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Abstract

Many information resources on the web are
relevant primarily to limited geographical
communities. For instance, web sites contain-
ing information on restaurants, theaters, and
apartment rentals are relevant primarily to
web users in geographical proximity to these
locations. In contrast, other information re-
sources are relevant to a broader geographical
community. For instance, an on-line newspa-
per may be relevant to users across the United
States. Unfortunately, current web search en-
gines largely ignore the geographical scope of
web resources. In this paper, we introduce
techniques for automatically computing the
geographical scope of web resources, based on
the textual content of the resources, as well as
on the geographical distribution of hyperlinks
to them. We report an extensive experimen-
tal evaluation of our strategies using real web
data. Finally, we describe a geographically-
aware search engine that we have built to
showcase our techniques.

1 Introduction

The World-Wide Web provides uniform access to in-
formation available around the globe. Some web sites
such as on-line stores and banking institutions are of
“global” interest to web users world-wide, while many
web sites contain information primarily of interest to
web users in a geographical community, such as the
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Bay Area or Palo Alto. Over the past few years, web
users have been discovering web sites using web search
engines such as AltaVista 1 and Google 2. In practice,
these engines are ineffective for identifying geographi-
cally scoped web pages. For instance, finding restau-
rants, theaters, and apartment rentals in or near spe-
cific regions is a difficult task with these web search
engines.

Now consider the scenario in which we have a
database with the geographical scope (e.g., a city, a
state) of all “resources” (e.g., restaurants, newspapers)
with a web presence. We can then exploit such in-
formation for a variety of applications, including the
following:

• Personalized searching: Consider the case a
resident in Palo Alto searches for “newspapers.”
A geographically-aware search engine would first
identify where the user is from (e.g., using a pro-
file at my.yahoo.com or my.excite.com). The
search engine then uses this information to return
newspapers that are relevant to the user’s loca-
tion, rather than returning references to news-
papers all over the world. For instance, the en-
gine might recommend The New York Times as
a “globally relevant” newspaper, and the Stan-
ford Daily as a local newspaper. Note that this
strategy is not equivalent to the user querying the
search engine for “newspaper AND Palo Alto,”
since such a query would miss references to The
New York Times, a newspaper that is published
in a city not in the vicinity of Palo Alto. This
newspaper even has the name of a specific city
(“New York”) in its name, but is nevertheless ge-
ographically relevant to the entire United States.

• Improved browsing: Web portals like Yahoo!
already classify web resources manually accord-
ing to their geographical scope 3. The techniques
that we present in this paper will make it possible

1http://www.altavista.com
2http://www.google.com
3http://dir.yahoo.com/Regional/



to conduct such hierarchical categorization efforts
automatically, improving their scalability.

It is easy to build geographically aware applications
such as the above if we are supplied with a table that
lists the geographical scope of each resource. Unfortu-
nately, no such table exists for web resources. In this
paper, we consider how to mine the web and automat-
ically construct such a table using web hyperlinks and
the actual content of web pages. For example, we can
map every web page to a location based on where its
hosting site resides. Then, we can consider the loca-
tion of all the pages that point to, say, the Stanford
Daily home page 4. By examining the distribution of
these pointers we can conclude that the Stanford Daily
is of interest mainly to residents of the Stanford area,
while The Wall Street Journal is of nation-wide inter-
est. We can draw the same conclusion by analyzing
the geographical locations that are mentioned in the
pages of the Stanford Daily and in those of The Wall
Street Journal.

The primary contributions of this paper include:

1. Algorithms to estimate geographical scope:
We propose a variety of algorithms that auto-
matically estimate the geographical scope of re-
sources, based on exploiting either the distribu-
tion of HTML links to the resources (Section 3)
or the textual content of the resources (Section 4).

2. Measures to evaluate quality of algorithms:
We introduce evaluation criteria for our estima-
tion algorithms, based on traditional information-
retrieval metrics (Section 5).

3. Experimental study of techniques: We em-
pirically evaluate our algorithms using real web
data (Section 6).

4. Implementation of a geographically aware
search engine: We also discuss how we used
our algorithms in the implementation of a geo-
graphically aware search engine for on-line news-
papers, which is accessible at http://www.cs.-
columbia.edu/~gravano/GeoSearch (Section 7).

Related Work

Traditional information-retrieval research has studied
how to best answer keyword-based queries over col-
lections of text documents [14]. These collections are
typically assumed to be relatively uniform in terms
of, say, their quality and scope. With the advent of
the web, researchers are studying other “dimensions”
to the data that help separate useful resources from

4Citations from pages hosted on national access providers like
America On Line would be ignored in this process, unless we can
map these citations to the physical location of their creator. We
discuss this issue further in Section 6.1.

less-useful ones in an extremely heterogeneous envi-
ronment like the web. Techniques for text-database
selection [3, 8, 13, 10] decide what web databases to
use to answer a user query, basing this decision on the
textual contents of the web databases.

Recent research has started to exploit web links
for improving web-page categorization [4] and for web
mining [6, 9, 5]. Notably, search engines such as
Google [1] and HITS [6, 12] estimate the “importance”
of web pages by considering the number of hyperlinks
that point to them. The rationale for their heuristics
is that the larger the number of web users who made
a hyperlink to a web page, the higher must be the im-
portance of the page. In essence, this work manages
to capture an additional dimension to the web data,
namely how important or authoritative the pages are.
Unlike the new techniques that we introduce in this pa-
per, HITS and Google ignore the spatial distribution
of incoming links to a web resource.

