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Abstract We examine possible accuracy gains from forecast averaging in the context
of interval forecasts of electricity spot prices. First, we test whether constructing
empirical prediction intervals (PI) from combined electricity spot price forecasts leads
to better forecasts than those obtained from individual methods. Next, we propose
a new method for constructing PI—Quantile Regression Averaging (QRA)—which
utilizes the concept of quantile regression and a pool of point forecasts of individual
(i.e. not combined) models. While the empirical PI from combined forecasts do not
provide significant gains, the QRA-based PI are found to be more accurate than those
of the best individual model—the smoothed nonparametric autoregressive model.

Keywords Quantile regression averaging · Prediction interval ·Quantile regression ·
Forecasts combination · Electricity spot price

1 Introduction

Since the deregulation of electricity markets in the 1990s, electricity spot price fore-
casting has attracted a lot of attention. A generator, a utility company or a large
industrial customer able to forecast the volatile wholesale prices with a reasonable
accuracy can adjust its bidding strategy and own production or consumption schedule
to maximize profits in day-ahead trading. However, in contrast to other tradable com-
modities, electricity is very special (Eydeland and Wolyniec 2003; Kaminski 2013;
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Weron 2006). It is non-storable (economically) while power system stability requires
a constant balance between production and consumption. At the same time, electric-
ity demand is dependent on weather (temperature, wind speed, precipitation, etc.)
and the intensity of business activities (working hours, weekdays vs. weekends, hol-
idays and near-holidays, etc.). On one hand, these specific characteristics result in
extreme—unobserved in any other market—spot price volatility, on the other, they
have motivated intensive research efforts towards short-term forecasting of electricity
prices, for a recent comprehensive review see Weron (2014).

A wide range of econometric or statistical models have been suggested in the lit-
erature, including (auto-)regressive models, (seasonal) ARIMA, AR-GARCH, jump-
diffusions, factormodels and regime-switchingmodels (see e.g. Bierbrauer et al. 2007;
Conejo et al. 2005;Garcia-Martos et al. 2012;Karakatsani andBunn 2008;Kristiansen
2012;Maciejowska andWeron 2013;Misiorek et al. 2006;Weron andMisiorek 2008).
However, in terms of predicting spot pricemovements, eachmodel specification yields
a different forecast. Despite the diversity of models it is impossible to select the most
reliable one. For instance, Aggarwal et al. (2009) compared results from as many as 47
publications and concluded: there is no systematic evidence of out-performance of one
model over the other models on a consistent basis. This fact is a good motivation for
considering combining electricity spot price forecasts. Surprisingly, this approach has
not been undertaken in the literature until very recently, see Bordignon et al. (2013),
Nowotarski et al. (2014) and Raviv et al. (2013). All three cited papers yield simi-
lar conclusions—they support the benefits of combining forecasts for deriving more
accurate and more robust point forecasts of electricity spot prices.

However, in some applications, such as risk management or bidding with a safety
margin, one is more interested in predicting the variability of future price movements
than simply point estimates. From a practical point of view prediction intervals (PI),
and density forecasts even more so, provide additional information on the evolution
of future prices. In particular, they allow for a better assessment of future uncertainty
and for planning of different strategies for the range of possible outcomes indicated
by the interval forecast (Chatfield 2000). While there are a variety of empirical studies
on forecasting electricity spot prices, interval or density forecasts have not been inves-
tigated very extensively to date. Most notable exceptions include Bunn et al. (2013),
Misiorek et al. (2006), Nogales and Conejo (2006), Weron and Misiorek (2008) and
Wu et al. (2013). Yet, to our best knowledge, prediction intervals have not been con-
sidered in the context of combining electricity spot price forecasts. It should be noted,
though, that the idea of combining interval forecasts is not new by itself (see e.g.
Timmermann 2006; Wallis 2005).

