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Abstract

Many applications such as topology repair, model editing, surface
parameterization, and feature recognition benefit from computing
loops on surfaces that wrap around their ‘handles’ and ‘tunnels’.
Computing such loops while optimizing their geometric lengths is
difficult. On the other hand, computing such loops without con-
sidering geometry is easy but may not be very useful. In this pa-
per we strike a balance by computing topologically correct loops
that are also geometrically relevant. Our algorithm is a novel ap-
plication of the concepts from topological persistence introduced
recently in computational topology. The usability of the computed
loops is demonstrated with some examples in feature identification
and topology simplification.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Curve, Surface, Solid, and Object
Representations; I.3.4 [Computer Graphics]: Graphics Utilities—
Graphics Editors

Keywords: Surface loop, topology, persistent homology, shape
analysis, topology repair, feature identification

1 Introduction

Many applications such as topology repair of 3D models [Bischoff
and Kobbelt 2005; Zhou et al. 2007], surface parameteriza-
tion [Ben-Chen et al. 2008; Gu et al. 2002; Sheffer and Hart 2002],
and feature recognition [Biasotti et al. 2008; Dey et al. 2007] bene-
fit from automatic detection of loops on surfaces that are associated
with features such as ‘handles’ and ‘tunnels’. A 3D model created
from a point cloud data often contains spurious topology such as
tiny handles and tunnels [Levoy et al. 2000]. If appropriate loops
around these features can be computed, they can be eliminated to
clean up the model. In surface parameterization, many algorithms
need to cut a surface into a disk. These cutting loops should be
small to lessen the effect of discontinuity in parameterization across
the boundary. Again, if these loops are chosen around small parts
of the handles and tunnels, the length of the boundary in the flat-
tened disk remains small. Feature recognition such as identifying
handles and tunnels in a 3D model can use a representative loop for
each such feature.

It is known that a closed surface of genus g can be cut into a disk by
cutting it along 2g loops. If one is only concerned with the genus
reduction in topology simplification, these 2g loops can be com-
puted easily without being aware of the geometry. However, as we
argued above, most applications cannot be geometry-oblivious and
should choose these loops to be small and respect the embedding
of the shape. For example, to remove a handle in a 3D shape as in
Figure 1, we need to identify a small loop around the handle which
spans a ‘surface’ in the interior of the shape. Similarly, to close a
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Figure 1: Computing handle and tunnel loops on Botijo. From left
to right: Input model, handle (green) and tunnel (red) loops, handle
features (green) identified on Botijo.

small tunnel as in Figure 7, we need to identify a small loop around
the tunnel which spans a ‘surface’ in the exterior of the shape.

The requirement that the loops span a ‘surface’ in the complement
space of the input surface disallows many loops which would oth-
erwise be eligible for simplifying the topology of the surface alone.
Since 3D models not only embody the bounding surface but also the
space surrounded by it, the cutting loops also should take into ac-
count the embedding of the surface. To reach this goal, the authors
in [Dey et al. 2007] defined a class of loops on a surface M ⊂ R3,
called handle and tunnel loops in terms of a homology group. A
loop is a handle if it spans a surface, say D, in the bounded space
bordered by M but does not do so in M itself. If one cuts M along
such a loop and fills the boundaries with two copies of D, one elim-
inates a handle. Similarly, a loop is a tunnel if it spans a surface in
the unbounded space bordered by M and does not do so in M. Its
removal eliminates a tunnel. The middle picture in Figure 1 shows
such handle and tunnel loops for the model Botijo.

Contribution. In this paper we present an algorithm to compute
handle and tunnel loops based on persistent homology pioneered
by Edelsbrunner, Letscher, and Zomorodian [Edelsbrunner et al.
2002]. The algorithm computes a set of well defined g handle and g
tunnel loops for a closed surface of genus g in R3. Compared to the
earlier methods, our algorithm has the advantage that it provides a
mathematical guarantee on detecting handle and tunnel loops and
does not require computing any extra structure such as Reeb graph,
medial axis, or curve skeletons. Further, it does not impose any
restriction on the class of input 3D models as in some of the earlier
works.

Our use of persistent homology enables us to compute the g handle
and g tunnel loops which are topologically correct and geometri-
cally small. A geodesic measure associated with the loops can be
used to simplify features based on their sizes. The method is sim-
ple and is general enough to be applied to any surface mesh that
conforms to an associated volume mesh. Specifically, the input M

should be a subcomplex of a complex K that tessellates the con-
vex hull of M. The actual input surface may satisfy this condition
directly or may need preprocessing to satisfy it.