In this paper, we propose to extract yet another
crucial dimension of the web data, namely the geo-
graphical scope of web resources. This new dimension
can then be used to complement traditional informa-
tion retrieval techniques and those used by Google and
HITS to answer web queries in more effective ways.
Some commercial web sites already manually classify
web resources by their location, or keep directory in-
formation that lists where each company or web site is
located (e.g., see http://www.iatlas.com). Quite re-
cently, the NorthernLight search engine 5 has started
to extract addresses from web pages, letting users nar-
row their searches to specific geographical regions (e.g.,
to pages “originated” within a five-mile radius of a
given zip code). Users benefit from this information
because they can further filter their query results. In
reference [2], we discussed how to map a web site (e.g.,
http://www-db.stanford.edu) to a geographical lo-
cation (e.g., Palo Alto), and we also presented a tool
to visualize such geographical web data. In this paper,
we extend this preliminary work to a harder problem:
how to automatically estimate the geographical scope
of a web resource? That is, which data is targeted to-
wards residents of a city as opposed to the country, or
the world?

2 Geographical Scopes of Web Re-
sources

Web resources are built with a target audience in mind.
Sometimes this audience is geographically enclosed in
some neighborhood (e.g., the target audience of the
web page of a local pizzeria that delivers orders to
houses up to 2 miles away from the store). Some other
times, the target audience of a resource is distributed
across the country (e.g., the target audience of the web
page of the USA Today newspaper). In this section,

5http://www.northernlight.com/geosearch.html
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Figure 1: Portion of the hierarchy of geographical lo-
cations for the United States.

we introduce the notion of the geographical scope of
a web resource, which captures the geographical dis-
tribution of the target audience of a web resource.
This notion is a subjective one, the same way that
the information-retrieval notion of document relevance
is subjective [14].

Definition 1: The geographical scope of a web re-
source w is the geographical area that the creator of w
intends to reach.

Using this informal definition, the geographical scope
of our pizzeria above is the neighborhood where the
pizzeria resides, whereas the geographical scope of the
USA Today newspaper is the entire United States.

For concreteness, in the rest of the paper we fo-
cus on how to approximate the geographical scope of
web resources within the United States. For this, we
will view the United States as a three-level location
hierarchy (Figure 1). The root of the hierarchy corre-
sponds to the entire country. The next level down the
hierarchy has one node for each of the 50 states, plus
one node for the District of Columbia. Finally, the
leaf level in the hierarchy has one node for each city
in the country. Using this hierarchy, a human expert
might specify that the geographical scope of the USA
Today newspaper is the whole USA. In contrast, the
geographical scope of The Arizona Daily Star Online
is the state of Arizona, since this state is the target
audience of this newspaper. Finally, the geographical
scope of yet another newspaper, The Knoxville News-
Sentinel, has the city of Knoxville as its geographical
scope. Of course, this three-level hierarchy can be ex-
tended to span all the countries in the world, as well as
to further localize resources in cities, to counties and
boroughs. However, for simplicity this paper focuses
only on the three levels listed above.

Given our three-level hierarchy of geographical lo-
cations in the United States, we can choose to define
the geographical scope of web resources in different
ways. For example, instead of indicating that the geo-
graphical scope of the USA Today newspaper is the top
node in the hierarchy (i.e., the whole United States),
we could list all 50 states plus Washington D.C. as
comprising this geographical scope. Although it could
be argued that this state-level formulation expresses
the same information as the country-level one, we will

always express geographical scopes using nodes that
are “as high” as possible in our three-level hierarchy.
Thus, instead of aggregating the information that the
USA Today is a national newspaper out of the list of
states of its geographical scope, we will state this fact
directly, and simply specify its scope to be the United
States as a whole.

As mentioned above, the notion of geographical
scope is subjective. To capture this notion accu-
rately, we could hand-classify each web resource ac-
cording to its intended geographical scope. (Inciden-
tally, this is the way that web portals like Yahoo!
operate.) In this paper, we study scalable ways to
automatically approximate the resources’ geographical
scopes. Sections 3 and 4 describe two ways in which
we can estimate the geographical scope of a web re-
source. Later, Section 6 will report the experiments
that show that our automatically-computed approxi-
mations closely match the “ideal,” subjective defini-
tion.

3 Exploiting Resource Usage

In this section, we show how we can estimate the geo-
graphical scope of web resources by exploiting the link
structure of the web. (We will present an alternative
estimation method that exploits the contents of the
web resources in Section 4.)

Consider a web resource whose geographical scope is
the entire United States (e.g., the USA Today newspa-
per). Such a resource is likely to then attract interest
across the country. Our assumption in this section is
that this interest will translate in web pages across the
country containing HTML links to this web resource. 6

Conversely, a resource with a much more limited ge-
ographical scope will exhibit a significantly different
link distribution pattern across the country. Hence a
promising way to estimate the geographical scope of
a resource is to study the geographical distribution of
links to the resource. More specifically, two conditions
that a location ℓ will have to satisfy to be in the geo-
graphical scope of a resource w are:

• A significant fraction of ℓ’s web pages contain
links to w (Section 3.1).

• The web pages in ℓ that contain links to w are
distributed smoothly across ℓ (Section 3.2).

