
In Proceedings of the Sixteenth International Joint Conference on Artificial Intelligence (IJCAI-99),
 Stockholm, Sweden, August 1999

Computing factored value functions for policies in structured MDPs

Daphne Koller
Computer Science Department

Stanford University
koller@cs.stanford.edu

Ronald Parr
Computer Science Department

Stanford University
parr@cs.stanford.edu

Abstract

Many large Markov decision processes (MDPs) can
be represented compactly using a structured rep-
resentation such as a dynamic Bayesian network.
Unfortunately, the compact representation does not
help standard MDP algorithms, because the value
function for the MDP does not retain the struc-
ture of the process description. We argue that in
many such MDPs, structure is approximately re-
tained. That is, the value functions are nearly addi-
tive: closely approximated by a linear function over
factors associated with small subsets of problem
features. Based on this idea, we present a conver-
gent, approximate value determination algorithm
for structured MDPs. The algorithm maintains an
additive value function, alternating dynamic pro-
gramming steps with steps that project the result
back into the restricted space of additive functions.
We show that both the dynamic programming and
the projection steps can be computed efficiently, de-
spite the fact that the number of states is exponen-
tial in the number of state variables.

1 Introduction
Over the past few years, there has been a growing interest in
the problem of planning under uncertainty. Markov decision
processes (MDPs) have received much attention as a basic
semantics for this problem. An MDP represents the domain
via a set of states, with actions inducing stochastic transitions
from one state to another. The key problem with this type
of representation is that, in virtually any real-life domain, the
state space is quite large. However, many large MDPs have
significant internal structure, and can be modeled very com-
pactly if that structure is exploited by the representation. In
factored MDPs, a state is described implicitly as an assign-
ment of values to some set of state variables. A dynamic
Bayesian network can then allow a compact representation
of the transition model by exploiting the fact that the transi-
tion of a variable usually depends only on a small number of
other variables. In a simple robotics example, the location of
the robot at time

�����
may depend on its position, velocity,

and orientation at time
�
, but not on what it is carrying. The

momentary rewards can often also be decomposed: as a sum

of rewards related to individual variables or small clusters of
variables. In our robot example, our reward might be a sum
of two subrewards: one associated with location (for getting
too close to a wall) and one associated with the printer status
(for letting paper run out).

While these representations allow very large, complex
MDPs to be represented compactly, they do not help address
the planning problem. Standard algorithms for solving MDPs
require the representation and manipulation of value func-
tions — functions from states to values. Since a state is a
full instantiation of all state variables, the representation of
the full value function is exponential in the number of state
variables. Unfortunately, structure in a factored MDP does
not, in general, guarantee any type of structure in the value
function. Even some very simple MDPs with very compact
transition models and fully decomposed rewards lead to value
functions that have no usable structure whatsoever (see Sec-
tion 2). Thus, algorithms that represent the value function
exactly will be impractical for dealing with many large, struc-
tured domains.

One approach to controlling the size of the value function
representation is to use a truncated value function that ignores
some state variables. Several methods exist for detecting ir-
relevant state variables. A closely related approach uses ap-
proximate or abstract model that eliminates some state vari-
ables. (See Boutilier et al. [1999] for a survey of these ap-
proaches.) These methods have the common limitation that
they can force different states to have the same value, pro-
ducing a coarse-grained approximation to the value function
with large plateaus of indistinguishable states.

Our work is based on the intuition that, while value func-
tions might not be structured, there are many domains where
they are “close” to having exploitable additive structure. Con-
sider, for example, a stochastic version of a traditional plan-
ning task, where several subgoals can contribute to the over-
all success of the plan. Here, it is quite plausible that the
value of a state is approximately linear in the set of subgoals
achieved at that state (with more important subgoals having,
perhaps, a higher weight). Clearly, this is only an approxi-
mation, as subgoals might interact in various ways; however,
it may be a fairly good approximation. Furthermore, if some
subgoals interact strongly, we can have value function com-
ponents that depend on the status of several subgoals. Such
value functions have a long history in multi-attribute utility

theory [Keeney and Raiffa, 1976]; they also play a central
role in influence diagrams [Howard and Matheson, 1984].

Based on this intuition, we propose a new approach to com-
puting approximate value functions for structured MDPs. We
restrict attention to value functions that are a linear combi-
nation of local basis functions, each of which depends only
on a small subset of the state variables. As discussed above,
we believe that, in many cases, such a value function can be
a good approximation to the correct value function. In par-
ticular, unlike the coarse-grained approximations discussed
above, this approximation can assign a distinct value to every
state. However, it can still be represented compactly using
a small number of parameters (the coefficients of the basis
functions). We propose to use algorithms whose entire com-
putation is restricted to value functions that are compactly
represented in this form.

Our focus in this paper will be on the value determination
task: computing the value function associated with a particu-
lar policy. This task can be solved using a simple algorithm
that iterates through a dynamic programming step, gradually
converging to the correct value function. Our algorithm aug-
ments this basic iteration with an additional projection step,
where the value function resulting from each dynamic pro-
gramming step is projected back down into the “allowable”
space of value functions.

