
3784 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 55, NO. 10, OCTOBER 2008

Computing Gradient Vector and Jacobian Matrix in
Arbitrarily Connected Neural Networks

Bogdan M. Wilamowski, Fellow, IEEE, Nicholas J. Cotton, Okyay Kaynak, Fellow, IEEE, and Günhan Dündar

Abstract—This paper describes a new algorithm with neuron-
by-neuron computation methods for the gradient vector and the
Jacobian matrix. The algorithm can handle networks with ar-
bitrarily connected neurons. The training speed is comparable
with the Levenberg–Marquardt algorithm, which is currently
considered by many as the fastest algorithm for neural network
training. More importantly, it is shown that the computation
of the Jacobian, which is required for second-order algorithms,
has a similar computation complexity as the computation of the
gradient for first-order learning methods. This new algorithm is
implemented in the newly developed software, Neural Network
Trainer, which has unique capabilities of handling arbitrarily con-
nected networks. These networks with connections across layers
can be more efficient than commonly used multilayer perceptron
networks.

Index Terms—Learning, neural network.

I. INTRODUCTION

R ECENTLY, we have observed an increased interest in
applications of neural networks in industrial electronics.

In the February 2007 “Special Section on Neural Network Ap-
plications in Power Electronics and Motor Drives,” 23 papers
were published in the IEEE TRANSACTIONS ON INDUSTRIAL

ELECTRONICS [1]. Neural networks are useful in many appli-
cations such as control of nonlinear systems [2], [3], harmonic
detection and compensation [4], [5], load forecasting [6], [7],
motor drive [8]–[12], prediction of nonlinear load harmonics
[13], maximum power tracking in photovoltaic systems [14],
fault detection [15], sensorless control [16]–[19], and diagnosis
[20]–[23]. However, most of the research did not exploit the full
power of neural networks. In most other cases, standard mul-
tilayer perceptron (MLP) networks were utilized [1]–[7], [9]–
[13], [15]–[18], [20]–[23], and often [3], [16], only the simplest
possible single-layer neural networks, known as ADALINE,
were used.

In some cases of industrial electronics applications, fuzzy
neural networks (FNNs) were used [8], [14], [20]. FNNs require

Manuscript received July 18, 2008; revised July 18, 2008. First published
August 19, 2008; current version published October 1, 2008. This work was
supported in part by the National Science Foundation international grant,
U.S.–Turkey Cooperative Research: Silicon implementation of computational
intelligence for mechatronics, under Award NSF OISE 0352771.

B. M. Wilamowski and N. J. Cotton are with the Department of Electrical
and Computer Engineering, Auburn University, Auburn, AL 36849-5201 USA
(e-mail: wilambm@auburn.edu).

O. Kaynak and G. Dündar are with the Department of Electrical and
Electronics Engineering, Bogazici University, Istanbul 34342, Turkey.

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIE.2008.2003319

signal-by-signal multiplications which are not a common fea-
ture of biological neurons. They also require an excessive
number of neurons in order to follow the large number of fuzzy
rules required by FNNs. Other implemented approaches are
radial basis function (RBF) networks and principal component
analysis (PCA) [23].

PCA uses Hebbian neural networks which have comparably
simple architectures as ADALINE networks which naturally
limit their ability to process nonlinear signals effectively.

On the other hand, RBF networks handle nonlinear problems
well, and are very easy to train, but RBF networks need a
hidden neuron for every training pattern. If training patterns
are grouped into clusters, then the number of hidden neurons
can be reduced to the number of clusters, but even in this case,
the number of neurons used in RBF networks turns out to be
very large.

Fully connected network (FCN) topologies are relatively
powerful, and usually, a fewer number of neurons have to be
used than in the case of MLP networks. It will be shown
in Section II that FCNs are even more powerful than MLP
networks and that they use a smaller number of neurons to fulfill
the same task.

One may notice in the literature that, for almost all cases,
very simple algorithms, such as least mean square or error back
propagation (EBP), are used to train neural networks. These
algorithms converge very slowly in comparison to second-order
methods, which converge significantly faster. One reason why
second-order algorithms are seldom used is their complexity
which requires computation of not only gradients but also
Jacobian or Hessian matrices.