Below we show how to estimate the geographical scope
of a web resource w by identifying a set of candidate
locations ℓ that satisfy the two conditions above. This
process results in the estimated geographical scope of
w. Our experiments of Section 6 will show that these

6Of course, if we knew who accesses each web resource we
could use this information for our problem. Unfortunately, web
access logs for all resources whose geographical scopes we would
like to characterize are not easily available.



estimates are often a good approximation of the sub-
jective geographical scopes that we discussed in Sec-
tion 2.

3.1 Measuring Interest: Power

Intuitively, a location ℓ that is in the geographical
scope of a web resource w should exhibit relatively high
“interest” in w among its web pages. In other words,
a relatively high fraction of the web pages originated
in ℓ should contain links to resource w. Power (w , ℓ)
measures the relative interest in w among the pages in
location ℓ:

Power (w , ℓ) =
Links(w, ℓ)

Pages(ℓ)
(1)

where Links(w, ℓ) is the number of pages in location ℓ
that contain a link to web resource w, and Pages(ℓ) is
the total number of web pages in ℓ. (We explain how
we compute these numbers in Section 6.1.)

3.2 Measuring Uniformity: Spread

Geographical locations can be decomposed into several
sub-locations. As an example, the United States con-
sists of 50 states plus the District of Columbia, while
the state of New York, in turn, comprises a number of
cities (e.g., Albany, New York City). As we discussed
in the previous section, to include a location ℓ (e.g.,
the state of New York) in the geographical scope of a
web resource w, there should be a sufficiently high “in-
terest” in resource w in location ℓ (i.e., Power (w , ℓ) is
high). In addition, we need to ask that this interest be
spread smoothly across the location. Thus, a resource
with an unusually high number of links originating,
say, in New York City, but with no links coming from
other New York state cities should not have the state
of New York in its geographical scope, but perhaps
just New York City instead.

To determine how uniform the distribution of links
to a web resource w is across a location ℓ, we introduce
a second metric, Spread . Intuitively, Spread(w , ℓ) will
be high whenever Power (w , ℓi) ∼ Power (w , ℓj ) for all
“sub-locations” ℓi, ℓj that are children of ℓ in the loca-
tion hierarchy of Section 2. In what follows, we provide
three alternative definitions of Spread . These defini-
tions are all built on this intuition, but will compute
the value of Spread(w , ℓ) using techniques borrowed
from different fields. In Section 6 we experimentally
compare how these three definitions perform relative
to each other.

For our three definitions of Spread , Spread(w , ℓ) will
have the maximum possible value (i.e., a value of 1) in
the following two special cases:

• ℓ is a leaf node of our location hierarchy: In
this case, by definition, the distribution of Power
across ℓ is completely uniform, because we regard

ℓ as an “atomic” location. In this paper, these
atomic locations are the United States cities.

• Power (w , ℓ)=0: In this case, there is no “interest”
at all in resource w across location ℓ. Since Spread
measures the uniformity of this interest across ℓ,
Spread(w , ℓ) is trivially maximum in this case.

Next, we give three alternative definitions for
Spread(w , ℓ) for the case when ℓ is not a leaf node
in our location hierarchy and Power (w , ℓ)> 0. In the
definitions below, ℓ1, . . . , ℓn are the children of ℓ in the
hierarchy. Also, we associate with location ℓ vector

~Pages = (p1, . . . , pn), which lists the number of pages
pi = Pages(ℓi) of each child ℓi of ℓ. A second vec-

tor associated with ℓ, ~Links = (l1, . . . , ln), lists the
number of pages li = Links(w, ℓi) that have a link to
resource w at location ℓi, for i = 1, . . . , n. Finally,
vector ~Power = (r1, . . . , rn) lists the value of Power
ri = Power (w , ℓi) for each sub-location of ℓ.

Vector-Space Definition of Spread

The first definition of Spread is inspired in the vector-
space model from information retrieval [14]. Intu-

itively, we will compute how “similar” vectors ~Pages

and ~Links are by computing the cosine of the angle
between them. If the fraction of pages with links to w
is mostly constant across all of ℓ’s children ℓ1, . . . , ℓn,

then ~Pages and ~Links will be roughly scaled versions
of one another, and the cosine of the angle between
these vectors will be close to 1:

Spread(w , ℓ) = ~Pages⊙ ~Links

=

∑n

i=1
pi × li

√

∑n

i=1
p2

i ·
√

∑n

i=1
l2i

(2)

Relative-Error Definition of Spread

Let R = (
∑n

i=1
li)/(

∑n

i=1
pi). If the distribution of

interest in w were perfectly smooth, then ri = R for
all i. To measure how far we are from this perfectly
smooth distribution, we compute how much each ri

deviates from the “target” value R. We can then give
a definition of Spread based on computing the “relative
error” for each ℓi with respect to R:

Spread(w , ℓ) =
1

1 + 1
∑

n

i=1
pi

∑n

i=1
pi ·

|R−ri|
R

(3)

Entropy Definition of Spread

Our third and final definition for Spread is based on
the notion of entropy from information theory [11]. To
give this definition, we assume that there is an “infor-
mation source” associated with web resource w and
geographical location ℓ. The information source gen-
erates symbols representing the different children of



ℓ, namely ℓ1, . . . , ℓn. Moreover, we assume that this
information source generates its symbols by infinitely
executing three steps:

