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Abstract

Background: Structural excursions of a protein at equilibrium are key to biomolecular recognition and function
modulation. Protein modeling research is driven by the need to aid wet laboratories in characterizing equilibrium
protein dynamics. In principle, structural excursions of a protein can be directly observed via simulation of its dynamics,
but the disparate temporal scales involved in such excursions make this approach computationally impractical. On the
other hand, an informative representation of the structure space available to a protein at equilibrium can be obtained
efficiently via stochastic optimization, but this approach does not directly yield information on equilibrium dynamics.

Methods: We present here a novel methodology that first builds a multi-dimensional map of the energy landscape
that underlies the structure space of a given protein and then queries the computed map for energetically-feasible
excursions between structures of interest. An evolutionary algorithm builds such maps with a practical computational
budget. Graphical techniques analyze a computed multi-dimensional map and expose interesting features of an
energy landscape, such as basins and barriers. A path searching algorithm then queries a nearest-neighbor graph
representation of a computed map for energetically-feasible basin-to-basin excursions.

Results: Evaluation is conducted on intrinsically-dynamic proteins of importance in human biology and disease.
Visual statistical analysis of the maps of energy landscapes computed by the proposed methodology reveals features
already captured in the wet laboratory, as well as new features indicative of interesting, unknown
thermodynamically-stable and semi-stable regions of the equilibrium structure space. Comparison of maps and
structural excursions computed by the proposed methodology on sequence variants of a protein sheds light on the
role of equilibrium structure and dynamics in the sequence-function relationship.

Conclusions: Applications show that the proposed methodology is effective at locating basins in complex energy
landscapes and computing basin-basin excursions of a protein with a practical computational budget. While the
actual temporal scales spanned by a structural excursion cannot be directly obtained due to the foregoing of
simulation of dynamics, hypotheses can be formulated regarding the impact of sequence mutations on protein
function. These hypotheses are valuable in instigating further research in wet laboratories.
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Background
Experimental, theoretical, and computational studies have
shown that protein function is the result of a complex
yet precise relationship between protein structure and
dynamics [1–3]. Long gone are the days when proteins
were viewed as rigid molecules [4], with the atom nuclei
frozen in specific positions in the three-dimensional (3D)
structural models captured by X-ray crystallography [5].
Nowadays, wet-laboratory techniques based on single-
molecule fluorescence spectroscopy provide irrefutable
evidence of proteins as macromolecules in perpetual
motion [2], even catching proteins in the act of switching
between different structures to bind different molecular
partners [6]. The ability of a protein to switch between
different structures under physiological conditions (at
equilibrium) is key to biomolecular recognition and func-
tion modulation [7]. This finding warrants characterizing
the equilibrium structural dynamics of a protein as a
means of exposing the range of activities of a protein in
the cell [8].
While significant advances have been made in the wet

laboratory [6, 9–12], existing techniques are in principle
limited by the disparate spatio-temporal scales involved in
protein dynamics; proteins undergo small (sub-angstrom)
and large (> 10Å) structural changes at different tempo-
ral scales, spanning from a few femto-seconds to milli-
seconds and more [13]. Dwell times of proteins in specific
structural states may be too short to be detected in the wet
laboratory.
Computational methods that simulate the constrained

dynamics of the bonded atomic particles in a protein
molecule via iterative application of Newton’s laws of
motions are appealing. By following motions of atoms
along the negative gradient of a molecular mechanics
force field, these methods, also known as Molecular
Dynamics (MD) methods, directly simulate structural
excursions of a protein [14]. Since energy landscapes are
highly multi-dimensional [15] (directly related to both
independent and concertedmotions of thousands ormore
atoms comprising a protein molecule), MD methods have
to be operated in a random-restart fashion to sufficiently
explore the structure space accessed by a protein at equi-
librium. Typical computational efforts can exceed several
weeks on large (several-hundred core) supercomputers
[16] for medium-size proteins (100 − 300 amino-acids
long), though advances in hardware and specialized archi-
tectures are beginning to broaden the scope and scale of
MD methods to larger macromolecular assemblies and
even viral capsids [17, 18].
The challenges regarding characterization of equilib-

rium protein dynamics are better understood from a
protein energy landscape perspective, which links protein
structure, dynamics, and function [19]. Briefly, measur-
ing the extent to which a structure satisfies the (physical)

constraints that atoms place on one another allows one
to associate an energy landscape with the structure space
of a protein. Structural excursions of a protein at equi-
librium correspond to hops between energy basins in the
landscape [20]. A basin, visually corresponding to a valley
in the energy landscape, contains structures with similar
energies. The set of structures mapped to the same basin
represent a particular protein state. These states can be
thermodynamically-stable or semi-stable, depending on
the width and depth of the corresponding basin. A pro-
teinmay spendmore time in a wider and deeper basin (the
state is stable) than in a narrower and shallower basin (the
state is semi-stable) [20]. Energy barriers between basins
regulate the time it takes for a protein to switch between
basins [7, 20]. The interested reader is referred to works
in [1, 21] for detailed reviews of energy landscapes and
motions of proteins.
The energy landscape view clarifies why a complete

and detailed account of protein equilibrium dynamics is
a non-trivial task. In principle, the task requires a com-
prehensive characterization of both the protein structure
space and the underlying energy landscape that governs
the accessibility of structures and excursions between
them at equilibrium. While wet-laboratory studies may
not catch semi-stable structural states (due to insuffi-
ciently long dwell times), computational approaches that
simulate protein dynamics quickly become computation-
ally intractable for even moderate-size proteins.
In this paper we present a novel computational method-

ology that takes a complementary approach to the MD-
based approach. While the goal remains to elucidate
the equilibrium dynamics of a protein by computing
structural excursions at equilibrium, the dynamics are
not simulated directly. Instead, a two-step approach
is followed. First, stochastic optimization (random-
ized/stochastic search) is employed to explore a protein’s
structure space and construct a map of the energy land-
scape relevant for equilibrium dynamics. Second, the map
is analyzed and queried for paths of intermediate struc-
tures that link two structural states of interest, effectively
yielding an ensemble of paths that provide an on-demand
view of the equilibrium dynamics relevant to a specific
structural excursion. This two-step approach foregoes any
direct information on the temporal scales involved, as
there is no notion of physical time in the computed struc-
tures and paths connecting them. However, by doing so,
the computational demands become much more reason-
able; for instance, investigations of medium-size proteins
of 150 or more amino acids can be conducted on small
clusters (of no more than 16 CPUs) in no more than a few
days (ranging from 7 to 15). Moreover, during this pro-
cess, close to a million structures are generated, embed-
ded in multi-dimensional maps of energy landscapes, and
available to answer queries about energetically-feasible
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structural excursions at equilibrium between any two
structures of interest.
The advantages of stochastic over systematic search

to explore high-dimensional variable spaces have been
demonstrated in various domains. In protein structure
modeling, algorithms that navigate the structure space
of a protein via the Monte Carlo (MC) approach have
been shown to have higher exploration capability than
MD-based ones [22]. Furthermore, evolutionary algo-
rithms (EAs) have been shown to provide significant
improvements overMC-based algorithms [23, 24]. Specif-
ically, for de novo protein structure prediction, EAs with
domain-specific insight have been shown to rapidly locate
the global minimum and reproduce the native structure
[25, 26]. However, when the focus is on multi-state pro-
teins with complex multi-basin energy landscapes, the
objective goes beyond rapidly locating one structural state
and requires an exploration of the breadth of the struc-
ture space. Recent evolutionary search techniques have
advanced efforts in this direction [27–29].
A key starting point of recent work is the increasingly

rich set of structural data for both the wildtype (WT)
and variants of multi-state proteins being deposited by
wet-laboratory scientists in the Protein Data Bank (PDB)
[30]. Work in [31] has shown that a statistical character-
ization of this structural information provides important
and useful information about the structure space of a par-
ticular protein. A simple, generational EA operationalizes
this idea in [27]. Work in [28] enhances the exploration
capability of the EA while still operating under the clas-
sic optimization setting of finding the global minimum
(via a decentralized selection operator that delays pop-
ulation take-over by the most fit individuals). Work in
[29] finally switches from the classic setting to that of
obtaining a comprehensive map of a (multi-state) protein’s
multi-basin energy landscape via the concept of the hall
of fame. The resulting EA is shown able to map complex,
multi-basin fitness landscapes beyond the protein mod-
eling domain via careful combination of local and global
search [32].
These collective algorithmic developments have now

made it possible to build comprehensive and detailed
maps of energy landscapes of medium-size proteins with
a modest computational budget. The EA we employ for
mapping protein energy landscapes in the methodology
proposed here builds on all these previously-published
evolutionary search techniques to effectively and effi-
ciently map the structure space available to a protein at
equilibrium. The “Methods” Section summarizes this EA
for the sake of completeness, paying particular attention
to those aspects that give it the ability to efficiently map
energy landscapes of medium-size proteins.
Analysis of maps computed to represent energy land-

scapes is non-trivial. Even when the focus is simply to

locate basins, the analysis involves several hundred thou-
sands of multi-dimensional data points that reside in a
highly non-linear landscape. Past work [28, 29, 33] has
relied on visual analysis of 2D projections of all struc-
tures ever computed during the execution of an EA
or only those structures in the hall of fame/map. We
make the case in the “Results” Section that such analysis
is informative, but the projection can sacrifice possibly
interesting energetic features in the multi-dimensional
map. Hence, in this paper we utilize additional graph-
ical techniques to visualize and analyze the computed
multi-dimensional maps. The techniques reveal not only
basins already captured in the wet laboratory, but also
new energetic features indicative of interesting, unknown
thermodynamically-stable and semi-stable regions of the
equilibrium structure space.
Mapping the energy landscape of a protein provides

