processes are results of modeling mistakes. More importantly, the
peak time information on tasks could help in planning the needed resources (including
human) for the execution of defined business processes.

Technically, this paper defines a formal model for processes (or workflows). The
core building blocks in the model are adopted and/or generalized from BPMN con-
structs; in addition, our model also incorporates an expected duration for each task. The
semantics resembles the Petri nets based semantics presented in [8]. The modeling of
task durations makes the model closer to real world processes, e.g., healthcare treat-
ment protocols (processes). We formally define the notion of degree of parallelism on
this model, and present the following new technical results on three new subclasses of
processes based on different combinations of BPMN gateways:

1. For “homogeneous” processes (that use only one type of gateways) a polynomial
time algorithm is developed that computes the degree of parallelism.

2. For acyclic “choice-less” processes that does not allow choice gateways nor cycles,
we present a polynomial time algorithm for processes in this subclass (the time
complexity is linear in the sum of all task durations in the process).

3. We also consider asynchronous processes that use only two types of BPMN gate-
ways: exclusive-merge and parallel-split. By mapping such processes to “process
graphs”, we show an algorithm to compute the degree of parallelism. The com-
plexity of the algorithm is exponential time in general, but quadratic if the process
contains at most one cycle. The general case solution answers an open problem in
[13], and the quadratic result improves the cubic time result in [13].

This paper is organized as follows. The formal model and the key notion of degree
of parallelism for processes are presented in Section 2. Sections 3, 4, and 5 focus on
homogeneous, acyclic choice-less, and asynchronous processes, respectively. Related
work is discussed in Section 6, and conclusions are included in Section 7.

2 A Formal Model for Processes

In this section, we introduce a formal model for BPMN processes (or workflows), the
key notions include “process”, “(pre-)snapshot”, “derivation”, and “reduction”.

Computing Degree of Parallelism for BPMN Processes 3

Apartment
Purchase

Application

Apartment
Lease

Application

Payment

Issue
Certificate

Insurance

Public
Notification

Document
Archive

Lease
Agreement

e1 g1

t1 t2

t3

t4

t5

t6

t7

t8

g2

g3

g5
e2

g4

(2 Days) (1 Day)

(1 Day)

(1 Day)

(1 Day)

(3 Days)

(1 Day)

(3 Days)

Fig. 1. A BPMN process

The semantics resembles the Petri net semantics for BPMN are presented in [8]. We
also define the central notion of “degree of parallelism” used in this paper.

In BPMN [4], a process is modeled as a graph whose nodes and edges are of different
types. In this paper, we focus on one type of edges corresponding to “sequence flow” in
BPMN, and three types of nodes: “event”, “task”, and “gateway”.

We consider two classes of events in BPMN: start and end events. A start (event)
node initializes a process by sending out a “flow front” (or an active point of execution)
to the next node. When all flow fronts reach their end (event) nodes, the process ends.
A task (node) represents an atomic unit of work.

A gateway node in a process alters the current execution path (e.g., by choosing an al-
ternative path or proceeding on all paths). There are four kinds of frequently used gate-
ways in BPMN: (exclusive-)choice, (exclusive-)merge, (parallel-)split and (parallel-)
join. Choice and merge gateways allow a flow front in a process to follow one of sev-
eral alternatives (choice) or choose only one flow front from possibly several incoming
edges to continue (merge). Split and join gateways, on the other hand, forward a flow
front to every outgoing edge for parallel execution (split) or synchronize flow fronts
from all incoming edges and combine them into one (join).

Example 2.1. Fig. 1 shows an example BPMN process, which combines purchasing an
apartment and putting it out for lease (in China where leasing arrangements need an ap-
proval from the city office for real estate management). The process begins from a start
event (e1) and immediately forks into two paths by a split gateway g1. The upper and
lower paths represent the purchase and lease sub-processes respectively. The applicant
files the purchase (t1) and lease (t7) applications. The expected duration of each task is
shown below the task node in the figure, e.g., t1 would take 2 days while t7 only 1 day.
After paying a purchasing transaction fee (t2), the applicant obtains the certificate (t6).
Together with the leasing application, the applicant can finish a lease contract with the
tenant (t8). For the other branch, the applicant also needs to spend 3 days on getting an
insurance policy (t3). Once this is done, the housing office will make a public notifi-
cation (t4) for additional 3 days as required by law before archiving all the documents
(t5). Finally, all flow fronts will synchronize at the join gateway g5; the process will end
when reaching end event e2.

4 Y. Sun and J. Su

In our formal model, a “process” is a graph with edges corresponding to control-flow
transitions and nodes representing start/end events, tasks, or gateways. Similarly, a gate-
way node alters the execution path (choosing an alternative path or following parallel
paths). Our model includes two kinds of gateways that are more general than BPMN
gateways: exclusive (denoted as +�) and parallel (denoted as ×�). A +�-gateway essen-
tially combines a merge gateway and a choice gateway, and a ×�-gateway is a join gate-
way followed by a split gateway. Specifically, a +�-gateway node passes an incoming
flow front on an incoming edge immediately to one of the outgoing edges to continue
the flow front. A ×�-gateway node, on the other hand, waits until one flow front from
each incoming edge arrives, merges them into one flow front, and then split it again to
pass a flow front to each of its outgoing edges. Note that when the number of incom-
ing/outgoing edges is 1, +�- and ×�-gateways degenerate to BPMN gateways.

