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Abstract. We introduce a fixedpoint algorithm for verifying safety prop-
erties of hybrid systems with differential equations whose right-hand
sides are polynomials in the state variables. In order to verify nontrivial
systems without solving their differential equations and without numeri-
cal errors, we use a continuous generalization of induction, for which our
algorithm computes the required differential invariants. As a means for
combining local differential invariants into global system invariants in a
sound way, our fixedpoint algorithm works with a compositional veri-
fication logic for hybrid systems. To improve the verification power, we
further introduce a saturation procedure that refines the system dynamics
successively with differential invariants until safety becomes provable. By
complementing our symbolic verification algorithm with a robust version
of numerical falsification, we obtain a fast and sound verification proce-
dure. We verify roundabout maneuvers in air traffic management and
collision avoidance in train control.

Keywords: verification of hybrid systems, differential invariants, verifi-
cation logic, fixedpoint engine.

1 Introduction

Reachability questions for systems with complex continuous dynamics are among
the most challenging problems in verifying embedded systems. Hybrid systems [1,
2, 3, 4] are models for these systems with interacting discrete and continuous
transitions, with the latter being governed by differential equations. For simple
systems whose differential equations have solutions that are polynomials in the
state variables, quantifier elimination [5] can be used for verification [3,6,7,8,9].
Unfortunately, this symbolic approach does not scale to systems with compli-
cated differential equations whose solutions do not support quantifier elimination
(e.g., when they are transcendental functions) or cannot be given in closed form.

Numerical or approximation approaches [10, 11, 12] can deal with more gen-
eral dynamics. However, numerical or approximation errors need to be handled
carefully as they easily cause unsoundness [11]. More specifically, we have shown
previously that even single image computations of fairly restricted classes of hy-
brid systems are undecidable by numerical computation [11]. Thus, numerical
approaches can be used for falsification but not (ultimately) for verification.
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In this paper, we present an approach that combines the soundness of
symbolic approaches [3, 7, 8, 9] with support for nontrivial dynamics that is clas-
sically more dominant in numerical approaches [10, 11, 12]. During continuous
transitions, the system follows a solution of its differential equation. But for non-
trivial dynamics, these solutions are much more complicated than the original
equations. Solutions quickly become transcendental even if the differential equa-
tions are linear. To overcome this, we handle continuous transitions based on their
vector fields, which are described by their differential equations. We use differen-
tial induction [13], a continuous generalization of induction that works with the
differential equations themselves instead of their solutions. For the induction step,
we use a condition that can be checked easily based on differential invariants [13],
i.e., properties whose derivative holds true in the direction of the vector field of
the differential equation. The derivative is a directional derivative in the direc-
tion of (the vector field generated by) the differential equation, and we generalize
derivatives from functions to formulas appropriately. For this to work in practice,
the most crucial steps are to find sufficiently strong local differential invariants for
differential equations and compatible global invariants for the hybrid system.

To this end, we introduce a sound verification algorithm for hybrid systems
that computes the differential invariants and system invariants in a fixedpoint
loop. We follow the invariants as fixedpoints paradigm [14] using a verifica-
tion logic that is generalized to hybrid systems accordingly [8,9]. For combining
multiple local differential invariants into a global invariant in a sound way, we
exploit the closure properties of the underlying verification logic [8, 9] by form-
ing appropriate logical combinations of multiple safety statements. In addition,
we introduce a differential saturation process that refines the hybrid dynamics
successively with auxiliary differential invariants until the safety statement be-
comes an invariant of the refined system. Finally, each fixedpoint iteration of our
algorithm can be combined with numerical falsification to accelerate the overall
symbolic verification in a sound way [15]. We validate our algorithm by verifying
aircraft roundabout maneuvers [16, 11] and train control applications [17].

The major contribution in this work is the fixedpoint algorithm for computing
differential invariants coupled with a differential saturation process. We show
that it can verify realistic applications that were out of scope for related invariant
approaches [18,19,20] or [1,3,6], both for theoretical reasons [9,13] and scalability.