Various methods of neural network training have already
been developed, ranging from the evolutionary computa-
tion search through gradient-based methods. The best known
method is EBP [24], but this method is characterized by very
poor convergence. Several improvements for EBP were de-
veloped such as the quickprop algorithm, resilient EBP, back
percolation, and delta-bar-delta, but much better results can be
obtained using second-order methods [25]–[27] such as Newton
or Levenberg–Marquardt (LM) [25]. In the latter one, not only
the gradient but also the Jacobian matrix must be found.

This paper presents a new neuron-by-neuron (NBN) method
of computing the Jacobian matrix [28]. It is shown that the
computation of the Jacobian matrix can be as simple as the
computation of the gradient in the EBP algorithm; however,
more memory is required for the Jacobian. In the case of a
network with the number of training patterns np and the number
of network outputs no, the Jacobian is np × no which is of
larger dimensions than the gradient and therefore requires more

0278-0046/$25.00 © 2008 IEEE

Authorized licensed use limited to: Auburn University. Downloaded on March 9, 2009 at 09:31 from IEEE Xplore. Restrictions apply.

WILAMOWSKI et al.: COMPUTING GRADIENT VECTOR AND JACOBIAN MATRIX IN ACNs 3785

Fig. 1. Network architectures to solve the parity-3 problem with three-layer
MLP networks and with three-layer FCNs.

Fig. 2. Network architectures to solve the parity-9 problem with three-layer
MLP networks and with three-layer FCNs.

memory. In this sense, the NBN algorithm has the same limita-
tions as the well-known LM algorithm. For example, in the case
of 10 000 patterns and neural networks with 25 weights and
3 outputs, the Jacobian J will have 30 000 rows and 25 columns,
all together having 750 000 elements. However, the matrix
inversion must be done only for quasi-Hessian J × JT of
25 × 25 size.

The structuring of this paper is as follows. In the following
section, a discussion is presented on the advantages of net-
works with arbitrarily connected neurons (ACNs). The NBN
algorithm is presented in Section III. Section IV describes
the new software implementing the NBN algorithm which can
handle ACN networks. Section V presents various experimental
results.

II. ADVANTAGES OF NETWORKS WITH ACNS

Comparing FCNs with MLP networks, one may conclude
that the latter ones require about twice as many neurons to
perform a similar task. For example, Figs. 1 and 2 show the
minimum architectures required to solve parity-3 and parity-9
problems. It is relatively simple to design neural networks to
solve parity-n problems [29]. However, to find a solution by
training is much more difficult. For three-layer MLP networks
to solve parity-n problems, the required number of neurons
is [29]

NMLP = N + 1 (1)

Fig. 3. Desired nonlinear control surface that the neural networks use to
train to.

Fig. 4. Resulting control surface obtained with the MLP architecture with
seven neurons in one hidden layer. The total mse is 0.00234.

while for three-layer FCNs, the minimum number of neurons is

NFCN =
{

N−1
2 , for odd-number parity problems

N
2 , for even-number parity problems.

(2)

Another example of where an ACN network outperforms
a traditionally connected network is in a nonlinear control
system. In Fig. 3, a desired highly nonlinear control surface for
two variables is shown.

With three-layer eight-neuron MLP networks shown in
Fig. 4, it was not possible to reach the desired surface. However,
with the five-neuron FCN architecture shown in Fig. 5, it
was possible to find a satisfactory solution, with the control
surface obtained being very close to the required surface of
Fig. 5. One may notice that the FCN topology with five neurons
produces significantly smaller error than the eight-neuron MLP
topology with one hidden layer. The mean square error (mse) is
defined as

mse =
1

npno

np∑
i=1

no∑
i=1

e2
ij (3)

Authorized licensed use limited to: Auburn University. Downloaded on March 9, 2009 at 09:31 from IEEE Xplore. Restrictions apply.

3786 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 55, NO. 10, OCTOBER 2008

Fig. 5. Resulting control surface obtained with the FCN architecture with four
hidden neurons. The total mse is 0.00014.

where

eij = outij − doutij (4)

with dout being the desired output, out being the actual output,
np being the number of patterns, and no being the number of
outputs.