Our model associates a duration to each node to indicate the typical length for the
node to complete. Without loss of generality, the duration of each gateway or event node
is always 0 (it takes no time to complete). A task node takes some time (> 0) to perform
before finishing. In Fig. 1, durations are shown in parentheses below task nodes.

For the technical development, we use indeg and outdeg to denote the number of
incoming edges and outgoing edges of a node respectively. Let T be the set consisting of
the following types:◦ (start),• (end), � (task), +� (exclusive gateway), and ×� (parallel
gateway). Let N be the set of natural numbers.

Definition: A process (with durations) is a tuple P = (V, s, F, E, τ, δ), where

– V is a (finite) set of nodes,
– s ∈ V and F ⊆ (V−{s}) are the start node and a set of end nodes (resp.),
– τ : V → T is a mapping that assigns each node in V a type such that τ(s) = “◦”,
τ(v) = “•” for each v ∈ F, and τ(v) is not “◦” nor “•” for each v ∈ V − F − {s},

– δ : V → N is a mapping that assigns each node a duration such that for each v ∈ V ,
δ(v) > 0 iff τ(v) = “�” (v is a task node), and

– E ⊆ (V−F)×(V−{s}) is a set of transitions satisfying all conditions listed below:
1. For the start node s, outdeg(s) = 1 and indeg(s) = 0,
2. For each end node v ∈ F, indeg(v) = 1 and outdeg(v) = 0, and
3. For each task node v, indeg(v) = outdeg(v) = 1.

Given a process P = (V, s, F, E, τ, δ), a cycle (of size n ∈ N) is a sequence v1, v2, ..., vn

such that for each i ∈ [1..n], vi is a node in V , and (vi, v(i mod n)+1) ∈ E. A process is
acyclic if it contains no cycles.

The graph shown in Fig. 1 can also be viewed as a process in our model, where e1

and e2 are the start and end nodes (resp.), gi’s (1 � i � 5) are ×�-gateway nodes, and
ti’s (1 � i � 8) are task nodes with non-0 durations.

In general, a process can be nondeterministic and/or have tasks performing in par-
allel. For example, if a flow front goes into a +�-gateway, the gateway can choose non-
deterministically an outgoing edge to route the flow front. Also, a process can spawn
several flow fronts during the execution due to ×�-gateway nodes. The goal of this paper
is to compute the maximum number of tasks that may run in parallel.

In order to define the notions precisely for algorithm development, we need to pro-
vide a semantics for processes. We introduce a pair of notions “pre-snapshots” and
“snapshots” below that are used to formulate the semantics.

Computing Degree of Parallelism for BPMN Processes 5

In the remainder of this section, let P = (V, s, F, E, τ, δ) be some process. A flow front
is a triple (u, v, n), where (u, v) ∈ E is an edge (transition) in P and n is a (possibly neg-
ative) integer such that n � δ(u). Intuitively, a positive number n denotes the remaining
time needed to complete the node u or “time-to-live” for u. When n � 0, u is completed
and the flow front is ready to move forward through v in the process. Since the duraton
of a non-task node is always 0, a flow front (u, v, n) originating at a non-task node u can
proceed unless v is a ×�-gateway node.

A pre-snapshot of the process P is a multiset of flow fronts. Note that duplicates are
allowed in a pre-snapshot. The singleton multiset {(s, u, 0)} is an initial pre-snapshot
where s is the start node. Given a pre-snapshot S of P, a node v in P is ready (to
activate) in S if one of the following holds:

– v is an end/task/ +�-gateway node and a flow front (u, v, n) is in S for some n � 0, or
– v is a ×�-gateway node and for each incoming edge (u, v) into v, (u, v, n) is a flow

front in S for some n � 0.

Example 2.2. Consider the process shown in Fig. 1. The triples (e1, g1, 0), (t1, t2, 2)
are flow fronts of the process, (e1, g1, 1) is not a flow front since the duration of e1

is 0 < 1, nor is (t1, t3, 2) since (t1, t3) is not an edge in the process. The following
are pre-snapshots: {(e1, g1, 0)}, {(g1, t1,−2)}, {(t1, t2, 2), (t7, g3, 1)}, and also {(t1, t2, 2),
(t2, g2,−1), (t7, g3, 1)}. In the pre-snapshot {(t1, t2, 2), (t2, g2,−1), (t7, g3, 1)}, task t2 has
completed, tasks t1 and t7 are still running in parallel, and node g2 is ready.

If a node v is ready in a pre-snapshot S , we can proceed a (or more) flow front(s) to the
node v to derive a new pre-snapshot S ′ as follows.

– If v is an end node and (u, v, n) is in S where n � 0, then S ′ = S − {(u, v, n)}.
– If v is a task or +�-gateway node and (u, v, n) is in S where n � 0, then S ′ =

(S − {(u, v, n)}) ∪ {(v,w, δ(v))} where δ(v) is the duration of v and (v,w) is an edge
leaving v in P. (When v is +�-gateway, w is nondeterministically selected.)