There are several key issues that arise in such an algorithm.
First, we must show how the operations required by such an
algorithm — dynamic programming and projection — can be
executed efficiently. One of our main contributions is that we
provide, for both of these steps, an efficient algorithm that de-
pends upon the size and structure of the model and basis func-
tion representations, not upon the exponentially sized state
space. We note that we can accomplish these operations ef-
ficiently despite the fact that each of the exponentially many
states may have a distinct value. Second, we must show that
the algorithm behaves reasonably: that it converges to a sta-
ble fixed point, hopefully one which is close to the true value
function. By a careful choice of distance metric, we can show
conditions under which the algorithm will converge to a solu-
tion which is not too far away from the best value function de-
scribable in the restricted space. Finally, we must show how
to apply this algorithm to the task of evaluating policies in a
factored MDP. This application is far from trivial, as policies
in a large MDP may be very complex. We show that our al-
gorithm allows effective policy evaluation for policies repre-
sented as a small set of conjunctive decision rules (e.g., deci-
sion trees); this class is arguably the most widely used class of
compactly represented policies [Boutilier and Dearden, 1996;
Dean et al., 1997].

2 Preliminaries
We begin by introducing some of the basic concepts that we
will be using. Our primary focus is on the value determination
problem. Thus, for the time being, we will restrict attention to
processes without a decision component. A Markov Process
(MP) is defined as a triple �����������
	 where: � is a set of
states; � is a reward function ��������� � , such that ������	
represents the reward obtained by the agent in state � ; � is a

transition model, so that ������������	 represents the probability
of going from state � to state ��� .

A Markov process is associated with a value function� ����� � � , where
� ����	 is the total cumulative value

that the agent gets if it starts at state � . We will be as-
suming that the MP has an infinite horizon and that future
rewards are discounted exponentially with a discount fac-
tor � . Thus,

�
is defined using the fixed point equation� ����	 �!������	 � �#"%$'&(�����)�*�(��	 � ���+�,	 . A simple iterative pro-

cess can be used to perform value determination. We choose�.-0/21
. 3 We then repeatedly execute a dynamic program-

ming (DP) step:

��46587 3:9 ���+	 �;������	 � �#< $'& ����� � �(��	
��465 9 ��� � 	>= (1)

We use ? to denote the operator that takes a value function� 4@5 9 and returns
� 4@587 3:9 . We call

� 46587 3A9 the backprojection
of
� 4@5 9 . Repeated applications of ? are known to converge

to the true value function
��B

.
In a factored MP, the set of states is described via a set

of random variables CD��E)F 3 �)=G=G=G�AF�HJI , where each FLK
takes on values in some finite domain M NPO��QF K 	 . A state R
defines a value SJKUTVM N(OW�8F�K�	 for each variable F�K . The
transition model is described as a dynamic Bayesian net-
work (DBN). Let F K denote the variable F K at the current
time and FX�K the variable at the next step. The transition
graph is a two-layer directed acyclic graph whose nodes
are E)F 3 �)=G=)=>�AF�HY�AF �3 �G=G=)=G��F �H I . In this paper, we will as-
sume that all edges in this graph are directed from nodes inE)F 3 �G=G=)=>�AF H I to nodes in E+FX�3 �G=G=)=>�AFX�H I . (This assumption
can be relaxed, but the resulting algorithm becomes some-
what more complex. We defer details to a longer paper.) We
denote the parents of FX�K in the graph by Pa �8FX�K 	 . Each nodeFZ�K is associated with a conditional probability table (CPT)���8FX�K � Pa �8FZ�K 	A	 . The transition probability ���8R*�*�[R\	 is then
defined to be] K ���QS^�K �(_*KW	 , where _`K is the value in R of the
variables in Pa �8FX�K 	 .

We also need to provide a compact representation of the
reward function. As discussed in the introduction, we assume
that the reward function is factored additively into a set of
localized reward functions, each of which only depends on a
small set of variables. In general, we say that a function a is
restricted to a set of variables b if ac�`M N(OW��b�	��d� � . Let� 3 �G=)=G=)���fe be a set of functions, where each �.K is restricted
to a cluster of variables ghKji%E)F 3 �)=G=)=G�AF�HJI , such that �fKk�M N(OW�8g K 	Z�l� � . The reward function associated with the
state R is then defined to be " eK@m 3 �fK��QR\	nT0� � . We note that,
here and in the future, we use the following shorthand: if a is
a function over some set of variables o , and opi!q , we will
use aj�Qrs	 to denote the value that a takes over the part of the
vector r that corresponds to variables in o .

One might be led to believe that factored transition dynam-
ics and rewards would result in a structured value function.
Unfortunately, this usually is not the case. As we execute DP
steps, the value function typically becomes more complex.

t
We begin with uwvnxzy by convention. Any choice for u{v will

converge to the same fixed point.

Example 2.1: Assume that we have only a single reward
function � that depends only on F 3 ; � 4 3A9 / � , so it also
depends only on F 3 . Consider the summation in the DP step
for

� 4�� 9 :
< � & ���QR � ��R\	

��4 3A9 �8R � 	
� <� & �����
	�� 4� � 9

� 4 3:9 �QS � 3 	 <� & ����	�� 4� &��������� � &� 9
���8S � 3 ��� � ��R\	

� <� & �����
	�� 4� � 9
� 4 3:9 �QS � 3 	:���QS � 3 ��R\	

� <� & �����
	�� 4� � 9
��4 3:9 �QS � 3 	:���QS � 3 �[_j	 �

where _ is the instantiation of Pa �QFX�3 	 in R . Thus,
� 4�� 9 de-

pends on F 3 and on the entire parent set of F 3 . Similarly,� 4�� 9 depends on the union of all of their parents, etc.

In general, the value function will eventually depend on all
of the variables that have any influence whatsoever, direct or
indirect, on a reward. In practice, this set will typically be all
of the state variables, as it is somewhat superfluous to intro-
duce into the process description variables whose value never
matters to the agent’s utility.

