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Computing Eccentricity Connectivity

Polynomial of Circumcoronene Series of

Benzenoid Hk by Ring-Cut Method

Mohammad Reza Farahani

Abstract. LetG = (V,E) be a simple connected molecular graph.
In such a simple molecular graph, vertices represent atoms and
edges represent chemical bonds, we denoted the sets of vertices
and edges by V = V (G) and E = E(G), respectively. If d(u, v) be
the notation of distance between vertices u, v ∈ V and is defined
as the length of a shortest path connecting them. Then, Eccen-
tricity connectivity polynomial of a molecular graph G is defined
as ECP (G,x) =

∑
v∈V dG(v)x

ecc(v), where ecc(v) is defined as
the length of a maximal path connecting to another vertex of v.
dG(v) (or simply dv) is degree of a vertex v ∈ V (G), and is defined
as the number of adjacent vertices with v. In this paper, we fo-
cus on the structure of molecular graph circumcoronene series of
benzenoid Hk (k ≥ 2) and counting the eccentricity connectivity
polynomial ECP (Hk) and eccentricity connectivity index ξ(Hk),
by new method (called Ring-cut Method).
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1 Introduction

In mathematics chemistry, G = (V,E) is a simple connected molecular graph,
such that its vertices correspond to the atoms and the edges to the chemical
bonds, we denoted the vertex set and edge set of G by V = V (G) and
E = E(G), respectively. We denote the number of vertices and the number
of edges of G by n and e, respectively (n = |V | and e = |E|).
We know that there exits at least one path between all pairs vertices u, v ∈
V (G), because we suppose that G be the connected graph. Therefore, the
distance d(u, v) between vertices u and v is defined as the length of a min-
imum (or shortest, exactly) path connecting u and v. And alternatively,
the eccentricity eec(v) is the length of a maximal path connecting to an-
other vertex of v. In other works, is maximum distance with first-point v
in G (eec(v) = Max{d(u, v)|∀u ∈ V (G)}). Two special cases of eccentricity
eec(v) is the radius (r(G)) and diameter (d(G)) of G, and are defined as the
minimum and maximum eccentricity among vertices of G, respectively.

In 1997 [1], Sharma, Goswami and Madan introduced the eccentric connec-
tivity index of the molecular graph G, ξ(G). It is defined as

ξ(G) =
∑
v∈V

dG(v)× ecc(v),

where dG(v) denotes the degree of the vertex v in V and is defined as the
number of adjacent vertices with v.

The eccentric connectivity polynomial of a graph G,

ECP (G, x) =
∑
v∈V

dG(v)x
ecc(v).

Then the eccentric connectivity index is the first derivative of ECP (G, x)
evaluated at x = 1. See [2-5] for details.

The circumcoronene series of benzenoid is a famous family of molecular
graph, which consist several copy of benzene C6 on circumference. It be
presented in many papers, some its report obtain from paper series [6-15]).
Benzene C6 (or H1) is first member from this family. Of curse in chemical sci-
ence, benzene is an important hydrocarbon C6H6. But in mathematics graph
theory, hydrogen atoms are often omitted (vertex as degree 1). And other
first terms of this series are H2 = coronene, (or Ca(C6) Capra of benzenoid
[16-22]) H3 = circumcoronene, H4 = circumcircumcoronene and general
view of Hk, see Figure 1, Figure 2 and Figure 3 (where they are shown).



Vol. LI (2013) Computing Eccentricity Connectivity Polynomial... 31

Figure 1: The first three graphs H1, H2, H3 and H4 from the circumcoronene
series, such that H1, H2 are graphs C6 and the Capra of planer benzenoid
Ca(C6), respectively.

2 Main Result

In this paper, we focus on the structure of molecular graph circumcoronene
series of benzenoid Hk (k ≥ 2) and counting the eccentricity connectiv-
ity polynomial ECP (Hk) and eccentricity connectivity index ξ(Hk), by new
method (called Ring-cut Method). In ring-cut method, we insert some ver-
tices of G in a common ring-cut, such that these vertices have similar mathe-
matical properties. For example, reader can see ring-cuts of circumcoronene
series of benzenoid in Figure 3. Now, we compute eccentricity connectivity
polynomial and its index in the following theorem. In continue, we proof this
theorem by use of ring-cut method and present it for circumcoronene series
of benzenoid.

Theorem 2.1. Let G be the circumcoronene series, Hk, k ≥ 2, of benzenoid.
Then:
• Eccentricity connectivity polynomial of Hk is equal to

ECP (Hk, x) =

k−1∑
i=1

18i
(
x2(k+i)−1 + x2(k+i)

)
+ 12kx4k−1

So Eccentricity connectivity index of Hk is ξ(Hk) = 60k3 − 24k2 − 18k + 18.