If the input surface M is a sub-complex of the Delaunay trian-
gulation of its vertex set, the complex K representing the vol-
ume mesh is immediately obtained from the Delaunay triangula-
tion. For example, many Delaunay based surface reconstruction
algorithms [Dey 2007] and meshing algorithms [Alliez et al. 2005;
Cheng et al. 2007; Oudot et al. 2005] produce such surface meshes.
If the input is an iso-surface extracted from a scalar grid data, a
volume mesh conforming to the surface can be easily generated by
computing intersections between cubic faces and the iso-surface.
The most demanding case arises when the input surface is neither
Delaunay nor an iso-surface. In this case one may remesh the sur-
face so that it becomes a Delaunay mesh using any of the existing
algorithms [Alliez et al. 2005; Cheng et al. 2007; Oudot et al. 2005].
In our experiments we use the Delaunay mesh method of [Cheng
et al. 2007] since it can handle non-smooth surfaces with arbitrary
small input angles. Alternatively, one may use the scan-conversion
algorithm as in [Bischoff and Kobbelt 2005; Zhou et al. 2007] to
create a volume data out of a surface mesh and apply our algorithm
as in the iso-surface case.

Because of its simplicity, our algorithm applies to a large class of
input. It runs reasonably fast in practice. In particular, it scales
well with large data sets for the iso-surface case. We show exam-
ples where the computed loops are used to simplify topology or to
identify features such as ‘handles’ and ‘tunnels’ in a 3D model.

Previous work. Various algorithms for computing different types
of non-trivial loops on surfaces have been proposed in recent years,
e.g., see [Erickson and Whittlesey 2005; Chen and Freedman 2008;

Ni et al. 2004; Éric Colin de Verdière and Lazarus 2005; Zomoro-
dian and Carlsson 2007] and the references therein. The algorithms

of [Erickson and Whittlesey 2005; Chen and Freedman 2008; Éric
Colin de Verdière and Lazarus 2005] compute loops on surfaces
which are optimal with some geometric measures. These works do
not guarantee handle and tunnel loops as we define. Furthermore,
results on practical validity of these algorithms are not yet available.

Several approaches of computing non-trivial loops on surfaces have
been proposed in the context of topology simplification. In [El-
Sana and Varshney 1997], El-Sana and Varshney use the concept
of α-hulls to identify small tunnels and concavities that are not ac-
cessible by a user-specified ball rolling on the surface. Guskov and
Wood [Guskov and Wood 2001] propose a surface growing strategy
to remove small handles contained completely in a mesh neighbor-
hood of a given size. Nooruddin and Turk [Nooruddin and Turk
2003] apply some morphological operations such as opening and
closing on the volume meshes to remove small handles. Wood et
al. [Wood et al. 2004] use cycles in the Reeb graph to compute han-
dles and perform a disk-filling procedure to remove handles. These
works do not provide any mathematical guarantees of producing
handle and tunnel loops as we aim for. Some of them may also gen-
erate new handles and tunnels [Nooruddin and Turk 2003; Wood
et al. 2004] as a side effect of removing others.

Another set of algorithms uses some kind of graph structures built
from the input model to compute the handles and tunnels. Shattuck
and Leahy [Shattuck and Leahy 2001] build a graph from a Reeb
graph and remove handles by breaking the cycles in this graph.
Although a robust algorithm for computing Reeb graphs is avail-
able [Pascucci et al. 2007], choosing an appropriate sweeping di-
rection to build the Reeb graph remains a challenge. Zhou, Ju, and
Hu [Zhou et al. 2007] propose a repair technique based on detect-
ing loops in the medial axis. This method, because of its use of the
medial axis, cannot be applied to a class of models whose medial
axis form closed surfaces. Moreover, the construction of medial
axis with reasonable accuracy is a non-trivial task. Dey, Li, and
Sun [Dey et al. 2007] propose an algorithm which requires com-

puting a contraction of the medial axis for producing curve skele-
tons [Dey and Sun 2006]. It also suffers from the problem of com-
puting these structures robustly.