– If v is a ×�-gateway node with all incoming edges from u1, ..., u� and for each i ∈
[1..�], (ui, v, ni) is in S where ni � 0, then S ′ = (S − {(ui, v, ni) | 1�i��}) ∪
{(v,wi, δ(v)) | (v,wi) is an outgoing edge of v in P }.

Example 2.3. Consider the process in Fig. 1. Since e1 is the start node, the initial
pre-snapshot is {(e1, g1, 0)}. Clearly, g1 is ready and we can derive the pre-snapshot
{(g1, t1, 0), (g1, t7, 0)} since g1 is a ×�-gateway. Now both t1 and t7 become ready. We
may derive the pre-snapshots {(t1, t2, 2), (g1, t7, 0)}, and then {(t1, t2, 2), (t7, g3, 1)}. At
this point, no nodes are ready.

We call a pre-snapshot of process P in which no nodes are ready a snapshot. In Example
2.3, {(t1, t2, 2), (t7, g3, 1)} is a snapshot. In general, a pre-snapshot can always derive
in a finite number of steps into a snapshot. We call the procedure of a pre-snapshot
eventually deriving a snapshot a reduction.

From a snapshot, derivations cannot be made since no nodes are ready. At this time
we can advance process operations by one time unit. Technically, let S be a snapshot
and S ′ a pre-snapshot. S task-derives S ′ if S ′ = {(u, v, n − 1) | (u, v, n) ∈ S }.

6 Y. Sun and J. Su

Note that if a flow front has a positive time-to-live the time is decremented by 1, if
the time-to-live is zero or negative, the resulting time may be negative. While this may
be a useful information for measuring performance, we do not use the negative amounts
in this paper. Also, as the task-derivation indicates, the scheduling algorithm for process
tasks is an eager one—it performs the task immediately when the task becomes ready.
It is interesting to examine alternative scheduling policies and explore their impact on,
e.g., the degree of parallelism. But this is beyond the scope of the present paper.

Example 2.4. Continuing with Example 2.3, the snapshot {(t1, t2, 2), (t7, g3, 1)} task-
derives the pre-snapshot {(t1, t2, 1), (t7, g3, 0)}. The latter indicates that t7 is completed
but g3 is not ready since it is a ×�-gateway and the other incoming edge does not have a
flow front. Therefore, {(t1, t2, 1), (t7, g3, 0)} is also a snapshot, which further task-derives
{(t1, t2, 0), (t7, g3,−1)}. Now task t2 becomes ready.

Definition: Let n ∈ N and P = (V, s, F, E, τ, δ) be a process. An enactment of length n
of P is a sequence p = S 1S 2...S n such that for each i ∈ [1..n], S i is a snapshot, S 1 is a
reduction from the initial pre-snapshot and for each i ∈ [2..n], S i is obtained from S i−1

by first applying task-derivation on S i−1 followed by a reduction. The enactment p is
complete if S n = ∅. The semantics of a process P is a set of all complete enactments.

Let S be a snapshot, the active cardinality of S , denoted as |S |active, is the cardinality of
the multiset {(u, v, n) | (u, v, n) ∈ S and n � 1}. The active cardinality of S indicates the
number of (currently) running tasks at the time of the snapshot.

Definition: The degree (of parallelism) of a process P, denoted as DP(P), is the maxi-
mum active cardinality of a snapshot in some enactment of P.

The degree of process P reflects how much parallelism the execution of P allows, i.e.,
the maximum number of (active) flow fronts that can appear during the execution of P.
Suppose the total amount of “work” in P is fixed. The greater DP(P) is, the more re-
sources operations of P will need. On the other hand, the availability of these resources
will mean the total time to complete an enactment is shorter. This, however, does not
mean the throughput of the business managing process P is automatically higher. To
achieve operational efficiency under resource limitation, it may be possible to plan tasks
in P in a way to lower the degree of parallelism while maintaining the throughput. The
study on the degree of parallelism is an initial step towards understanding the issue of
resource needs and constraints on tasks as specified in a process.

3 Homogeneous Processes

In this section, we focus on a subclass of processes, called “homogeneous processes”,
and present a polynomial time algorithm to compute the degree of parallelism.

A process is homogeneous if its gateway nodes only use one kind of gateway, ei-
ther +�-gateway or ×�-gateway, but not both. There are two flavors of homogeneous pro-
cesses. A parallel-(or ×�-)homogeneous process uses only ×�-gateway while a choice-(or
+�-)homogeneous process uses only +�-gateway.

Computing Degree of Parallelism for BPMN Processes 7

Lemma 3.1. The degree of parallelism for each +�-homogeneous process is always 1.

From the semantics, it is easy to see that derivation and task-derivation from a pre-
snapshot will not increase the cardinality, since at most one outgoing edge (transition)
can be invoked for each node. Since the initial pre-snapshot only contains one element,
the cardinality of each snapshot of each arbitrary +�-homogeneous process is always
one, which bounds the degree of parallelism. The proof can be done by an induction.

Obviously, Lemma 3.1 fails for ×�-homogeneous processes. In the remainder of this
section, we only focus on the calculation of the degree of parallelism of ×�-homogeneous
processes. The process in Fig. 1 is a ×�-homogeneous process.