2 Hybrid Programs and Differential Dynamic Logic

As operational models for hybrid systems, we use hybrid programs (HP), a pro-
gram notation for hybrid automata (HA) [1]. HP can be decomposed syntac-
tically into fragments : subprograms which correspond to partial executions of
only a part of the full HP (programs are easier to split structurally into parts
than graphs, because handling dangling edges between graph fragments is com-
plicated). This is important as our verification algorithm recursively decomposes
an HP into fragments α1, . . . , αn (e.g., to find local invariants for each αi) and
recombines corresponding correctness statements about these fragments αi later.
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on
x′ = 1
x ≤ 9

off
x′ = −1

x ≥ 5

x := x + 1

x ≤ 2

q := on; /* initial location is on */(
(?q = on; x′ = 1 ∧ x ≤ 9)

∪ (?q = on ∧ x ≥ 5; x := x + 1; q := off)
∪ (?q = off; x′ = −1)
∪ (?q = off ∧ x ≤ 2; q := on; ?x ≤ 9)

)∗

Fig. 1. Natural hybrid program rendition of hybrid automaton (simple water tank)

Hybrid Programs. In order to represent HA [1] textually as an HP, we represent
each discrete and continuous transition as a sequence of statements, with a
nondeterministic choice (∪) between these transitions. For instance, the second
line in Fig. 1 represents a continuous transition. It tests (denoted by ?q = on) if
the current location q is on, and then follows a differential equation restricted to
invariant region x ≤ 9 (i.e., the conjunction x′ = 1 ∧ x ≤ 9). The third line tests
the guard x ≥ 5 when in state on, resets x by a discrete assignment, and then
changes location q to off. The ∗ at the end indicates that the transitions of a HA
repeat indefinitely. Alternatively, the resulting HP in Fig. 1 can be considered as
the essential part of a program exported from Stateflow/Simulink enriched with
differential equations for the continuous dynamics. Every safety property that
this HP satisfies is fulfilled for all deterministic implementation refinements.

Formally, let V be a set of state variables of the system and auxiliary vari-
ables. As terms we allow polynomials over Q with variables in V . To make
a structural decomposition of HP into fragments possible, each operation of a
HP only has a single effect. There are separate classes of program statements
with purely discrete effect, purely continuous effect, and statements for regu-
lating their interaction. Hybrid programs (HP) are built with the statements
in Tab. 1. The effect of x := θ is an instantaneous discrete jump assigning θ
to x. Instead, x := random randomly assigns any real value to x by a nondeter-
ministic choice. During a continuous evolution x′

1 = θ1 ∧ · · · ∧ x′
n = θn ∧ H , all

conjuncts need to hold. Its effect is a continuous transition controlled by the dif-
ferential equation x′

1 = θ1, . . . , x
′
n = θn that always satisfies the arithmetic con-

straint H (thus remains in the region described by H). This directly corresponds
to a continuous evolution mode of a HA. The effect of state check ?H is a skip
(i.e., no change) if H is true in the current state and that of abort, otherwise.

Table 1. Statements and (informal) effects of hybrid programs (HP)

notation statement effect
x := θ discrete assignment assigns term θ to variable x ∈ V
x := random nondet. assignment assigns any real value to x ∈ V
x′

1 = θ1 ∧ . . .
continuous evolution

diff. equations for xi ∈ V and terms θi,
· · · ∧ x′

n = θn ∧ H with arithmetic constraint H (domain)
?H state check test formula H at current state
α; β seq. composition HP β starts after HP α finishes
α ∪ β nondet. choice choice between alternatives HP α or β
α∗ nondet. repetition repeats HP α n-times for any n ∈ N
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Non-deterministic choice α ∪ β expresses alternatives in the behavior of the hy-
brid system. Sequential composition α; β expresses a behavior in which β starts
after α finishes (as usual, β never starts if α continues indefinitely). Non-deter-
ministic repetition α∗, repeats α an arbitrary number of times, possibly zero.