The contribution of the article is twofold. First, we address the above mentioned
unresolved issue of constructing PI from combined electricity spot price forecasts.
We do this by constructing empirical PI—as in Weron and Misiorek (2008)—for two
methods of forecast averaging, i.e. simple average and least absolute deviation (LAD),
that proved to be robust and accurate in our recent point forecasting study (Nowotarski
et al. 2014). Second, we propose a new method for constructing prediction intervals
using the concept of quantile regression and a pool of point forecasts of individual
(i.e. not combined) time series models. The latter can be viewed as a natural extension
of LAD averaging to an arbitrary quantile.
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The remainder of the paper is structured as follows. In Sect. 2, we present the elec-
tricity price data used in this study. In Sect. 3,wefirst present twobenchmark individual
models (ARX and SNARX) and two averaging schemes (SIMPLE and LAD). Then
we introduce the new method—Quantile Regression Averaging (QRA)1—for con-
structing PI from point forecasts of individual methods. In Sect. 4, we evaluate the
forecasting performance of the five tested approaches for computing PI in terms of
unconditional and conditional coverage. Finally, in Sect. 5, we wrap up the results and
conclude.

2 The data

The electricity spot price data was downloaded from the GDF Suez website (www.
gdfsuezenergyresources.com) and contains hourly day-ahead locational marginal
prices (LPMs) for the Jersey Central Power and Light Company (JCPL) of the
Pennsylvania–New Jersey–Maryland (PJM) Interconnection (U.S.). The time series
of hourly air temperatures (in Fahrenheit degrees) for New York City was obtained
from NOAA’s National Climatic Data Center (www.ncdc.noaa.gov).

We should note here that the spot electricity market is actually a day-ahead mar-
ket that does not allow for continuous trading. This is a result of system operators
requiring advance notice in order to verify that the schedule is feasible and lies within
transmission constraints. In a day-ahead market agents submit their bids and offers
for delivery of electricity during each hour (or half-hour in some markets) of the next
day before a certain market closing time. Thus, when dealing with the forecasting of
intraday prices it is important to recall that prices for all spot contracts of the next day
are determined at the same time using the same available information (Bierbrauer et al.
2007; Peña 2012; Weron 2006). The system price is then calculated as the equilibrium
point for the aggregated supply and demand curves and for each of the hourly (or
half-hourly) intervals.

The dataset used in this study comprises hourly price and temperature data for
the period August 22, 2010–January 14, 2012, see Fig. 1. The prices and tempera-
tures were preprocessed in the standard way for ‘missing’/‘doubled’ values resulting
from changes to/from the daylight saving time: the ‘missing’ values were interpolated
from the two neighboring observations while the ‘doubled’ values were averaged to
yield one observation for the doubled hour (as in Nowotarski et al. 2014; Weron and
Misiorek 2008). The logarithms of hourly temperatures Tt (in Fahrenheit) were used
as the exogenous variable in the time series models for the log-prices (no additional
transformations were required since the temperatures were above 1◦F in the studied
period). This selection was motivated by a roughly linear dependence between these
two variables. The mean log-price and the median log-temperature were removed to
center the data around zero, as in Conejo et al. (2005) and Misiorek et al. (2006).

In Fig. 1 the studied dataset is split into three subsets. The first date—August 22,
2010—marks the start of the calibration period for the 12 individual models (for model
definitions see Sect. 3.1). The first prediction of these models is made for February 11,

1 Matlab code is available from http://ideas.repec.org/s/wuu/hscode.html.
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Fig. 1 JCPL (PJM) hourly system prices (in USD/MWh) and hourly air temperatures (in Fahrenheit) for
the period August 22, 2010–January 14, 2012. The first vertical dotted linemarks the start of the forecasting
period for individual models, the second—the beginning of the validation window for obtained prediction
intervals

2011 (the second date). Then the window is expanded by one day, the individual
models are recalibrated and spot price predictions are made for February 12, 2011,
etc. Consequently, the first combined forecast (using SIMPLE and LAD averaging)
is made for February 11, 2011, the next for February 12, 2011, etc. Finally, the third
date in Fig. 1—September 23, 2011—marks the first day for which PI are calculated.
This is done using either (i) ARX and SNARX individual models and the empirical
scheme for computing PI from the models’ point forecasting errors, (ii) SIMPLE
and LAD averaging and the empirical scheme for computing PI from the errors of
the combined point forecasts or (iii) point forecasts of all 12 individual models and
quantile regression, i.e. the new Quantile Regression Averaging (QRA) approach. The
PI validation period lasts until January 14, 2012, and includes 114 days.