Given a process P, a node v is reachable in P, if there exists an enactment S 1S 2...S k,
such that v is ready either in the snapshot S k, or in a pre-snapshot that can be derived
from S k−1 and reduced to S k.

Lemma 3.2. If every node in a ×�-homogeneous process P is reachable, P is acyclic.

Proof: (Sketch) Let P be a ×�-homogeneous process that contains a cycle C. Consider a
sequence of pre-snapshots S 1, ..., S m such that (1) S 1 is initial, and for each i ∈ [2..m],
S i is derived or task-derived from S i−1 in one step, (2) for some node v in C, v is ready
in S m, and (3) no other nodes in C that is ready in S j for j < m. Since each node in
P is reachable, it is possible to find a v and pre-snapshot sequence that satisfy (1)-(3).
Clearly, v must have at least two incoming edges (one from the path and the other on
the cycle) and thus a ×�-gateway node. By the definition of derivition/task-derivition,
some node on C must be ready in S j for some j < m, a contradiction.

Since a ×�-homogeneous process is acyclic according to Lemma 3.2, each node will be
added into a snapshot or pre-snapshot at most once. Thus, the degree of parallelism is
finite and less than the total number of task nodes in the process.

Theorem 3.3. Given a ×�-homogeneous process P = (V, s, F, E, τ, δ), the degree of par-
allelism of P can be computed in O(|V | log |V |) time.

To establish Theorem 3.3, we develop an algorithm that simulates the execution of a
process P = (V, s, F, E, τ, δ) in computing its degree of parallelism. The simulation uses
a priority queue to store all nodes that are currently running. When a node finishes,
it is popped from the queue. Thus, the degree of the ×�-homogeneous process is the
maximum number of tasks that appear in the queue at some point during the simulation.

We use [v, t] to denote an element in Q where t is the completion time for a node v.
Entries of form [v, t] in Q, are sorted according to the completion time t in the ascending
order. The algorithm (Alg. 1) uses an array RN(v) to record the number of remaining
incoming nodes that haven’t finished but are necessary for v to be performed.

Alg. 1 starts by placing [s, 0] in Q which is analogous to the initial pre-snapshot. The
array RN(v) is initialized to indeg(v) for each v. Every time an element [v, t] is popped
from Q indicates the completion of v at time t. (Since elements in Q are sorted by their
end times, the one at the front of Q always has the earliest end time.) Once a node
v finishes, the algorithm checks if there is an edge connecting from v to u, and if so
RN(u) is decremented by 1. If RN(u) becomes 0, u starts to execute and therefore will

8 Y. Sun and J. Su

Algorithm 1. Compute Degree of a Parallel-Homogeneous Process
Input: A process P = (V, s, F, E, τ, δ)
Output: degree of parallelism DP(P)
1: Initialize a priority queue Q to be empty;
2: Q.enque([s, 0]);
3: for each v ∈ V − {s} do
4: RN(v) := indeg(v);
5: end for
6: deg := 0;
7: told := 0;
8: while Q is not empty do
9: [v1, t1] := Q.deque();

10: for each v2 ∈ {v | (v1, v) ∈ E} do
11: RN(v2) := RN(v2) − 1;
12: if RN(v2) = 0 then
13: Q.enque([v2, t1 + δ(v2)]);
14: end if
15: end for
16: if told � t1 then
17: #T := |{[v, t] | [v, t] ∈ Q ∧ v is a task node }|;
18: deg :=max(deg, #T);
19: told := t1;
20: end if
21: end while
22: return DP(P) = deg;

Step Q Updated RN #T DP Step Q Updated RN #T DP

1 [e1, 0] 0 0 9 [t8, 5], [t3 , 6] RN(t8) = 0 2 2
2 [g1, 0] RN(g1) = 0 0 0 10 [t3, 6] RN(g5) = 2 1 2
3 [t7, 1], [t1 , 2] RN(t7) = RN(t1) = 0 2 2 11 [g4, 6] RN(g4) = 0 0 2
4 [t1, 2] RN(g3) = 1 1 2 12 [t5, 7], [t4 , 9] RN(t5) = RN(t4) = 0 2 2
5 [t2, 3] RN(t2) = 0 1 2 13 [t4, 9] RN(g5) = 1 1 2
6 [g2, 3] RN(g2) = 0 0 2 14 [g5, 9] RN(g5) = 0 0 2
7 [t6, 4], [t3 , 6] RN(t6) = RN(t3) = 0 2 2 15 [e2, 9] RN(e2) = 2 0 2
8 [g3, 4], [t3 , 6] RN(g3) = 0 1 2 16 ∅ 0 2

Fig. 2. Simulating the process in Example 2.1

be pushed into Q. During the simulation, let #T be the number of task nodes in Q. In
all, the degree DP(P) is the highest #T that appears during the entire simulation.

Fig. 2 illustrates the details of simulating the process in Example 2.1. It turns out that
the degree of parallelism is 2 even though the process has 3 parallel branches (Fig. 1).

The complexity of Alg. 1 depends on the time to maintain the priority queue. Since
the size of the queue can be at most |V |, the complexity of this algorithm is O(|V | log |V |).