3 Constrained value determination
As we described in the introduction, the key idea behind our
approach is the restriction of our algorithms to the use of
value functions in a limited class. This idea is best known
under the name value function approximation, which is used
frequently in the context or reinforcement learning [Tade-
palli and Ok, 1996; Van Roy, 1998]. We use this idea in
the context of maintaining full value functions and propa-
gating them through the DP equation (1) [Gordon, 1995;
Tsitsiklis and Van Roy, 1996]. However, unlike other meth-
ods, which deal with large state spaces by considering only a
restricted set of “representative” states, our method efficiently
finds a least squares approximation for the entire state space.

More precisely, let
��� � ��� be a restricted set of value

functions. We will define
�

via a set of basis functions� ��E� 3 �G=G=)=G�� "!
I . That is, we have that
�

is a basis for�$# �&%'� � � � if every function
� T �'# �&%

can be written as� � " !(m 3*) ((for some weights) 3 �G=)=G=)�) (.
Our algorithm repeatedly executes the following steps. It

begins with a value function +� 465 9 T �
. It then backprojects

it via (1), resulting in a value function ,� 46587 3A9 . In general, the
DP step does not maintain the property of being in a restricted
class

�
. Therefore, we typically have that ,� 46587 3A9.-T �

. We
then project ,� 4@587 3:9 into

�
, i.e., find the “closest” value func-

tion in
�

. The result is our new value function +� 4@587 3:9 .
We must decide what it means for a value function +� T �

to be “close” to some other value function
�

by choosing
a suitable distance measure. Several constraints combine to
make this choice difficult. On the one hand, we need a con-
traction property: exact value determination converges be-
cause (1) is a contraction — each iteration decreases the error

of
� 465 9 by a constant factor. In order to get convergence for

approximate value determination, we need a similar contrac-
tion property. We also need an effective algorithm for pro-
jecting into

�
, relative to this distance. Finally, we need this

projection operation to be a non-expansion under the same
distance, otherwise we are not guaranteed the desired conver-
gence property. Tsitsiklis and Van Roy [1996] underscore the
importance of this point by demonstrating a two-state MDP
for which this type of approximate value determination di-
verges if we use standard least-squares approximation. Un-
fortunately, it turns out to be nontrivial to find a distance met-
ric that satisfies all criteria. For example, (1) is not a con-
traction in Euclidean distance. It is a contraction in /10 and/ 3 norms

�
, but we have no efficient projection algorithm for

these distances.
One choice that turns out to satisfy both desiderata is the

weighted Euclidean distance. Let 2J����	 be the occupancy
probability of the state � in the stationary (steady-state) dis-
tribution 2 .

�
We define the weighted Euclidean distance354 � � �6+� 	 as "%$"2Y����	G� � ����	87�+� ����	A	 � . We say that +� is the

least
3 4

projection of
�

into
�

if +� T � is the function in
�

that is closest to
�

in terms of
3 4

. Intuitively, unweighted Eu-
clidean distance places equal emphasis on getting each +� ����	
as close as possible to

� ����	 , whereas the weighted distance
places more emphasis on getting correct values for states that
are visited more often.

Fortunately, there exists a fairly straightforward algorithm
for doing projection relative to weighted Euclidean distance.
The key operation is the weighted dot product. For two func-
tions aJ�:9cT � � � , we define ��a<;$9 	 4 � ";$=2J����	Aaj����	>9Y���+	 .
We define the length ? 4 �@ (�� �A (;B (4 . To project
a function

�
into

�'# �&%
, we first compute each coefficient

) �(� �A (; � 	 4DC ? 4 �@ (. This intermediate weight vector
�L�n�p�) �3 �)=G=)=>�) �! 	

5
has to be transformed, in order to ac-

commodate for any (linear) dependencies between our basis
vectors. We define E K (� �A �KF;' (4 , and define G to be the
matrix �HE K (. If we now define a weight vector � �IGKJ 3 �L� ,
we know that " !(m 3) ((is the least

3 4
projection of

�
into

�
[Strang, 1980]. We define L 4 to be the operator that

projects into
�

.
The contraction of the ? operator in

3 4
distance is estab-

lished in Nelson [1958] and is combined with projection in
Van Roy [1998], yielding:

Theorem 3.1: (a) The operator ? is a contraction in
3 4

dis-
tance with rate �NM �

; hence, ? has a unique fixed point� B
. (b) Let +?p�NL 4 ? . Then +? is a contraction in

3 4
dis-

tance with rate OQP � ; hence, +? has a unique fixed point +� B .
Furthermore, +��B satisfies:

3 4 � � B �F+� B 	8P
�

R � 7SO �
3 4 � � B �TL 4 � B 	 =

In other words, the alternating DP and projection algorithm
converges to a fixed point; the value function at that point isU

The V t norm contraction requires stronger assumptions than we
have made here. For example, positive rewards and a pessimistic u v
will suffice.W

We assume, for simplicity, that the process is mixing.

at most a constant factor worse than the optimal value func-
tion within

�
, i.e., the one closest to the true optimal value

function,
��B

. Thus, if we assume that our true value function
is well-approximated by some function within

�
, we have

strong bounds on the performance of the algorithm.

4 Factored value functions
The ideas described in the previous section are well-known.
They allow a compact representation of very complex value
functions: we only need to maintain the coefficients (the) K ’s)
for the limited number of basis functions that we choose to
use. Why have these methods not already been used to ad-
dress the problem of value determination in factored Markov
processes? Unfortunately, a compact representation of the
value function is not enough. The representation has to sup-
port efficient execution of our two main computational steps:
the DP step, ? , and the dot product step required for L 4 .