3 The techniques

3.1 Individual models

A typical and obvious feature shared by all empirical applications using forecast
averaging is that results depend on the specific choice of individual models. Thus,
the set of individual techniques considered here includes the 12 models analyzed by
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Weron and Misiorek (2008) and then used in the context of averaging point forecasts
byNowotarski et al. (2014): autoregressivemodels (AR,ARX—the latterwith temper-
ature as the eXogenous variable), spike preprocessed autoregressive models (p-AR,
p-ARX; where the model structure was estimated after replacing price spikes with
less extreme observations), threshold autoregressive models (TAR, TARX), mean-
reverting jump diffusions (MRJD,MRJDX) and two classes of semiparametric autore-
gressive models (IHMAR, IHMARX, SNAR, SNARX; introduced by Weron and
Misiorek 2008). In this study, we also use two of those individual models—ARX and
SNARX—as benchmarks for comparison of the prediction intervals.

The ARX autoregressive model structure is given by the following formula:

pt = φ1 pt−24 + φ2 pt−48 + φ3 pt−168 + φ4mpt
+ψ1zt + d1DMon + d2DSat + d3DSun + εt . (1)

The lagged log-prices pt−24, pt−48 and pt−168 account for the autoregressive effects of
the previous days (the samehour yesterday, twodays ago and oneweek ago),whilempt
is the minimum of the previous day’s 24 hourly log-prices and creates a link between
bidding and price signals from the entire previous day (for discussions on the choice of
this ‘link’ variable see Kristiansen 2012; Weron and Misiorek 2008). The variable zt
refers to the logarithm of the hourly temperature. The three dummy variables—DMon ,
DSat and DSun (for Monday, Saturday and Sunday, respectively)—account for the
weekly seasonality. Finally, the εt ’s are assumed to be independent and identically
distributed (i.i.d.) with zero mean and finite variance. Model parameters are estimated
in Matlab by minimizing the Final Prediction Error (FPE) criterion. Construction of
empirical PI boils down to taking a desired quantile of the in-sample residuals, which
resembles estimating Value-at-Risk via historical simulation, seeWeron andMisiorek
(2008).

The smoothed nonparametric ARX (or SNARX) model relaxes the normality
assumption needed for the maximum likelihood estimation in the ARX model. It
has the same functional form (1) but the parameter estimates are obtained from a
numerical maximization of the empirical likelihood as suggested by Cao et al. (2003)
and in the context of electricity price forecasting by Weron and Misiorek (2008). The
empirical prediction intervals are constructed in the same way as for ARX. Note that
SNARX was recommended by Weron and Misiorek as the best individual model out
of the 12 considered specifications, mainly due to its good PI performance.

3.2 Combining point forecasts

The idea of combining forecasts goes back to the late 1960s, with the works of Bates
and Granger (1969) and Crane and Crotty (1967). Since then, many authors have
suggested the superior performance of forecast combinations over the use of individual
models, see e.g. Clemen (1989), de Menezes et al. (2000), Timmermann (2006) and
references therein. Despite this popularity, combining forecasts has not been discussed
widely in the context of electricity spot prices. Only very recently Bordignon et al.
(2013), Nowotarski et al. (2014) and Raviv et al. (2013) have provided empirical
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support for the benefits of combining forecasts to obtain better point predictions of
electricity spot prices.

In this paper we focus on computing prediction intervals derived from combined
spot price forecasts and on evaluating their performance. To achieve this we examine
two averaging schemes—SIMPLE averaging and least absolute deviation or LAD
regression—that have been found by Nowotarski et al. (2014) to provide accurate and
robust results. SIMPLE averaging is the most natural approach to combining forecasts
and boils down to computing the (arithmetic) mean of all forecasts produced by the
individual models. It is highly robust and is widely used in business and economic
forecasting, see e.g. Clemen (1989) and Genre et al. (2013).

Another popular averaging method is based on classical linear regression. In this
approach, the individual forecasts are regressors and the corresponding observed spot
price is the dependent variable. The idea was first described by Crane and Crotty
(1967), but it was the influential paper of Granger and Ramanathan (1984) to inspire
more research effort in this direction. Since then, this way of averaging took on numer-
ous variations according to different findings from different datasets. In this study we
decide to follow an alternative proposed by Nowotarski et al. (2014) and replace the
ordinary least squares approachwith the absolute loss function. The resulting scheme is
called least absolute deviation or LAD regression. An advantage of using the absolute
loss function is its robustness to electricity price spikes. Indeed, a model that performs
well in general, yet significantly underperforms on specific dates, is punished harder
by the quadratic loss function. As a consequence it leads to a relatively large decrease
of thismodel’sweight, while using the absolute loss function yields a relatively smaller
decrease of the weight.