1. Randomly select an ℓi.

2. Randomly select a web page located in ℓi.

3. If the web page has a link to web site w, then
generate a symbol representing ℓi.

Intuitively, when ri = Power (w , ℓi) is uniform across
the ℓi sub-locations, the information source will
achieve the maximum entropy available at geographi-
cal location ℓ, which is log n. To make this definition
comparable across geographical locations with differ-
ent numbers of sub-locations, we define Spread as fol-
lows:

Spread(w , ℓ) =

−
∑n

i=1

ri
∑

n

j=1
rj

· log( ri
∑

n

j=1
rj

)

log n
(4)

3.3 Estimating Geographical Scopes

The previous sections showed metrics to measure the
strength (Power (w , ℓ)) and uniformity (Spread(w , ℓ))
of the interest in a web resource w at a location ℓ.
In this section we define how we can use Power and
Spread to estimate what locations we should include
in the geographical scope of a given web resource.

As a first step to estimate the geographical scope
of a web resource w, we identify the locations ℓ in
our hierarchy of Section 2 with Spread(w , ℓ)≥ τc, for
some given threshold 0 ≤ τc ≤ 1. These are the lo-
cations with a relatively smooth distribution of links
to w across their sub-locations. Furthermore, we only
include in CGS (w), the candidate geographical scope
for w, those locations that have no ancestor ℓ′ with
Spread(w , ℓ′)≥ τc. In other words, CGS (w) contains
locations with smooth distribution of links for w such
that are not “subsumed” by any other ancestor loca-
tion also in CGS (w):

Definition 2: The candidate geographical scope

CGS (w) of a web resource w is a set of nodes in the
geographical hierarchy. A location ℓ is in CGS (w) if
it satisfies the following two conditions, given a fixed
threshold τc:

• Spread(w , ℓ)≥ τc.

• For all ℓ′ that is an ancestor of ℓ, Spread(w , ℓ′)<
τc.

Given a web resource w, we can compute CGS (w) with
a simple algorithm that recursively visits the nodes in
the location hierarchy top-down. 7

7We have investigated an alternative, “stricter” definition of
CGS(w). According to this definition, ℓ ∈ CGS(w) if every
location ℓ′ in the location subtree rooted at ℓ has Spread(w , ℓ′)≥
τc. Our experimental results showed that the weaker definition
that we give above outperformed this stricter definition. For
space constraints, we then do not discuss this stricter version
further.

The candidate geographical scope of a resource
w, CGS (w), contains locations exhibiting relatively
smooth interest in w. However, as we discussed ear-
lier, this interest could be quite small in some cases.
In particular, a location ℓ with Power (w , ℓ)=0 (e.g.,
a leaf node) might be included in CGS (w), which is
clearly undesirable. Consequently, we need to prune
our candidate geographical scopes to only include lo-
cations with high enough Power in the final estimated
geographical scope of a resource:

Definition 3: The estimated geographical scope

EGS (w) of a web resource w is a set of locations ob-
tained from CGS (w) using one of the following scope
pruning strategies:

• Top-k pruning: Given an integer k, EGS (w)
consists of the top-k locations in CGS (w), in de-
creasing order of their Power .

• Absolute-threshold pruning: Given a thresh-
old τe, EGS (w) = {ℓ ∈ CGS (w)|Power (w , ℓ) ≥
τe}.

• Relative-threshold pruning: Given a percent-
age p, EGS (w) = {ℓ ∈ CGS (w)|Power (w , ℓ) ≥
max Power (w) × p}, where max Power (w) =
max{Power(w , ℓ)|ℓ ∈ CGS (w)}.

4 Exploiting Resource Contents

So far, we have used the distribution of links to a re-
source to estimate the resource’s geographical scope.
A natural question, however, is whether we can instead
just examine the resource’s contents to accomplish this
task. In this section we explore this idea, and discuss
how to use the resources’ text to estimate their geo-
graphical scope.

Consider a resource whose geographical scope is,
say, the state of New York. We may argue that the
text in such a resource is likely to mention New York
cities more frequently than locations corresponding to
other states or countries. This is our main assumption
in this section. (Section 6 experimentally compares
the resulting technique with our link-based strategy of
Section 3.) Hence an interesting direction to explore
to estimate the geographical scope of a resource is to
study the distribution of locations that are mentioned
in the resource. More specifically, two conditions that
a location ℓ will have to satisfy to be in the geograph-
ical scope of a resource w are:

• A significant fraction of all locations mentioned in
w are either ℓ itself or a sub-location of ℓ.

• The location references in w are distributed
smoothly across ℓ.

Next, Section 4.1 shows that we can use the location
references in the contents of a web resource to define



a variation of the Power and Spread metrics of Sec-
tion 3. We then estimate the geographical scopes com-
pletely analogously as we did for the link-based strat-
egy. Later, Section 4.2 addresses a fundamental step
in our content-based approach, namely how we can ef-
fectively extract the location names from the text of a
resource.

4.1 Estimating Geographical Scopes

To estimate whether a location ℓ is part of a re-
source w’s geographical scope we will proceed ex-
actly as in Section 3 and compute (modified ver-
sions of) Power (w , ℓ) and Spread(w , ℓ). For this,
we need to extract from w two numbers. The first
one, Locations(w), is the number of references to ge-
ographical locations in w’s text. The second one,
References(w, ℓ), is the number of references to ℓ men-
tioned in w’s text. 8 Given these counts, we can adapt
our definition of Power from Section 3.1 in the follow-
ing way:

Power (w , ℓ) =
References(w, ℓ)

Locations(w)
(5)

To adapt the definition of Spread of Section 3.2,
we now define the following three vectors for a web
resource w and a location ℓ with children ℓ1, . . . , ℓn.