an opportunity to extract information on its equilibrium
dynamics in much in the same way the map of a city
allows extracting information on routes connecting land-
marks. In previous work [28, 29, 33, 34], we have relied
on qualitative summarizations of protein dynamics based
on the location of energy barriers and other features of
a mapped landscape, and how these features differ in the
variant forms of a protein. Here we propose a proce-
dure to extract information on the equilibrium dynamics
of a protein by computing structural excursions between
structures of interest. The procedure builds on ideas uti-
lized in robotics-inspired methods for protein motion
computation [35–37]. In these methods, structures are
embedded in a nearest-neighbor graph (referred to as a
roadmap), which is then queried for a path connecting
a start to a goal structure structure. In this paper, the
structures are those produced by an EA mapping process.
That is, they constitute a comprehensive and detailed map
of the energy landscape. Care has to be taken to embed
them in a nearest-neighbor graph and utilize them for
path queries. Moreover, unlike related work in robotics-
inspired modeling, where the focus is typically on one
path, the procedure proposed here reveals an ensem-
ble of energetically-similar paths. This focus is warranted
in order to obtain a broader view of the stochastic but
energy-driven nature of protein structural excursions (and
equilibrium dynamics).
The methodology proposed in this paper to build maps,

analyze them, and then query them for structural excur-
sions is applied to several proteins of importance in
human biology and disease. In addition, detailed com-
parison of the maps and path ensembles is conducted
on the WT and 7 variant sequences of an oncogenic
protein. This comparative setting evaluates the ability
of the proposed methodology to explain the impact
of mutations on protein equilibrium dynamics and in
turn on misfunction. These results are presented in the
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“Results” Section, and a discussion of how they reproduce,
explain, or further existing knowledge is provided in the
“Discussion” Section.
While the actual temporal scales spanned by a modeled

structural excursion cannot be obtained by the proposed
methodology due to the foregoing of simulation of dynam-
ics, specific hypotheses can be formulated nonetheless
regarding the impact of sequence mutations on func-
tion. These hypotheses are valuable in instigating further
research on structure-function studies in wet laborato-
ries. The advantages and disadvantages of the proposed
methodology, as well as possible directions of further
research, are summarized in the “Conclusions” Section,
which concludes this paper.

Methods
The input to the proposed methodology consists of a
protein sequence α, a set of structures SPDB represent-
ing stable structural states for sequences no more than
3 amino acids different from α, and (a pair of start and
goal) structures of interest for a possible excursion. The
methodology first performs a principal component anal-
ysis (PCA) on the structures in SPDB in order to define
a low-dimensional representation of the protein structure
space. An evolutionary algorithm (EA) is then applied to
this PCA-defined space to construct a map representing
the all-atom energy landscape of α. Finally, a path-finding
algorithm uses this map to compute energetically-feasible
paths realizing structural excursions of interest. The
methodology is shown in pseudocode in Algorithm 1.
Below we first relate details on the principle that allows

utilizing structures in SPDB to define the (reduced) vari-
able space underlying the structure space of a protein
sequence of interest α, as well as describes the tech-
nique employed to do so (lines 1–2 in Algorithm 1).
The EA that explores this variable space to build a
multi-dimensional map of the all-atom energy landscape
of α (line 3 in Algorithm 1) is then described. The
graphical statistical techniques utilized to analyze a com-
puted multi-dimensional map and reveal interesting ener-
getic features, such as energy basins, are related after-
wards. A description of the algorithm employed to build
and query the map for energetically-feasible excursions
of the target protein sequence α between two struc-
tures of interest (line 5 in Algorithm 1) concludes this
section.

Extracting variable axes to define a reduced protein

structure space

As mentioned in the “Background” Section, a key starting
point that has recently allowed EAs to explore complex
structures spaces of multi-state proteins is the ability to
define variable spaces of reasonable dimensionality to
represent protein structure spaces. These variable spaces
are extracted based on a statistical characterization of
the increasingly rich structural information available in
the PDB for a protein sequence α and other (variant)
sequences similar to it. The characterization is rooted
in the principle of conformational selection, summarized
next.
Utilization of structures and the principle of confor-

mational selection: Let us suppose a structure has been
captured for a sequence β of a protein in the wet lab-
oratory. This structure represents a thermodynamically-
stable state for β . If β is a variant of a given protein
(that is, within a few amino-acid mutations of some
neighboring sequence α), then the structure that is sta-
ble for β may possibly be of low-energy in the struc-
ture space of some similar sequence α. This is in effect
the principle of conformational selection [38], under
which perturbations such as sequence mutations do not
change a protein’s structure space but rather the prob-
abilities (which in turn are related to energies) with
which a given sequence is expected to populate the var-
ious structural states; in other words, even a structure
detected for a variant is expected to be assumed by
the WT (and vice-versa) but possibly with a different
probability at equilibrium. In summary, known struc-
tures of different sequence variants of a protein repre-
sent stable and semi-stable structural states of a target
sequence.

Extracting variable axes viamultivariate statistical analysis

Structures in the set SPDB are first “converted” into struc-
tures of α (line 1 in Algorithm 1). The structures are
stripped down to CA atoms (effectively discarding all
atoms except the central carbon atom – CA atom –
of each amino acid in the amino-acid/protein chain). A
structure stripped down to the CA atoms is referred to
as a CA trace. Since the CA traces corresponding to the
set SPDB come from sequences possibly different (within
a few mutations) from α, the amino-acid identities of the
CA atoms are replaced with those in the target sequence
α in each CA trace. The resulting traces are then sub-
jected to a multivariate statistical analysis, PCA, originally
described in [27], to extract new variable axes; these are
the principle components (PCs) obtained from the PCA
(line 2 in Algorithm 1).
In summary, PCA yields new variable axes via an opti-

mal rotation of the original axes that maximizes variance
of the data along the new axes [39]s. Ordering of the
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new axes (PCs) by the variance of the data when pro-
jected onto them allows extracting a subset m that is
typically much less than the original dimensionality of
the data, if PCA is indeed effective. Work in [28] shows
this to be the case for many multi-state proteins with
multi-basin landscapes; with the top two PCs one cap-
tures more than 45 % of the variance (which means they
can be employed for data visualization) and anywhere
between 10 − 25 PCs allow capturing more than 90 % of
the variance. The latter is a reduction by more than ten-
fold, as the original structures are of proteins with more
than 100 amino acids; stripping them down to their CAs
prior to PCA exposes more than 300 Cartesian coordi-
nates on which PCA operates to reveal no more than 25
PCs/coordinates that still capture more than 90 % of the
variance.
The variance-ordered PCs are used as variables

({PC1, . . . ,PCm}) through which to represent a structure.
As described in [27], a structure can be represented as an
m-dimensional point whose coordinates are projections
over the m axes (obtained via essentially a dot-product
operation with each of the axes). The reverse is also
possible. Given an m-dimensional point, a process that
essentially depends on a linear combination of the axes
yields 3D coordinates of the CA atoms of the structure
corresponding to the point. Going back and forth between
the variable space and the structure space of a given pro-
tein sequence makes it computationally feasible to map
and query the structure space of a protein by techniques
that operate on the variable space. Next we describe the
EA that explores this variable space to build a PCA-
based map of the all-atom energy landscape of a given
protein sequence α. The map is analyzed and queried
for paths by techniques that also operate on the variable
space.

EA building of a multi-dimensional energy landscape map

The EA employed here to map a protein energy
landscape is the result of a series of recent works
[27–29, 32, 34] that carefully and gradually investigate the
impact of various design and implementation decisions
regarding the exploration versus exploitation capabil-
ity of EA-based stochastic search in multi-basin pro-
tein energy landscapes. At a conceptual level, the EA
evolves a fixed-size population of individuals over gen-
erations towards better-fit individuals. Individuals are
points in an m-dimensional space whose variable axes
are the top variance-ordered PCs obtained as described
above. The fitness of an individual in the EA is eval-
uated via the Rosetta score12 energy function, which
measures the all-atom energy of the 3D protein struc-
ture corresponding to the individual. The EA is memetic,
as an offspring individual obtained by varying a par-
ent individual is subjected to improvement. This is

particularly important for individuals that represent
molecular structures in order to reduce the number
of constraints violated in offspring. An improved off-
spring is then considered for addition to the map, which
is thus dynamically updated during the evolutionary
process.
Algorithm 2 summarizes the EA in pseudocode. Rather

than specifying a budget in terms of a total number of
generations, the algorithm exhausts a total number of fit-
ness or energy evaluations (line 4 in Algorithm 2), as
these are the most computationally-demanding step of
any algorithm manipulating molecular structures. Once
the budget is exhausted, the map is outputted. For com-
pleteness, we provide more details of the EA in what
follows, paying particular attention to the shaded boxes
in Algorithm 2 that constitute the main functional units
of the EA. It is worth noting that these units make use of
various parameters. In the interest of clarity, these param-
eters are not listed in Algorithm 2, but we describe them in
context and list their values when relating implementation
details.

