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Computing Gradient Vector and Jacobian Matrix in
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Abstract—This paper describes a new algorithm with neuron-
by-neuron computation methods for the gradient vector and the
Jacobian matrix. The algorithm can handle networks with ar-
bitrarily connected neurons. The training speed is comparable
with the Levenberg–Marquardt algorithm, which is currently
considered by many as the fastest algorithm for neural network
training. More importantly, it is shown that the computation
of the Jacobian, which is required for second-order algorithms,
has a similar computation complexity as the computation of the
gradient for first-order learning methods. This new algorithm is
implemented in the newly developed software, Neural Network
Trainer, which has unique capabilities of handling arbitrarily con-
nected networks. These networks with connections across layers
can be more efficient than commonly used multilayer perceptron
networks.

Index Terms—Learning, neural network.

I. INTRODUCTION

R ECENTLY, we have observed an increased interest in
applications of neural networks in industrial electronics.

In the February 2007 “Special Section on Neural Network Ap-
plications in Power Electronics and Motor Drives,” 23 papers
were published in the IEEE TRANSACTIONS ON INDUSTRIAL

ELECTRONICS [1]. Neural networks are useful in many appli-
cations such as control of nonlinear systems [2], [3], harmonic
detection and compensation [4], [5], load forecasting [6], [7],
motor drive [8]–[12], prediction of nonlinear load harmonics
[13], maximum power tracking in photovoltaic systems [14],
fault detection [15], sensorless control [16]–[19], and diagnosis
[20]–[23]. However, most of the research did not exploit the full
power of neural networks. In most other cases, standard mul-
tilayer perceptron (MLP) networks were utilized [1]–[7], [9]–
[13], [15]–[18], [20]–[23], and often [3], [16], only the simplest
possible single-layer neural networks, known as ADALINE,
were used.

In some cases of industrial electronics applications, fuzzy
neural networks (FNNs) were used [8], [14], [20]. FNNs require
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signal-by-signal multiplications which are not a common fea-
ture of biological neurons. They also require an excessive
number of neurons in order to follow the large number of fuzzy
rules required by FNNs. Other implemented approaches are
radial basis function (RBF) networks and principal component
analysis (PCA) [23].

PCA uses Hebbian neural networks which have comparably
simple architectures as ADALINE networks which naturally
limit their ability to process nonlinear signals effectively.

On the other hand, RBF networks handle nonlinear problems
well, and are very easy to train, but RBF networks need a
hidden neuron for every training pattern. If training patterns
are grouped into clusters, then the number of hidden neurons
can be reduced to the number of clusters, but even in this case,
the number of neurons used in RBF networks turns out to be
very large.

Fully connected network (FCN) topologies are relatively
powerful, and usually, a fewer number of neurons have to be
used than in the case of MLP networks. It will be shown
in Section II that FCNs are even more powerful than MLP
networks and that they use a smaller number of neurons to fulfill
the same task.

One may notice in the literature that, for almost all cases,
very simple algorithms, such as least mean square or error back
propagation (EBP), are used to train neural networks. These
algorithms converge very slowly in comparison to second-order
methods, which converge significantly faster. One reason why
second-order algorithms are seldom used is their complexity
which requires computation of not only gradients but also
Jacobian or Hessian matrices.

Various methods of neural network training have already
been developed, ranging from the evolutionary computa-
tion search through gradient-based methods. The best known
method is EBP [24], but this method is characterized by very
poor convergence. Several improvements for EBP were de-
veloped such as the quickprop algorithm, resilient EBP, back
percolation, and delta-bar-delta, but much better results can be
obtained using second-order methods [25]–[27] such as Newton
or Levenberg–Marquardt (LM) [25]. In the latter one, not only
the gradient but also the Jacobian matrix must be found.

This paper presents a new neuron-by-neuron (NBN) method
of computing the Jacobian matrix [28]. It is shown that the
computation of the Jacobian matrix can be as simple as the
computation of the gradient in the EBP algorithm; however,
more memory is required for the Jacobian. In the case of a
network with the number of training patterns np and the number
of network outputs no, the Jacobian is np × no which is of
larger dimensions than the gradient and therefore requires more
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Fig. 1. Network architectures to solve the parity-3 problem with three-layer
MLP networks and with three-layer FCNs.

Fig. 2. Network architectures to solve the parity-9 problem with three-layer
MLP networks and with three-layer FCNs.

memory. In this sense, the NBN algorithm has the same limita-
tions as the well-known LM algorithm. For example, in the case
of 10 000 patterns and neural networks with 25 weights and
3 outputs, the Jacobian J will have 30 000 rows and 25 columns,
all together having 750 000 elements. However, the matrix
inversion must be done only for quasi-Hessian J × JT of
25 × 25 size.