First, vector ~Locations = (p1, . . . , pn) is a vector
with every element having the same value pi =
Locations(w), which is the number of references to
geographical locations in w’s text. Second, vec-

tor ~References = (l1, . . . , ln) lists the number of
references to each sub-location ℓi in w’s text, i.e.,

li = References(w, ℓi). Finally, vector ~Power =
(r1, . . . , rn) lists each sub-location’s Power value ri =
Power (w , ℓi). These vectors will play a role that is

completely analogous to those of the ~Pages, ~Links, and
~Power vectors of Section 3, respectively, for defining

Spread(w , ℓ). We can now use exactly the same defi-
nitions for Spread that we used in Section 3 and cal-
culate the estimated geographical scope EGS (w) for a
web resource w.

4.2 Extracting and Processing Location Ref-
erences

To estimate the geographical scope of a web resource
w as in the previous section, we need to extract all of
the locations that are mentioned in the textual con-
tents of w. Furthermore, the technique above expects
the list of cities that are mentioned in the text of the
web resources. In this section, we discuss the main
problems involved in such an extraction process.

8We will discuss in Section 4.2 how we map references to,
say, an entire state to references to individual cities within the
state, which is what we count in References and Locations .

Extracting Location Names from Plain Text

State-of-the-art named-entity taggers manage to iden-
tify entities like people, organizations, and locations
in natural-language text with high accuracy. For the
experiments that we report in Section 6 we used the
Alembic Workbench system developed at MITRE [7].

Normalizing and Disambiguating Location
Names

After the tagging phase in which we identify the loca-
tions (e.g., “New York City,” “California”) mentioned
in w, we should map each location to an unambiguous
city-state pair. Problems that arise when completing
this task include:

• Aliasing: Different names might be commonly
used for the same location. For example, San
Francisco is often referred to as SF. It is rela-
tively easy to address this problem at the coun-
try or state level. (These aliases are indeed
quite limited, and we compiled a list of them by
hand.) For cities, though, we resorted to a web-
accessible database of the United States Postal
Service (USPS) 9. For each zip code, this service
returns a list of variations of the corresponding
city’s name. For example, if we use Columbia Uni-
versity’s zip code, 10027, we obtain a list of names
for New York City, including New York, Manhat-
tan, New York City, NY City, NYC, and, interest-
ingly enough, Manhattanville. (Incidentally, the
USPS standard form for this city is New York.)
By repeatedly querying the USPS database with
different zip codes, we can build a list of city-name
aliases, together with the corresponding “normal
form” for each group.

• Ambiguity: Another problem when processing a
given city name is that it can refer to cities in dif-
ferent states. For example, four states, Georgia,
Illinois, Mississippi, and Ohio, have a city called
Columbus. A reference to such a city without
a state qualification is inherently ambiguous, un-
less of course we could understand the context in
which the reference was made. We have developed
heuristics for managing this kind of ambiguous lo-
cation references. Our technique starts by identi-
fying the unambiguous location references in the
web resource at hand w, and uses them to disam-
biguate the remaining references. Intuitively, if
w mentions mostly locations in the state of New
York, for example, we will assume that a refer-
ence to “Manhattan” is a reference to New York
City, not to Manhattan, Kansas. More specifi-
cally, if w mentions an ambiguous city name C m
times, and C can refer to a city in a number of

9http://www.usps.gov



states S1, . . . , Sk, then we “distribute” the m oc-
currences of C among the k states proportionally
to the distribution of unambiguous cities in these
states. Suppose that in our example 90% of the
unambiguous cities that are mentioned in resource
w are in the state of New York, and the remaining
10% are in the state of Kansas. Then, if w refers
to Manhattan five times, we will assume that 4.5
of these references correspond to New York, NY,
and only 0.5 of them to Manhattan, KS.

Mapping Locations to City Names

A location name can refer to a city, a state, or a coun-
try, for example. Our technique to estimate geograph-
ical scopes analyzes the distribution of cities that are
mentioned at a web resource w. Consequently, we need
a way to map references to, say, states to city refer-
ences that our technique can use. For this, we simply
“push down” references to high-level locations in our
location hierarchy (Section 2). This way, a reference
to the state of New York will be pushed down as a
reference to every city in the state. When we propa-
gate these references down, we also scale their weight
by some constant α. (A value of α = 0.1 worked best
in our Section 6 experiments.)

5 Evaluating the Quality of the Esti-
mated Geographical Scopes

In the previous sections we discussed two approaches
to estimating the geographical scope of resources. Of
course, other approaches are possible (e.g., a “hybrid”
strategy combining our two techniques). We now pro-
pose measures to evaluate the quality of any such al-
gorithm for estimating a web resource’s geographical
scope.

To evaluate the quality of our estimated geographi-
cal scopes, we need to compare them against the ideal,
subjective scopes. We could base our comparison on
metrics commonly used for classification tasks: for ex-
ample, we could just compute the number of web re-
sources in our testbed for which we managed to iden-
tify their geographical scope perfectly. Such a metric
would not fully capture the nuances of our problem.
For example, if the geographical scope of a resource
w is {California} and we compute EGS (w) as, say,
{California, New York City}, this metric would mark
our answer as completely wrong. Similarly, consider
the case where our EGS (w) computation consists of,
say, 90% of the California cities, but does not include
California as a whole state, which would have been
the perfect answer. Traditional classification accuracy
metrics would also consider our estimate as completely
wrong, even when our technique managed to identify
only cities in the right state as part of the geographical
scope of w.