Initializationmechanism to seed the EA

Proper initialization is key to exploration. As mentioned
above, the CA traces extracted from SPDB and “threaded”
onto the sequence of interest α are the first to be
added to the initial population (line 3 in Algorithm 2);
the traces are first projected onto the m PCs so as to
obtain individuals corresponding to them in the vari-
able space. Prior work has considered various strategies
to fill in the rest of the population; typically, a higher
exploration capability is obtained as the population size
increases from 500 to 2,000 individuals (we use 2,000 in
this work), and the number of PDB-obtained structures
can be significantly smaller than this target population
size. In [27, 28], the rest of the population is filled by
individuals obtained as offspring of the CA traces via
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the variation operator (described below). A comprehen-
sive analysis in [29] compares this strategy to two others,
one where the rest of the population is filled by individ-
uals drawn at random in the space of the m PCs, and
another where the initial population does not make use
of any of the experimentally-known structures but con-
sists of only individuals drawn at random in the variable
space.
Comparison on the average fitness and average diver-

sity (measured via Euclidean distance in the variable/PC
space) of a population over generations demonstrates
that the strategy where the initial population consists
of individuals derived from the experimentally-known
traces and individuals drawn at random provides a bet-
ter balance between exploitation (improvement in average
fitness over generations) and exploration (retainment of
diversity over generations). In the results described in the
“Results” Section, this strategy is employed to seed the EA
and obtain the energy landscape maps of various protein
sequences.

Obtaining offspring via a variation operator

As line 6 in Algorithm 2 indicates, each parent p yields
an offspring c. Variation is introduced in each popula-
tion through a variation operator (line 7 in Algorithm 2)
described in detail in [27, 28]. In summary, a vector is
first defined in the PC space; its elements are magnitudes
of movement along each of the m PCs. The magnitude
of the movement along the top PC (that captures the
most variance) is sampled uniformly at random in the
segment [−s, s], where s is a user parameter. The mag-
nitudes of the movements along the other PCs respect
their variance relative to the variance captured by the
first/top PC. While the shape of the space is preserved,
the boundaries of the m-dimensional embedding of the
wet-laboratory traces are not observed, as the ultimate
goal is to generate individuals that represent new struc-
tures not captured in the wet laboratory for the target
sequence α.

Fixed versus variable budget improvement operator

The obtained offspring c is subjected to an improve-
ment operator to obtain a better offspring c̃ (line 8 in
Algorithm 2). The process consists of three steps.
First, the offspring, which is a point in the m-

dimensional PC space, is converted into a set of backbone
atoms with coordinates in 3D. This step consists of recov-
ering the CA trace via simple algebra operations (detailed
in [28], and then recovering the backbone skeleton from
the CA trace via the BBQ backbone reconstruction pro-
tocol [40]. The next step subjects the backbone skele-
ton to the Rosetta relax protocol [41]. This protocol is
open-source and written in C/C++, which allows easy
integration in the EA. The protocol repeatedly guesses

coordinates for the side-chain atoms (utilizing the tar-
get sequence α in the backbone structure fed to it as
input) and improves them via a simulated annealing MC
search. The result is a 3D structure for all atoms (backbone
and side chains) that corresponds to a local minimum in
the (Rosetta score12) all-atom energy surface of α. In the
third step, the improved individual c̃ corresponding to the
resulting structure is obtained. The CA trace is extracted
from the structure, and the trace is projected back onto
the space of PCs to obtain c̃. The all-atom Rosetta score
(score12) is recorded and associated with the c̃. The fact
that it is the improved offspring c̃ and not c that is added
to the set of offspring in line 13 in Algorithm 2 is what
makes the EA shown in Algorithm 2 a Lamarckian EA.
In prior work [27–29], a fixed number NrImprov

ItersMax of iterations of the MC search have been uti-
lized in the improvement operator. Since each iteration
exhausts one energy evaluation, the budget of energy eval-
uations can be effectively wasted by attempting to improve
sub-optimal offspring. Recent work in [34] introduces a
variable-budget improvement operator, which allocates
iterations/energy evaluations based on the promise of
an offspring for further improvement. The improvement
operator spends only one iteration at a time on improving
an offspring c until a maximum NrImprovItersMax

has been reached on the lineage from a parent to the
currently improved offspring. The neighborhood of the
currently improved offspring in the Map is analyzed
and compared in terms of average fitness to the fit-
ness/energy of the offspring, and a determination is made
(via an empirically-determined relationship) on whether
the improvement should be terminated prior to reaching
the maximum number of iterations. The relationship also
determines whether the improved offspring ought to be
considered for addition to the Map or not (lines 9–10 in
Algorithm 2). If not, the lineage is penalized, as well, so as
to remember that this specific region in the variable space
ought not to considered further. Lines 11–12 in Algo-
rithm 2) show that the parent of the terminated offspring
is replaced with a new individual. While work in [34], gen-
erates the new individual at random in the variable space,
here we consider an alternative strategy; two parent indi-
viduals are selected at random and crossed over (utilizing
one-point crossover) to obtain the new individual. These
two different strategies are compared in the first set of
results related in the “Results” Section.

A Sample-basedmap of a protein energy landscape via a hall

of fame

A large population is critical to capture a possibly large set
of local minima in a rugged energy landscape.Maintaining
all individuals ever generated in memory is not practical;
nor is it effective, as many individuals generated during
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the execution of the EAmay be highly structurally-similar.
What is needed is a map with a tunable resolution. Work
in [29] proposes utilizing the concept of a hall of fame to
serve as a dynamically-updated, resolution-tunable map
of a protein’s energy landscape. The hall of fame is an
evolutionary strategy to equip an EA with memory. The
algorithm invoked to update it is shown in pseudocode in
Algorithm 3.

As Algorithm 3 shows in lines 1–2, if the fitness f (c)

of the individual c considered for addition to the map is
not below a threshold fitThreshold, c is not consid-
ered (reflecting the objective to update the map with fit
individuals). Otherwise, c is considered (line 3) and then
compared to neighboring individuals C in the map (line
4). If a neighboring individual C whose Manhattan dis-
tance (in the space ofm top PCs) falls below the threshold
distThreshold but has higher fitness than the fitness
of c, then the individual is replaced by c (lines 5–11). If c is
similar but does not reside deeper in the local minimum
containing C (lines 8–9), c does not replace C. Note that
if c is not similar to any other individual in the map, it is
added, as it represents a new region not currently present
in the map. The idea is to update the map with individ-
uals that may represent the same region in the variable
space but allow further exploitation of a local minimum
and with fit individuals representing novel regions. The
distThreshold represents a resolution, as the map is
a set of distinct local minima individuals (obtained after
improvement) separated by at least the defined thresh-
old distThreshold in the space of PCs. Increasing
distThreshold makes the map sparser. Lowering it,
provides more detail but also increases the number of
individuals in the map.

Selection operator

Line 15 in Algorithm 2 invokes the selection operator,
where offspring compete with parents for survival. A com-
parative analysis of various implementations in [28] sug-
gests that a local/decentralized selection operator, where
each offspring competes only with parents in a given
neighborhood, stalls take-over of the population by most-
fit individuals, thus delaying premature convergence. The
neighborhood captures the notion of structural similarity,
so that offspring only replace structurally-similar parents

if they lower Rosetta score12 energy. Structural similar-
ity is determined efficiently by embedding individuals in
an explicit 2D grid over the top two PCs. Cell width is
also a user-defined parameter, and values employed here
for the construction of the grid are those suggested to be
optimal by the comparative analysis in prior work [28]. In
recent work [29], a modification is proposed to the local
selection operator, which we employ here in applications
of the EA analyzed in the “Results” Section. If an offspring
does not have any parent individuals in its neighborhood,
it survives and is included in the population for the next
generation; in prior work [28], such an offspring would
compete with all parents.

Analysis of a multi-dimensional map via graphical

statistical techniques

Projections of the multi-dimensional maps onto 2D, while
informative (as related in the “Results” Section, may hide
interesting energetic features that only appear along the
remaining axes. Graphical techniques for visualization of
multi-dimensional data are employed here to elucidate
interesting energetic features hidden along the different
dimensions of the variable space explored by the EA. In
all the proteins investigated here, the top 4 PCs capture
about 80% of the dynamics. Therefore, hidden energetic
features are sought on at most 4D projections of the
computed maps (PC1-PC2-PC3-PC4) by way of two-way
conditioned plots.
Two-way conditioned plots provide a way to obtain

insight in data patterns related to a 4D domain. Such
graphics have a substantial history and are alternatively
referred to as multi-window displays, casement displays
and co-plots [42–45]. The basic idea is to focus on plots of
two variables at a time, conditioning on the other two vari-
ables so the basic view is a function of the other variables
(or not). Let us refer to the former the primary variables,
and the latter as the conditioned-upon variables. Since
the PCs are ordered by variance, PC1 and PC2 are used
as the primary variables, leaving PC3 and PC4 to be the
conditioned-upon variables.
In the two-way conditioned plots we employ to visu-

alize the map along essentially the top 4 PCs, the data
is partitioned in 16 subsets that are quartile intervals for
PC3 and PC4. Let us consider a specific quartile, Qi for
PC3 andQj for PC4. Them-dimensional individuals in the
map are then visualized as follows. All coordinates of an
individual along PC5 and on are discarded, and the only
individuals retained are those whose third coordinate falls
in Qi of PC3 and fourth coordinate falls in Qj of PC4. This
subset resides in a 4D space. In effect, considering the fit-
ness value of each individual adds a fifth dimension. These
individuals are visualized in a 2D plot as follows. They are
binned in hexagon bins, a popular idea in visualization
of multi-dimensional data introduced in [46]. Only the
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lowest-energy (best) individual is then visualized per bin,
plotting it as a 2D point along PC1 and PC2, and color-
coding it based on its energy. A blue-to-red color-scheme
is employed corresponding to low-to-high energy values.
It is worth noting that the conditioned-plot approach

to multi-dimensional data visualization sacrifices much
of the resolution of the conditioning (partitioning) vari-
ables while retaining much of the resolution for the
variables used in the plots. The comparison of juxta-
posed plots, however, provides valuable insight into the
impact of the conditioning variables. As the results in
the “Results” Section relate, a layout of 16 color-coded,
hexagon-binned, two-way conditioned plots (16 by com-
bination of each of the quartiles of PC3 with quartiles of
PC4) provides an effective way to visualize a 5D view of
the maps of energy landscapes constructed by the above-
described EA. In particular, the layout allows visualizing
how basins elongate along the other dimensions, and
where along these dimensions they populate regions not
captured in wet laboratories.