4 Acyclic Choice-Less Processes

In this section, we introduce another subclass of BPMN processes, acyclic “choice-less
processes” and focus on the computation of degree of parallelism for such processes.
We present a polynomial time algorithm to compute the degree. Note that for acyclic
processes, the degree is always finite.

Computing Degree of Parallelism for BPMN Processes 9

Apartment
Purchase

Application

Loan
Application

Down
Payment

Issue
Certificate

Insurance

Asset
Evaluation

Loan
Agreement

Public
Notification

Document
Archive

e1 g1

t1 t2

t3 t4 t5

t7

t8
g2

g3

g6

e2

g5

g7
e3

t9

t10g4

(2 Days)

(3 Days)

(1 Day)

(2 Days) (1 Day)

(3 Days)

(1 Day)

(1 Day)

(3 Days)

Fig. 3. An acyclic choice-less process

Definition: A process P = (V, s, F, E, τ, δ) is choice-less if for each v ∈ V , outdeg(v) =
1 whenever τ(v) = “ +�”.

Intuitively, a choice-less process contains no exclusive-decision gateway nodes. But it
may contain exclusive-merge gateway (with one outgoing edge). These processes are
used frequently in scientific workflows [2], where the focus is on computations that
involve large amounts of datasets. Knowing the degree of parallelism of a scientific
workflow would potentially help scheduling computations (i.e. tasks), especially for a
cloud computation setting [11].

Example 4.1. Fig. 3 shows an example of acyclic choice-less process for purchasing an
apartment with loan. The process begins with two branches: to apply for the apartment
purchase (t1) and pay the down payment (t2), and to apply for the loan (t3). After assess-
ing the apartment (t4), the bank decides to pay the rest of the balance (t5) to complete
the purchase (g2). Once the loan is settled, the housing office will archive the documents
(t10) and make a public notification (t9). Also, the office will give the certificate to the
buyer (t8) for the new ownership. After the customer purchases the insurance (t7), the
housing office will again archive the documents (t10) and make a public notification (t9).
Note that t10 is invoked twice due to the presence of a +�-gateway (g5).

Theorem 4.2. Given an acyclic choice-less process P = (V, s, F, E, τ, δ), the degree of
parallelism of P can be computed in O(|E| log |V | + |E|L) time where L is the sum of
durations of all task nodes in P.

In the remainder of this section, we discuss key ideas for proving Theorem 4.2. More
details are provided in the online appendix [18].

The key idea to compute the degree of an acyclic choice-less process is to parti-
tion the process into smaller pieces, analyze the pieces, and then aggregate them to-
gether. We view each ×�-gateway node as a pair of BPMN split and join gateways, all
+�-gateway nodes are actually merge gateways due to the choice-less restriction. The

following are the 3 main steps:

1. Decompose the process into segments according to join and merge gateway nodes.
2. For each segment, a list is computed to capture the parallelism information.
3. Combine all such lists and compute the degree for the input process.

In the first step, a process is chopped into segments. Each segment is separated by join
and merge gateway nodes. To generate a segment, a depth-first search is used. We create

10 Y. Sun and J. Su

t1

t3

t2

t4 t5

e1 g1
g2

g5g4

(2 Days) (1 Day)

(3 Days) (2 Days) (1 Day)

t8

t7

g2 g3

g5

e2

(1 Day)

(3 Days)

t9

t10

g5

g7

g6

(1 Day)

(3 Days)

g7 e3

(a) (b) (c) (d)

Fig. 4. Four segments of the process in Fig. 3

0 3 6

2 1

 t2 g2 g4 g2

 g4 g5
0 1 3

2 1

 t7 g5

0 1 3

2 1

 t9 g7 t10 g7

(a) Starts from e1 (b) Starts from g2 (c) Starts from g5

Fig. 5. Event point list

a new segment by traversing from the start node. when a join or merge gateway node is
visited, it is marked as an exit node for the current segment, and starts a new segment.
The node also plays the role of the entry node of the new segment. Since a join or merge
gateway node has only one outgoing edge, each segment has only one entry node and
may have several exit nodes.

Example 4.3. Fig. 4 shows all four segments of the process in Fig. 3. Fig. 4(a) has the
entry node e1 and two exit nodes g2, g5. Fig. 4(b) starts from g2 and ends at e2, g5.
Fig. 4(c) enters at g5 and has one exit node g7. Fig. 4(d) starts from g7 and ends at e3.

In the second step, we compute the “parallelism” information of each segment, with
a data structure event point list. An event point list contains two basic pieces of in-
formation: (1) the cardinality of the corresponding segment’s enactment between two
timestamps, and (2) the time the segment will reach its exit nodes and through which
edge the segment will reach each exit node.

Example 4.4. Fig. 5 shows three event point lists generated according to the segments
in Example 4.3. Fig. 5(a) corresponds to Fig. 4(a). From time 0 to 3, the degree is 2,
then t2 completes and invokes g2. From time 3 to 6, only one flow front exists, and
at timestamp 6, g4 invokes g2 and g5. Fig. 5(b)(c) provide the similar event point lists
corresponding to Fig. 4(b)(c), resp. The event point list of Fig. 4(d) is an empty list.