Formulas of dL. Our verification algorithm repeatedly decomposes and recom-
bines HP. As a logical framework where these operations are sound, we use a
logic in which simultaneous correctness properties about multiple subsystems are
expressible. The differential dynamic logic dL [8,9] is an extension of first-order
logic over the reals with modal formulas like [α]φ, which is true iff all states
reachable by following the transitions of HP α satisfy property φ (safety).

Definition 1 (dL formulas). The formulas of dL are defined by the following
grammar (where θ1, θ2 are terms, ∼ ∈ {=,≤, <,≥, >}, φ, ψ are formulas, x ∈ V ,
and α is an HP built from the statements in Tab. 1):

Fml ::= θ1 ∼ θ2 | ¬φ | φ ∧ ψ | φ ∨ ψ | φ → ψ | ∀xφ | ∃xφ | [α]φ .

A Hoare-triple {ψ}α{φ} can be expressed as ψ → [α]φ, which is true iff all
states reachable by HP α satisfy φ when starting from an initial state that
satisfies ψ. Unlike Hoare-logics, dynamic logics are closed under logical con-
nectives [21]. Hence, we can express simultaneous correctness statements about
multiple fragments αi using conjuncts [α1]φ1 ∧ [α2]φ2. With this, a proof for [α]φ
can be decomposed soundly into [α1]φ1 ∧ [α2]φ2, when [α]φ and [α1]φ1 ∧ [α2]φ2
are equivalent for appropriate fragments αi of α and subproperties φi of φ. In
turn, if the verification algorithm with input [αi]φi yields φ̃i, these can be re-
combined soundly to the verification result φ̃1 ∧ φ̃2 for [α]φ. By the semantics
of dL, this process gives a sound way of combining local invariants required in
the respective subgoals [αi]φi to a global system invariant. Finally, dL and its
proof techniques are closed under quantification, which we use to quantify over
parameter choices of local invariants. For example, ∃p ([α1]φ1 ∧ [α2]φ2) can be
used to determine if there is a common choice for parameter p that makes both
subgoals [αi]φi true. The semantics of dL and HP is a Kripke semantics [8, 9].

3 Inductive Verification by Combining Local Fixedpoints

For verifying safety properties of hybrid systems without having to solve their
differential equations, we use a continuous form of induction. In the induction
step, we use a condition on directional derivatives in the direction of the vector
field generated by the differential equation. The resulting properties are invari-
ants of the differential equation (whence called differential invariants [13]). The
crucial step for verifying discrete systems by induction is to find sufficiently
strong invariants (e.g., for loops α∗). Similarly, the crucial step for verifying
dynamical systems (which correspond to a single continuous mode of a hybrid
system) by induction is to find sufficiently strong invariant properties of the dif-
ferential equation. Consequently, for verifying hybrid systems inductively, local
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invariants need to be found for each differential equation and a global system
invariant needs to be found that is compatible with all local invariants.

To compute the required invariants and differential invariants, we combine
the invariants as fixedpoints approach from [14] with the lifting of verification
logics to hybrid systems from [8, 9]. We introduce a verification algorithm that
computes invariants of a system as fixedpoints of safety constraints on subsys-
tems. We exploit the fact that HP can be decomposed into subsystems and that
dL can combine safety statements about multiple subsystems simultaneously.

A safety statement corresponds to a dL formula ψ → [α]φ with an HP α, a
safety property φ about its reachable states, and an arithmetic formula ψ that
characterizes the set of initial states symbolically. Validity of formula ψ → [α]φ
(i.e., truth in all states) corresponds to φ being true in all states reachable by
HP α from initial states that satisfy ψ [9]. Our verification algorithm defines the
function prove(ψ → [α]φ) for verifying this safety statement recursively.

3.1 Verification by Symbolic Decomposition

The cases of prove where dL enables us to verify a property of an HP directly by
decomposing it into a property of its parts [9] are shown in Fig. 2. For a concise
presentation, the case in line 1 introduces an auxiliary variable x̂ to handle dis-
crete assignments by substituting x̂ for x in φx̂

x: E.g., x ≥ 2 → [x := x − 1]x ≥ 0
is shown by proving x ≥ 2 ∧ x̂ = x − 1 → x̂ ≥ 0. Our implementation uses opti-
mizations to avoid auxiliary variables [9]. State checks ?H are shown by assum-
ing the test succeeds, i.e., H holds true (line 3), nondeterministic choices split
into their alternatives (line 4), sequential compositions are proven using nested
modalities (line 6), and random assignments by universal quantification (line 7).