Graph-based query of map for energetically-feasible

structural excursions

The map that the EA described above constructs to rep-
resent an energy landscape is essentially a (hall of fame)
list of (multi-dimensional) individuals with associated fit-
ness values (Rosetta score12 energies). In order to query
the map for ensembles of energetically-feasible structural
excursions between any two structures of interest for a
protein at hand, the map is first converted into a nearest-
neighbor graph. Details are related below. After the map
is essentially equipped with connectivity information, any
informed graph search algorithm can be employed to
query the map for energetically-feasible paths. Below
we describe how the nearest-neighbor graph representa-
tion of the map is provided with energy-based weights,
and how Dijkstra’s shortest-path algorithm [47] is then
employed to extract a lowest-cost path connecting two
structures of interest from a graph of close to a mil-
lion vertices. Finally, the rest of the “Methods” Section
describes how Dijkstra is employed in an iterative fashion
to obtain an ensemble of low-cost paths in order to pro-
vide a broader picture of energetically-feasible structural
excursions.

A nearest-neighbor graph representation of the energy

landscapemap

The map is converted into a nearest-neighbor graph G =

(V ,E) as follows. The individuals in the map populate V .
Each vertex is then connected via edges to k other vertices
that are its nearest neighbors. Euclidean distance in the
m-dimensional variable space is used tomeasure the prox-
imity between two vertices/individuals. The computation
of nearest neighbors can be potentially a time-consuming

step, but nearest-neighbor search data structures, such as
a kd-tree [48], provide a remedy, particularly when the
number N of data points is much larger than 2m (that is,
N >> 2m), where m is the dimensionality of the variable
space [49].We employ a process similar to how the kd-tree
organizes data points to support fast nearest-neighbor
queries. Specifically, Euclidean distance calculations are
terminated earlier than considering all variable axes if the
distance already surpasses a dynamic threshold (the latter
is updated as neighbors are found).
Since the set V can be very large (recall that the

distThreshold parameter in the map construction
can allow for a highly-detailed map with millions of indi-
viduals), the number of nearest neighbors for a vertex is
limited to k = 8. That is, the branching factor for the
graph is limited to 8. The graph is directed; a vertex vmay
be among the k-nearest neighbors of a vertex u, but umay
not be among the k nearest-neighbors of v.
While edges are added based on essentially a proximity

relationship between vertices, weights or costs associated
with them are based on the following energy-/fitness-
based relationship: Cost(e = (u, v)) = max{score12(v) −

score12(u), 0}. The idea behind this is as follows: If the
directed edge e = (u, v) lowers the energy of a pro-
tein hopping from u to v, then this particular u → v

excursion does not require additional energy, as it is a
down-hill movement in the landscape. Down-hill move-
ments occur instantaneously per thermodynamics; no
build-up of energy is needed to allow the excursion to take
place. On the other hand, an up-hill movement, where
score12(v) > score12(u), requires the system to build
enough energy in order to cross what is essentially an
energy barrier. This way of associating costs with edges
is based on the principle of mechanical work, as the cost
that would be tallied up with a path of edges would essen-
tially sum only up-hill movements in the landscape; that is,
only keep track of the total amount of external work that
needs to be performed to give energy to fund such move-
ments. This way of associating costs with edges is shown
to assess the relevance of a lowest-cost path as a represen-
tative of a structural excursion better than an alternative
approach based on the integral cost along the path [50]
(and has been used by us before on robotics-inspired
protein motion computation [35]).

Querying nearest-neighbor graph for low-cost paths

Given two structures Sstart and Sgoal , the nearest-neighbor
graph can be queried for a path as follows. First, the
two structures are projected onto them-dimensional vari-
able space, and their projections vstart and vgoal are
added to the vertex set. The vertex set is then inspected
to find the nearest neighbor ustart to vstart and the
nearest neighbor u goal to ugoal. The directed edges
(vstart,ustart) and (ugoal, vgoal) are then added to the
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set of edges in the graph, with weights are defined above.
A path in the enhanced nearest-neighbor graph is then an
ordered list of vertices 〈vstart,ustart, . . . ,ugoal, vgoal〉.
Dijkstra’s shortest path algorithm is used to compute the
lowest-cost path vstart � vgoal.
The following modification is carried out in order

to produce a physically-realistic lowest-cost path. Since
the vertices correspond to individuals obtained via
randomized search, the sampling of the structure space
is non-uniform; while some structures may have nearest
neighbors in very close proximity, this cannot be guar-
anteed over all structures computed by the EA. Indeed,
the most densely-sampled regions will be those in basins
due to the nature of EAs. The unintended consequence
of non-uniform sampling is that a structure (vertex) may
be connected via an edge to a structure (vertex) far away
in the structure space. Such connections are valid in the
nearest-neighbor graph construction, but they do not pro-
vide physically-realistic information regarding structural
transitions.
Rather than place additional proximity constraints

among a vertex and its k-nearest neighbors in the con-
struction of the edge list of the graph, such constraints
are imposed when querying the graph for paths; that is,
the neighbors of a vertex are a subset of its k neighbors
in the graph subjected to an additional proximity con-
straint. A user parameter is considered for this purpose,
max_nn_dist (maximum nearest-neighbor distance), and
values for this are generated by dividing the Euclidean
distance between the individuals corresponding to the
start and goal structures by values in the set {15, 10, 7.5}.
The latter can be considered path resolutions, and in the
“Results” Section we demonstrate the implication of the
resulting different values for max_nn_dist. In summary,
a large value allows making large hops in the variable
space and associating non-credible costs, such as would
be obtained by directly connecting two nearby basins
without considering the energetic barrier in between the
basins (the equivalent of tunneling through an invisible
mountain). A small value is conservative, making much
smaller hops and effectively is impacted by the ruggedness
of the energy landscape. Very small values ofmax_nn_dist
may result in no paths at all, as no nearest neigh-
bors can be found to meet a very conservative distance
criterion.
Dijkstra’s algorithm can be run in an iterative man-

ner to produce more than the lowest-cost path. Once the
lowest-cost path is computed, the intermediate vertices
(excluding start and goal) in the path are removed from
the graph, together with their edges. The remaining graph
is queried again for the lowest-cost path, and this process
is continued, removing intermediate vertices after identi-
fying a path, until no more paths can be found; that is, the
start and goal are now in different connected components.

The result of this iterative process is an ensemble of low-
cost paths, which are analyzed in the “Results” Section to
obtain summary statistics regarding energetically-similar
structural excursions of a protein.

Implementation details

The algorithms for map building and querying are imple-
mented in C/C++, whereas the graphical techniques for
analysis of a built map are implemented in R. The EA is
run until the budget of 1,000,000 Rosetta score12 evalua-
tions is exhausted. Population size in the EA is 2,000 indi-
viduals. A preliminary analysis in [29] also shows that this
population size, combined with the initialization strategy
described in above, injects greater diversity in the initial
population. The target cumulative variance to obtain m

PCs is set at 90 %, as in prior work. The step size s in the
variation operator is set to 1, and NrImprovItersMax
in the improvement operator is set to 5. In themap update,
fitThreshold is set to 0 Rosetta Energy Units (REUs)
for most proteins. For CaM, where Rosetta heavily penal-
izes non-compact structures, fitThreshold is set to
250 REUs. Also in the map update, distThreshold is
set to be twice the minimumManhattan distance between
two wet-laboratory structures of a protein under con-
sideration. In the variable-budget improvement operator,
neighbors of an offspring in the map are individuals no
more than 1 unit away in Manhattan distance. Prior work
on the selection operator indicates that C25 and C49 are
reasonable choices that delay premature convergence [28].
Similarly, reasonable values for the grid cell width vary
from 1 − 2 for small proteins less than 100 amino acids
and 10 for other longer proteins.
The EA is run on a 16 core red hat Linux box with

3.2GhZ HT Xeon CPU and 8GB RAM. The cores are
employed to parallelize offspring improvements. This
results in significant time savings. The experiments
reported here are carried out on a 16-core platform, but,
since the distribution is embarrassingly parallel, more
time savings can be obtained with more cores.

Results

Test cases and experimental setup

The proposed methodology is applied to 10 protein
sequences, and performance is evaluated both in terms of
running time and quality of themaps and structural excur-
sions modeled on each sequence in relation with existing
wet- and dry-laboratory evidence on known features of
the energy landscapes and equilibrium dynamics.

Test cases

The selected test cases are proteins of importance in
human biology and with a significant number of struc-
tures in the PDB [30]. They are the the superoxide dis-
mutase [Cu-Zn] (SOD1), Calmodulin (CaM), and the
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WT and disease-related variant forms of the catalytic
domain of uncomplexed H-Ras (to which we refer as
H-Ras from now on). SOD1 is a 150 amino-acid long pro-
tein whose mutations have been linked to familial Amy-
otrophic lateral sclerosis (ALS) [51]. CaM is an enzyme
148 amino acids long that binds calcium and regulates
over 100 target proteins, including kinases, phosphodi-
esterases, calcium pumps, and motility proteins [52–54].
H-Ras is a 166 amino-acid long protein that mediates
signaling pathways that control cell proliferation, growth
and development. H-Ras switches between two distinct
structural states to regulate its biological activity [55].
Sequence mutations are implicated in various human
cancers and other developmental disorders [56], and we
study here several single and double mutants (7 variant
sequences in all).