We thus turn our attention to the specific properties of fac-
tored processes. As we discussed in the introduction, we
propose restricting our algorithm to factored value functions,
ones that are linear in functions over small clusters of vari-
ables. More precisely, we define a cluster b of variables to
be a subset of C . The key idea behind our result is that we
can efficiently perform approximate value determination with
any basis whose functions are restricted to small clusters. In
decision-analytic terminology, we say that a function is gen-
eralized additive [Bacchus and Grove, 1995] over a set of
clusters � if it can be written as a " !K@m 3

� K , where each
� K is

restricted to some b T�� . The function is said to be additive
if the clusters in � are disjoint. Now, let

� ��E 3 �)=G=)=G�� ! I ,
and assume that each (is restricted to some small clusterb (. Clearly, the functions in

�'# �&%
are generalized additive

in E[b 3 �)=G=G=)� b ! I . In fact, it is easy to construct a basis that
allows us to have

�'# �&%
represent exactly the set of all general-

ized additive functions over a particular set of clusters. In the
remainder of the analysis, we assume that we have restricted
attention to a specific basis

�
, and use

�
to denote

�$# �&%
.

As we now show, restricted basis functions allow an effi-
cient implementation of the DP and projection steps. Assume
that we are restricting to value functions in

�
, so that (as a

result of the algorithm so far) +� 4@5 9 is in this space. Thus,
as we argued, +� 4@5 9 can be represented as " !K m 3

� K , for some
set of functions

� K , each restricted to some small cluster b K .
(Specifically, we have

� K`�) KA ^K .) Let us examine the result
of the DP step:

,� 4@587 3:9 �QR\	 � ���QR\	 � � < � & ���8R � �[R\	*+
� 4@5 9 �8R � 	

�
e
< K m 3

� K �8R\	 � �
!
< K@m 3

< �(&
� K��8R � 	:���QR � �[R\	 (2)

Consider one of the terms in (2) that corresponds to some
function

� K . As we saw in Example 2.1, if the domain of a
value function is restricted to a single variable F 3 , its back-
projection through (1) depends on all of F 3 ’s parents. The
same principle holds here. Thus, let b JK be the variables in� �� ���	� Pa �QF�
(; let � JK be the instantiation of these variables

in the state R . It is easy to show that

< �(&
� KA�QR � 	A���8R � ��R\	d� < & ���
	�� 4 �	� 9

� K���� � 	A����� � ��� JK 	 (3)

Thus, the term for
� K in (2) simplifies to an expression in (3)

that depends only on the value of the variables in b JK in the
preceding state R . We denote the function in (3) by

� JK . To
compute it, we must (at worst) generate the entire conditional
probability �����s�k��� JK 	 ; this can take ����� b K ���\� M NPO��Wb KW	G���� M N(OW��b JK 	G� 	 operations. The locality of influence that is char-
acteristic of DBNs typically implies that b JK is small, allow-
ing this computation to be done efficiently.

To compute the unweighted projection of ,� 46587 3A9 �8R\	 , we
simply need to compute its dot product with each basis func-
tion (. As the dot product is a linear operation, it can be
decomposed into a separate dot product of (with each of
the terms in (2): �fK for �j� � =G=)=�� and

� JK for �`� � =G=)=�� . It
is straightforward to verify that computing the dot product of ^K with a function restricted to a set o requires time which is
linear in � M NPO��Wb K � o 	G� .

Unfortunately, the unweighted projection is not the opera-
tion we need; rather, we need to compute the weighted projec-
tion in order to get a least

3 4
projection. There are two major

obstacles preventing us from using a weighted dot product
in our context. First, the stationary distribution of our cur-
rent policy is not known. More importantly, the stationary
distribution has no structure that can be exploited to allow a
compact representation [Boyen and Koller, 1998]. In other
words, we can represent this distribution only explicitly, as
an exponentially-sized probability function. This problem
makes it impractical to compute the stationary distribution;
it also prevents us from doing the projection step efficiently,
as discussed above.

We solve both problems at once by building on the work
of Boyen and Koller [1998] (BK from here on). They show
how a process very similar to our iterated DP & project al-
gorithm can be used to maintain and propagate a compactly
represented approximate belief state — a distribution over the
states at a given point in time. Most simply, they partitionC into a set of disjoint clusters � 3 �G=)=G=)����� . The distribu-
tion over the states +� 465 9 is represented implicitly as a product
of distributions 2 3 �G=)=G=>��2
 over these clusters. The step of
propagating +� 4@5 9 to the next time step results in a distribu-
tion ,� 4@587 3:9 that is not of the right form; the algorithm gener-
ates +� 46587 3:9 by computing the marginal distributions over each
��
 . BK show that, if the marginalization introduces an error
of P�� , then, for all

�
, +� 465 9 is P�� C�� away (in relative entropy)

from the distribution that would have been maintained by a
similar process without the approximation. Here,

�
is the mix-

ing rate of the process, which can be shown to depend on the
sizes of the CPTs in the DBN, and not on the size of the pro-
cess. Thus, we have that

3! #" �H2%$ +� 465 9 	 �&� C�� � ����� � 7 � 	 5 	 .
Hence, the number of iterations required to get close to the
stationary distribution is very small — logarithmic in

� 7 � .
The benefits of this approximate computation are twofold: (1)
The complexity of the algorithm is not prohibitive; its com-
plexity depends on the sizes of the clusters � 3 �)=G=G=)���'� and

on the interconnectivity of the DBN. (2) The result is a fac-
tored distribution, which can be used in an efficient weighted
projection algorithm.