The base case in line 8, where φ is a formula of first-order real arithmetic,
can be proven by real quantifier elimination [5]. Despite its complexity, this can
remain feasible, because the formulas resulting from our algorithm do not depend
on the solutions of differential equations but only their right-hand sides. Using
a temporary form of Skolemization together with Deskolemization, quantifier
elimination can be lifted to eliminate quantifiers from dL formulas [9].

The algorithm in Fig. 2 recursively reduces safety of HP to properties of
continuous evolutions or of repetitions, which we verify in the next sections.

3.2 Discrete and Differential Induction, Differential Invariants

In the sequel, we present algorithms for verifying loops by discrete induction
and continuous evolutions by differential induction, which is a continuous form
of induction. In either case, we prove that an invariant F holds initially (in the
states characterized symbolically by ψ, thus ψ → F is valid) and finally entails
the postcondition φ (i.e., F → φ). The cases differ in their induction step.

Definition 2 (Discrete induction). Formula F is a (discrete) invariant of
ψ → [α∗]φ iff the following formulas are valid: ψ → F (induction start), and
F → [α]F (induction step). An invariant is sufficiently strong if F → φ is valid.
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1 function prove (ψ → [x := θ]φ ) :
2 return prove (ψ ∧ x̂ = θ → φx̂

x ) where x̂ i s a new aux i l i a r y v a r i ab l e
3 function prove (ψ → [?H ]φ ) : return prove (ψ ∧ H → φ)
4 function prove (ψ → [α ∪ β]φ ) :
5 return prove (ψ → [α]φ ) and prove (ψ → [β]φ ) /∗ thus ψ → [α]φ ∧ [β]φ∗/
6 function prove (ψ → [α; β]φ ) : return prove (ψ → [α][β]φ )
7 function prove (ψ → [x := random]φ ) : return prove (ψ → ∀x φ)
8 function prove (ψ → φ) where i sF i r s tOrde r (φ ) :
9 return Quant i f i e rE l im ina t i on (ψ → φ)

Fig. 2. dL-based verification by symbolic decomposition

Definition 3 (Continuous invariants). Let D be a differential equation. For-
mula F is a continuous invariant of ψ → [D ∧ H]φ iff the following formulas are
valid: ψ ∧ H → F (induction start), and F → [D ∧ H ]F (induction step). Again,
a continuous invariant is sufficiently strong if F → φ is valid.

To prove that F is a continuous invariant, it is sufficient to check a condition on
the directional derivatives of all terms of the formula, which expresses that no
atomic subformula of F changes its truth-value along the dynamics of the differ-
ential equation [13]. This condition is much easier to check than a reachability
property (F → [D ∧ H ]F ) of a differential equation. Applications like aircraft
maneuvers need invariants with mixed equations and inequalities. Thus, we gen-
eralize directional derivatives from functions to logical formulas.

Definition 4 (Differential induction). Let the differential equation system D
be x′

1 = θ1 ∧ · · · ∧ x′
n = θn. Formula F is a differential invariant of ψ → [D ∧ H ]φ

iff the following formulas are valid: ψ ∧ H → F and H → ∇DF , where ∇DF is
defined as the conjunction of all directional derivatives of atomic formulas in F
in the direction of the vector field of D (the partial derivative of b by xi is ∂b

∂xi
):

∇DF ≡
∧

(b∼c)∈F

((
n∑

i=1

∂b

∂xi
θi

)

∼
(

n∑

i=1

∂c

∂xi
θi

))

for ∼ ∈ {=,≥, >,≤, <}.

Proposition 1 (Principle of differential induction [13]). All differential
invariants are continuous invariants.