2 Cycle, boundary and homology

In this section, we give a very brief introduction to homology
through an intuitive example since handle and tunnel loops are de-
fined via homology. For a formal treatment on homology, readers
are referred to [Hatcher 2002].
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In a simplicial complex K, a p-chain c
is a formal sum of p-simplices in K, i.e.,
c = ∑i aiσi where σi is a p-simplex in K

and ai is an integer modulo 2. Consider
the simplicial complex K in the figure on
right. Here v0 is a 0-chain and (e0 + e3)
is a 1-chain. Two p-chains are added
component-wise, i.e., if c′ = ∑i a′iσi then c+c′ = ∑(ai +a′i)σi. No-
tice that, because of modulo 2 addition, we have c+ c = 0. The set
of p-chains together with the addition operation form the group of
p-chains denoted as Cp. The boundary of a p-simplex is the sum of
its (p−1)-dimensional faces. Specifically, for the simplex spanned
by the vertices v0 up to vp,

∂pσ = ∂p[v0,v1, · · · ,vp] =
p

∑
i=0

[v0, · · · , v̂i, · · ·vp]

where the hat indicates that vi is dropped. For example, ∂ t =
(e2 +e3 +e4). By linear extension, a p-chain c = ∑i aiσi has bound-
ary ∂pc = ∑i ai∂pσi. For example, ∂ (e0 + e1 + e4) = (v0 + v2) +
(v0 + v1)+ (v1 + v2) = 0. Thus, we relate chain groups using the
boundary map ∂p : Cp → Cp−1. The index of the boundary oper-
ator ∂p can be dropped for convenience since it is implied by the
dimension of the chain.

A p-chain c is a p-cycle if ∂c = 0. For example, (e0 + e1 + e4) is a
1-cycle. A p-chain c is a p-boundary if there exists a (p+1)-chain
d with c = ∂d. For example (e2 +e3 +e4) is a 1-boundary. One can
verify that a p-boundary has to be a p-cycle. The set of all p-cycles,
denoted by Zp, is the kernel of the pth boundary map, i.e., Zp =
Ker ∂p. The set of all p-boundaries, denoted by Bp, is the image
of the (p + 1)th-boundary map, i.e., Bp = Img ∂p+1. Thus, Bp ⊂
Zp. The homology groups are defined as quotients, Hp = Zp/Bp

for each p. One can think each element in Hp as an equivalent
class. Two p-cycles c1 and c2 are in the same equivalent class if
the difference between them is a p-boundary, i.e., c1 −c2 ∈ Bp. For
example (e0 + e1 + e4) and (e0 + e1 + e2 + e3) are equivalent. It
is customary to use [c] to denote the equivalent class represented
by a p-cycle c. A p-cycle c is trivial in Hp if [c] represents the
zero element in Hp. Any p-boundary is trivial in Hp. For example,

[e2 + e3 + e4] is trivial in H1(K). In our setting1, Hp simply is a
vector space generated by a basis. The number of elements in a
basis of Hp is its dimension/rank, which is also known as pth Betti
number βp. In our example, H1(K) is only one dimensional and
[e0 +e1 +e4] is a basis.

In this paper, we are interested in the first homology group H1. We
give a 1-cycle a more intuitive name, loop. Now we give a formal
definition of handle and tunnel loops for a surface in R3.

3 Handle/Tunnel loops

We are interested in computing a representation of handles and tun-
nels in a shape. Toward this goal we use the definition of handle

1The assumption that ai’s are integers modulo 2



and tunnel loops introduced in [Dey et al. 2007] and present some
explanations why such definition is useful.

Let M be a closed (compact and without boundary) surface in R3.
For simplicity, we assume M is connected. In case M is not con-
nected, our result can be applied component-wise. The genus g of
M is the maximum number of disjoint simple loops whose removal
does not disconnect M. M separates R

3 into two parts: inside de-
noted I and outside denoted O both including M.

Definition 1 A loop in M is a tunnel loop if it is trivial in H1(O)
and non trivial in H1(M).

Definition 2 A loop in M is a handle loop if it is trivial in H1(I)
and non trivial in H1(M).

By definition, a tunnel loop spans the union
of a set of triangles in O since, being triv-
ial in O, it has to bound a 2-chain. Simi-
lar statement holds for handle loops. These
properties commensurate with the require-
ment that the handle loops should bound
‘surfaces’ in I whereas tunnel loops should
bound them in O. The set of tunnel loops
are disjoint from the set of handle loops, i.e., no loop on M can be
both handle and tunnel. This fact follows from Theorem 1. By defi-
nition, a tunnel loop or a handle loop must be non trivial in H1(M).
However, a non trivial loop on M may neither be handle nor tunnel.
For example, the loop shown on the torus is neither a handle nor a
tunnel since it is non trivial in both H1(I) and H1(O). Such loop
is not desirable in some applications such as topological simplifica-
tion since after cutting the surface M along such loop one can not
fill the boundary with a disk without intersecting M.