Let us see how a factored distribution can be used in the
context of a weighted projection. The key procedure used in
the algorithm is that of computing � 9 ;'2 	 � " � 2Y�8R\	 9 �8R\	
for some function 9 restricted to a set o . It is easily verified
that � 9 ; 2 	L�p"�� ����	�� 4�� 9 9 ���`	>2Y���*	 . We note that we can
easily compute 2Y���`	 . Let �
 denote the part of � that over-
laps with variables in the cluster �
 . We compute 2Y���
 	 by
a simple marginalization process over the 2
 component of2 , and then multiply the results for all � � � �G=)=G=)��� . Note
that this operation requires time which is linear in � M NPO��Qo 	G�
and in � M N(OW� �
)� for the relevant clusters �
 . We can use
this subroutine for doing the weighted projection, simply by
noting that ��a ; 9 	 4 ���A��a ��9 	 ; 2 	 , and that if a is restricted
to o and 9 to q , then a'��9 is restricted to o � q .

The full algorithm is as follows:

1. Compute a factored approximation 2 to the stationary
distribution.

2. Precompute for each � �
	�� � �)=G=)=>� � , E K (� �@ ^KF; (4
and set ? 4 �@ (� E (>(. Invert the matrix G .

3. Precompute for each �0� � �G=G=)=>� � and 	 � � �G=)=G=>� �
� K (���Q� (;1 K 	 4 .

4. Set all)
4 - 9K � 1

, which defines +� 4 - 9 . Iterate the follow-
ing computation over

�
:

(a) For each component
� (of +� 465 9 compute

� J(.

(b) �YK (��� � J(;1 ^K�	 4 ;
(c) +) K*� " (�+K (� � " (�YK (;
(d) � 4@587 3:9 � G J 3 +� , which in turn defines +� 46587 3A9 .

The number of operations required by an iteration of this al-
gorithm grows linearly with the number of basis functions,
and exponentially with the sizes of the clusters and their back-
projections. It also depends (in step 4b) on the extent to which
backprojected clusters b JK overlap with other clusters b (.
Thus, the complexity is determined by the interconnectivity
of the DBN, by the amount of interaction in our restricted set
of value functions, and by the extent to which the structure of
the value functions matches the structure of the process.

The main remaining question involves the performance of
this algorithm. Ideally, we would like to state a theorem along
the lines of Theorem 3.1. The problem is that our projec-
tion step no longer uses the exact stationary distribution as
weights. However, one would hope that if the approxima-
tion is a good one (as suggested by the results of BK), the
error introduced by using projection relative to the approxi-
mate weights would not prevent the process from converging.
Indeed, we can show that such a result holds (albeit only for
relative error approximation, a slightly stronger notion than
the one guaranteed by BK):

Theorem 4.1: Assume that 2 is an � -factor relative approx-
imation to the true stationary distribution 2 B ; i.e., for all R ,� � 7 � 	:2J�QR\	 P 2 B �QR\	1Pc� � � � 	>2Y�8R\	 . Let O be the contraction
rate of L 4� ? . If +O � O*� � � � 	 C � � 7 � 	8M � , then our approx-
imate value determination algorithm L 4 ? is a contraction in

M 2 M 6

M

M 1

M

M

3

4

5

Figure 1: A factory with six machines. A reward of
� = 1 is

given for each time step in which machine ��� is functioning.

Added basis Unweighted Projection Weighted Projection
functions �5����� �5�����

�
�5����� �5�����

�
3 ��� 4���� 9 - � � ��� - � ��� � - � 3 ��� - � 3 � -� 4���� 9 ��� 4��! 9 � � � � � � � "�#�" - � - ��� - � 3 ��$� 4���% 9 ��� 4�� � 9 ��� 4�� � 9 - � � ��� - � ��� � - � 3 � - - � 3�3 3� 4�� � � � 9 - � 3 - $ - � 3 ��� - � - � � - � - � -� 4�� % � � � 9 - � - "�# - � - � � - � - ��� - � - 3 �� 4�� � � � � 9 - � - # 3 - � - � - - � - � - - � - 3 �

Table 1: The change in the sum of squared errors (SSE)
weighted by the uniform distribution, � , and by the true sta-
tionary distribution, 2 B .
3 4

distance with rate +O , and therefore has a unique fixed point
+� B . Furthermore, +� B satisfies:

3 4� � � B � +� B 	1P
�

R � 7 +O �
3 4� � � B �:L 4&� � B 	>=

5 Experimental Results
We performed some simple experiments to demonstrate the
convergent behavior of our algorithm and to verify our intu-
itions about the additive structure of MDP value functions.
Figure 1 shows an abstracted factory with six machines,
� 3 =)=G=�� � . In this problem, a machine can be in two states,
working and not-working. If a machine and all of its prede-
cessors were working in the previous time step, then the ma-
chine will work in the current time step with probability 0.8.
There is a stochastic startup lag, which reduces this probabil-
ity to 0.5 if the machine was not working in the previous time
step. No machine can operate if its predecessors were not
both working in the previous time step. Note that a failure in
any of � 3 =G=)=�� � will have a cascade effect, ultimately caus-
ing � � to fail. It will take several time steps for the system to
recover. A reward of

� = 1 is received whenever machine �'�
is working.