F
¬F

Fig. 3. Differen-
tial invariant F

See [13] for the theory of differential invariants and [15] for
specific proofs. The region corresponding to a differential in-
variant F is illustrated in Fig. 3. Formula ∇DF is a direc-
tional derivative of F in the direction of the dynamics of D.
Intuitively, formula ∇DF is true if the gradient arrows are
pointing inside the (possibly unbounded) region consisting of
the points where F is true. In Sections 3.4–3.6, we present
algorithms for finding differential invariants for differential
equations, and for finding global invariants for repetitions.
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Fig. 4. Roundabout maneuvers for air traffic collision avoidance

3.3 Example: Flight Dynamics in Air Traffic Collision Avoidance

Aircraft collision avoidance maneuvers resolve conflicting flight paths, e.g., by
roundabout maneuvers [16], see Fig. 4a–b. Their nontrivial dynamics makes safe
separation of aircraft difficult to verify [16, 22, 23, 24, 11, 25]. The parameters of
two aircraft at (planar) position x = (x1, x2) ∈ R2 and y = (y1, y2) with angular
orientation ϑ and ς are illustrated in Fig. 4c (with ϑ = 0). Their dynamics is
determined by their linear speeds v, u ∈ R and angular speeds ω, � ∈ R, see [16]:

x′
1 = v cosϑ x′

2 = v sin ϑ ϑ′ = ω y′
1 = u cos ς y′

2 = u sin ς ς ′ = � (1)

In safe flight configurations, aircraft are separated by at least distance p:

(x1 − y1)2 + (x2 − y2)2 ≥ p2 (2)

To handle the transcendental functions in (1), we axiomatize sin and cos by
differential equations and reparametrize the system using a linear velocity vec-
tor d = (d1, d2) := (v cosϑ, v sinϑ) ∈ R2, which describes both the linear velocity
‖d‖ :=

√
d2
1 + d2

2 = v and orientation of the aircraft in space, see Fig. 4c:
[

x′
1 = d1 x′

2 = d2 d′1 = −ωd2 d′2 = ωd1 t′ = 1
y′
1 = e1 y′

2 = e2 e′1 = −�e2 e′2 = �e1 s′ = 1

]
(F)

Equations (F) and (1) are equivalent up to reparameterization [13]. We add clock
variables t, s that we need for synchronizing collision avoidance maneuvers [15].
By a simple computation, d2

1 + d2
2 ≥ a2 is a differential invariant of (F):

∇F (d2
1 + d2

2 ≥ a2) ≡ ∇(d′
1=−ωd2∧d′

2=ωd1)(d
2
1 + d2

2 ≥ a2)

≡ ∂(d2
1 + d2

2)
∂d1

(−ωd2) +
∂(d2

1 + d2
2)

∂d2
ωd1 ≥ ∂a2

∂d1
(−ωd2) +

∂a2

∂d2
ωd1

≡ 2d1(−ωd2) + 2d2ωd1 ≥ 0 .

3.4 Local Fixedpoint Computation for Differential Invariants

Fig. 5 depicts the fixedpoint algorithm for constructing differential invariants
for each continuous evolution D ∧H with a differential equation system D. The
algorithm in Fig. 5 (called Differential Saturation) successively refines the do-
main H by differential invariants until saturation, i.e., H accumulates enough
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1 function prove (ψ → [D ∧ H ]φ ) :
2 i f prove (∀cl(H → φ)) then return true /∗ proper ty proven ∗/
3 for each F ∈Candidates (ψ → [D ∧ H ]φ , H ) do
4 i f prove (ψ ∧ H → F ) and prove (∀cl(H → ∇DF )) then
5 H := H ∧ F /∗ r e f i n e by d i f f e r e n t i a l i n va r i an t ∗/
6 goto 2 ; /∗ repea t f i x e d p o i n t loop ∗/
7 end for
8 return ”not provab le us ing cand idat e s”

Fig. 5. Fixedpoint algorithm for differential invariants (Differential Saturation)

information to become a strong invariant that implies postcondition φ (line 2).
If domain H already entails φ, then ψ → [D ∧ H ]φ is proven (line 2). Other-
wise, the algorithm considers candidates F for augmenting H (line 3). If F is a
differential invariant (line 4), then H can soundly be refined to H ∧ F (line 5)
without affecting the states reachable by D ∧ H (Proposition 2 below). Then,
the fixedpoint loop repeats (line 6). At each iteration of this fixedpoint loop, the
previous invariant H can be used to prove the next level of refinement H ∧ F
(line 4). The refinement of the dynamics at line 5 is correct by the following
proposition, using that the conditions in line 4 imply that F is a differential
invariant and, thus, a continuous invariant by Proposition 1, see proofs [15,13].