Data collection and preparation

Due to the implication of these proteins in various crit-
ical human diseases, ample structural data of their WT
and mutated (variant) sequences exist in the PDB. Only
X-ray structures are collected for H-Ras, whereas NMR
structures are additionally included for SOD1 and CaM
to enrich these datasets. The WT sequence of each of
these proteins is obtained from UniProt [57]. Structures
obtained from the PDB whose sequence changes by more
than 3 amino acid from the WT sequence are discarded.
Structures with missing internal amino acids are also dis-
carded. Remaining structures are cropped at the termini,
if necessary, so their lengths match the length of the WT.
This protocol results in 186 wet-laboratory structures col-
lected for SOD1 from the PDB, 86 for H-Ras, and 697 for
CaM. As described in the “Methods” Section, application
of PCA to these datasets yields a cumulative variance of
90 % at m = 25, m = 10, and m = 10 PCs for SOD1,
CaM, and H-Ras, respectively. A cumulative variance of
45 − 50% is captured by the top two PCs on each of these
proteins. In the interest of space, the cumulative variance
profiles are not shown here, but they have been presented
in prior work on analysis of the PC spaces for each of these
proteins [27, 28].

Experimental setup

The proposed methodology is applied to SOD1 (WT),
CaM (WT), and 8 different sequences of H-Ras. The
breakdown of the run time of the methodology on each
of its components (map building, nearest-neighbor graph
computation, and map querying) is shown via pie charts
in Fig. 1. The run time of the EA and the size of the
maps built on each test case are listed in Table 1. Analysis
of the impact of the two different strategies described in

the “Methods” Section on how to restart an unpromising
lineage is carried out over 3 independent runs of the EA
and is related first.
The analysis then focuses on maps and paths computed

on each of the test cases. The analysis on SOD1 and CaM
is conducted on color-coded 2D projections of the maps
built for each protein and the structural excursions com-
puted for each of them via map queries. This is related
next.
The rest of the analysis is on H-Ras, on which

there is a wealth of structure data and disease-related
mutations. The graphical techniques summarized in the
“Methods” Section are applied to the multi-dimensional
map generated for H-Ras WT to reveal in detail energetic
features that are lost in a 2D projection. Path ensembles,
computed as described in the “Methods” Section, are then
visualized and analyzed for H-Ras WT and several single-
and double-mutant variants. Summary statistics are jux-
taposed to supplement the visual comparison of maps
and paths. More results are related in the Additional files
accompanying this paper. The “Discussion” Section sum-
marizes all results presented on H-Ras to reconcile exist-
ing literature and further our understanding of the role
of equilibrium structural dynamics on the link between
mutations and misfunction in H-Ras variants.

Exploration versus exploitation: restarting failed lineages

with individuals generated at random or via crossover

Two different settings are investigated to restart a failed
lineage, generating a new individual at random in the vari-
able space versus generating it via crossover of two parent
individuals selected at random in the current population.

Fig. 1 Run time profiling. The break-down of the run time along each of the three main components of the methodology is shown for SOD1, CaM,
and H-Ras WT. The path query time refers to the proportion of running time spent on computing the lowest-cost path
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Table 1 Map build run time across SOD1, CaM, and H-Ras
sequences

Sequence |Map| Time (CPU Days)

SOD1 669,102 13

CAM 170,570 9.5

H-Ras WT 890,391 9

H-Ras G12S 699,265 7

H-Ras G12C 704,610 10

H-Ras G12D 694,739 8

H-Ras G12V 649,006 7

H-Ras Q61L 602,893 7

H-Ras C32YS118C 693,567 8

H-Ras R164AQ165V 559,862 7

The EAwith each setting is run 3 times, and twomeasure-
ments are tracked over generations. The first, the average
fitness of the growing map (average over fitness values of
individuals in the map at a given generation) estimates the
exploitation power of the resulting EA. The second, the
average diversity among individuals in the growing map
(average value over all pairwise Euclidean distances over
individuals in the map at a given generation). Figure 2
shows these two measurements for the H-Ras WT map
over generations; the 99 % confidence intervals are also
shown.
Figure 2 shows that EA with crossover lowers both the

average fitness and the average diversity of a growing map
faster; that is, the crossover enhances exploitation but
lowers exploration. The impact on exploitation is smaller,
however, than the impact on exploration. Taken together,
this analysis suggests that the EA, where a failed lineage
is restarted with an individual generated at random, will
be as effective in exploitation and more effective in explo-
ration than when the individual restarting a lineage is
generated via crossover. It is worth noting that the differ-
ences are not significant; this is expected, as crossover of
two individuals that correspond to protein structures is
likely to result in similar constraint violations as an indi-
vidual generated at random in the variable space. The rest
of the analysis on the proteins studied here employs the
EA where failed lineages are restarted with individuals
drawn at random in the variable space.

Projection-based visualization and analysis of computed

energy landscape maps and structural excursions for SOD1

and CaM

One way to visualize computed multi-dimensional maps
of energy landscapes is to project individuals in a map
onto the top two PCs and color-code the projections
based on the Rosetta score12 energy values; effectively, the
2D projection of a computed map is a 2D projection of

the explored score12 all-atom energy landscape of a pro-
tein. Color-coded 2D projections of all individuals ever
generated or individuals in a map have been employed
by us before to conclude that low-energy regions of an
explored protein energy landscape are co-located with
projections of experimentally-known structures of a pro-
tein [29]; thus, suggesting the ability of a mapping EA
operating in a reduced variable space to produce reliable
maps of multi-basin energy landscapes. In the following,
we show such projections for maps built for SOD1 and
CaM. A lowest-cost path is also shown for each protein to
demonstrate the ability of the proposed methodology to
model structural excursions.

Analysis of computedmap and basin-basin excursions of

SOD1

Figure 3 shows the color-coded 2D projection of the
map built for SOD1 (WT sequence). The map con-
tains two well-delineated basins. This two-basin feature
is related to the phosphorylation event [58], grouping
the experimentally-known structures (their PC1-PC2 pro-
jections are drawn as black dots) into one of the two
basins. The map is queried for a structural excursion
between the two basins. Two structures, one residing in
each basin, are selected and provided as start and goal
to the map querying algorithm in the proposed method-
ology. The lowest-cost path is computed with a value of
max_nn_dist corresponding to about 5.43Å/15 (where
5.43Å is the least-root-mean-squared-deviation – lRMSD
– between the two structures, and 15 relates to the sought
path resolution (as described in the “Methods” Section.
The query is successful; the succession of structures in
the path is shown in Fig. 3 by projecting each of the
structures onto the top two PCs. The computation of the
lowest-cost path points to numerous structures computed
by the EA that allow connecting the two basins despite
such a conservative (subangstrom) max_nn_dist value.
The path also goes nearby various experimentally-known
structures in the projection of the energy landscape, which
lends more credibility to its validity. Taken altogether,
the path demonstrates the ability of SOD1 to undergo
structural changes related to the phosphorylation event,
effectively switching between two structural states (that
separate the experimentally-known structures) during
phosphorylation.

Analysis of computedmapandbasin-basin excursions of CaM

The ability of the proposed methodology to compute
both maps and structural excursions is additionally illus-
trated on CaM. The color-coded 2D projection of the
map is shown in Fig. 4. The map has a characteristic
shape, with a hollow region in the middle, indicating
the inability of the EA to find low-energy structures in
this region. A broad and deep basin is found, populated
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Fig. 2 Crossover evaluation. The top panel shows the average fitness/energy among individuals in the hall of fame list (map), as the map is updated
over generations. The bottom panel shows the average diversity among individuals in the hall of fame (measured via Euclidean distance) as the
map is updated over generations

by many experimentally-known structures, whose PDB
ids are annotated. A long narrow strip of low-energy
structures is also found. Figure 4 additionally shows the
lowest-cost path computed to capture a structural excur-
sion from a compact, closed structure of CaM (PDB id
1XFZ) to the calcium-bound structure (PDB id 1CLL);
The lRMSDbetween the CA atoms of these two structures
is 9.5Å, and the shown path is computed with a value of
max_nn_dist corresponding to about 9.5Å/10; effectively
limiting structural changes between any two successive
structures in the path to subangstrom values.
As Fig. 4 shows, the path goes through the calcium-free

structure (PDB id 1CFD), passes through compact struc-
tures with which CaM binds proteins and peptides (PDB

ids 1NWD and 2F3Y) to then reach a structure repre-
sentative of the calcium-bound state (Ca(2+)-CaM) and
in the state bound to myosin light chain kinase (CaM-
MLCK) (PDB id 2KOE) just before terminating in the
calcium-bound state (PDB id 1CLL). The path confirms
that in the succession of structures from the compact
state to the calcium-bound state, the domain collapse, re-
arrangement, and partial unfolding of the helix linker in
CaM are gradual. The succession of structures in the path
points to a rearrangement of the domains in the compact
state that is needed for CaM to then open up, before pop-
ulating a semi-open state with a partially-unfolded linker
that then further allows it to adopt the open, calcium-
bound state. This detailed observation is in agreement
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Fig. 3 Visualization in 2D of map and a lowest-cost path computed for SOD1. The computed map for SOD1 is projected onto 2D and projections are
color-coded by Rosetta score12 energy values. Black dots show projections of experimentally-known structures. A lowest-cost path connecting the
two visible basins is additionally drawn. Its cost (in REUs) is also listed

Fig. 4 Visualization in 2D of map and a lowest-cost path computed for caM. The computed map for CaM is projected onto 2D and projections are
color-coded by Rosetta score12 energy values. Black dots show projections of experimentally-known structures. A lowest-cost path connecting two
experimentally-known structures is also drawn; its cost (in REUs) is listed. The PDB ids of the structures the path connects, as well as other
experimentally-known structures of interest, are additionally shown where these structures project onto the top two PCs
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with other studies, both those employing MD [59] and
others employing robotics-inspired approaches [35].