Constructing event point lists is similar to the algorithm in Section 3. By mapping each
entry node to an start node and each exit node to an end node, each segment is in fact a
homogeneous process. Similar to Alg. 1, a priority queue can be used to simulate each
segment. And the event point list can be derived according to #T . When an exit node is
popped out from the queue, this node, together with its incoming edge, will be recorded
in the event point list.

In the remainder of this section, we may use term “event point list” and “segment”
interchangeably to refer to the same object according to the context.

Once all event point lists are constructed, the third step combines the lists. Since the
choice-less process is acyclic, a key observation is that all segments follow a topological
order, i.e., a segment can only be invoked by its preceding segments.

Computing Degree of Parallelism for BPMN Processes 11

0 3 6

2 1

 t2 g2 g4 g2

 g4 g5

7 9

2 1

 t7 g5

0 3 6

2 1

 g4 g5

7 9

4 2

 t7 g5

 t9 g7

 t10 g7

(a) Combine g2 to e1 (b) Combine g5 to e1

0 3 6

2 1

7 9

4 2

 t7 g5

 t9 g7

 t10 g7

10 12

2 1

 t9 g7 t10 g7

(c) Combine g5 to e1

Fig. 6. Combination of event point lists

With the sorted segment sequence, we remove the second segment and combine its
event point list into the first event point list. Note that this guarantees that the second
segment can only be invoked by one segment, i.e., the first. This procedure repeats until
only one event point list left in the end.

There are two types of event point lists to be combined. One starts from a join gate-
way (node) and the other from a merge gateway. The combination of these two types of
event point lists to the first event point list need be handled differently.

If the second event point list’s entry node is a join gateway, we first mark where
this segment is invoked in the first event point list according to each different incoming
edges from left to right. once all different incoming edges are marked, we combine the
second event point list to the first one at the last timestamp where an edge is marked.
Then we repeat the above steps until the second event point list cannot be combined any
more. The reason to mark incoming edges is to simulate the synchronization property
of join gateway. A join gateway can only continue once all its incoming edges are ready.

Example 4.5. The segment order for Example 4.4 is e1, g2, g5, g7. Now consider the
second event point list that starts from join gateway g2. Since g2 has two incoming
edges, (t2, g2) and (g4, g2), in the first event point list, we mark t2 → g2 and g4 → g2

and then combine the second event point list at time 6. Fig. 6(a) is the new event point
list starts from e1 and g2 (segment) should be removed from the segment sequence.

If the second event point list’s entry node is a merge gateway, the combination is sim-
pler. Since for each incoming edge of this kind of node, once a flow front arrives, the
node immediately routes it to its outgoing edge. Thus when scanning the first event
point list, once at some timestamp, the second segment is invoked, we can simply do
the combination.

Example 4.6. After merging g2 to e1 in Example 4.5, the segment sequence is e1, g5, g7.
Now the second event point list starts from the merge gateway g5. In the first event point
list (Fig. 6(a)), there are two places that call g5. Hence, two combinations are needed.
Fig. 6(b) and (c) show the first and second combination respectively.

Now the only event point list left is the one with entry node g7. Since g7 leads an
empty event point list, the final event point list is the same as the one in Fig. 6(c).

The algorithm details are provided in the online appendix [18].

12 Y. Sun and J. Su

X
Evaluation
Application

Apartment
Assessment

Data
Analysis

Comment
& Review

Data
Archivee1 t1

g2 g3

t2 t3

t4

t5

g4 g5 e2g6

e3

(2 Hours) (1 Hour) (1 Hour)

(1 Hour)

(1 Hour)

Fig. 7. Pre-sell permit approval process

5 Asynchronous Processes

In this section, we introduce the third subclass of BPMN processes, called “asyn-
chronous processes”, and present an algorithm to compute their degrees. Intuitively,
an asynchronous process only includes split and merge gateways, i.e., it cannot do syn-
chronization nor choices. It turns out that computing degree of parallelism for such
processes is rather intricate, the time complexity of the algorithm is exponential.

Definition: A process P = (V, s, F, E, τ, δ) is asynchronous if for each node v ∈ V ,
outdeg(v) = 1 whenever τ(v) = “ +�” and indeg(v) = 1 whenever τ(v) = “ ×�”.

From the definition, an asynchronous process includes only gateways nodes that are
split gateway or merge gateway.

Example 5.1. Fig. 7 shows a process for apartment evaluation. If a developer is build-
ing apartments and plans to sell them, she needs a “pre-sell” permit from the city hous-
ing office. The office checks if the apartments are in good quality. An apartment quality
evaluation process will start when an application (t1) is received. Then the office staff
will assess each apartment. If there is no more apartment to check, the process will end
at g6 and exit to e3. Otherwise, evaluation modes to the next apartment (t2). Once an
apartment is assessed, the data will be send to the housing office asynchronously for
analysis (t3). After that, comment will be drawn (t5) and data will be archived (t4).

Technically, the process in the above example is not asynchronous due to the decision
gateway (g6). In order to simplify the analysis, we hide it from the process, link an edge
directly from g2 to t2, and remove e3 as well.

In the technical development, we use simplified graphs for asynchronous processes.

Definition: A (process) graph is a tuple (V, E, s, F) where V is a set of nodes containing
the initial node s and a set F of final nodes, and E ⊆ (V−F)×V is a set of edges.