We evaluated this (*) -state system using our constrained
value determination algorithm with a discount factor of �U�1 = + 1 and a series of six different bases. The basis functions
are binary so that, for example, *�,� � ��� 3 	 has value 1 when
both � � and � 3 are working, and value 0 otherwise. We per-
formed both unweighted projection, which is not guaranteed
to converge, and our weighted projection algorithm. For this
problem, we achieved convergence in all cases. The second
and third columns of Table 1 show the reduction in error as
new basis functions are added. The first three additions allow
the value function to depend on the status of more individual
machines. The last three allow it to depend in a correlated
way on the status of pairs of machines. In each case, we ap-

Added basis Unweighted Projection Weighted Projection
functions �5��� � �5��� �

�
�5��� � �5��� �

�
3 ��� 4���� 9 3 � $�$ � 3 � ��� � - � � � - - � � - �� 4���� 9 ��� 4��! 9 - � � 3 � - � � � # - � � - " - � 3 " $� 4�� % 9 ��� 4�� � 9 ��� 4�� � 9 - � 3 "�# - � ��� # - � 3 ��� - � 3 � 3� 4�� � � � 9 - � 3 "�# - � ��� # - � 3 ��� - � 3 � 3� 4���% � � � 9 - � � 3 - - � � "�" - � 3 � - - � 3�3 #� 4�� � � � � 9 - � � 3 - - � � "�" - � 3 � - - � 3�3 #

Table 2: Results with � � modified to work if either of � $ or
� # are working.

proximated the stationary distribution using a product of dis-
tributions over the individual machine states. Notice that the
weighted projection outperforms unweighted projection in all
cases, even in the unweighted norm. Also, the 2 B weighted
error for the weighted projection is monotonically decreas-
ing, while the other errors fluctuate. The final value function
for the weighted projection with all ten basis functions corre-
sponds to an unweighted RMS error of less than 0.141. The
true value function for this problem assigns values between
0.48 and 2.78, so that 0.141 is a very reasonable error bound.
Hence, our final value function is a good 10 parameter ap-
proximation to the true, 64 parameter value function.

To further verify our hypothesis about additive structure of
value functions, we changed machine �'� so that it would
work if either of � $ or � # were functioning. In this case,
we would expect the value function to be less sensitive to
correlations between the status of � $ and � # . The results,
shown in the Table 2, support this hypothesis. We see that
introducing the basis function *�,� # � � $ 	 provides no sig-
nificant reduction in the error. (The overall increase in error
compared to the original problem is probably due to higher
overall values in this model — between 2.30 and 5.74.) We
observe a similar pattern in the comparison of weighted and
unweighted projection: weighted projection provides more
reliable approximations.

Finally, we demonstrate how the value functions generated
by our algorithm can be useful in decision making. Suppose
that there are two types of workers, reliable and resilient.
When a reliable worker is operating a working machine, it
will continue to work properly with probability 0.9, but if
the machine fails, the worker will restart the machine suc-
cessfully with probability 0.4. A resilient worker will keep a
working machine functioning with a probability of only 0.8,
but recovers from failures with probability 0.5. If the manager
of our 6-machine factory has three of each type of worker,
he may wish to compare different strategies for allocating
workers to machines. One possibility would be a reliable-
first strategy that places the reliable workers on machines
� 3 =)=G=�� � to avoid cascade failures. A resilient-first strategy
would place the resilient workers on machines � 3 =G=)=�� � to
recover quickly when failures occur. We consider the origi-
nal machine configuration, which requires both � $ and � #
to be working for machine � � to work properly. For this
problem the reliable-first strategy completely dominates the
the resiliant-first strategy.

Figure 2 shows a graph of the true value function for the
resilient-first strategy versus the approximation with all 10
basis functions. The states are numbered

1 =G=)= (� . The status

0

0.5

1

1.5

2

2.5

3

3.5

0 10 20 30 40 50 60

V
al

ue

State

Resilient First - Exact
Resilient First - Approximate

Figure 2: The resilient-first strategy.

0

0.5

1

1.5

2

2.5

3

3.5

0 10 20 30 40 50 60

V
al

ue

State

Reliable First - Exact
Reliable First - Approximate

Figure 3: The reliable-first strategy.

of the machines is used to identify the states, e.g., when ma-
chine � � is working, the highest order bit of the state num-
ber has value 1; when machine � 3 is working the lowest or-
der bit of the state number has value 1. Figure 3 shows both
value functions for the reliable-first strategy. The qualitative
closeness of the these approximations is apparent from in-
spection — the shape of the approximations are quite close to
the shape of the exact value functions. Moreover the approx-
imate value functions maintain the dominance of the reliable-
first strategy over the resiliant-first strategy. Thus, we see that
our approximation closely matches the qualitative structure
of the exact value functions for these domains.

6 Policy evaluation
We now address the issue of using our value determination al-
gorithm to evaluate a policy in an MDP, where we extend the
definition of our process to incorporate actions. Most impor-
tantly, the transition probability � and the reward � now also
depend on E . In the context of factored MDPs, this extension
is usually done by defining a separate transition graph and as-
sociated set of CPTs for each action E ; the resulting transition
probability ��� �QC�� �PC 	 is thereby factored (perhaps in a dif-
ferent way) for every action E . The reward function can also
vary over actions in a similar way.

Our goal now is to compute an approximate value function
for a particular policy � . Intuitively, there seems to be no
problem. A policy � in an MDP specifies a transition model��� �8R �{�JR\	 and a reward function ��� �8R\	 . We might simply
apply our algorithm to these. Unfortunately, the problem is

somewhat more subtle. The most obvious difficulty is that
the naive representation of a policy in an MDP with expo-
nentially many states is also exponentially large. Therefore,
we might not even be able to construct a compact transition
model and reward function for � . Clearly, we must restrict the
set of policies that we consider to ones that can be efficiently
manipulated by our algorithm.