The forecasting setup is the following. First, for each day t we compute M = 12
individual day-ahead price forecasts p̂1t , . . . , p̂Mt of the 12 individual models (see
Sect. 3.1). Then we combine them to yield a spot price forecast:

p̂ct = p̂twt =
M

∑

i=1

wi t p̂i t , (2)

where wi t is the weight assigned at time t to forecast i . We calculate the weights
recursively at each time step, using data from the first prediction day (indicated by the
first dotted vertical line in Fig. 1) until t − 24 (i.e. 24h prior to the hour we forecast
the price for). Like for individual forecasts, when predicting the price for hour h, we
utilize past price values only for that particular hour, i.e. we split our data into 24 time
series. As our main interest here are prediction intervals (not point forecasts), given
weights at time t , we obtain the empirical prediction intervals by computing a quantile
of the distribution of in-sample residuals of the averaged forecasts (2), i.e. analogously
as for ARX and SNARX (see Sect. 3.1).

3.3 Quantile regression and forecast averaging

The quantile regression model introduced by Koenker and Basset (1978) has been
widely used in many financial and economic applications, out of which the most
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intuitive may be Value-at-Risk as it simply concerns a quantile of a portfolio (Bunn
et al. 2013). Quantile regression allows us to describe the conditional distribution
of the dependent variable given its explanatory variables. Our idea here is to apply
quantile regression to point (not interval!) forecasts of the individual models, i.e.
to use the individual point forecasts as independent variables and the correspond-
ing observed spot price as the dependent variable. Note that our method—dubbed
Quantile Regression Averaging (QRA)—yields an interval forecast of the spot price,
but does not use the PI of the individual methods. This is an important point, since
as Wallis (2005) remarks: combining intervals directly will not in general give an
interval with the correct probability. For instance, Granger et al. (1989) attempt to
overcome this difficulty by estimating combining weights from data on past fore-
casts that in effect recalibrate the forecast quantiles, which is a cumbersome solu-
tion.

In our case the averaging problem is given by:

Qp(q| p̂t) = p̂twq, (3)

where Qp(q|·) is the conditional qth quantile of the electricity spot price distribution,
p̂t are the regressors (explanatory variables) andwq is a vector of parameters (q in the
subscript emphasizes the fact that the parameters are varying for different quantiles).
Theweights are estimated byminimizing the loss function for a particularqth quantile:

min
wt

⎡

⎣

∑

{t :pt≥ p̂twt }
q|pt − p̂twt | +

∑

{t :pt< p̂twt }
(1 − q)|pt − p̂twt |

⎤

⎦

= min
wt

[

∑

t

(q − 1pt< p̂twt )(pt − p̂twt)

]

. (4)

Finally, note that the LAD regression may be viewed as a special case of quantile
regression by taking the quantile to be the median, i.e. q = 0.5. Indeed, for q = 0.5
the right hand side of formula (4) under the minimum reduces to

∑

t
1
2 |pt − p̂twt | and,

hence, we obtain the absolute loss function (up to a constant). That said, the proposed
method is a natural extension of the averaging problem, where the point of interest is
a point forecast.

It should be also emphasized that the QRA-based 50% PI are not the same as the
LAD-based 50%PI. The former are based on running quantile regression for q = 0.25
and q = 0.75, the latter on running quantile regression for q = 0.5 and then taking
the 25 and 75% quantiles of the distribution of forecast errors (i.e. residuals).

4 Results

First, we evaluated the quality of the interval forecasts by comparing the nominal
coverage to the true coverage. Thus, for the two individual models (ARX and SNARX)
and for the three averaging schemes (SIMPLE, LAD and QRA) we calculated PIs
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Table 1 Upper part: Unconditional coverage of the 50 and 90% two-sided day-ahead PIs by the actual
spot price for all considered models. Lower part: Descriptive statistics of the PI width

PI (%) ARX SNARX SIMPLE LAD QRA

Unconditional coverage

50 69.74 56.51 58.63 56.36 53.55

90 96.13 94.23 94.44 93.64 92.07

Mean (standard deviation) of the PI width

50 8.63 (3.33) 6.09 (2.64) 6.32 (2.89) 6.73 (3.66) 6.40 (3.78)

90 21.28 (8.29) 20.73 (8.78) 25.73 (15.74) 26.20 (17.21) 21.10 (12.09)