The structuring of this paper is as follows. In the following
section, a discussion is presented on the advantages of net-
works with arbitrarily connected neurons (ACNs). The NBN
algorithm is presented in Section III. Section IV describes
the new software implementing the NBN algorithm which can
handle ACN networks. Section V presents various experimental
results.

II. ADVANTAGES OF NETWORKS WITH ACNS

Comparing FCNs with MLP networks, one may conclude
that the latter ones require about twice as many neurons to
perform a similar task. For example, Figs. 1 and 2 show the
minimum architectures required to solve parity-3 and parity-9
problems. It is relatively simple to design neural networks to
solve parity-n problems [29]. However, to find a solution by
training is much more difficult. For three-layer MLP networks
to solve parity-n problems, the required number of neurons
is [29]

NMLP = N + 1 (1)

Fig. 3. Desired nonlinear control surface that the neural networks use to
train to.

Fig. 4. Resulting control surface obtained with the MLP architecture with
seven neurons in one hidden layer. The total mse is 0.00234.

while for three-layer FCNs, the minimum number of neurons is

NFCN =
{

N−1
2 , for odd-number parity problems

N
2 , for even-number parity problems.

(2)

Another example of where an ACN network outperforms
a traditionally connected network is in a nonlinear control
system. In Fig. 3, a desired highly nonlinear control surface for
two variables is shown.

With three-layer eight-neuron MLP networks shown in
Fig. 4, it was not possible to reach the desired surface. However,
with the five-neuron FCN architecture shown in Fig. 5, it
was possible to find a satisfactory solution, with the control
surface obtained being very close to the required surface of
Fig. 5. One may notice that the FCN topology with five neurons
produces significantly smaller error than the eight-neuron MLP
topology with one hidden layer. The mean square error (mse) is
defined as

mse =
1

npno

np∑
i=1

no∑
i=1

e2
ij (3)
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Fig. 5. Resulting control surface obtained with the FCN architecture with four
hidden neurons. The total mse is 0.00014.

where

eij = outij − doutij (4)

with dout being the desired output, out being the actual output,
np being the number of patterns, and no being the number of
outputs.

Comparing three-layer networks, as shown in Figs. 1 and 2,
one may also conclude that FCNs are more transparent than
MLP networks. With connections across layers in ACN net-
works, there are fewer neurons (nonlinear elements) on the sig-
nal paths, and as a result, learning algorithms converge faster.
Unfortunately, most of the neural network learning software,
such as the popular MATLAB Neural Network Toolbox, is
developed for MLP networks and are not able to handle FCNs
or ACNs. It is also much easier to write computer software for
regular architectures, organized layer by layer, in comparison to
neural networks with ACN. Both FCN and MLP networks are,
of course, a subset of ACN networks.

III. CALCULATION OF GRADIENT AND JACOBIAN

The EBP algorithm requires only the computation of the
error gradient. Second-order algorithms, such as the LM or
Davidon–Fletcher–Powel [24], require the computation of the
Jacobian. EBP follows the concept of the steepest descent
optimization algorithm where the global error is reduced by
following the steepest descent path (moving in the opposite
direction to the gradient g.) The weight updating rule is

Δw = −αg (5)

where α is the experimentally selected “learning constant” and
g is the gradient vector. For the LM algorithm, the weight
updating rule is

Δw = −(JTJ + μI)−1JTe (6)

where I is the identity matrix, e is the error vector with elements
given by (4), J is the Jacobian matrix, and μ is a learning

Fig. 6. Example of an ACN network. The network has five neurons numbered
from 1 to 5 and eight nodes, three of which are input nodes from 1 to 3 and five
of which are neuron nodes from 4 to 8.

parameter [23], [26]. If the Jacobian J is known, then the
gradient g can be found as

g = 2JTe. (7)

Therefore, the updates on the weights Δw can be found in both
EBP and LM algorithms [(5) and (6)] if the error vector e and
the Jacobian matrix J are evaluated.

In the Jacobian matrix, each row corresponds to the pth input
pattern and the oth network output; therefore, the number of
rows of the Jacobian is equal to the product no × np, where np

is number of training patterns and no is the number of outputs.
The number of columns is equal to the number of weights nw’s
in the neural network. Every neuron has the number of elements
in this row, which is equal to the number of inputs plus one. For
the pth pattern, oth output, and nth neuron with K inputs, the
fragment of the Jacobian matrix has the form

· · · ∂epo

∂wn0

∂epo

∂wn1

∂epo

∂wn2

∂epo

∂wn3
· · · ∂epo

∂wnK
· · ·

(8)

where the weight with index 0 is the biasing weight and epo is
the error on the oth network output.