Proposition 2 (Differential saturation). If F is a continuous invariant of
ψ → [D ∧ H]φ, then ψ → [D ∧ H]φ and ψ → [D ∧ H ∧ F ]φ are equivalent.

This progressive differential saturation turns out to be crucial in practice. For
instance, the aircraft separation property (2) cannot be proven until (F) has
been refined by invariants for d and e, because these determine x′ and y′.

Function Candidates determines candidates for induction (line 3) depending
on transitive differential dependencies, as will be explained in Section 3.5. When
these are insufficient for proving ψ → [D ∧ H ]φ, the algorithm fails (line 8, with
improvements in subsequent sections). Finally, ∀clφ denotes the universal closure
of φ. It is required in lines 2 and 4, because the respective formulas need to hold
in all states (that satisfy H), see [15] for improvements.

3.5 Dependency-Directed Induction Candidates

In this section, we construct likely candidates for differential induction (func-
tion Candidates). Later, we use the same procedure for finding global loop
invariants. We construct two kinds of candidates in an order induced by
differential dependencies. Our algorithm enriches ψ successively with more
precise information about the symbolic prestate as obtained by the symbolic
decompositions and proof steps in Fig. 2 and 5. We first look for invariant
symbolic state information in ψ and φ by selecting subformulas that are not yet
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Fig. 6. Differential dependencies (arrows) and (triangular) variable clusters of (F)

contained in H . In practice, this gives good candidates for highly parametric
hybrid systems.

Secondly, we generate parametric invariants. Let V = {x1, . . . , xn} be a set of
variables. We choose fresh names a

(l)
i1,...,in

for formal parameters of the invariant
candidates and build polynomials p1, . . . , pk of degree d with variables V using
formal parameters as symbolic coefficients: pl :=

∑
i1+···+in≤d a

(l)
i1,...,in

xi1
1 . . . xin

n

for 1 ≤ l ≤ k. We define the set of parametric candidates (operator ∨ is similarly):

ParaForm(k, d, V ) :=

{
i∧

l=1

pl ≥ 0 ∧
k∧

l=i+1

pl = 0 | 0 ≤ i ≤ k

}

.

For instance, the parametric candidate a0,0 + a1,0d1 + a0,1x2 = 0 yields a dif-
ferential invariant of (F) for the choice a0,0 = 0, a1,0 = 1, a0,1 = ω. By simple
combinatorics, ParaForm contains k+1 candidates with k

(
n+d

d

)
formal parame-

ters a
(l)
i1,...,in

, which are existentially quantified. Existence of a common satisfying

instantiation for these parameters can be expressed by adding ∃a
(l)
i1,...,in

to the
resulting dL formulas. For this to be feasible, the number of parameters is crucial,
which we minimize by respecting (differential) dependencies.

To accelerate the differential saturation process in Section 3.4, it is crucial to
explore candidates in a promising order from simple to complex, because the al-
gorithm in Fig. 5 uses successful differential invariants to refine the dynamics,
thereby simplifying subsequent proofs: E.g., (2) is only provable after the dynam-
ics has been refined with invariants for d and e. We construct candidates in a
natural order based on variable occurrence that is consistent with the differential
dependencies of the differential equations. For a differential equationD, variable x
depends on variable y according to the differential equation systemD if y occurs on
the right-hand side for x′ (or transitively so). The resulting set depend(D) of de-
pendencies is the transitive closure of {(x, y) | (x′ = θ) ∈ D and y occurs in θ}.
From the differential equation system (F), we determine the differential depen-
dencies indicated as arrows (pointing to the dependent variables x) in Fig. 6.