Comparing three-layer networks, as shown in Figs. 1 and 2,
one may also conclude that FCNs are more transparent than
MLP networks. With connections across layers in ACN net-
works, there are fewer neurons (nonlinear elements) on the sig-
nal paths, and as a result, learning algorithms converge faster.
Unfortunately, most of the neural network learning software,
such as the popular MATLAB Neural Network Toolbox, is
developed for MLP networks and are not able to handle FCNs
or ACNs. It is also much easier to write computer software for
regular architectures, organized layer by layer, in comparison to
neural networks with ACN. Both FCN and MLP networks are,
of course, a subset of ACN networks.

III. CALCULATION OF GRADIENT AND JACOBIAN

The EBP algorithm requires only the computation of the
error gradient. Second-order algorithms, such as the LM or
Davidon–Fletcher–Powel [24], require the computation of the
Jacobian. EBP follows the concept of the steepest descent
optimization algorithm where the global error is reduced by
following the steepest descent path (moving in the opposite
direction to the gradient g.) The weight updating rule is

Δw = −αg (5)

where α is the experimentally selected “learning constant” and
g is the gradient vector. For the LM algorithm, the weight
updating rule is

Δw = −(JTJ + μI)−1JTe (6)

where I is the identity matrix, e is the error vector with elements
given by (4), J is the Jacobian matrix, and μ is a learning

Fig. 6. Example of an ACN network. The network has five neurons numbered
from 1 to 5 and eight nodes, three of which are input nodes from 1 to 3 and five
of which are neuron nodes from 4 to 8.

parameter [23], [26]. If the Jacobian J is known, then the
gradient g can be found as

g = 2JTe. (7)

Therefore, the updates on the weights Δw can be found in both
EBP and LM algorithms [(5) and (6)] if the error vector e and
the Jacobian matrix J are evaluated.

In the Jacobian matrix, each row corresponds to the pth input
pattern and the oth network output; therefore, the number of
rows of the Jacobian is equal to the product no × np, where np

is number of training patterns and no is the number of outputs.
The number of columns is equal to the number of weights nw’s
in the neural network. Every neuron has the number of elements
in this row, which is equal to the number of inputs plus one. For
the pth pattern, oth output, and nth neuron with K inputs, the
fragment of the Jacobian matrix has the form

· · · ∂epo

∂wn0

∂epo

∂wn1

∂epo

∂wn2

∂epo

∂wn3
· · · ∂epo

∂wnK
· · ·

(8)

where the weight with index 0 is the biasing weight and epo is
the error on the oth network output.

In this paper, a new NBN method for calculating the gra-
dients and the Jacobians for arbitrarily connected feedforward
neural networks is presented. The rest of the computations for
weight updates follow the LM algorithm. In order to explain
the computation algorithm, consider an ACN network with one
output, as shown in Fig. 6.

The row elements of the Jacobian matrix for a given pattern
are being computed in the following three steps:

1) forward computations;
2) backward computations;
3) calculation of Jacobian elements.

A. Forward Computation

Forward and backward calculations are done using NBN
calculations. In the forward calculation, the neurons connected
to the network inputs are first processed so that their outputs
can be used as inputs to the subsequent neurons. The follow-
ing neurons are then processed as their input values become
available. In other words, the selected computing sequence

Authorized licensed use limited to: Auburn University. Downloaded on March 9, 2009 at 09:31 from IEEE Xplore. Restrictions apply.

WILAMOWSKI et al.: COMPUTING GRADIENT VECTOR AND JACOBIAN MATRIX IN ACNs 3787

has to follow the concept of feedforward networks and the
signal propagation. If a signal reaches the inputs of several
neurons at the same time, then these neurons can be processed
in any sequence. For the network in Fig. 6, there are only
four possible ways in which neurons can be processed in the
forward direction: 12345, 21345, 12435, or 21435. When the
forward pass is concluded, the following two temporary vectors
are stored: the first vector o with the values of the signals on
the neuron outputs and the second vector s with the values of
the slopes of the neuron activation functions, which are signal
dependent.