Multi-dimensional visualization of computedmap of H-Ras

WT

Prior work in [29, 34] has analyzed the 2D color-coded
projection the H-Ras WT energy landscape in great
detail and has concluded that the EA mapping the H-Ras
WT energy landscape reproduces the two, large basins
corresponding to the two states, On and Off, between
which H-Ras switches to regulate its activity in the cell.
In addition, the map contains novel low-energy regions
not probed in the wet laboratory for H-Ras WT, some of
which we analyze in detail here. However, we now do so
by considering more than two dimensions.
While important features can be preserved (and thus

analyzed and subjected to interpretation) in a 2D projec-
tion, other features can be hidden by the projection. Note
that, though the top two PCs capture around 45 − 50%
of the variance of the experimentally-known structures for
each protein, essentially 50 % of the dynamics is hidden
when projecting the computed maps onto two dimen-
sions. Moreover, the ruggedness of the energy landscape
requires careful preparation of the large number of points
in a computed map when visualizing them after pro-
jection. The above projections for SOD1 and CaM, for
instance, are visualized after ordering the points from high
to low-energy, so that the low-energy ones are plotted on
top of the high-energy ones to prevent occlusion.
Below we relate conditioned plots for the H-Ras WT

multi-dimensional map computed by the EA; the plots
are constructed as described in the “Methods” Section.
The projections are along PC1 and PC2, and the data
are conditioned on each of the 4 quartiles of PC3 and
PC4. It is worth noting that the top 4 PCs capture more
than 75 % of the variance, and thus almost all of the
dynamics of H-Ras. The quartile intervals for PC3 and
PC4 each have roughly 222,580 data points for H-Ras
WT. Table 2 shows the number of cases in common
to a chosen quartile of PC3 and a chosen quartile of
PC4. The left top panel of Fig. 5 shows a hexagon bin
plot along PC1 and PC2 conditioned on the first quartile

Table 2 Distribution of H-Ras WT individuals along PC3 and PC4
quartiles

PC3

PC4 Q1 Q2 Q3 Q4

Q1 70,908 57,038 54,913 39,723 222,582

Q2 59,644 57,896 54,655 50,387 222,582

Q3 51,601 56,742 56,261 57,971 222,575

Q4 40,430 50,908 56,748 74,494 222,580

Q5 222,583 222,584 222,577 222,575 890,391

of PC3 and the first quartile of PC4 (containing 70,908
individuals, as related in Table 2). The color scheme
uses color thresholds based on the binned quantiles of
cell minimum-energy distributions without subsetting.
Quantiles of {0, 20, 60, 99, 100}% correspond to Rosetta
score12 values of {−374,−348,−321,−115,−18} REUs.
The corresponding color-scheme is {dark blue, light blue,
gray, pink}; yellow is reserved to show projections of
the experimentally-known structures collected for H-Ras.
The right bottom panel of Fig. 5 shows the shift of the
minimum-energy patterns, as different subsets of the data
are inspected per the 16 two-way conditioned plot layout.
In particular, several interesting observations can now be
drawn regarding the location of energy basins that the
above 2D color-coded projections of the maps did not
allow.
Since the hexagonal binning effectively smooths the

ruggedness of the mapped energy landscape, two distinct
basins can clearly be seen without the noise due to the
ruggedness. The basins are most visible on the PC1-PC2
scatter plots along the second quartile of PC3 and the
second or third quartile of PC4 (the [PC3:Q2; PC4:Q2-3]
views). The basins reach deep in the energy landscape, as
some of the conditioned plots show (for instance, along
PC3:Q2 and PC4:Q2-3). The On basin (the dark blue
region on the right) persists along all quartiles of PC4 (see
first column of the 16-plot layout Fig. 5) but disappears
quickly after the second quartile of PC3. No basins are vis-
ible on the third and onwards quartiles of PC3 and PC4.
The Off basin (dark blue region on the left) is located (and
is most visible) on [PC3:Q2; PC4:Q2-3] views.
The experimentally-known structures appear on differ-

ent quartiles of PC3 and PC4. Specifically, the majority
can be found no further than the second quartiles of PC3
and PC4. This observation is particularly interesting, as
the portion of the On basin that continues onto the third
quartile of PC4 (and second quartile of PC3) does not
contain any experimentally-known structures in it. This
portion of the On basin is in effect a novel region of the
H-Ras WT energy landscape not currently probed in the
wet laboratory. As such, the structures in this region con-
stitute a novel stable region that is worth pursuing further
in the wet laboratory, particularly in the context of design-
ing drug inhibitors for H-Ras. Similar observations can
be drawn regarding portions of the Off basin along spe-
cific quartiles, where no experimentally-known structures
reside.

Comparison of maps and basin-basin excursions of H-Ras

WT and variants

Maps and structural excursions computed by the pro-
posed methodology on H-Ras are now investigated
in greater detail. A comparative setting is pursued
to understand dfferences between H-Ras WT and 7
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Fig. 5 Visualization via conditioning plots of map computed for H-Ras WT. The map computed for the H-Ras WT is visualized via conditioning plots,
which plot projections of the hall of fame on PC1 and PC2 conditional on projections on PC3 and PC4. Sixteeen plots are generated, considering
combinations of all quartiles of PC3 with all quartiles of PC4. The 4D space in each subplot is discretized via hexagons, plotting for each hexagon
only the projection of the lowest-energy individual in the hexagon. The blue-to-red color-coding scheme follows the low to blue energy range. Dots
in yellow show PC1-PC2 projections of experimentally-known structures of H-Ras WT

disease-related variants, five of which are single mutants,
and two are double mutants. The H-Ras sequences
are listed in column 1 in Table 3. The standard nam-
ing convention [Code1][Position][Code2] for a single-
mutant variant relates that the amino acid named ‘Code1’
(using one-letter amino-acid codes) at position ‘Position’
in the WT is replaced with the amino acid named
‘Code2’ in this particular variant. In other variants, the
additional mutations are joined in order of positions; e.g.
Y32CC118S.

The EA described in the “Methods” Section is employed
to obtain maps for each of the 8 H-Ras sequences. The
maps are then queried to compute the lowest-cost paths
and other low-cost paths (as described in the “Methods”
Section) connecting a structure representative of the On
state (PDB id 1QRA) to a structure representative of
the Off state (PDB id 4Q21) in each of these 8 H-Ras
sequences, effectively modeling the On→Off structural
excursion. Two values of max_nn_dist are considered,
corresponding to 1.45Å/10 and 1.45Å/7.5, where 1.45Å is
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Table 3 Comparison of lowest-cost on→off path across H-Ras
WT and variants

Sequence max_nn_dist (Å) Path cost (REU) Highest Energy (REU) Nr. Edges

WT 1.45/10 266 –251 90

1.45/7.5 108 –299 56

G12S 1.45/10 — — —

1.45//7.5 130 –230 26

G12C 1.45/10 — — —

1.45//7.5 232 –150 66

G12D 1.45/10 — — —

1.45//7.5 119 –277 51

G12V 1.45/10 — — —

1.45//7.5 109 –276 72

Q61L 1.45/10 — — —

1.45//7.5 85 –263 62

Y32CC118S 1.45/10 — — —

1.45//7.5 131 –265 54

R164AQ165V 1.45/10 — —

1.45//7.5 131 –277 72

the lRMSD between the CA atoms of the structures
selected to represent the On and Off states.
Summary statistics for the lowest-cost path and the

ensemble of low-cost paths computed on each of the 8 H-
Ras sequences are shown in Tables 3 and 4. The low-cost
paths (and maps) are also shown on color-coded 2D pro-
jections for selected sequences (WT in Fig. 6, G12C in
Fig. 7, Q61L in Fig. 8, and Y32CC118S in Fig. 9). Color-
coded 2D projections of maps and paths computed for
the other variants are related in the Additional files 1,
2, 3 and 4. Summary statistics on paths modeling the
(reverse) Off→On structural excursion are related in the
Additional files 5 and 6.
Table 3 compares the lowest-cost On→Off path for

each of the 8 H-Ras sequences. The cost of the path,
the highest energy among structures in the path, and the
number of edges in the path are listed in columns 3–5.
The lowest-cost path on each H-Ras sequence has been
queried off the EA-built map under the two different val-
ues for max_nn_dist listed above. The lower value makes
it harder to find paths, as indicated by the higher costs and
the lack of paths on any sequence but the WT in Table 3.
The higher value allows finding more paths, and even
lower-cost paths, as the ruggedness of the energy land-
scape within a ball of radius max_nn_dist is effectively
ignored. Since the higher setting of max_nn_dist still
corresponds to a very small distance between two succes-
sive structures (1.45Å/7.5) and allows obtaining low-cost
paths on both WT and variants, the paths shown on 2D