Median (inter-quartile range) of the PI width

50 8.66 (5.25) 5.94 (4.21) 5.89 (5.77) 5.79 (6.93) 5.62 (5.19)

90 21.34 (13.02) 20.64 (15.28) 23.22 (25.86) 21.87 (26.33) 19.51 (18.51)

See also Fig. 3 and Table 2

and determined the percentage of coverage of the 50 and 90% two sided day-ahead
PI by the actual spot price. If the model implied interval forecasts were accurate
then the percentage of coverage should match the nominal values. For each model,
24 × 114 hourly values were determined and compared to the actual spot price. The
unconditional coverage is summarized in the upper part of Table 1 and in Table 2.
Interestingly, all models have overall a slightly higher coverage than nominal (for
some hours the coverage is lower than nominal, though), possibly due to a less volatile
spot price in the PI validation period as compared to the calibration period, see Fig. 1.
For both analyzed levels (50 and 90%) the best results were achieved by QRA, while
the worst by ARX.

Next, we applied the approach of Christoffersen (1998) to test the unconditional
and conditional coverage. This model independent approach is designed to overcome
the clustering effect. The tests are carried out in the likelihood ratio (LR) framework.
Three LR statistics are calculated: for unconditional coverage, independence and con-
ditional coverage. The former two are distributed asymptotically as χ2(1) and the
latter as χ2(2). If we condition on the first observation, then the conditional coverage
LR test statistics is the sum of the other two. It should be noted that the independence
test and hence the conditional coverage test is conducted only with respect to the first
order dependency of exceedances. As Clements and Taylor (2003) show, the test can
be easily modified to measure higher order dependency; seeMaciejowska et al. (2014)
for a sample application of this approach in the context of electricity price forecasting
and Berkowitz et al. (2011) for a review of more complex tests. For simplicity of
exposition we present here only the results of the conditional coverage test based on
the first order test for independence, however, the conclusions are qualitatively the
same if higher order dependency is tested.

The conditional and unconditional coverage LR statistics are plotted in Fig. 2.
We repeat the methodology of Weron and Misiorek (2008) and conduct the tests
separately for the 24 hourly time series. It would not make sense to compute the
statistics jointly for all hours, since, by construction, the forecasts for consecutive
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Table 2 Unconditional coverage (in percent) of the 50 and 90% two-sided day-ahead PIs by the actual
spot price for all five considered methods, independently for each of the 24h