A path of size n of an process graph G = (V, E, s, F) is a sequence of nodes v1v2...vn,
where for each i ∈ [1..n], vi ∈ V , v1 = s, and for each i ∈ [1..(n − 1)], (vi, vi+1) ∈ E.
A path denotes one possible execution of the given process graph. However, in order to
take all the possible executions into consideration, we pursue all paths in parallel. Let
Dn(G) denote the number of distinct paths of G with length n. We define the degree of
G to be the max Dn(G) for all n ∈ N.

Lemma 5.2. Each asynchronous process P can be translated into a process graph G,
such that the degree of P is the same as the degree of G.

Computing Degree of Parallelism for BPMN Processes 13

e1 t11 t12 t2 t3 t4 t5

t2

t3

t4 t5

t2

t3 t2

t4 t5 t3 t2

.

t2

t3

t4 t5

t2

t3 t2

t4 t5 t3 t2

t12t11e1

(a) Process graph (b) Expanded paths from t2 (c) Expanded paths from e1

Fig. 8. Process graph and its expansion

Fig. 8(a) shows the process graph translated from the process in Fig. 7. We now can
focus on process graphs and compute degree of an asynchronous process by computing
degree of its corresponding graph.

A process graph G is said to be bounded if the degree of G is finite. The key results
of the section are now stated below.

Theorem 5.3. Let P be an asynchronous process whose process graph has n nodes and
m edges. Boundedness of degree of P can be decided in O(m+n) time; if the degree is
bounded, the degree can be computed in exponential time, and in O(mn) time if P is
acyclic or contains only one cycle.

Theorem 5.3 follows from the following two lemmas (Lemmas 5.4 and 5.5).

Lemma 5.4. (1) The degree of a process graph is bounded iff it does not contain two
distinct cycles such that one connects to the other. (2) Given a process graph G =
(V, E, s, F), its boundedness can be determined in O(|V | + |E|) time.

Lemma 5.4 is a slight variant of a result in [13] (the models are slightly different). Fur-
thermore, given a process graph with at most one cycle (always bounded), an algorithm
was presented in [13] to compute the degree in cubic time complexity. However, the
general case was left open.

In the remainder of this section, we discuss a new algorithm that makes two im-
provements over the result in [13]: (1) it computes the degree for the general case, thus
solves the open problem from [13], (2) when applying to acyclic and one-cycle graphs,
the time complexity is quadratic, which improves the cubic result in [13].

Lemma 5.5. Given a bounded process graph G = (V, E, s, F), the degree of G can be
computed in exponential time, and in O(|V ||E|) time if G contains at most one cycle.

To compute the degree of a bounded process graph, we use the following steps:

1. Eliminate all cycles of the given process graph. For each node in the new graph,
compute the numbers of reachable nodes in different depths and store these num-
bers in a list, called “child list”. The method to compute each child list is according
to a reversed topological order.

2. Add cycles back to the graph, with the result from step 1, compute the numbers
of reachable nodes in different depths for those nodes that are inside cycles. Store
these numbers in a list, called “cycle child list”.

14 Y. Sun and J. Su

3. Remove all the cycles once more and compute the cycle child list for the source
node. The degree of the corresponding process graph is the largest number of this
cycle child list.

The detailed algorithm is rather involved and sketched in the online appendix [18].

6 Related Work

Our work is an extension of the work in [13] that focused on non-determinism of a
simple graph model. Their model can be mapped to asynchronous processes with their
degree of non-determinism coincides with degree of parallelism. The results reported
in Section 5 extended their results and solve an open problem.

There were a stream of papers related to degree of non-determinism of finite state
machines. These addressed the problems of boundedness [23,15], computing the degree
[23,9,15], estimating the upper bound of the degree [23], and complexity bounded on
this problem [15,5]. Although the problems are different from ours, it remains to explore
whether these techniques can be used in solving our problem.

Our work is also related to workflow execution management. The work in [14] pro-
posed a set of resource patterns for task allocation. While a language for specifying
the resource allocation constraints was described in [16,17]. The study in [6] focused
on authorization constraints and determining if a workflow can finish under such con-
straints. Static scheduling issues were studied in [24], where the authors developed an
adaptive rescheduling strategy for grid workflow. Finally, while our problem seems rel-
evant to parallel computing, it was not studied in the literature to the best of the authors’
knowledge.

7 Conclusions

We focus on a subset of BPMN and examine the worst case number of parallel tasks and
develop a set of preliminary results. It is still not clear how one would extend the algo-
rithm to the full set of BPMN. This work also spawns many interesting questions related
to planning business process execution. For example, given the resource requirements
and cost functions, how can these algorithms be augmented to produce sufficient infor-
mation for execution planning. Such problems are key to many business processes, e.g.,
in healthcare delivery. Clearly, this paper merely peeks into a broader topic concerning
business operations planning and optimization.