Proof. First we consider circumcoronene series of benzenoid G = Hk (k ≥ 2)
as shown in Figure 2. Thus, this graph has 6k2 vertices and 9k2 − 3k edges.
Now, we name all vertices from center C6 (or subgraph H1) by γ1

z,1 for all
z ∈ Z6, respectively. We know Z6 is the cycle finite group of order 6 of branch
Group theory from Algebra (or integer number of module 6 from Number
theory). So, we name all γ1

z,i’s adjacent vertices (without name) by β2
z,i,
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Figure 2: The general view of circumcoronene series of benzenoid Hk, k ≥ 2.

(∀z ∈ Z6, i = 1) and name adjacent vertices with β2
z,i by γ2

z,i and γ2
z,i+1, z ∈

Z6, i = 1, such that edges β2
z,iγ

2
z,i and β2

z,iγ
2
z,i+1 are in E(Hk). By repeat this

work, we notation all vertices and obtain desirable ring-cuts, see Figure 2 and
Figure 3. Therefore, the vertex set and edge set of circumcoronene series of
benzenoid Hk will be

V (Hk) = {γi
z,j, β

i
z,l|i = 1, ..., k, j ∈ Zi, l ∈ Zi−1 and z ∈ Z6}.

E(Hk) = {βi
z,jγ

i
z,j, β

i
z,jγ

i
z,j+1, β

i
z,jγ

i−1
z,j and γi

z,iγ
i
z+1,1|i ∈ Zk j ∈ Zi, z ∈ Z6}.

It is obvious that nk = |V (Hk)| = 6
∑k

i=1 i + 6
∑k−1

i=0 i = 6k2 and ek =

|E(Hk)| = 6
∑k−1

i=1 i+ 6
∑k−1

i=1 i+ 6
∑k−1

i=1 i+ 6k = 9k2 − 3k.

Now, we divide all vertices in some partitions (we call ring-cuts ri), such that
a ith ring-cut consist of vertices γi

z,j and βi
z,l (∀j ∈ Zi, l ∈ Zi−1) and the

size of this ring-cut is equal to 6i + 6(i − 1). Also, one common properties
of members of a ring-cut is their farthest vertices. And another properties
of them is d(γi

z,j, γ
k
z,j) = d(βi

z,l, β
k
z,l) = 2(k − i), in other words the distance

of these vertices are equal to two times of difference between order of their
ring-cuts (See Figure 4 and Figure 5). Therefore, by use above notations
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and properties, we can calculate eccentricity of every vertex v. Of curse, it
is important for me that ”Where v’ ring-cut is?”.

On the other hands, the farthest distance between two vertices of Hk is equal
to 4k − 1, obviously. Thus, the diameter d(Hk) of circumcoronene series of
benzenoid is 4k − 1, (by simple induction on d(Hk + 1) = d(Hk) + 4 and its
first terms are d(H1 = C6) = 3, d(H2) = 7, d(H3) = 11,...).

Figure 3: The length of blue path and red path are equal to eccentricity
ecc(γi′

z′,j′) and ecc(βi
z,j) of H4, respectively.

Now, by according to the vertices of an arbitrary ring-cut Ri, we have two
part of eccentricity ecc(v), as follow:

1- If v = βi
z,j, ∀i = 1, ..., k, j ∈ Zi−1&z ∈ Z6 (see Figure 4):

ecc(βi
z,j) = d(βi

z,j, β
i
z+3,j)︸ ︷︷ ︸

4i−3

+ d(βi
z+3,j, γ

k
z+3,j)︸ ︷︷ ︸

d(βi
z+3,j, β

k
z+3,j)︸ ︷︷ ︸

2(k−i)

+1

= 2(k+ i− 1)

2- If v = γi
z,j, ∀i = 1, ..., k, j ∈ Zi&z ∈ Z6 (see Figure 5):
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ecc(γi
z,j) = d(γi

z,j, γ
i
z+3,j)︸ ︷︷ ︸

4i−1

+ d(γi
z+3,j, γ

k
z+3,j)︸ ︷︷ ︸

2(k−i)

= 2(k+ i)− 1

Upshot, we are ready to computing eccentricity connectivity polynomial and
eccentricity connectivity index of circumcoronene series of benzenoid. By
according to definition of ring-cut, we will have

ECP (Hk, x) =
∑
v∈V

dvx
ecc(v)

=
k∑

i=1

∑
v∈Ri

dvx
ecc(v)