Hour ARX SNARX SIMPLE LAD QRA ARX SNARX SIMPLE LAD QRA

Unconditional coverage, 50% PI Unconditional coverage, 90% PI

1 73.68 56.14 53.51 56.14 59.65 94.74 92.11 92.11 90.35 89.47

2 72.81 57.02 58.77 55.26 61.40 93.86 92.11 91.23 90.35 92.11

3 70.18 59.65 58.77 53.51 58.77 96.49 93.86 92.98 92.98 92.98

4 72.81 62.28 56.14 53.51 57.89 98.25 96.49 92.11 89.47 91.23

5 68.42 58.77 54.39 49.12 52.63 95.61 92.11 86.84 85.96 92.11

6 49.12 37.72 38.60 34.21 45.61 89.47 83.33 75.44 80.70 88.60

7 52.63 42.98 32.46 35.96 44.74 91.23 92.11 86.84 85.09 85.09

8 64.91 52.63 43.86 44.74 44.74 95.61 94.74 91.23 88.60 86.84

9 73.68 57.89 54.39 57.89 54.39 96.49 93.86 92.11 92.98 92.11

10 71.05 61.40 60.53 60.53 54.39 96.49 94.74 97.37 97.37 91.23

11 78.07 63.16 73.68 71.93 69.30 99.12 96.49 100.00 100.00 97.37

12 78.07 57.02 76.32 70.18 50.88 100.00 97.37 100.00 96.49 87.72

13 77.19 65.79 78.07 64.91 50.88 99.12 97.37 100.00 97.37 93.86

14 76.32 58.77 82.46 66.67 49.12 98.25 98.25 100.00 99.12 93.86

15 81.58 71.05 79.82 58.77 48.25 99.12 98.25 100.00 99.12 93.86

16 78.95 64.04 74.56 74.56 62.28 98.25 97.37 100.00 100.00 99.12

17 62.28 49.12 49.12 46.49 42.98 92.98 92.98 97.37 97.37 93.86

18 59.65 57.89 50.00 50.00 51.75 93.86 93.86 93.86 92.98 92.98

19 53.51 42.98 45.61 55.26 50.88 92.98 91.23 93.86 94.74 91.23

20 65.79 52.63 57.89 57.02 55.26 96.49 95.61 97.37 95.61 92.98

21 72.81 58.77 63.16 67.54 60.53 98.25 96.49 98.25 97.37 93.86

22 75.44 53.51 55.26 63.16 57.02 98.25 95.61 96.49 96.49 95.61

23 72.81 53.51 52.63 50.00 48.25 96.49 93.86 97.37 93.86 89.47

24 71.93 61.40 57.02 55.26 53.51 95.61 91.23 93.86 92.98 92.11

See also Table 1

hours are correlated—predictions for all 24h of the next day are made at the same
time using the same information set.

According to Christoffersen’s test statistics, QRA-based PI were the best among
the tested approaches. Apart from two (four) peak hours, the QRA-based PI were not
rejected by the conditional coverage (unconditional coverage) test at the 1 % level.
For a majority of hours, they were not rejected at the 5 % level as well. On the other
hand, the ARXmodel turned out to be the worst out of all analyzed methods according
to the unconditional coverage test, with the null hypothesis rejected in 21 and 17 out
of 24 cases, respectively for the 50 and 90 % PI at 5 % confidence level. Empirical
prediction intervals derived from SIMPLE averaging yielded better results than ARX.
However, for the hours from 11 to 16 the SIMPLE averaging implied PI were generally
too wide, see also the lower part of Table 1 and Fig. 3. As a result the test statistics
were in excess of 20 and the null hypotheses were rejected for the two analyzed PI
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the PI obtained from the five considered forecasting models. The solid (dashed) horizontal lines represent
the 5 % (1 %) significance level of the appropriate χ2 distribution. All test values exceeding 20 are set to
20
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Fig. 3 Boxplots of widths of the prediction intervals (PI) for the five considered forecasting models

coverages (50 and 90%). Moreover, for those hours SIMPLE based 90% PI had a 100
% coverage. For the rest of the day the method performed slightly better, especially
during night and early morning hours. The LAD regression did not perform much
better. The test statistics were similar to those achieved by SIMPLE and better than
the benchmark ARX.

Finally note that the best individual method according to Weron and Misiorek
(2008)—SNARX—performed worse than QRA, but better than the remaining three
approaches. The SNARX based PI were on average narrower and less volatile than
QRA-based, but their median was higher than that of QRA-based PI, see Table 1.
It seems as if QRA yields PI which adapt themselves better to the changing price
dynamics than those obtained from the SNARX model.

5 Conclusions

This paper examines possible accuracy gains from forecast averaging in the context
of interval forecasts of electricity spot prices. While there is a significant number
of studies on the use of forecast combinations for constructing interval forecasts of
economic and financial variables, to our best knowledge, there are no publications
where this approach would be tested on the extremely volatile electricity spot price
data. Our paper can be considered as an extension of the empirical studies of Weron
and Misiorek (2008) and Nowotarski et al. (2014). In the former article the same
individual models were evaluated in a point and interval forecasting exercise. The
smoothed nonparametric autoregressive SNARX model came out as the best in terms
of PIs. In the latter paper the same individual models were used as the building blocks
for eight approaches to combining point forecasts. The SIMPLE and LAD averaging
schemes turned out to be relatively accurate and robust ways to combine electricity
spot price forecasts.

In this study we (i) construct empirical PI from combined electricity spot price
forecasts, utilizing SIMPLE and LAD averaging, and (ii) propose a new method—
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Quantile Regression Averaging (QRA)—for constructing prediction intervals using
the concept of quantile regression and a pool of point forecasts of individual (i.e.
not combined) time series models. It turns out that the empirical PI from combined
forecasts outperform ARX model implied PI, in terms of both the unconditional and
conditional coverage, but are outperformed by the SNARX based PI. However, the
QRA-based PI are found to bemore accurate than those of the semiparametric SNARX
model. The latter fact is particularly appealing since SNARXyielded themost accurate
PI of out the 12 individual models used in this study. In other words, the Quantile
Regression Averaging approach we propose here—which is obviously dependent on
the quality of the point forecasts of the individual models—outperformed the best
individual model.
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