B. Backward Computation

The sequence of the backward computation is opposite to
the forward computation sequence. The process starts with the
last neuron and continues toward the input. In the case of the
network of Fig. 6, the following are the possible sequences
(backward signal paths): 54321, 54312, 53421, or 53412. To
demonstrate the case, let us select the 54321 sequence. The
attenuation vector (a) represents signal attenuation from a
network output to the outputs of all other neurons. The size of
this vector is equal to the number of neurons.

The process starts with the values of one assigned to the
last element of the a vector and zero to the remaining output
neurons. During backward processing for each neuron, the
value of the delta of this neuron is multiplied by the slope
of the neuron activation function (the element of the s vector
calculated during forward computation) and then multiplied
by neuron input weights. The results are added to the other
elements of the a vector neurons which are not yet processed.
The second step in the example updates only the elements of the
a vector that are associated with neurons 3 and 4 because only
these neurons are directly connected to the inputs of neuron 5.
In the next step, neuron 4 is processed, and the elements of the
a vector associated with neurons 1 and 2 are updated. Next,
neuron 3 is processed, and again, the elements of the a vector
that correspond to neurons 1 and 2 are updated. There is no
reason to continue the process beyond this point because there
are no other neurons connected to the inputs of neurons 1 or 2.
Results of the backward processing elements of the a vector are
then obtained.

One may notice that backward computation is done only for
a limited number of neurons. For example, in the case of the
four topologies shown in Figs. 1 and 2, only one output neuron
is processed.

The size of the a vector is equal to the number of neurons,
while the number of Jacobian elements in one row is much
larger and is equal to the number of weights in the network.
In order to obtain all row elements of the Jacobian for the
p pattern and oth output, a very simple formula can be used
to obtain the element of the Jacobian matrix associated with the
input k of neuron n

∂epo

∂wnk
= d(n)po · s(n)p · node(k)po (9)

where d(n) is the element of the a vector and s(n) is the
slope calculated during forward computation, with both of them

Fig. 7. Input files with network topologies of Fig. 1 (for the parity-3 problem).

being associated with neuron n. node(k) is the value on the
kth input of this neuron.

C. Calculation of Jacobian Elements

The process is repeated for every pattern, and if a neural
network has several outputs, it is also repeated for every output.
The process of gradient computation in the ACN network is
exactly the same, but instead of storing values in the Jacobian
matrix, they are being summed into one element of the gradient
vector

g(n, k) =
P∑

p=1

O∑
o=1

∂epo

∂wnk
epo. (10)

If the Jacobian is already computed, then the gradient can also
be calculated using (5). The latter approach, with Jacobian
calculation, has similar computation complexity, but it requires
much more memory to store the Jacobian matrix.

IV. SOFTWARE IMPLEMENTATION

The NBN computation algorithm is implemented in the
newly developed software—Neural Network Trainer (NNT).
Several modifications of second-order algorithms have been
experimented with the use of the NBN computation scheme.
One difficulty faced has been to find a way to describe the
network topology for ACN, and this is solved by following
the element-by-element concept implemented in the SPICE
program. This way, the computation method is made fully
compatible with the input-file structure because the software
also processes NBN using a restricted sequence as specified in
the input file.

In order to train a neural network, the following two files have
to be prepared: one with the network topology and the other
with the training patterns. If it is desired to experiment with
several architectures, only the topology file has to be modified.
Fig. 7 shows the input for the first neural network shown in
Fig. 1 (parity-3 problem with three neurons). One may notice
that the neuron number is the same as the number of the node
connected to the neuron output. In this example, numbers 1, 2,
and 3 are reserved for three input nodes. The model line defines
the bipolar activation function with a gain of 0.3. The last line
shows the name of the data file for the parity-3 problem with
binary values in Fig. 8.

In the data file for all patterns, first, the input values are
listed, followed by the output values. Since the first neuron
listed in the input file has number 4 (see Fig. 7), the first three
values in each row of Fig. 8 must be the input values, and
the remaining value(s) is/are the output value(s). Moreover, the

Authorized licensed use limited to: Auburn University. Downloaded on March 9, 2009 at 09:31 from IEEE Xplore. Restrictions apply.

3788 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 55, NO. 10, OCTOBER 2008

Fig. 8. Data file for the parity-3 problem.