The following theorem elucidates some structural properties about
the spaces generated by handle and tunnel loops. It can be derived
from Mayer-Vietoris sequence given by M = I∩O; see [Dey et al.
2007] for a line of proof.

Theorem 1 For any connected closed surface M ⊂ R3 of genus g,
H1(M) is the direct sum of the spaces generated by handle and tun-
nel loops each of which is g-dimensional. Moreover, handle loops

generate H1(O) and tunnel loops generate H1(I).

4 Positive/Negative simplices

Our algorithm is based on a pairing of simplices which is a key con-
cept in computing persistent homology [Edelsbrunner et al. 2002].
A filtration of a simplicial complex K is a nested sequence of com-
plexes,

/0 = K−1 ⊂ K0 ⊂ K1 ⊂ ·· · ⊂ Kn = K.

The inclusion map f : Ki−1 →֒ Ki defined by f (x) = x induces a
map between the homology groups: f∗ : Hp(Ki−1) → Hp(Ki). The
nested sequence of complexes corresponds to a sequence of homol-
ogy groups connected by the induced maps,

0 = Hp(K−1) → Hp(K0) → ··· → Hp(Kn) = Hp(K).

Persistent homology basically studies how the homology groups
change over the filtration. In this paper, we only explain the pair-
ing concept in persistent homology relevant to our algorithm. For
a formal treatment of persistent homology, readers are referred
to [Edelsbrunner et al. 2002; Zomorodian and Carlsson 2005].

We may assume Ki −Ki−1 = σi, i.e., adding a single simplex each
time in the filtration. Only two possible changes can happen when
a single simplex σi of dimension p is added to Ki−1. One is the
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Figure 2: Red simplices are positive and blue ones are negative.
The simplices are indexed to coincide with their order in the fil-
tration. (·, ·) in each subcomplex shows the pairing between the
positive and the negative. The second component missing in the
parenthesis shows the introducing of a positive simplex.

creation of a non-boundary p-cycle when σi is called a positive p-
simplex. The other change is the killing of an existing (p−1)-cycle
when σi is called a negative p-simplex.

We elaborate the above two changes through an example depicted
in Figure 2. When one moves from K6 to K7, a non-boundary
loop which is a 1-cycle (e4 + e5 + e6 + e7) is created after adding
edge e7. Strictly speaking, a positive p-simplex may create more
than one p-cycle. Only one of them is independent and the others
are its linear combinations with the existing ones in Ki−1. From
K7 to K8, the introduction of edge e8 creates two non-boundary
loops (e4 + e5 + e8) and (e6 + e7 + e8). But any one of them
is the linear combination of the other one with the existing loop
(e4 +e5 +e6 +e7). Notice that there is no canonical way to choose
an independent one. However, the creation of a loop is reflected
in the increase of the dimension of H1. In other words, in general,
the Betti number βp increases by 1 for a positive simplex. For a
negative simplex, we get the opposite effect. In this case βp−1 de-
creases by 1 signifying a death of a cycle. However, unlike positive
simplices, the killed cycle is determined uniquely up to homology,
which is the equivalent class carried by the boundary of σi. For ex-
ample, in Figure 2, the loop (e6 +e7 +e8) gets killed by triangle t9
when we go from K8 to K9.

By the theory of persistent homology [Edelsbrunner et al. 2002],
a negative p-simplex σ is always paired with a unique positive
(p− 1)-simplex σ ′ where σ kills a (p− 1)-cycle created by σ ′.
The pairing of positive simplices with negative simplices is the key
concept in persistent homology. Each pair tells the birth time of a
non-boundary cycle as well as its death time in the filtration. The
life time of a non-boundary cycle measures its persistence.

Pairing algorithm. The goal of the persistence algorithm is to
compute all the pairings between positive and negative simplices.
Of course, one needs to determine if a simplex is positive or neg-
ative. It turns out that this goal can be achieved by applying the
following simple procedure to each simplex in the order of filtra-
tion. We say a simplex σ is younger than a simplex σ ′ if σ appears
later than σ ′ in the filtration.