In this paper, a new NBN method for calculating the gra-
dients and the Jacobians for arbitrarily connected feedforward
neural networks is presented. The rest of the computations for
weight updates follow the LM algorithm. In order to explain
the computation algorithm, consider an ACN network with one
output, as shown in Fig. 6.

The row elements of the Jacobian matrix for a given pattern
are being computed in the following three steps:

1) forward computations;
2) backward computations;
3) calculation of Jacobian elements.

A. Forward Computation

Forward and backward calculations are done using NBN
calculations. In the forward calculation, the neurons connected
to the network inputs are first processed so that their outputs
can be used as inputs to the subsequent neurons. The follow-
ing neurons are then processed as their input values become
available. In other words, the selected computing sequence
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has to follow the concept of feedforward networks and the
signal propagation. If a signal reaches the inputs of several
neurons at the same time, then these neurons can be processed
in any sequence. For the network in Fig. 6, there are only
four possible ways in which neurons can be processed in the
forward direction: 12345, 21345, 12435, or 21435. When the
forward pass is concluded, the following two temporary vectors
are stored: the first vector o with the values of the signals on
the neuron outputs and the second vector s with the values of
the slopes of the neuron activation functions, which are signal
dependent.

B. Backward Computation

The sequence of the backward computation is opposite to
the forward computation sequence. The process starts with the
last neuron and continues toward the input. In the case of the
network of Fig. 6, the following are the possible sequences
(backward signal paths): 54321, 54312, 53421, or 53412. To
demonstrate the case, let us select the 54321 sequence. The
attenuation vector (a) represents signal attenuation from a
network output to the outputs of all other neurons. The size of
this vector is equal to the number of neurons.

The process starts with the values of one assigned to the
last element of the a vector and zero to the remaining output
neurons. During backward processing for each neuron, the
value of the delta of this neuron is multiplied by the slope
of the neuron activation function (the element of the s vector
calculated during forward computation) and then multiplied
by neuron input weights. The results are added to the other
elements of the a vector neurons which are not yet processed.
The second step in the example updates only the elements of the
a vector that are associated with neurons 3 and 4 because only
these neurons are directly connected to the inputs of neuron 5.
In the next step, neuron 4 is processed, and the elements of the
a vector associated with neurons 1 and 2 are updated. Next,
neuron 3 is processed, and again, the elements of the a vector
that correspond to neurons 1 and 2 are updated. There is no
reason to continue the process beyond this point because there
are no other neurons connected to the inputs of neurons 1 or 2.
Results of the backward processing elements of the a vector are
then obtained.

One may notice that backward computation is done only for
a limited number of neurons. For example, in the case of the
four topologies shown in Figs. 1 and 2, only one output neuron
is processed.

The size of the a vector is equal to the number of neurons,
while the number of Jacobian elements in one row is much
larger and is equal to the number of weights in the network.
In order to obtain all row elements of the Jacobian for the
p pattern and oth output, a very simple formula can be used
to obtain the element of the Jacobian matrix associated with the
input k of neuron n

∂epo

∂wnk
= d(n)po · s(n)p · node(k)po (9)

where d(n) is the element of the a vector and s(n) is the
slope calculated during forward computation, with both of them

Fig. 7. Input files with network topologies of Fig. 1 (for the parity-3 problem).

being associated with neuron n. node(k) is the value on the
kth input of this neuron.

C. Calculation of Jacobian Elements

The process is repeated for every pattern, and if a neural
network has several outputs, it is also repeated for every output.
The process of gradient computation in the ACN network is
exactly the same, but instead of storing values in the Jacobian
matrix, they are being summed into one element of the gradient
vector

g(n, k) =
P∑

p=1

O∑
o=1

∂epo

∂wnk
epo. (10)

If the Jacobian is already computed, then the gradient can also
be calculated using (5). The latter approach, with Jacobian
calculation, has similar computation complexity, but it requires
much more memory to store the Jacobian matrix.

IV. SOFTWARE IMPLEMENTATION

The NBN computation algorithm is implemented in the
newly developed software—Neural Network Trainer (NNT).
Several modifications of second-order algorithms have been
experimented with the use of the NBN computation scheme.
One difficulty faced has been to find a way to describe the
network topology for ACN, and this is solved by following
the element-by-element concept implemented in the SPICE
program. This way, the computation method is made fully
compatible with the input-file structure because the software
also processes NBN using a restricted sequence as specified in
the input file.