Fig. 9. User interface of the NNT, where the NBN algorithm was
implemented.

software is able to automatically distinguish between inputs and
outputs within the data set (without any special characters) by
the specified architecture in the input file.

The software is developed in the MATLAB environment, but
not an element of the Neural Network Toolbox has been used.
The user interface is shown in Fig. 9. In order to train the neural
network, two input files (Figs. 7 and 8) have to be prepared first.
The algorithm and the training parameters can then be selected
from the user interface shown in Fig. 9. The software can be
downloaded from http://www.eng.auburn.edu/~wilambm/nnt/.

V. EXPERIMENTAL RESULTS

Several simulations were run to test the architectures and
algorithms. Figs. 10 and 11 show a comparison of the EBP
and NBN training methods for the parity-3 problem with the
MLP architecture shown in Fig. 1. In the experiment, EBP was
given preference treatment, allowing EBP to use 2000 times
more iterations and 1000 times larger final error (10−4 instead
of 10−7). In other words, EBP had an advantage of 2000 ×
1000 = 2 000 000 times. The NBN method converged to an
error of less than 10−7 for every time in less than 30 iterations.
EBP required about 6000 iterations for an accuracy of 10−4

(i.e., 1000 times worse). In our simulation studies, we have
found that EBP had difficulties to converge for any parity
problems higher than parity 3.

The results of more complex experiments are shown in
Tables I and II. Two types of neural networks, MLP and FCN

Fig. 10. MSE as a function of number of iterations for EBP training of the
FCN of Fig. 1 for a parity-3 problem; 20 curves correspond to 20 training
processes with randomly selected initial weights.

Fig. 11. MSE as a function of number of iterations for NBN training of the
FCN of Fig. 1 for a parity-3 problem; 20 curves correspond to 20 training
processes with randomly selected initial weights.

TABLE I
PARITY-3 SUCCESS RATE (SR) AND AVERAGE NUMBER OF

ITERATIONS (ANI) FOR THE NBN ALGORITHM

(see Figs. 1 and 2), were trained for parity-3 and parity-5
problems. For all cases, two types of architectures were used,
namely, MLP and FCN. For each time, the neural network was
trained 1000 times with randomly started initial weights. The
tables show that as more neurons are used, the success rate
increases, and the number of iterations required for convergence
decreases. This is true for all tested cases. It is possible to train
a network to solve the parity-5 case with only three neurons
in the hidden layer, but it will successfully train only about

Authorized licensed use limited to: Auburn University. Downloaded on March 9, 2009 at 09:31 from IEEE Xplore. Restrictions apply.

WILAMOWSKI et al.: COMPUTING GRADIENT VECTOR AND JACOBIAN MATRIX IN ACNs 3789

TABLE II
PARITY-5 SUCCESS RATE (SR) AND AVERAGE NUMBER OF

ITERATIONS (ANI) USING THE NBN ALGORITHM

5% of the time. However, if more neurons are added, this will
drastically increase. For example, with seven hidden neurons,
the convergence rate is 96% of the cases. The same is true with
FCN, but this type of network is more likely to converge even
with fewer neurons and converge in fewer iterations.

NBN converged for all parity problems tested with different
success rates starting from 100% for parity 3 to about 5% for
parity 11. No tests were attempted beyond parity 11.

VI. CONCLUSION

In this paper, a novel NBN algorithm for the computation
of the gradient vector and the Jacobian matrix was presented.
With the proposed NBN computation scheme, the Jacobian
can be calculated almost as easily as the gradient. This way,
second-order learning algorithms can easily be implemented. It
is also shown (Figs. 10 and 11) that second-order algorithms
require about 1000 times fewer iterations to find an acceptable
solution. In second-order algorithms, a square matrix with the
size that is equal to the number of weights has to be in-
verted at every iteration. This significantly slows second-order
algorithms for large networks. One of the main advantages
of the proposed NBN algorithm, in comparison to the LM
algorithm, is that it can handle ACN networks, which, as shown
in Section II, are more efficient than MLP networks. Also,
from experimental results, one may conclude that ACN and
FCN are easier to train than commonly used MLP networks.
This paper includes a short description of the newly developed
software tool, NNT, on which the proposed NBN algorithm is
implemented.