Let us again consider the example in Figure 2 and see how the
algorithm PAIR works. From K6 to K7, e7 is added. Its bound-
ary is c = (v1 + v3). The vertex v3 is the youngest positive ver-
tex in c but it is paired with e6 in K6. Thus, c is updated to
(v2 +v3 +v3 +v1) = (v2 +v1). The vertex v2 becomes the youngest



Algorithm 1 PAIR(σ )

1: c = ∂pσ
2: d is the youngest positive (p−1)-simplex in c.
3: while d is paired and c is not empty do
4: Let c′ be the cycle killed by the simplex paired with d

5: c = c′ +c \∗this addition may cancel simplices∗\
6: Update d to be the youngest positive (p−1)-simplex in c
7: end while
8: if c is not empty then
9: σ is a negative p-simplex and paired with d

10: else
11: σ is a positive p-simplex
12: end if

positive one but it is paired with e4. So, c is updated to (v0 + v1).
The vertex v1 becomes the youngest positive one but it is paired
with e5. So, c is updated to empty. Hence e7 is a positive edge. Now
we examine the addition of the triangle t10 from K9 to K10. The
boundary of t10 is c = (e4 + e5 + e8). The youngest positive edge
e8 is paired with t9. Thus, c is updated by adding the cycle killed by
t9 to (e4 +e5 +e6 +e7). Since e7 is the youngest positive edge that
is not yet paired, t10 finds e7 as its paired positive edge. Observe
that, we finally obtain a loop that is killed by adding the negative
triangle. For example, we obtain the loop (e4 + e5 + e6 + e7) by
adding t10. The following fact about such loop is used later to prove
the correctness of our algorithm.

Fact 1 The paired positive edge in a killed loop is the youngest
among all edges in the loop.

We are interested in the killed loops. The handle and tunnel loops
are actually chosen from them. In fact, we get a series of loops
in the procedure for finding the paired positive edge for a negative
triangle, as we can see from the while-loop in PAIR. These loops
are homologous, i.e., they belong to the same homology class. Al-
though they are topologically equivalent, we need to choose one
among them that is also good geometrically.

The persistence can also be explained nicely in terms of matrix op-
erations. The interested readers are referred to [Zomorodian and
Carlsson 2005; Cohen-Steiner et al. 2006].

5 Computing handle and tunnel loops

In this section we describe an algorithm for computing a set of gen-
erating handle and tunnel loops on arbitrary closed surfaces. We
first describe an algorithm that computes topologically correct han-
dle and tunnel loops. We then refine the algorithm by incorporating
geometry. As a result, we obtain a set of handle and tunnel loops
that are geometrically meaningful.

In order to apply the algorithm for persistence, we assume that the
input surface M is presented with a simplicial complex K which
tessellates the convex hull of M and M is a subcomplex of K. This
means that we have the explicit simplicial representations for both
inside space I and outside space O. Actually, we only need the 2-
skeleton of the complex K for the algorithm. As we have discussed
in the introduction, one may have such a simplicial complex K for
free in case M is a Delaunay mesh. If M is an iso-surface associ-
ated with some scalar volume data, we obtain the desired 2-skeleton
(triangles only) of K by intersecting the cubic faces with M and
producing a 2D triangulation of the polygons and squares trivially.
For all other surface mesh M, one may obtain K by using exist-
ing Delaunay meshing algorithms [Alliez et al. 2005; Cheng et al.
2007; Oudot et al. 2005]. In our experiments, we use DELPSC
algorithm/software of [Cheng et al. 2007].

5.1 Topological algorithm

Assume K is given. We only need to consider the 2-skeleton
(points, edges and triangles) of K since we are only interested in
obtaining 1-cycles/loops. We build the filtration of the 2-skeleton
of K in the following three steps.

Step 1: The simplices on the surface M are added into the filtration
in any arbitrary order. Since H1(M) is of rank 2g, the algorithm
PAIR generates 2g number of unpaired positive edges. Figure 3
shows these unpaired positive edges for the model Mother.

Step 2: The simplices up to dimension 2 in I are added into the
filtration. Since H1(I) is of rank g, half of 2g positive edges gen-
erated in Step 1 get paired with the negative triangles in I. Each
pair corresponds to a killed loop. Thus we obtain g loops, denoted
{hi}

g
i=1. Figure 3 shows these g loops as well as the paired negative

triangles for the model Mother. Theorem 2 says that these g loops
are a set of generating handle loops.