References

1. Abiteboul, S., Segoufin, L., Vianu, V.: Modeling and verifying active xml artifacts. Data
Engineering Bulletin 32(3), 10–15 (2009)

2. Barker, A., van Hemert, J.: Scientific Workflow: A Survey and Research Directions. In:
Wyrzykowski, R., Dongarra, J., Karczewski, K., Wasniewski, J. (eds.) PPAM 2007. LNCS,
vol. 4967, pp. 746–753. Springer, Heidelberg (2008)

Computing Degree of Parallelism for BPMN Processes 15

3. Bhattacharya, K., Gerede, C., Hull, R., Liu, R., Su, J.: Towards Formal Analysis of Artifact-
Centric Business Process Models. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM
2007. LNCS, vol. 4714, pp. 288–304. Springer, Heidelberg (2007)

4. Business Process Model and Notation (BPMN), version 2.0 (January 2011),
http://www.omg.org/spec/BPMN/2.0/PDF

5. Chan, T., Ibarra, O.H.: On the finite-valuedness problem for sequential machines. Theoretical
Computer Science 23(1), 95–101 (1983)

6. Crampton, J.: A reference monitor for workflow systems with constrained task execution. In:
Proc. 10th ACM Symp. on Access Control Models and Technologies, SACMAT (2005)

7. Deutsch, A., Hull, R., Patrizi, F., Vianu, V.: Automatic verification of data-centric business
processes. In: Proc. Int. Conf. on Database Theory (ICDT), pp. 252–267 (2009)

8. Dijkman, R.M., Dumas, M., Ouyang, C.: Semantics and analysis of business process models
in bpmn. Inf. Softw. Technol. 50, 1281–1294 (2008)

9. Gurari, E.M., Ibarra, O.H.: A note on finite-valued and finitely ambiguous transducers. The-
ory of Computing Systems 16(1), 61–66 (1983)

10. Hull, R., Damaggio, E., Fournier, F., Gupta, M., Heath III, F., Hobson, S., Linehan, M.,
Maradugu, S., Nigam, A., Sukaviriya, P., Vaculı́n, R.: Introducing the guard-stage-milestone
approach to specifying business entity lifecycles. In: Proc. Workshop on Web Services and
Formal Methods (WS-FM). Springer, Heidelberg (2010)

11. Juve, G., Deelman, E.: Scientific workflows and clouds. Crossroads 16(3) (March 2010)
12. Nigam, A., Caswell, N.S.: Business artifacts: An approach to operational specification. IBM

Systems Journal 42(3), 428–445 (2003)
13. Potapova, A., Su, J.: On nondeterministic workflow executions. In: Proc. Workshop on Web

Services and Formal Methods, WSFM (2010)
14. Russell, N., van der Aalst, W.M.P., ter Hofstede, A.H.M., Edmond, D.: Workflow Resource

Patterns: Identification, Representation and Tool Support. In: Pastor, Ó., Falcão e Cunha, J.
(eds.) CAiSE 2005. LNCS, vol. 3520, pp. 216–232. Springer, Heidelberg (2005)

15. Sakarovitch, J., de Souza, R.: On the Decidability of Bounded Valuedness for Transduc-
ers. In: Ochmański, E., Tyszkiewicz, J. (eds.) MFCS 2008. LNCS, vol. 5162, pp. 588–600.
Springer, Heidelberg (2008)

16. Senkul, P., Kifer, M., Toroslu, I.H.: A logical framework for scheduling workflows under
resource allocation constraints. In: Proc. 28th Int. Conf. on Very Large Data Bases (2002)

17. Senkul, P., Toroslu, I.H.: An architecture for workflow scheduling under resource allocation
constraints. Information Systems 30, 399–422 (2005)

18. Sun, Y., Su, J.: On-line Appendix to the Paper “Computing Degree of Parallelism for BPMN
Processes” (2011),
http://www.cs.ucsb.edu/˜su/papers/2011/AppendixICSOC2011.pdf

19. van der Aalst, W.M.P.: Verification of workflow nets. In: Azéma, P., Balbo, G. (eds.) ICATPN
1997. LNCS, vol. 1248. Springer, Heidelberg (1997)

20. van der Aalst, W.M.P.: Workflow Verification: Finding Control-Flow Errors Using Petri-Net-
Based Techniques. In: van der Aalst, W.M.P., Desel, J., Oberweis, A. (eds.) Business Process
Management. LNCS, vol. 1806, p. 161. Springer, Heidelberg (2000)

21. van der Aalst, W.M.P., Pesic, M.: DecSerFlow: Towards a Truly Declarative Service Flow
Language. In: Bravetti, M., Núñez, M., Tennenholtz, M. (eds.) WS-FM 2006. LNCS,
vol. 4184, pp. 1–23. Springer, Heidelberg (2006)

22. van der Aalst, W.M.P., ter Hofstede, A.H.M.: YAWL: yet another workflow language. Infor-
mation Systems 30(4), 245–275 (2005)

23. Weber, A.: On the valuedness of finite transducers. Acta Inf. 27, 749–780 (1990)
24. Yu, Z., Shi, W.: An adaptive rescheduling strategy for grid workflow applications. In: Proc.

IPDPS (2007)

http://www.omg.org/spec/BPMN/2.0/PDF
http://www.cs.ucsb.edu/~su/papers/2011/AppendixICSOC2011.pdf

	Computing Degree of Parallelism for BPMN Processes
	Introduction
	A Formal Model for Processes
	Homogeneous Processes
	Acyclic Choice-Less Processes
	Asynchronous Processes
	Related Work
	Conclusions