projections of the computed maps are those computed for
max_nn_dist set to 1.45Å/7.5. Additional file 7 shows the
paths that are obtained on H-Ras WT on the lower, more
stringent value of 1.45Å/10 for max_nn_dist. The paths
are higher in cost, as described above, but they navigate
similar regions in the landscape as the paths computed at
the less stringent distance of 1.45Å/7.5.
Comparison of the lowest-cost path found for each of

the 8 H-Ras sequences at the less stringent distance allows
drawing the following conclusion: The majority of the
single mutants (with the exception of Q61L and G12V)
incur a significantly higher energetic cost for the On→Off
structural excursion. This points to a higher energetic bar-
rier separating the On and Off states, which is also visible
on many of the 2D projections of the maps built for these
variant sequences. The latter is particularly prominent
for the G12C variant and can additionally be qualitatively
confirmed by comparing the color-coded 2D projection of
the H-Ras WT map in Fig. 6 to the 2D projection of the
H-Ras G12C map in Fig. 7.
While the results related in Table 3 are informative,

they do not take into account the stochasticity of protein
motions. Summary statistics on the ensemble of low-cost
paths, computed as described in the “Methods” Section,
are listed in Table 4 for each of the 8 H-Ras sequences.
The comparison of the average cost and average highest-
energy along structures in paths generally preserves the
ordering of the variants on the lowest-cost paths above.
The only variant where this is not the case is Q61L, where
a lowest-cost path even lower than in the H-Ras WT can
be found, but this path is an outlier compared to the
ensemble. The rest of the low-cost paths found for Q61L
are much higher in cost, contributing to an average statis-
tic of 161.3 REUs, which is among the highest (the highest
average cost is obtained on the G12C variant) when com-
pared to the WT and other variants. This conclusion is in
line with qualitative observations made in [33] and sim-
ilar ones based on visualization of the 2D projection of
the energy landscape map in Fig. 8; a high energy bar-
rier between the On and Off basins in the Q61L variant
contributes to a structural rigidity in Q61L that effectively
causes Q61L to be constitutively activated (always on).
The same mechanism is observed on the majority of the
variants of H-Ras here.
H-Ras variants where the mutation has a profound

impact on the cost of the On→Off structural excursion
are those where G12 is mutated to S, C, or D. The higher
average path costs over the H-Ras WT for these variants
can be also be confirmed by the color-coded 2D projec-
tions of the computed maps. For instance, Fig. 7 shows
that the entire landscape is elevated in G12C, as many
structures becomemore costly; the On−Off barrier is also
higher than in the WT, contributing to the higher average
cost for the On→Off excursion. This observation holds
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Table 4 Comparison of ensemble of low-cost on→off paths across H-Ras WT and variants

Sequence max_nn_dist (Å) (µ, σ)Cost (REU) (µ, σ)Highest Energy (REU) (µ, σ)Nr. Edges

WT 1.45/10 (418.3, 106.) (–203.5, 25.1) (101.3, 16.1)

1.45/7.5 (127.6, 7.90) (–277.3, 15.2) (64.2, 15.6)

G12S 1.45/10 — — —

1.45/7.5 (143, 40.9) (–259, 92) (73, 22)

G12C 1.45/10 — — —

1.45/7.5 (266.4, 18.2) (–139.3, 24.4) (60, 9.8)

G12D 1.45/10 — — —

1.45/7.5 (140.4, 15.5) (–253.9, 15.9) (54.6, 8.6)

G12V 1.45/10 — — —

1.45/7.5 (132.3, 13.5) (–236.3, 83.4) (64.6, 13.)

Q61L 1.45/10 — — —

1.45/7.5 (161.3, 45.2) (–240.7, 21.8) (64.1, 9.2)

Y32CC118S 1.45/10 — — —

1.45/7.5 (158.2, 18.9) (–257.5, 18.1) (63.9, 10.2)

R164AQ165V 1.45/10 — — —

1.45/7.5 (159.7, 21.3) (–245.6, 23.8) (65.9, 7.1)

on G12S and G12D, as well. In particular, in the G12S
variant, whose 2D projection of the map and paths are
shown in the Additional file 1, the On basin is very deep,
effectively trapping this variant in the On/GTP-binding
state. The G12C is also trapped in the On state, but that is
due to everything else in the landscape being much more
energetically costly. G12V is the only G12* variant where
the average cost (and the landscape) is not significantly
different from the WT (the paths and the landscape are

shown in the Additional file 2). This result is in agreement
with an earlier study, where the G12V mutation is pro-
posed to have a subtle effect more on the binding than the
energy landscape of the uncomplexed H-Ras variant [33].
Visualization of the maps via color-coded 2D projec-

tions reveals an additional interesting energetic feature.
G12C, G12S, and the double mutants Y32CC118S and
R164AQ165V populate two more regions, distinct from
the On and Off basins, with lower-energy structures than

Fig. 6 Visualization in 2D of map and paths computed for H-Ras WT. The computed map for H-Ras WT is projected onto 2D and projections are
color-coded by Rosetta score12 energy values. Low-cost paths (costs in REUs are listed) modeling the On→Off structural excursion are also drawn.
The projections of experimentally-known structures on the top two PCs are related by showing whether the structures are captured in the wet
laboratory for the WT or variants
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Fig. 7 Visualization in 2D of map and paths computed for H-Ras G12C. The computed map for the H-Ras G12C variant is projected onto 2D and
projections are color-coded by Rosetta score12 energy values. Low-cost paths (costs in REUs are listed) modeling the On→Off structural excursion
are also drawn. The projections of experimentally-known structures on the top two PCs are related by showing whether the structures are captured
in the wet laboratory for the WT or variants

the WT, G12V, G12D, and Q61L (the maps for G12S/D
and R164AQ165V are provided in the Additional files
1, 3, and 4, respectively). Preliminary evidence of these
regions was related by us in prior work on analysis
of a first-generation version of our EA on H-Ras WT,
G12V, and Q61L [33]. However, in [33], these regions
were not exploited as well. These regions, dubbed Conf1
and Conf2 in [33] (Conf1 corresponds to PC1 in [−3, 0]

and PC2 in [36], and Conf2 corresponds to PC1 in
[−9,−6] and PC2 in [1215] in the 2D projections), are
populated with very low-energy structures by the EA
employed here in the H-Ras G12C, G12S, Y32CC118S,
and R164AQ165V variants. The regions constitute new
basins, effectively, in these variants. It is interesting that
the Conf1 basin emerges only on the G12C/S mutations
and not on the G12V mutation, particularly considering

Fig. 8 Visualization in 2D of map and paths computed for H-Ras Q61L. The computed map for the H-Ras Q61L variant is projected onto 2D and
projections are color-coded by Rosetta score12 energy values. Low-cost paths (costs in REUs are listed) modeling the On→Off structural excursion
are also drawn. The projections of experimentally-known structures on the top two PCs are related by showing whether the structures are captured
in the wet laboratory for the WT or variants
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Fig. 9 Visualization in 2D of map and paths computed for H-Ras Y32CC118S. The computed map for the H-Ras Y32CC118S variant is projected onto
2D and projections are color-coded by Rosetta score12 energy values. Low-cost paths (costs in REUs are listed) modeling the On→Off structural
excursion are also drawn. The projections of experimentally-known structures on the top two PCs are related by showing whether the structures are
captured in the wet laboratory for the WT or variants

that the structure caught in the wet laboratory for the
G12V variant projects to this region of the structure space.
This is a novel finding of our methodology and suggests
that perhaps the relationships regarding shared molecu-
lar function profiles between the G12* variants and these
double mutants ought to be investigated in greater detail
in the wet laboratory.
Finally, it is worth noting that the Conf1 region is pop-

ulated well by the double mutants, as well. In particular,
the Conf1 basin is deeper in the Y32CC118S variant (see
Fig. 9), as expected, given that this region contains projec-
tions of wet-laboratory structures caught for this variant
(thus representing a stable state). This basin is also deep
in the R164AQ165V variant (see the Additional file 4).
However, both double mutants have a higher energy bar-
rier and a shallower off basin than the WT (see Fig. 9
for the Y32CC118S variant, and the Additional file 4
for the R164AQ165V variant), which results in higher-
cost On→Off excursions, as related in Table 4, effectively
rigidifying these variants. The latter explains the loss of
GTP-binding activity noted for the R164AQ165V variant.