Step 3: The simplices up to dimension 2 in O are added into the fil-
tration. Since H1(K) is trivial, the remaining half of positive edges
generated in Step 1 get paired with the negative triangles in O. As
before we obtain another g loops, denoted {ti}

g
i=1. Figure 3 shows

these g loops as well as the paired negative triangles for the model
Mother. Theorem 2 says that these g loops are a set of generating
tunnel loops.

Observe that loops killed by negative triangles in I and O have all
their edges lying in M because all edges of M including the posi-
tive ones are added before any other edge in K and Fact 1 applies.
Observe also that one can skip adding simplices from I or O once
half of the unpaired edges are paired.

Theorem 2 The loops {hi}
g
i=1 and {ti}

g
i=1 are handle and tunnel

loops forming a basis for H1(O) and H1(I) respectively.

Proof 1 As we observed, by Fact 1, each hi and ti lie on the surface
M. By construction, his (resp. tis) form a basis of the kernel of the
map from H1(M) to H1(I) (resp. H1(O)) induced by inclusion. That
is, they respectively form bases of the spaces generated by handle
loops and by tunnel loops. The conclusion follows from theorem 1.

5.2 Bringing geometry

Although the handle and tunnel loops as computed in the previous
section are guaranteed to be topologically correct, they may not
be very good geometrically as seen in Figure 3. Our goal is to
compute handle and tunnel loops of small size. One way to achieve
this goal would be to tighten the computed loops. Some methods to
tighten loops within the same homotopy type by utilizing universal

cover is known, see [Yin et al. 2007; Éric Colin de Verdière and
Erickson 2006] for example. However, there is no known algorithm
to tighten the loops up to homology. We suspect that this problem
is very hard. Thus, instead of computing the universal cover or
employing an optimization step which would add an extra level of
complication to the algorithm, we exploit a flexibility built into the
algorithm for persistence. First, we choose a specific loop among
all the loops encountered during the search for a loop killed by a
negative triangle. Second, we control the order of the simplices in
I and O added into the filtration so that the negative triangles are
located at the places where the shape is of small size. For this, we
need the notion of geodesic size.

Geodesic Size. First, we assign each edge in K a geodesic size
as follows. Consider the case that K has all vertices on the surface
M as shown in Figure 4. This case occurs, for example, when K

is a Delaunay triangulation of a set of vertices on M. For any edge
e with endpoints a and b, we define the geodesic size g(e) as the



Figure 3: Handle and tunnel loops computed with the topological algorithm on Mother model (g = 4). From left to right: Input model, 2g
unpaired positive edges on M, handle loops are generated after g unpaired edges get paired with g negative triangles in I, tunnel loops are
generated after the rest of g unpaired edges get paired with g negative triangles in O.

minimal geodesic distance between a and b over the edges of the
surface M (using Dijkstra’s shortest path). For a general K where
the endpoints a and b may not be on the surface M (Figure 5), we
find the closest points on M for two endpoints, denoted a′ and b′

respectively, and define g(e) as the minimal geodesic distance be-
tween a′ and b′. Now we assign each triangle the maximal geodesic
size of its edges, namely g(t) = maxe∈tg(e) for a triangle t.

Figure 4: Six triangles (blue) in the Delaunay triangulation of
Mother with the geodesic curves (red) determining their geodesic
sizes.

Figure 5: Computation of g(t) for a triangle t in O of the scalar
volume data Atom.

We make two refinements to the topological algorithm to incorpo-
rate the geometry.

Refinement 1: In the pairing algorithm, we obtain a series of ho-
mologous loops while searching for the paired positive edge for a
negative triangle σ (the while-loop in PAIR). This is a series of
expanding loops since each loop is obtained by adding a boundary
loop into the previous one. Among those consider the ones that
lie completely on the surface M. We know that this set cannot be
empty as the loop killed by σ lies completely in M. Let ℓ1, ℓ2, ..., ℓk

be this set of loops sorted in the sequence they are found during

the search. This means that the youngest edge in ℓi appears later in
the filtration than the youngest edge in ℓi+1. In other words, ℓ1 is
the first loop obtained during expansion which has all edges on M.
We write ℓ(σ) = ℓ1 and refine Step 2 and 3 by outputting hi or ti
as ℓ(σ). The reason for such a choice over the one containing the
positive edge is that we want the loop to lie as close as possible to
the negative triangle. The location of the negative triangle indicates
small size of the shape by Refinement 2 whereas we cannot make
any such assumption about the positive edge. Figure 6 (top row)
shows how the loops in Figure 3 are tightened by Refinement 1.