With these observations in mind, we adapt the pre-
cision and recall metrics from the information retrieval
field to yield metrics that we believe are appropriate
for our problem. More specifically, we will define pre-
cision and recall for our problem as follows, after we
introduce an auxiliary definition. Given a set of loca-
tions L, we will “expand” it by including all locations
under a location ℓ ∈ L. Thus, Expanded(L) = {ℓ′ lo-
cation | ℓ′ ∈ L or ℓ′ is in the location subtree of some
ℓ ∈ L}. Now, let w be a web resource, Ideal be its
“expanded” geographical scope, and Estimated be our
expanded estimate, Expanded(EGS (w)). Then:

Precision(w) =
|Ideal

⋂

Estimated |

|Estimated |

Recall(w) =
|Ideal

⋂

Estimated |

|Ideal |

Intuitively, precision measures the fraction of locations
in an estimated geographical scope that are correct,
i.e., that are also part of the ideal geographical scope.
(Perfect precision might be trivially achieved by al-
ways returning empty geographical scopes.) Recall
measures the fraction of the locations in the ideal ge-
ographical scope that are captured in our estimated
geographical scope. (Perfect recall might be trivially
achieved by always including all locations in the ge-
ographical scopes.) Finally, to simplify the interpre-
tation of our experiments, we combine precision and
recall into a single metric using the F -measure [15]:

F (w) =
2 × Precision(w) × Recall(w)

Precision(w) + Recall(w)

6 Experimental Evaluation

Section 2 defined the “ideal,” subjective geographical
scope of a web resource w. Later, we showed how we
can automatically calculate the estimated geographical
scope EGS (w) by analyzing the geographical distribu-
tion of HTML links to w (Section 3), or, alternatively,
by analyzing the distribution of location names from
the textual contents of w (Section 4). In this section,
we experimentally evaluate how well our different tech-
niques can approximate the ideal geographical scopes
using the evaluation criteria we discussed in Section 5.
We describe our experimental setting in Section 6.1.
We then report the results of our experiments, which
involved real web resources, in Section 6.2.

6.1 Experimental Setting

In this section we explain the main aspects of our ex-
perimental setting. In particular, we describe the real
web resources that we used, and highlight some of the
challenging implementation issues that we had to ad-
dress to carry out our study.



Web Resources

Ideally, to evaluate our techniques of Sections 3 and 4
we should use a set of real web resources, each with its
corresponding geographical scope, as determined by a
human expert. (Analogously, the information retrieval
field relies on human relevance judgments to evalu-
ate the performance of search-engine algorithms [14].)
For our experiments, we needed a list of web resources
whose intended geographical scope was self-apparent
and uncontested. Furthermore, we wanted our list to
cover the different levels of our location hierarchy of
Section 2. In other words, we wanted resources who
would have the United States as their geographical
scope, but we also wanted resources whose geographi-
cal scope was at the state and city levels. Finally, the
resources that we picked needed to have a sufficiently
large number of HTML links directed to them, so that
we can apply our technique of Section 3. (We discuss
how to handle resources with not enough references to
them in Section 8.) With the above goals in mind, we
collected a list of 150 web resources whose geographical
scopes span the three levels of our location hierarchy:

• National level: 50 of our web resources have the
United States as their geographical scope. These
resources are the 50 most heavily cited Federal
Government web sites listed in the FedWorld web
site 10. (We determined the 50 most cited pages
by querying AltaVista to obtain the number of
pages with links to each of these resources.) These
web sites have the whole United States as their
intended audience, and include the web sites of
NASA 11 and the National Endowment for the
Arts 12, for example.

• State level: 50 of our web resources have a state
as their geographical scope. These resources are
the official web site of each state in the United
States (e.g., http://www.state.ny.us (state of
New York)), and have their corresponding state
as their geographical scope.

• City level: 50 of our web resources have a city
as their geographical scope. These resources are
the 50 most cited among the US cities’ official web
sites (e.g., http://www.ci.sf.ca.us (San Fran-
cisco)), and have their corresponding city as their
geographical scope. (We obtained a list of the
US cities’ official web sites from Piper Resources’
“State and Local Government on the Net.” 13)

Implementation Issues

We now describe some interesting tasks that we had
to perform to run our experiments:

10http://www.fedworld.gov/locator.htm
11http://www.nasa.gov
12http://www.arts.endow.gov
13http://www.piperinfo.com/state/states.html

• Mapping web pages to city names: Our tech-
nique of Section 3 requires that we find all pages
with HTML links to a given web resource w. Af-
ter identifying these pages, we need to place their
location so that we can study their geographical
distribution and estimate w’s geographical scope.
This is a challenging task, because we really need
the location of the author of a page, which might
be quite different from the location of the site that
hosts the page. For example, web pages with links
to w from, say, the aol.com domain are hardly
useful for our task: If we examine just the lo-
cation of the web site where these pages reside,
we would most likely be misguided in determin-
ing w’s geographic scope. (We elaborated on these
issues further and outlined alternative approaches
to “placing web pages on the map” in [2].) A key
observation that we exploit for our experiments
is that it suffices for our Section 3 technique to
have a reasonable sample of the pages with links
to resource w to estimate w’s geographical scope.
Following this observation, we focussed on web
pages whose author’s location we could determine
reliably, and that would span the entire United
States. More specifically, we analyzed link infor-
mation from pages originating only in educational
domains (e.g., from web sites with a .edu suffix,
like www.columbia.edu). Given such a page, we
query the whois service to map the page’s web
site into its corresponding zip code. After this,
we query the USPS zip-code server and obtain the
standard city name associated with the zip code.