=

k∑
i=2

∑
βi
z,j∈Ri

dβi
z,j
xecc(βi

z,j) +

k∑
i=1

∑
γi
z,j∈Ri

dγi
z,j
xecc(γi

z,j)

=

k∑
i=1

(
i∑

j=1

6∑
z=1

dγi
z,j
xecc(γi

z,j) +

i−1∑
j=1

6∑
z=1

dβi
z,j
xecc(βi

z,j)

)

=

6∑
z=1

(
k∑

i=1

(

i∑
j=1

dγi
z,j
xecc(γi

z,j)) +

k∑
i=2

(

i−1∑
j=1

dβi
z,j
xecc(βi

z,j))

)

= 6

(
(

k∑
j=1

2x2(k+k)−1) +

k−1∑
i=1

(

i∑
j=1

3x2(k+i)−1)

)

+6

(
k∑

i=2

(

i−1∑
j=1

3x2(k+i−1))

)

= 6

(
(k × 2x4k−1) +

k−1∑
i=1

(i× 3x2(k+i)−1)

)

+6

(
+

k∑
i=2

((i− 1)× 3x2(k+i−1))

)

= 18
k∑

i=2

(
(i− 1)x2(k+i−1) + (i− 1)x2(k+i−1)−1

)
+12kx4k−1 (2.1)

Hence, eccentricity connectivity polynomial of circumcoronene series of ben-
zenoid is equal to ECP (Hk, x) =

∑k−1
i=1 18i

(
x2(k+i)−1 + x2(k+i)

)
+ 12kx4k−1.

On other hands, eccentricity connectivity index Hk is
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Figure 4: The length of blue path and red path are equal to eccentricity
ecc(γi′

z′,j′) and ecc(βi
z,j) of H4, respectively.

ξ(Hk) =
∂ECP (Hk, x)

∂x
|x=1 =

∑
v∈V

dG(v)× ecc(v)

=

k−1∑
i=1

18(i)× (4k + 4i− 1) + 12k × (4k − 1)

= 18
k−1∑
i=1

4i2 + 18
k−1∑
i=1

4ki− (k − 1) + (48k2 − 12k)

= 12k(k − 1)(2k − 1) + 36k2(k − 1)− 18(k − 1) + (48k2 − 12k)

= 24k3 − 36k2 + 12k + 36k3 − 36k2 − 18k + 18 + 48k2 − 12k

= 60k3 − 24k2 − 18k + 18 (2.2)

Obviously, the radius number of circumcoronene series of benzenoid Hk is
r(Hk) = 2k + 1. Here, we complete the proof of the theorem.�

3 Conclusion

In Theoretical Chemistry, the topological indices and molecular structure de-
scriptors are used for modeling physico-chemical, toxicologic, biological and
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other properties of chemical compounds and nano steucture analizing. A
family of Benzenoid built solely from Benzene CR6 R(or hexagons), Circum-
coronene Series of Benzenoid Hk (k ≥ 1), have been studied here and its
Eccentric connectivity polynomial have been counted.
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[9] A. Ilic, S. Klavžar, and D. Stevanovic, Calculating The Degree Distance of
Partial Hamming Graphs, Manuscript
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[15] P. Zigert, S. Klavžar, and I. Gutman, Calculating the hyper-Wiener index of
benzenoid hydrocarbons, ACH Models Chem., 137, (2000), 83-94

[16] J.R. Dias, From benzenoid hydrocarbons to fullerene carbons,Commun. Math. Com-
put. Chem. (MATCH), 4, (1996), 57-85

[17] M.V. Diudea, Capra-leapfrog related operation on maps, Studia Univ. Babes-Bolyai,
4, (2003), 3-21

[18] A. Dress and G. Brinkmann, Commun. Math. Comput. Chem. (MATCH), 33,
(1996), 87-100

[19] M. Goldberg, A class of multisymmetric polyhedra, Tohoku Math. J., 43, (1937),
104-108

[20] M.V. Diudea, M. Stefu, P. E. John, and A. Graovac, Generalized operations
on maps, Croat. Chem. Acta, 79, (2006), 355-362

[21] M.V. Diudea, Nano porous carbon allotropes by septupling map operations, J.
Chem. Inf. Model, 45, (2005), 1002-1009

[22] W.C. Shiu and P.C.B. Lam, The Wiener number of a hexagonal net, Discrete
Appl. Math., 73, (1997), 101-111

Mohammad Reza Farahani

Department of Applied Mathematics,
Iran University of Science and Technology (IUST),
Narmak, Tehran 16844, Iran

E-mail: MR Farahani@mathdep.iust.ac.ir & MRFarahani88@gmail.com

Received: 22.05.2013

Accepted: 3.11.2013