Figure 6: Top row: Handle and tunnel loops computed after Re-
finement 1. Bottom row: Handle and tunnel loops computed after
Refinements 1 and 2.

Refinement 2: In this refinement we add the triangles in I or O in
the increasing order of their geodesic sizes into the filtration. The
intuition of this refinement is based on the following observation.
Let D ⊂ K form a 2-chain in I or O with boundary in M. Abusing
notations, we call D a cross section for M. A positive edge sur-
vived after Step 1 gets paired only when a cross section of M gets
filled. Adding the triangles in the order of increasing geodesic size
forces the cross sections with small size to get filled first, which
makes the negative triangles to be at places admitting small cross
sections. Figure 6 shows how the the loops move to smaller regions
due to Refinement 2. The algorithm HANTUN represents the entire
procedure with refinements.

We implemented our algorithm HANTUN in C++, and ran a series
of tests on both Delaunay meshes and scalar volume data. All ex-
periments were done on a Dell PC with 2.0GHz Intel Xeon CPU
and 2GB RAM. The number of detected handle and tunnel loops
in all models agrees with the genus of the model which we veri-



Algorithm 2 HANTUN( K )

Require: M is a subcomplex of K

Ensure: {hi} and {ti} are a set of generating handles and tunnels
of small size respectively.

1: Compute the geodesic size for edges and triangles in I and O

2: For each simplex σ on M, Pair(σ )
3: Let E be the set of the unpaired positive edges.
4: In the order of increasing geodesic size, Pair(σ ) for each sim-

plex σ ∈ I

5: if σ is negative and its paired positive edge is in E then
6: Output the loop ℓ(σ) as a handle loop hi.
7: end if

8: In the order of increasing geodesic size, Pair(σ ) for each sim-
plex σ ∈ O

9: if σ is negative and its paired positive edge is in E then
10: Output the loop ℓ(σ) as a tunnel loop ti.
11: end if

fied with Euler’s characteristic. The times are summarized in Ta-
ble 1. Observe that our method runs faster than the method in [Dey
et al. 2007] which also computes handle and tunnel loops but for
a smaller class of inputs. In most cases geodesic size computation
dominates the computation time. The times for surface meshes do
not scale as good as in the volume data.

Data Size Ptime Geod Loop DLS

Knotty cup 5.4k, 31.9k 6.9 3.2 0.8 fail

Mother 19.5k, 117k 30.3 13.9 4.1 46.5

Molecule 19.9k, 115k 35.8 5.5 0.9 29.8

Botijo 30k, 176k 77.1 20.6 2.3 75.0

Casting 31.9k, 169k 92.7 25.2 14.0 84.91

Buddha 109k, 614k 1377.1 168.7 16.2 543.27

Hip 173k, 996k 2400.0 648.1 265.5 fail

Children 199k, 1168k 12.5 1350.8 2267.3 fail

Gearbox 478k, 2582k 23759.9 2058.6 33769.1 fail

Colon 854k, 4966k 30572.2 12103.9 37093.4 fail

Atom 3.3k, 41.8k 0.5 0.3 0.2 fail

Aneurism 23k, 5210k 3.1 9.1 73.0 fail

Engine 1 157k, 2766k 3.2 520.0 207.1 fail

Engine 2 629k, 20040k 11.3 7812.6 3392.6 fail

Table 1: Times (seconds) broken into two parts, one for geodesic
size computations (Geod), and the other for loop computations
(Loop). (n,m) in Size column indicates n surface triangles in M

and m volume triangles in K \M. Ptime column shows the pre-
processing time for producing volume meshes from the surface. For
point cloud data Children, this is simply the time for a Delaunay
based surface reconstruction (COCONE software). DLS column
shows the time for the method in [Dey et al. 2007] denoted as DLS
algorithm.

6 Feature identification and simplification

In this section, we apply the handle and tunnel loops for computing
handle and tunnel features on 3D models. We also show how these
features can help in modifying the topology of the 3D models.

To identify the handle or tunnel features, we sweep a handle or tun-
nel loop on both sides over the surface. We run Dijkstra’s shortest
path algorithm with multiple sources, namely treating all vertices
on a handle or tunnel loop as sources. At any moment of the sweep,
the modified Dijkstra’s algorithm maintains a wave front of shortest
distance to the initial loop. The propagation continues until the ra-

Figure 7: From left to right: handle and tunnel loops computed
on Casting, tunnel features are identified, small tunnel features are
filled.