• Refining our location hierarchy: Our ex-
perimental setting considers links originating only
in educational institutions. Unfortunately, not all
cities have one such institution. Hence, we refined
our location hierarchy to include only cities with
a university with a .edu web site. We further
pruned our list by eliminating every city hosting
fewer than 500 pages in .edu web sites, so that we
analyze only cities with a significant web presence
in .edu domains. At the end of this process, we
are left with a location hierarchy consisting of 673
cities as leaf nodes, the 50 states and the District
of Columbia as intermediate nodes, and the entire
United States as the root node.

• Computing Pages(ℓ) and Links(w, ℓ): For each
city ℓ in our location hierarchy, we need to ob-
tain the number of pages from .edu domains that
are located in it. To get this number, we query
AltaVista and obtain the number of pages that
each educational institution in location ℓ hosts.
By adding these numbers for each institution in
ℓ we compute Pages(ℓ), which we need in Sec-
tion 3. Similarly, we can identify how many of
these pages have links to a specific web resource



w to compute Links(w, ℓ).

• Obtaining the textual contents of a web re-
source w: For our content-based technique of
Section 4, we download the full-text contents of
the 150 web sites of our testbed, using Gnu’s wget
web crawler. We then use the lynx browser to
eliminate the HTML tags in the web pages and
extract the plain-English text in them. As ex-
plained in Section 4, after this we run the Alem-
bic named-entity tagger [7] to extract the loca-
tion names that are mentioned in the plain text.
Finally, we resolve aliasing and ambiguity issues,
map locations to city names, and estimate the ge-
ographical scopes as outlined in Section 4. 14

6.2 Experimental Results

In Table 1 we summarize the algorithms we now eval-
uate. In addition to the three different definitions of
Spread we discussed in Section 3.2, we also consider the
following two simple “baseline” algorithms for com-
puting candidate geographical scopes. The first one,
AllLeaves, always defines the candidate geographical
scope CGS (w) of a web resource w as consisting of all
of the cities in our location hierarchy. In contrast, the
second baseline technique, OnlyRoot, always defines
CGS (w) as consisting of the United States only. The
candidate geographical scope, obtained by any base-
line technique or Spread definition, is then pruned by
one of the three scope-pruning strategies to produce
the estimated geographical scope as described in Sec-
tion 3.3. Table 1 also summarizes the parameters in-
volved with each of the different algorithms. For exam-
ple, recall that k is a tunable parameter in the TopK
scope-pruning strategy of Section 3.3.

We comprehensively evaluated the above algo-
rithms to understand the impact of the different
tunable parameters on precision, recall, and the F -
measure. Due to lack of space, we present a few sam-
ple results to highlight some of our key observations.
Specifically, we present our results for the relative-
threshold pruning strategy RelThr . We evaluated our
results for the TopK and for the AbsThr strategies as
well, and observed similar trends. Hence we do not
discuss these further.

In Figure 2, we show the impact of parameter p
on the average F -measure for the link-based approach
using the relative-threshold pruning strategy RelThr .
(We use the values of τc that are specified in Table 2.)
Notice that all the Spread definitions perform very
well, especially as p increases, and the Spread defi-
nitions have a much higher average F -measure com-
pared to the strawman AllLeaves and OnlyRoot tech-

14We only used 142 of the 150 web resources in our testbed
to evaluate the content-based technique of Section 4: out of the
remaining eight web resources, either wget could not crawl their
pages, or the named-entity tagger that we used, Alembic, could
not find any location name in their pages.
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Figure 2: Average F -measure for the link-based strat-
egy of Section 3 as a function of p (RelThr pruning
strategy).
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Figure 4: Average F -measure for the content-based
strategy of Section 4 as a function of p (RelThr pruning
strategy).

niques. Figure 3 shows the average precision and
recall for RelErr , with the RelThr pruning strategy.
Our techniques have more than 75% average preci-
sion and recall for several settings of the p parameter,
which translates into the correspondingly high average
F -measure values of Figure 2.

So far we have evaluated our link-based techniques
for different parameter settings. We now discuss sim-
ilar results for our content-based techniques of Sec-
tion 4. In Figure 4 we report the impact of p on the
average F -measure for the content-based approach on
our entire data set, using the values of τc specified in
Table 3. We observe similar results to our link-based
approach in that our techniques have high average F
values, especially for p > 0.2, compared to the straw-
man techniques.