From these dependencies we determine an order on candidates. The idea
is that, as the value of x1 depends on that of d1, it makes sense to look for
invariant expressions of d1 first, because refinements with these help differential
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saturation in proving invariant expressions involving also x1. Thus, we order
variables by differential dependencies, which resembles the back substitution
order in Gaussian elimination (if, in triangular form, x1 depends on d1 then
equations for d1 must be solved first). Now we call a set V of variables a clus-
ter of the differential equation D iff V is closed with respect to depend(D), i.e.,
variables of V only depend on variables in V . The resulting variable clusters for
system (F) are marked as triangular shapes in Fig. 6. Finally, we choose candi-
dates from ψ and ParaForm(k, d, V ) starting with candidates whose variables lie
in small clusters V . Thus, the differential invariant d2

1 + d2
2 ≥ a2 of Section 3.3

within cluster {d2, d1, ω} can be discovered before invariants like d1 = −ωx2 that
involve x2, because x2 depends on d2.

3.6 Global Fixedpoint Computation for Loop Invariants

With the uniform setup of dL, we can adapt the algorithm in Fig. 5 easily
to obtain a fixedpoint algorithm for loops (ψ → [α∗]φ) in place of continuous
evolutions (ψ → [D ∧ H]φ): In line 4 of Fig. 5, we replace the induction step from
Def. 4 by the step for loops (Def. 2). As an optimization, invariants H of previous
iterations can be exploited as refinements of the hybrid system dynamics:

Proposition 3 (Loop saturation). If H is a discrete invariant of ψ → [α∗]φ,
H ∧ F is a discrete invariant iff ψ → F and H ∧ F → [α](H → F ) are valid.

See [15] for a proof. The induction step from Proposition 3 can generally be
proven faster, because it is a weaker property than that of Def. 2.

To adapt our approach from Section 3.5 to loops, we use discrete data-flow
and control-flow dependencies of α. There is a direct data-flow dependency with
the value of x depending on y, if x := θ or x′ = θ occurs in α with a term θ
that contains y. Accordingly, there is a direct control-flow dependency, if, for
any term θ, x := θ or x′ = θ occurs in α after a ?H containing y.

3.7 Interplay of Local and Global Fixedpoint Loops

The local and global fixedpoint algorithms jointly verify correctness properties
of HP. Their interplay needs to be coordinated with fairness. If the local fixed-
point algorithm in Fig. 5 does not converge, stronger invariants may need to
be found by the global fixedpoint algorithm which result in stronger precondi-
tions ψ for the local algorithm. Thus, the local fixedpoint algorithm should stop
when it cannot prove its postcondition, either because of a counterexample or
because it runs out of candidates for differential invariants. As in the work of
Prajna [20], the degrees of parametric invariants, therefore, need to be bounded
and increased iteratively. As in [20], there is no natural measure for how these
degrees should be increased. Instead, here, we exploit the fact that the candi-
dates of Candidates are independent and we explore them in parallel with fair
time interleaving.
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Table 2. Experimental results

Case study Time(s) Memory(MB) Proof steps Dimension

tangential roundabout (2 aircraft) 14 8 117 13
tangential roundabout (3 aircraft) 387 42 182 18
tangential roundabout (4 aircraft) 730 39 234 23
tangential roundabout (5 aircraft) 1964 88 317 28
bounded speed roundabout entry 20 34 28 12
flyable roundabout entry (simplified) 6 10 98 8
ETCS-kernel safety 41 28 53 9
ETCS safety 183 87 169 15
ETCS train controllability 1 6 17 5
ETCS RBC controllability 1 7 45 16

3.8 Soundness

Theorem 1 (Soundness). The verification algorithm in Section 3 is sound,
i.e., whenever prove(ψ → [α]φ) returns “ true”, the dL formula ψ → [α]φ is
true in all states, i.e., all states reachable by α from states satisfying ψ satisfy φ.

See [15] for a proof. Since reachability of hybrid systems is undecidable, our al-
gorithm must be incomplete. It can fail to converge when the required invariants
are not expressible in first-order logic (yet, they are always expressible in dL [9]).