Figure 8: Three small tunnels in Buddha are filled.

tio between the length of the wave front and that of the initial loop
exceeds a user-defined threshold. We take the region swept by the
two wave fronts on each side as the feature represented by this loop.
Figures 1 and 7 show the handle and tunnel features respectively
computed with this method.

Once the handle and tunnel features are computed, one can perform
simple topology simplifications locally by either cutting a handle
feature or filling a tunnel one. This can be easily done with the help
of the volume representation of the shape. For example, in the case
of a Delaunay surface, all Delaunay tetrahedra tessellate the volume
either inside or outside the surface. To fill a tunnel feature, we
first detect all the outside tetrahedra that have four vertices on this
tunnel feature, then transfer them from outside volume to inside.
As a result, a tunnel is filled. Similar operation for handle features
eliminates a handle. For the case of iso-surface in a volume data,
topology simplification can be achieved in a similar way.

Figure 8 shows the handle and tunnel loops on a Buddha model
computed with our algorithm. Three small tunnels considered as
noises are filled up.

7 More results

Figure 9 shows only the tunnels computed on the scalar volume
data Engine of size 256×256×256. All 20 tunnels of this model
of genus 20 have been detected. The small tunnel in the second
closeup view is actually lying inside which, if not detected, is diffi-
cult to see with usual visualization tools.

Figure 10 (left) shows the handle and tunnel loops for another scalar



Figure 9: Closeup views of small tunnels in Engine.

volume data Aneurism. Notice that, although there are many tiny
isolated components on this iso-surface, our algorithm has no prob-
lem in capturing nice handle and tunnel loops. Figure 10 (right)
shows that our algorithm can compute handle and tunnels loops on
knotted models which is not possible with the algorithm of [Dey
et al. 2007].

Figure 10: Aneurism and Knotty Cup.

Figure 11: Gearbox: genus 78 surface meshed with (478K,2582K)
Delaunay triangles.

Figure 11 shows handle and tunnel loops computed by HANTUN in
a CAD model of genus 78. We remeshed the original surface with
DELPSC to produce about 478K surface triangles and 2.5 million

Figure 12: Colon: genus 160 surface meshed with (854K,4966K)
Delaunay triangles. Three closeup views show the small handle
and tunnel loops detected.

volume triangles on which HANTUN was run. Figure 12 shows
another large model of genus 160 with about 854K surface and 4.9
million volume triangles. The high genus of this surface is a result
of nearby pieces of the surface getting joined as an artifact of the
data acquisition.

Our algorithm HANTUN is stable against the granularity of the sur-
face mesh M and the volume mesh K. Figure 13 exemplifies this
point. Handle and tunnel loops shown in the highlighted boxes of
the Hip model remain mostly stable at different densities of the sur-
face mesh. Similar stability is observed for the Molecule under
different volume meshing.

8 Conclusions

We have designed a persistence based algorithm to compute well
defined handle and tunnel loops for a 3D model. The method de-
rives its simplicity and generality from the algorithm for persis-
tence. The algorithm runs fast and scales well with volume data sets
(12 minutes for volume data sets with 2.8 million triangles). With
Delaunay surface meshes, the algorithm takes more time as evident
from data. One shortcoming of the method is that it requires to con-
vert a surface mesh into a volume mesh which, in some cases, may
incur not so negligible pre-processing overhead.

We incorporate geometry by a geodesic measure. Although intu-
itively it is clear why such a measure gives good loops, it would be
nice to have a formal proof for this fact along the line of [Erickson
and Whittlesey 2005].

Our algorithm works on any valid 3D model bounded by a closed
surface. If the surface has boundaries, the algorithm as described
does not work. Since there is no space bounded by such a surface,
definitions of handle and tunnel loops become invalid. Also, one
cannot partition the simplices as being part of inside or outside to
run the persistence based algorithm. However, the algorithm can
be easily modified to handle such surfaces and even simplicial 2-
complexes as follows. Assume M, a 2-complex, is a subcomplex of
K. After running the pairing algorithm on M, simply add simplices
from K without distinguishing inside and outside. The result of this
minor modification is shown in Figure 14. Of course handle and
tunnel loops are not differentiated though they are detected even in
the presence of boundaries and non-manifolds.
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