REFERENCES

[1] B. K. Bose, “Neural network applications in power electronics and motor
drives—An introduction and perspective,” IEEE Trans. Ind. Electron.,
vol. 54, no. 1, pp. 14–33, Feb. 2007.

[2] C. Kwan and F. L. Lewis, “Robust backstepping control of nonlinear
systems using neural networks,” IEEE Trans. Syst., Man, Cybern. A, Syst.,
Humans, vol. 30, no. 6, pp. 753–766, Nov. 2000.

[3] H. Miyamoto, K. Kawato, T. Setoyama, and R. Suzuki, “Feedback-error-
learning neural network for trajectory control of a robotic manipulator,”
Neural Netw., vol. 1, no. 3, pp. 251–265, 1988.

[4] H. C. Lin, “Intelligent neural network-based fast power system har-
monic detection,” IEEE Trans. Ind. Electron., vol. 54, no. 1, pp. 43–52,
Feb. 2007.

[5] B. Singh, V. Verma, and J. Solanki, “Neural network-based selective
compensation of current quality problems in distribution system,” IEEE
Trans. Ind. Electron., vol. 54, no. 1, pp. 53–60, Feb. 2007.

[6] M.-S. Kang, C.-S. Chen, Y.-L. Ke, C.-H. Lin, and C.-W. Huang, “Load
profile synthesis and wind-power-generation prediction for an isolated
power system,” IEEE Trans. Ind. Appl., vol. 43, no. 6, pp. 1459–1464,
Nov. 2007.

[7] T. Saksornchai, W.-J. Lee, K. Methaprayoon, J. R. Liao, and R. J. Ross,
“Improve the unit commitment scheduling by using the neural-network-
based short-term load forecasting,” IEEE Trans. Ind. Appl., vol. 41, no. 1,
pp. 169–179, Jan. 2005.

[8] R.-J. Wai and C.-C. Chu, “Robust petri fuzzy-neural-network control for
linear induction motor drive,” IEEE Trans. Ind. Electron., vol. 54, no. 1,
pp. 177–189, Feb. 2007.

[9] T. Pajchrowski and K. Zawirski, “Application of artificial neural network
to robust speed control of servodrive,” IEEE Trans. Ind. Electron., vol. 54,
no. 1, pp. 200–207, Feb. 2007.

[10] J. O. P. Pinto, B. K. Bose, and L. E. B. da Silva, “A stator-flux-oriented
vector-controlled induction motor drive with space-vector PWM and flux-
vector synthesis by neural networks,” IEEE Trans. Ind. Appl., vol. 37,
no. 5, pp. 1308–1318, Sep. 2001.

[11] X.-L. Wei, J. Wang, and Z.-X. Yang, “Robust smooth-trajectory control
of nonlinear servo systems based on neural networks,” IEEE Trans. Ind.
Electron., vol. 54, no. 1, pp. 208–217, Feb. 2007.

[12] A. Rubaai, M. J. Castro-Sitiriche, M. Garuba, III, and L. Burge, “Imple-
mentation of artificial neural network-based tracking controller for high-
performance stepper motor drives,” IEEE Trans. Ind. Electron., vol. 54,
no. 1, pp. 218–227, Feb. 2007.

[13] J. Mazumdar, R. G. Harley, F. C. Lambert, and G. K. Venayagamoorthy,
“Neural network based method for predicting nonlinear load harmonics,”
IEEE Trans. Power Electron., vol. 22, no. 3, pp. 1036–1045, May 2007.

[14] B. Wilamowski and X. Li, “Fuzzy system based maximum power tracking
for PV system,” in Proc. 28th Annu. Conf. IEEE Ind. Electron. Soc.,
Seville, Spain, Nov. 5–8, 2002, pp. 1990–1994.

[15] R. M. Tallam, T. G. Habetler, and R. G. Harley, “Stator winding turn-fault
detection for closed-loop induction motor drives,” IEEE Trans. Ind. Appl.,
vol. 39, no. 3, pp. 720–724, May 2003.