To understand this issue, assume that we have constructed
a value function +� 465 9� , and are now trying to perform our DP
and projection steps. We do not have a single transition model
to use for the next step of backprojection, because the action
depends on the state. However, we can use our algorithm to
compute a factored approximation +� 46587 3A9� to the

�
function�

� �QR\	f� ��� �8R\	 � � " � &(��� �8R � � R\	*+� 465 9� : we simply back-

project +� 465 9� through the transition model � � , and then project
into

�
. We now have to combine the different +� functions to

get a complete value function. For each action E , let � � be
the subset of states in which E is taken, and let � ��� be the in-
dicator function which takes value

�
at R when R;T � � and

value
1

otherwise. Then,

,� 46587 3A9 �8R\	 � <
�
� � � �8R\	 +

� 46587 3A9 �QR\	 =
We see that, depending upon the policy, ,� 46587 3:9 can be com-
posed of an arbitrary combination of pieces of the +� 46587 3A9
functions. In particular, if the indicator functions � � � depend
on variables in many different clusters, the combination will
no longer be in

�
, even if each of the +� 46587 3:9 is in

�
. Thus,

we need to project ,� 46587 3A9 back into
�

.
As before, we need to compute �A��� ��� � ,

� 4@587 3:9 	 ; (4 to
perform the projection. This reduces to the problem of com-
puting ���Q� � � �'+

� 46587 3A9 	 ; (4 for each action and summing the
results. Since +� 46587 3A9 is in

�
, it can be represented as " K � K ,

where each
� K is restricted to some small cluster b�K . Again,

we need only compute ���Q� ��� �
� KW	=; (4 . Let o be the set of

variables appearing in b (� b K . Then:

���Q� ��� �
� K�	6;1 (4 � < �

� KA� �*	T (� �*	 <� � ����� ���
2Y�8R\	 (4)

where � � # � % ��E)R T;� � �UR is consistent with � I . Thus,
in order to perform this weighted dot product operation, we
must be able to compute the total probability, according to the
approximate stationary distribution, of � � # � % . In many cases,
this computation is far from trivial, even if the set � � has a
simple and compact description (e.g., as a linear separator
defined over the variables F 3 �G=G=)=>�AF H).

However, for what is arguably the most often-used class
of compactly represented policies, this computation can be
done easily.

$
A region-based policy is one represented as a

set E �Qr
 ��E
(I��	 m 3 , where each r 	 is an assignment of values
to some subset of the variables in C . (Different r 	 ’s can refer
to different sets of variables.) Each r 	 thereby specifies a

For other classes of policies, Monte Carlo sampling may suc-

ceed in providing good estimates for ������� ����� . We defer discussion
to a longer paper.

region in the state space, such that action E 	 is taken in this
region. The assumption is that the regions corresponding to
the different r 	 are mutually exclusive and exhaustive. Note
that a decision tree representation of the policy [Boutilier and
Dearden, 1996], falls into this category, as do the policies
for the aggregated state spaces [Dean et al., 1997]. Given the
factored representation of 2 , 2J��r 	 ���*	 can be computed simply
and efficiently, in the obvious way.

It remains only to extend the algorithm of BK to the task
of computing the approximate stationary distribution, 2 , for a
region-based policy, � . Recall that their algorithm was based
on repeatedly computing a factored belief state +� 4@587 3:9 from a
factored belief state +� 465 9 , where

+� 46587 3A9 � �'
(�%< � +� 465 9 �QR\	:��� ��
��[R\	>=
Here, we have a potentially different transition model � ��� for
each E 	 . Therefore, we must do a separate computation for
each of them:

+� 46587 3A9 � �'
[d� <
	

<� � ��� �
+� 465 9 �QR\	:� ��� � �'
���R\	

� <
	 +� 465 9 ��r 	 	�< � +� 465 9 �8R �[r 	 	A� ��� � ��
���R\	 =

Fortunately, the algorithm of BK can easily be adapted
to this task. We simply instantiate r 	 as evidence into the
Bayesian network that they use for doing the one step propa-
gation, and then compute the internal summation. The prob-
abilities +� 465 9 �Qr 	 	 can be computed easily, as described above.
This algorithm provides a factored representation of the sta-
tionary distribution, which can be used in Equation 4. Thus,
we can efficiently compute an approximate value function for
any region-based policy.

7 Discussion and conclusions
We have shown that we can efficiently compute factored ap-
proximations to value functions. We have also demonstrated,
both theoretically and empirically, that the result of our ap-
proximate value determination algorithm can often be quite
close to the true value function. Finally, we showed how to
use our algorithm for evaluating policies in a restricted but
interesting class.

It is useful to compare our algorithm to other algorithms
for factored MDPs [Boutilier et al., 1999]. Some algorithms
for factored MDPs try to construct compact value functions
by exploiting structured, usually tree-based, CPTs. When the
value function representation becomes too large, the standard
approach is to perform a type of state aggregation [Boutilier
and Dearden, 1996; Dean et al., 1997]. Thus, their approxi-
mate value function is one that is piecewise constant over the
state space. In other words, there are substantial blocks of
states all of which take the same value. A main advantage
of our approach is that it uses a richer class of value function
approximations. It seems clear that, at least in some domains,
a linear approximation is much more accurate. While the al-
gorithm presented in this paper does not exploit structured
CPTs, this feature can be added easily to make both the dy-
namic programming steps and projection steps more efficient.

Other approaches [Meuleau et al., 1998; Boutilier et al.,
1998; Singh and Cohn, 1998] decompose the process into
subprocesses, and compute a separate value function for each
one. They then attempt to combine the different value func-
tions into a global one using some heuristic approximation.
Generally speaking, the decoupling of the process is a much
harsher approximation than the factorization of the value
function. The latter still allows influence to flow between the
different subprocesses, and thereby is likely to get more ac-
curate results.