Table 2 summarizes our results from the previous
graphs for the link-based approach, and reports the
“best” (i.e., highest average F value) parameter values



Label Description Associated Parameter
Baseline AllLeaves Scope consists of all USA cities –

Techniques OnlyRoot Scope consists of just USA –
Spread VectorSpace Vector-space definition of Spread τc

Definition Entropy Entropy definition of Spread τc

(Section 3.2) RelErr Relative-error definition of Spread τc

Scope-Pruning TopK Top-k pruning k
Strategies AbsThr Absolute-threshold pruning τe

(Section 3.3) RelThr Relative-threshold pruning p

Table 1: The variations of our techniques that we use in our experiments, together with their associated param-
eters.
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Figure 3: Average precision (a) and recall (b) for the link-based strategy of Section 3 as a function of p (τc = 0.57
for RelErr; RelThr pruning strategy).

for each of our Spread definitions and scope-pruning
strategies. In Table 3, we report similar results for
the content-based approach. In general, we see that
the relative-threshold strategy to pruning scope works
best in practice. In our data set, the content-based
approach has a slight advantage over the link-based
approach. However, we should regard these two ap-
proaches as complementary to each other for the fol-
lowing reasons, which we already touched on in Sec-
tion 6.1. Often, web sites restrict robots from crawl-
ing their site (e.g., this is the case for The New York
Times newspaper). In such cases, we cannot apply
our content-based approach for estimating geograph-
ical scope, while we can still resort to the link-based
approach. In other cases, the number of incoming links
to a web site may be limited. In these cases, we should
use our content-based approach, as long as any useful
geographical information can be extracted from such
resources that are not heavily cited.

7 A Geographically Aware Search En-
gine

Based on the techniques we developed in the previous
sections, we have implemented a geographically aware
search engine that downloads and indexes the full con-
tents of 436 on-line newspapers based in the United
States. Our search engine estimates the geographical

scope of the newspapers using the link-based technique
of Section 3 with the Entropy definition for Spread and
the RelThr scope-pruning strategy. This search en-
gine is available at http://www.cs.columbia.edu/-
~gravano/GeoSearch.

Our search engine automatically pre-computes the
geographical scope of the 436 newspapers that it in-
dexes. When users query the engine, they specify their
zip code in addition to their list of search keywords.
Our system first uses just the keywords to rank the
newspaper articles on those keywords using a stan-
dard, off-the-shelf text search engine called Swish. Our
system then filters out all pages coming from newspa-
pers whose geographical scope does not include the
user’s specified zip code. Furthermore, our engine re-
computes the score for each surviving page and returns
the pages ranked in the resulting order. A page’s new
score is a combination of the Swish-generated score
for the page and the Power of the location in the
geographical scope of the page’s newspaper that en-
closes the user’s zip code. Figure 5 shows the results
for query “startups business” with zip code 94043,
which corresponds to Mountain View, California. The
first article is from The Nando Times, a national on-
line newspaper. Our system has determined that this
newspaper’s geographical scope is the whole country,
hence the coloring of the map next to the correspond-



TopK AbsThr RelThr
F τc k F τc τe F τc p

AllLeaves 0.34 – ∞ 0.51 – 0.0007 0.45 – 0.1
OnlyRoot 0.35 – 1 0.35 – 0 0.35 – 0

VectorSpace 0.76 0.7 1 0.52 0.9 0.0007 0.81 0.7 0.5
Entropy 0.78 0.8 1 0.51 0.8 0.0007 0.82 0.8 0.6
RelErr 0.78 0.57 1 0.52 0.67 0.0007 0.83 0.57 0.6

Table 2: Best average F -measure results for different Spread definitions (Section 3.2) and scope-pruning strategies
(Section 3.3), using the link-based strategy of Section 3.

TopK AbsThr RelThr
F τc k F τc τe F τc p

AllLeaves 0.37 – 1 0.42 – 0.0007 0.59 – 0.2
OnlyRoot 0.35 – 1 0.35 – 0 0.35 – 0

VectorSpace 0.85 0.6 1 0.82 0.6 0.1 0.86 0.6 0.7
Entropy 0.85 0.8 1 0.82 0.8 0.1 0.85 0.8 0.7
RelErr 0.76 0.57 1 0.72 0.50 0.1 0.76 0.57 0.5

Table 3: Best average F -measure results for different Spread definitions (Section 3.2) and scope-pruning strategies
(Section 3.3), using the content-based strategy of Section 4.

ing article. The second article returned is from the
San Jose Mercury News, a newspaper based in San
Jose, California, whose technology reports have fol-
lowers across the country. Our search engine has clas-
sified this newspaper as having a national geographical
scope. The last article returned originated in a news-
paper whose geographical scope consists of the entire
state of California, which is marked with a solid color
on the map, plus a few cities scattered across the coun-
try, indicated by placing a dot in their corresponding
states.

8 Conclusion

In this paper, we discussed how to estimate the geo-
graphical scope of web resources, and how to exploit
this information to build geographically aware applica-
tions. The main contributions of this paper include au-
tomatic estimation algorithms based on web-page con-
tent and HTML link information, metrics to evaluate
the quality of such algorithms, a comprehensive eval-
uation of these techniques in a realistic experimental
scenario, and an implementation of a geographically
aware search engine for newspaper articles. One of
the key observations of this paper is that the content-
based techniques and the link-based techniques have
specific advantages and disadvantages, and in fact can
be used as complementary estimators of the scope of
web resources. In effect, some sites might not allow
us to “crawl” their contents, preventing us from us-
ing our content-based techniques. Some other sites
might have a low number of incoming HTML links,
preventing us from using our link-based techniques re-

liably. By combining these two approaches we can ac-
curately estimate the geographical scope of many web
resources, hence capturing a crucial dimension of web
data that is currently ignored by search engines.
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