Discussion
The results presented here suggest that an increas-
ingly detailed picture is emerging of the H-Ras energy
landscape. The two-basin feature of the H-Ras energy
landscape has been elucidated in both wet and dry labo-
ratories; extensive computational studies by McCammon
and colleagues via MD methods have both verified the
existence of these two basins and the energy barrier sep-
arating them [60]. The two-basin characteristic has also

been reproduced via prior versions of the EA algorithm
employed here that did not make use of a map but
rather analyzed all structures ever generated. The graph-
ical techniques employed in this paper to analyze the
map constructed by the proposed methodology provide
for the first time a highly detailed view of the multi-
dimensional H-Ras energy landscape. In particular, Fig. 5
shows not only how the On and Off basins elongate
along the third and fourth dimensions, but also clarify
which regions of this multi-dimensional space provide
interesting new energetic features not captured in other
laboratories. For instance, as described in detail in the
“Results” Section, a significant portion of the On basin
that continues onto PC4:Q3 (and PC3:Q2) does not con-
tain any experimentally-known structures. Effectively, this
represents a new region of the H-Ras energy landscape
that is reported to be associated with the stable on struc-
tural state by the EA employed here but has yet to be
captured in the wet laboratory.
The graphical techniques employed here also allow

making comparative observations regarding the depth and
width of the On and Off basins. The layout of the 16
two-way conditioned plots in Fig. 5 shows that the On
basin is both wider and deeper than the Off basin (this
observation can also be made, though less reliably, on
the 2D projection of the energy landscape in Fig. 6). The
[PC3:Q3-4; PC4:Q3-4] views in Fig. 5 join the two basins,
effectively showing the landscape at the higher energy lev-
els. As one proceeds deeper in the landscape, the regions
separate to yield the distinct On and Off basins; energy
barriers appear along [PC3:Q1-2; PC4-Q*]. The higher
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width of the On basin points to the higher stability of this
basin; that is, the temporal scale of structural excursions of
H-Ras from the On to the Off state will be dominated by
diffusions within the deep and broad On basin.
The juxtaposition of maps and On→Off structural

excursions for the H-Ras WT and the 7 single- and
double-mutant variants in the “Results” Section eluci-
dates, among other things, that two new basins emerge
on the landscapes of some single- and double mutants,
referred to as Conf1 and Conf2. In particular, these are
observed to be richly populated in G12C, G12S, and
the double mutants, but poorly populated on the other
variants and H-Ras WT.
Figure 10 provides a 3D view of the lowest-energy

structures (falling in the 1st percentile of the energy dis-
tribution) in the map computed for H-Ras WT and the
experimentally-known structures by projecting them onto
the top three PCs. Picking a lower percentile loses the
range of the PCs, which we want to retain in order to
show projections of all the experimentally-known struc-
tures (drawn as red spheres). The 3D space is parti-
tioned into truncated octahedron cells, as advocated by
Carr in [61], and one sphere is drawn at the centroid
of each cell. The color and size of a sphere is based
on the minimum energy value in the corresponding cell.
Three energy intervals are observed for H-Ras WT in
this way: [−37.442 − 367.286] REUs (large blue spheres),
(−367.286− 350.180] REUs (smaller green-blue spheres),
and (−350.180−330.102] REUs (small violet spheres). The

interval boundaries correspond to the 0, 0.005, 0.02, and
1 % percentiles. The approximate locations of the On, Off,
Conf1, and Conf2 basins are delineated in blue in Fig. 10.
The PDB ids of selected experimentally-known structures
are also annotated.
Comparison of Figs. 5 and 10 shows that the Conf1

and the On basins are merged together by structures with
slightly higher energy values (a few REUs in score12).
In [33], where an early version of the EA is employed
(with narrow initialization, no map, and a budget-fixed
improvement operator), these structures effectively merg-
ing the On and Conf1 basin in the WT are not reported,
as the earlier EA has lower exploitation capability. In con-
trast, the 2D maps of the G12C and the double mutants
show Conf1 to be separated by an energy barrier from the
On state rather than merged into the On state as in the
WT, and to also protrude deeper in the energy landscape
than in the WT.
The experimentally-known structure with PDB id 1LF0

sits in the region of the structure space corresponding to
the Conf1 basin in the variants and the elongatedOn basin
in the WT (see Fig. 10). This structure has been captured
for the H-Ras A59G variant in the active/On state [62].
A 20-ns unbiased MD simulation in [63] has noted that
this structure may mediate the On→Off switching in the
A59G variant. The intermediate role of this structure is
confirmed by the EA here, as this structure is reported to
be low-energy for the H-RasWT and part of the elongated
On basin. However, none of the low-cost paths computed

Fig. 10 Visualization in 3D of map computed for H-Ras WT. The lowest-energy structures in the map computed for H-Ras WT are shown projected
onto the top 3 PCs. Projections of the experimentally-known structures are also drawn, as red spheres of a larger radius. The PDB ids of some of
these structures are also shown. The four basins that emerge on the WT and the various variants are also delineated and named per the convention
described in the main text
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for the WT directly employ this structure, as the work-
based cost does not promote diffusing in a basin. The
in-basin diffusion may explain why this structure has not
been captured as an intermediate for the WT during the
On→Off excursion in the wet laboratory; it is only in
H-Ras variants that an energy barrier gives rise to the dis-
tinct Conf1 basin. This barrier may trap variants in Conf1
long enough for this structure to be caught in wet labora-
tories. Interestingly, another structure, with PDB id 1LF5
(residing in the Off basin in Fig. 10), has been caught for
A59G in the Off state.
Taken together, the comparative analysis suggests that

the wide On basin retreats in the variants, and an energy
barrier splits it into two basins, a narrower On basin and
Conf1. The H-Ras WT, once outside the wide On basin,
may switch to the stable Off basin or a semi-stable basin
observed most clearly in the [PC3:Q1; PC4-Q1] view. This
basin sits at the top of the map, in between the On and
Off basins, and is referred to as the Conf2 basin. Conf2 is
not populated by the lowest-energy structures, but it does
contain low-energy structures and two experimentally-
known ones. The latter are reported in the PDB under
ids 1Q21 and 2Q21. The structure with PDB id 1Q21 is
reported as active/On for the WT , whereas that with
PDB id 2Q21 is reported as active/On for the G12V vari-
ant [64]. The structures are very similar, as noted in [64],
and differ mainly in the configuration of the side-chain at
position 12, confirming the proximity of these two struc-
tures in the PC variable space in Fig. 10 (found at [−9,−6]
in PC1 and [12, 15] in PC2). The work in this paper
again confirms that these two structures are functional
for the WT from a thermodynamic availability point of
view, but perhaps difficult to access within physiological
temporal scales due to the high-energy barriers that sur-
round the Conf2 basin. The juxtaposition of the H-Ras
WT to the variants in the “Results” Section shows that the
Conf2 basin is richly populated in G12C, G12S, and the
double mutants. In particular, it is wider and protrudes
deeper in the energy landscape for G12C and G12S but
not G12V. This is an interesting finding that points to
further work in the wet laboratory, as it suggests a novel
function regulation mechanism that can be modulated via
inhibitors.
The comparison of landscapes and path ensembles

across the H-Ras variants provides observations that not
only validate and reconcile wet-laboratory findings but
may also be useful to further investigation in the wet-
laboratory on understanding mutations and designing
inhibitors to disrupt aberrant activity [65]. For instance,
in addition to the analysis above, a conclusion can be
reached regarding the structure with PDB id 6Q21; the
asymmetric unit (chain D) of this structure is projected
and shown in the 3D view in Fig. 10. This structure is
reported for the H-Ras WT in [66]. This unit is in a

slightly different structure than the canonical on state
(PDB id 1QRA), providing in [66] the earliest evidence of
the structural flexibility of H-Ras WT. Figure 10 shows
that the structure captured for the WT in PDB id 6Q21
is in a region of the energy landscape populated by
low-energy structures part of the elongated On basin in
H-Ras WT. The increases in costs reported here asso-
ciated with structural excursions of H-Ras variants cor-
respond to increases in the time it takes to undergo
the excursion at equilibrium. Since molecular recognition
events occur at carefully-calibrated temporal scales, any
disruption to temporal scales is consequential for molecu-
lar recognition events, and thus normal biological activity
in the cell.

Conclusions
This paper introduces a novel methodology to map a pro-
tein’s energy landscape and model equilibrium dynamics.
Rather than simulate the dynamics of the covalently-
bound network of atoms in a protein molecule, the pro-
posed methodology relies on stochastic search to obtain
a sample-based representation of the constrained struc-
ture space relevant for the dynamics, and then employs
discrete search structures to summarize the dynamics.
An EA is employed to map the multi-dimensional energy
landscape of a protein, and a nearest-neighbor graph
representation of the map is then queried to reveal
energetically-feasible successions of structures mediating
structural excursions of interest. Analysis of applications
on several proteins of importance to human biology and
disease suggests the proposed methodology is useful in
understanding the relationship between protein structure,
dynamics, and function with a practical computational
budget.
While obtaining a detailed characterization of protein

equilibrium dynamics remains a challenge in silico, the
work here exploits the wealth of structure data and novel
randomized search strategies to enhance exploration of
the thermodynamically-available structure space. The
exploitation of structure data is a powerful and timely
mechanism to map the structure space of a protein.
The availability of wet-laboratory structures representing
semi-stable and stable structural states for many pro-
teins allows formulating algorithms that can map energy
landscapes within a reasonable computational budget, as
demonstrated here.
The work presented here opens up several promising

directions for future research. One direction concerns
lowering the dependency of the methodology on suffi-
cient structure data, as well as expanding its applicability
to systems where experimentally-known structure reside
in a non-linear low-dimensional space. The first can be
addressed via techniques such as Normal Mode Analysis,
already integrated with some success in robotics-inspired
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modeling of protein motions [67–70]. The second can be
addressed via linear dimensionality reduction techniques.
Another direction of future research concerns improv-

ing the predictions of the locations and depths of mapped
basins by employing various energy functions. This direc-
tion aims to increase the reliability of in-silico predictions.
Considering multiple energy functions remains challeng-
ing, however, as considerable recoding efforts are required
to efficiently integrate such functions in in-house code.
All data obtained by the proposed methodology and

analyzed here are available to the research community
upon request. Similarly, any components of the proposed
methodology can be shared as linux binaries.
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H-Ras R164AQ165V. The computed map for the H-Ras R164AQ165V variant
is projected onto 2D and projections are color-coded by Rosetta score12
energy values. Low-cost paths (costs in REUs are listed) modeling the
On→Off structural excursion are also drawn. The projections of
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listed in column 2. Columns 3–5 show summary statistics, such as mean
and standard deviation, are reported for path cost, highest energy over
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Additional file 7: Visualization in 2D of map and (finer-resolution) paths
computed for H-Ras WT. The computed map for H-Ras WT is projected
onto 2D and projections are color-coded by Rosetta score12 energy values.
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