[16] M. Cirrincione, M. Pucci, G. Cirrincione, and G.-A. Capolino, “A new
TLS-based MRAS speed estimation with adaptive integration for high-
performance induction machine drives,” IEEE Trans. Ind. Appl., vol. 40,
no. 4, pp. 1116–1137, Aug. 2004.

[17] H. S. Ooi and T. C. Green, “Simulation of neural networks to sensorless
control of switched reluctance motor,” in Proc. IEEE Power Electron.
Variable Speed Drives Conf., Sep. 1998, pp. 281–286.

[18] C. A. Hudson, N. S. Lobo, and R. Krishnan, “Sensorless control
of single switch-based switched reluctance motor drive using neural
network,” IEEE Trans. Ind. Electron., vol. 55, no. 1, pp. 321–329,
Jan. 2008.

[19] D. S. Reay, T. C. Green, and B. W. Williams, “Application of associative
memory neural networks to the control of a switched reluctance motor,”
in Proc. IEEE IECON, Nov. 1993, vol. 1, pp. 200–206.

[20] M. S. Ballal, Z. J. Khan, H. M. Suryawanshi, and R. L. Sonolikar, “Adap-
tive neural fuzzy inference system for the detection of inter-turn insulation
and bearing wear faults in induction motor,” IEEE Trans. Ind. Electron.,
vol. 54, no. 1, pp. 250–258, Feb. 2007.

[21] B. M. Wilamowski and O. Kaynak, “Oil well diagnosis by sensing ter-
minal characteristics of the induction motor,” IEEE Trans. Ind. Electron.,
vol. 47, no. 5, pp. 1100–1107, Oct. 2000.

[22] S. Khomfoi and L. M. Tolbert, “Fault diagnostic system for a multilevel
inverter using a neural network,” IEEE Trans. Power Electron., vol. 22,
no. 3, pp. 1062–1069, May 2007.

[23] J. F. Martins, V. Ferno Pires, and A. J. Pires, “Unsupervised neural-
network-based algorithm for an on-line diagnosis of three-phase induction
motor stator fault,” IEEE Trans. Ind. Electron., vol. 54, no. 1, pp. 259–264,
Feb. 2007.

[24] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning represen-
tations by back-propagating errors,” Nature, vol. 323, no. 6088, pp. 533–
536, Oct. 1986.

[25] M. T. Hagan and M. Menhaj, “Training feedforward networks with the
Marquardt algorithm,” IEEE Trans. Neural Netw., vol. 5, no. 6, pp. 989–
993, Nov. 1994.

[26] S. Abid, A. Mouelhi, and F. Fnaiech, “Accelerating the
multilayer perceptron learning with the Davidon Fletcher Powell
algorithm,” in Proc. IJCNN, Vancouver, BC, Canada, Jul. 16–21, 2006,
pp. 3389–3394.

[27] B. M. Wilamowski, “Neural network architectures and learning,” in Proc.
ICIT, Maribor, Slovenia, Dec. 10–12, 2003, pp. TU1–TU12.

[28] B. Wilamowski, N. Cotton, O. Kaynak, and G. Dundar, “Method of
computing gradient vector and Jacobean matrix in arbitrarily connected
neural networks,” in Proc. IEEE ISIE, Vigo, Spain, Jun. 4–7, 2007,
pp. 3298–3303.

[29] B. M. Wilamowski and D. Hunter, “Solving parity-n problems with feed-
forward neural network,” in Proc. IJCNN, Portland, OR, Jul. 20–23, 2003,
pp. 2546–2551.

Authorized licensed use limited to: Auburn University. Downloaded on March 9, 2009 at 09:31 from IEEE Xplore. Restrictions apply.

3790 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 55, NO. 10, OCTOBER 2008

Bogdan M. Wilamowski (M’82–SM’83–F’00) re-
ceived the M.S. degree in computer engineering, the
Ph.D. degree in neural computing, and the Dr. Habil.
degree in integrated circuit design in 1966, 1970, and
1977, respectively.