Of course, it is important to remember that these other ap-
proaches solve the planning problem whereas, at least for
now, our algorithm is restricted to the value determination
problem. The obvious question is how our value determina-
tion algorithm can be used for planning. The most obvious
approach is to use our algorithm as a subroutine in an algo-
rithm such as policy iteration, where we compute the value
function for some policy, and use it as guidance for locally
improving the policy. Unfortunately, there are barriers to this
application of our algorithm. The difficulty lies in the nature
of our approximation. We measure our distance from the true
value function in a norm that is weighted by the probability
that the different states will be visited in the stationary dis-
tribution. Hence, states that are visited infrequently can have
very poor value estimates. Changes to the policy based upon
these estimates will not be guaranteed to improve the overall
policy as in exact policy iteration, and could actually make
the policy much worse. The issue of using our value func-
tions as guidance in policy search is an important direction
for future work.

There are, however, several other important uses for a value
determination algorithm. Plan evaluation is an important
problem in and of itself; our algorithm allows us to take poli-
cies generated by a user or some other tool, and produce a
fairly good value function for them. Furthermore, it is known
that simple policies can be improved significantly by the ad-
dition of a small lookahead search that uses the value function
of the policy as a heuristic value at the leaves of the search.
Indeed, the recent work of Sutton [1999] shows that even very
simple policies can be quite powerful if a meta-level reasoner
is allowed to choose which one to apply in different contexts.
Our algorithm can readily be used to compute the value func-
tions necessary for making such a choice.

Factored MDPs provide us with a compact and natural rep-
resentation for the type of complex problems that arise in real-
world settings. Unfortunately, the structure is not reflected in
the value function for these processes. However, we believe
that the value functions that arise are often approximately
factored, i.e., approximated well by the generalized additive
functions that we have discussed. The fact that such functions
are often used by human decision makers supports this intu-
ition. We therefore believe that algorithms that exploit this
structure can be very successful. This paper takes a first step
towards this goal.

Acknowledgement
We are grateful to Craig Boutilier, Andrew Ng, Satinder
Singh, and Benjamin Van Roy for helpful discussions. This
work supported by ARO grant DAAH04-96-1-0341 under

the MURI program “Integrated Approach to Intelligent Sys-
tems”, by ONR contract N66001-97-C-8554 under DARPA’s
HPKB program, and by the generosity of the the Powell
Foundation and the Sloan Foundation.

References
[Bacchus and Grove, 1995] F. Bacchus and A. Grove. Graphical

models for preference and utility. In Proc. UAI, 1995.

[Boutilier and Dearden, 1996] C. Boutilier and R. Dearden. Ap-
proximating value trees in structured dynamic programming. In
Proc. ICML, pages 54–62, 1996.

[Boutilier et al., 1998] C. Boutilier, R.I. Brafman, and C. Geib. Pri-
oritized goal decomposition of Markov decision processes: To-
wards a synthesis of classical and decision theoretic planning. In
Proc. UAI, pages 24–32, 1998.

[Boutilier et al., 1999] C. Boutilier, T. Dean, and S. Hanks. De-
cision theoretic planning: Structural assumptions and computa-
tional leverage. Journal of Artificial Intelligence Research, 1999.

[Boyen and Koller, 1998] X. Boyen and D. Koller. Tractable infer-
ence for complex stochastic processes. In Proc. UAI, 1998.

[Dean et al., 1997] T. Dean, R. Givan, and S. Leach. Model reduc-
tion techniques for computing approximately optimal solutions
for Markov decision processes. In Proc. UAI, 1997.

[Gordon, 1995] G.J. Gordon. Stable function approximation in dy-
namic programming. In Proc. ICML, pages 261–268, 1995.

[Howard and Matheson, 1984] R.A. Howard and J.E. Matheson.
Influence diagrams. In Readings on the Principles and Applica-
tions of Decision Analysis, pages 721–762. Strategic Decisions
Group, 1984.

[Keeney and Raiffa, 1976] R.L. Keeney and H. Raiffa. Decisions
with Multiple Objectives: Preferences and Value Tradeoffs. Wi-
ley, 1976.

[Meuleau et al., 1998] N. Meuleau, M. Hauskrecht, K-E. Kim,
L. Peshkin, L.P. Kaelbling, T. Dean, and C. Boutilier. Solving
very large weakly coupled Markov decision processes. In Proc.
AAAI, pages 165–172, 1998.

[Nelson, 1958] E. Nelson. The adjoint Markoff process. Duke
Mathematical Journal, 25, 1958.

[Singh and Cohn, 1998] S.P. Singh and D. Cohn. How to dynami-
cally merge Markov decision processes. In NIPS 10, pages 1057–
1063, 1998.

[Strang, 1980] G. Strang. Linear Algebra and Its Applications.
Academic Press, 1980.

[Sutton et al., 1999] R.S. Sutton, S. Singh, D. Precup, and
B. Ravindran. Improved switching among temporally abstract
actions. In NIPS 12, 1999. To appear.

[Tadepalli and Ok, 1996] P. Tadepalli and D. Ok. Scaling up aver-
age reward reinforcement learning by approximating the domain
models and the value function. In Proc. ICML, 1996.

[Tsitsiklis and Van Roy, 1996] J. D. Tsitsiklis and B. Van Roy.
Feature-based methods for large scale dynamic programming.
Machine Learning, 22(1):59–94, January 1996.

[Van Roy, 1998] B. Van Roy. Learning and Value Function Ap-
proximation in Complex Decision Problems. PhD thesis, Mas-
sachusetts Institute of Technology, 1998.