4 Experimental Results: Aircraft Roundabout Maneuver

c

x
entry

ex
it

y

Fig. 7. Flyable aircraft
roundabout

As an example with nontrivial dynamics, we ana-
lyze aircraft roundabout maneuvers [16]. Curved flight
as in roundabouts is challenging for verification, be-
cause of its transcendental solutions. The maneuver in
Fig. 4a from [16] and the maneuver in Fig. 4b from [11,
13] are not flyable, because they still involve a few in-
stant turns. A flyable roundabout maneuver without
instant turns is depicted in Fig. 7. We verify safety prop-
erties for most (but not yet all) phases of Fig. 7 and
provide verification results in Tab. 2, see [15]. Finally,
note that the required invariants for the roundabout
maneuver cannot even be found from Differential Gröbner Bases [26].

Verification results for roundabout aircraft maneuvers [16, 24, 11, 13, 15] and
the European Train Control System (ETCS) [17] are in Tab. 2. Results are from
a 2.6GHz AMD Opteron with 4GB memory. Memory consumption of quantifier
elimination is shown in Tab. 2, excluding the front-end. The results are only
slightly worse on a 1.7GHz Pentium M laptop with 1GB. We handle all variables
symbolically. The dimension of the continuous state space is indicated.
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5 Related Work

Other authors [18,19,20] already argued that invariant techniques scale to more
general dynamics than explicit reach-set computations or techniques that require
solutions for differential equations [3, 6, 8]. However, they cannot handle hybrid
systems with inequalities in initial sets or switching surfaces [18,19], which occur
in most real applications like aircraft maneuvers. Barrier certificates [20] only
work for inequalities, but invariants of roundabout maneuvers require mixed
equations and inequalities [13]. Prajna et al. [20] search for barrier certificates of
a fixed degree by global optimization over the set of all proof attempts for the
whole system at once, which is infeasible: Even with degree bound 2, it already
requires solving a 5848-dimensional optimization problem for ETCS [17] and a
10005-dimensional problem for roundabouts with 5 aircraft.

Tomlin et al. [16] derive saddle solutions for aircraft maneuver games using
Hamilton-Jacobi-Isaacs partial differential equations and propose roundabout
maneuvers. Their exponential state space discretizations for PDEs, however,
do not scale to larger dimensions (they consider dimension 3) and can be un-
sound [11]. Differential invariants, instead, work for 28-dimensional systems.

Straight-line aircraft maneuvers have been analyzed by geometrical meta-level
reasoning [23,25]. We directly verify the hybrid flight dynamics, including curved
roundabout maneuvers instead of straight-line maneuvers with non-flyable in-
stant turns. A few approaches [22, 24] have been undertaken to Model Check
if there are orthogonal collisions in discretizations of roundabout maneuvers.
However, the counterexamples found by our model checker in previous work [11]
show that non-orthogonal collisions can happen in these maneuvers.

Tools like HyTech, PHAVer, CheckMate, or other approaches [1, 3, 6] cannot
handle our applications with nonlinear switching, nonlinear discrete and contin-
uous dynamics, and high-dimensional state spaces.

6 Conclusions and Future Work

We have presented a sound algorithm for verifying hybrid systems with nontrivial
dynamics. It handles differential equations using differential invariants instead
of requiring solutions of the differential equations, because the latter quickly
yield undecidable arithmetic. We compute differential invariants as fixedpoints
using a verification logic for hybrid systems. In the logic we can decompose the
system for computing local invariants and we obtain sound recombinations into
global invariants. Moreover, we introduce a differential saturation procedure that
verifies more complicated properties by refining the system dynamics successively
in a sound way. We validate our algorithm on challenging roundabout collision
avoidance maneuvers for aircraft and on collision avoidance protocols for trains.

Our algorithm works particularly good for highly parametric hybrid systems,
because their parameter constraints can be combined faster to find invariants
than for systems with a single initial state, where simulation is more appropri-
ate. Our decompositional approach exploits locality in system designs. Thus, it
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probably performs worse for systems that violate locality principles. We want to
validate this in further experiments and analyze scalability.
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