He received the title of Full Professor from the
President of Poland in 1987. He was the Direc-
tor of the Institute of Electronics (1979–1981) and
the Chair of the Solid State Electronics Depart-
ment (1987–1989), Technical University of Gdansk,
Gdansk, Poland. He was/has been a Professor with

the Gdansk University of Technology, Gdansk (1987–1989), the Univer-
sity of Wyoming, Laramie (1989–2000), the University of Idaho, Moscow
(2000–2003), and Auburn University, Auburn, AL (2003–present), where he
is currently the Director of the Alabama Micro/Nano Science and Technology
Center and a Professor with the Department of Electrical and Computer
Engineering. He was also with the Research Institute of Electronic Communi-
cation, Tohoku University, Sendai, Japan (1968–1970), and the Semiconductor
Research Institute, Sendai (1975–1976), Auburn University (1981–1982 and
1995–1996), and the University of Arizona, Tucson (1982–1984). He is the
author of four textbooks and about 300 refereed publications and is the holder
of 28 patents. He was the Major Professor for over 130 graduate students.
His main areas of interest include computational intelligence and soft comput-
ing, computer-aided design development, solid-state electronics, mixed- and
analog-signal processing, and network programming.

Dr. Wilamowski was the President of the IEEE Industrial Electronics Society
(2004–2005). He was an Associate Editor for the IEEE TRANSACTIONS ON

NEURAL NETWORKS, the IEEE TRANSACTIONS ON EDUCATION, the IEEE
TRANSACTIONS ON INDUSTRIAL ELECTRONICS, the Journal of Intelligent
and Fuzzy Systems, the Journal of Computing, the International Journal of
Circuit Systems, and the IES Newsletter. Currently, he is the Editor-in-Chief
of the IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS.

Nicholas J. Cotton received the M.S. degree in elec-
trical engineering from Auburn University, Auburn,
AL, where he is currently working toward the Ph.D.
degree in electrical engineering.

He teaches undergraduate courses and is a Re-
search Assistant with the Department of Electri-
cal and Computer Engineering, Auburn University.
He has also worked as an Electrical Engineer with
Dynetics Inc., Huntsville, AL. His main interests
include computational intelligence, neural networks,
embedded systems, and cooperative robotics.

Dr. Cotton is a Reviewer for the IEEE TRANSACTIONS ON INDUSTRIAL

ELECTRONICS.

Okyay Kaynak (M’80–SM’90–F’03) received the
B.Sc. (with first-class honors) and Ph.D. degrees in
electronic and electrical engineering from the Uni-
versity of Birmingham, Birmingham, U.K., in 1969
and 1972, respectively.

From 1972 to 1979, he held various positions
within industry. Since 1979, he has been with the
Department of Electrical and Electronics Engineer-
ing, Bogazici University, Istanbul, Turkey, where he
is currently a Full Professor, holding the UNESCO
Chair on Mechatronics. He has held long-term (for

nearly or more than a year) Visiting Professor/Scholar positions at various
institutions in Japan, Germany, the U.S., and Singapore. His current research
interests include intelligent control and mechatronics. He has authored three
books and edited five and authored/coauthored more than 200 papers that have
appeared in various journals and conference proceedings.

Dr. Kaynak was the President of the IEEE Industrial Electronics Society
during 2002–2003. He is active in international organizations and has served
on many committees of the IEEE.

Günhan Dündar was born in Istanbul, Turkey,
in 1969. He received the B.S. and M.S. degrees
in electrical engineering from Bogazici University,
Istanbul, Turkey, in 1989 and 1991, respectively,
and the Ph.D. degree in electrical engineering from
Rensselaer Polytechnic Institute, Troy, NY, in 1993.

In 1994, he lectured at Bogazici University, teach-
ing courses on electronics, electronics laboratory,
IC design, electronic design automation, and semi-
conductor devices. From August 1994 to November
1995, he was with the Turkish Navy and taught

courses on electronics, electronics laboratory, and signals and systems at the
Turkish Naval Academy, Istanbul. Since 1995, he has been with Bogazici Uni-
versity, where he is currently a Professor and the Chairman of the Department
of Electrical and Electronics Engineering. Between 2002 and 2003, he was
with the École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland, on
sabbatical leave. His research interests include analog integrated-circuit design,
computer-aided design for analog design, and soft-computing circuits.

Authorized licensed use limited to: Auburn University. Downloaded on March 9, 2009 at 09:31 from IEEE Xplore. Restrictions apply.