In order to train a neural network, the following two files have
to be prepared: one with the network topology and the other
with the training patterns. If it is desired to experiment with
several architectures, only the topology file has to be modified.
Fig. 7 shows the input for the first neural network shown in
Fig. 1 (parity-3 problem with three neurons). One may notice
that the neuron number is the same as the number of the node
connected to the neuron output. In this example, numbers 1, 2,
and 3 are reserved for three input nodes. The model line defines
the bipolar activation function with a gain of 0.3. The last line
shows the name of the data file for the parity-3 problem with
binary values in Fig. 8.

In the data file for all patterns, first, the input values are
listed, followed by the output values. Since the first neuron
listed in the input file has number 4 (see Fig. 7), the first three
values in each row of Fig. 8 must be the input values, and
the remaining value(s) is/are the output value(s). Moreover, the
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Fig. 8. Data file for the parity-3 problem.

Fig. 9. User interface of the NNT, where the NBN algorithm was
implemented.

software is able to automatically distinguish between inputs and
outputs within the data set (without any special characters) by
the specified architecture in the input file.

The software is developed in the MATLAB environment, but
not an element of the Neural Network Toolbox has been used.
The user interface is shown in Fig. 9. In order to train the neural
network, two input files (Figs. 7 and 8) have to be prepared first.
The algorithm and the training parameters can then be selected
from the user interface shown in Fig. 9. The software can be
downloaded from http://www.eng.auburn.edu/~wilambm/nnt/.

V. EXPERIMENTAL RESULTS

Several simulations were run to test the architectures and
algorithms. Figs. 10 and 11 show a comparison of the EBP
and NBN training methods for the parity-3 problem with the
MLP architecture shown in Fig. 1. In the experiment, EBP was
given preference treatment, allowing EBP to use 2000 times
more iterations and 1000 times larger final error (10−4 instead
of 10−7). In other words, EBP had an advantage of 2000 ×
1000 = 2 000 000 times. The NBN method converged to an
error of less than 10−7 for every time in less than 30 iterations.
EBP required about 6000 iterations for an accuracy of 10−4

(i.e., 1000 times worse). In our simulation studies, we have
found that EBP had difficulties to converge for any parity
problems higher than parity 3.

The results of more complex experiments are shown in
Tables I and II. Two types of neural networks, MLP and FCN

Fig. 10. MSE as a function of number of iterations for EBP training of the
FCN of Fig. 1 for a parity-3 problem; 20 curves correspond to 20 training
processes with randomly selected initial weights.

Fig. 11. MSE as a function of number of iterations for NBN training of the
FCN of Fig. 1 for a parity-3 problem; 20 curves correspond to 20 training
processes with randomly selected initial weights.

TABLE I
PARITY-3 SUCCESS RATE (SR) AND AVERAGE NUMBER OF

ITERATIONS (ANI) FOR THE NBN ALGORITHM

(see Figs. 1 and 2), were trained for parity-3 and parity-5
problems. For all cases, two types of architectures were used,
namely, MLP and FCN. For each time, the neural network was
trained 1000 times with randomly started initial weights. The
tables show that as more neurons are used, the success rate
increases, and the number of iterations required for convergence
decreases. This is true for all tested cases. It is possible to train
a network to solve the parity-5 case with only three neurons
in the hidden layer, but it will successfully train only about
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TABLE II
PARITY-5 SUCCESS RATE (SR) AND AVERAGE NUMBER OF

ITERATIONS (ANI) USING THE NBN ALGORITHM

5% of the time. However, if more neurons are added, this will
drastically increase. For example, with seven hidden neurons,
the convergence rate is 96% of the cases. The same is true with
FCN, but this type of network is more likely to converge even
with fewer neurons and converge in fewer iterations.

NBN converged for all parity problems tested with different
success rates starting from 100% for parity 3 to about 5% for
parity 11. No tests were attempted beyond parity 11.

VI. CONCLUSION

In this paper, a novel NBN algorithm for the computation
of the gradient vector and the Jacobian matrix was presented.
With the proposed NBN computation scheme, the Jacobian
can be calculated almost as easily as the gradient. This way,
second-order learning algorithms can easily be implemented. It
is also shown (Figs. 10 and 11) that second-order algorithms
require about 1000 times fewer iterations to find an acceptable
solution. In second-order algorithms, a square matrix with the
size that is equal to the number of weights has to be in-
verted at every iteration. This significantly slows second-order
algorithms for large networks. One of the main advantages
of the proposed NBN algorithm, in comparison to the LM
algorithm, is that it can handle ACN networks, which, as shown
in Section II, are more efficient than MLP networks. Also,
from experimental results, one may conclude that ACN and
FCN are easier to train than commonly used MLP networks.
This paper includes a short description of the newly developed
software tool, NNT, on which the proposed NBN algorithm is
implemented.
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