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Geophysical mass flows—debris flows, volcanic avalanches, landslides—are often initiated by
volcanic activity. These flows can containO(106– 107) m3 or more of material, typically soil and
rock fragments that might range from centimeters to meters in size, are typicallyO(10 m) deep, and
can run out over distances of tens of kilometers. This vast range of scales, the rheology of the
geological material under consideration, and the presence of interstitial fluid in the moving mass, all
make for a complicated modeling and computing problem. Although we lack a full understanding
of how mass flows are initiated, there is a growing body of computational and modeling research
whose goal is to understand the flow processes, once the motion of a geologic mass of material is
initiated. This paper describes one effort to develop a tool set for simulations of geophysical mass
flows. We present a computing environment that incorporates topographical data in order to generate
a numerical grid on which a parallel, adaptive mesh Godunov solver can simulate model systems of
equations that contain no interstitial fluid. The computational solver is flexible, and can be changed
to allow for more complex material models, as warranted. ©2003 American Institute of Physics.
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I. INTRODUCTION

The risk of volcanic eruptions is a problem that pub
safety authorities throughout the world face several time
year.1 Volcanic activity can ruin vast areas of productiv
land, destroy structures, and injure or kill the population
entire cities. The United States Geological Survey repo
that globally there are approximately 50 volcanoes that e
every year. In the 1980s, approximately 30 000 people w
killed and almost a half million were forced from the
homes due to volcanic activity. A 1902 volcanic gravity cu
rent from Mt. Pelee, Martinique destroyed the town of
Pierre and killed all but one of the 29 000 inhabitants,
largest number of fatalities from a volcanic eruption in t
20th century. The 1991 eruption of Pinatubo, Philippin
impacted over 1 million people.

Hazardous activities consequent to volcanic erupti
range from passive gas emission and slow effusion of la
to explosions accompanied by the development of a str
spheric plume with associated dense, descending volc
gravity currents~pyroclastic flows! of red-hot ash, rock, and
gas that race along the surface away from the volcano. Th
hot flows can also melt snow on the mountain, creatin
muddy mix of ash, water, and rock. Seismic activity at
volcano can trigger the failure of an entire flank of a volcan
generating a giant debris avalanche.

a!This work was originally presented at the Symposium on Multicompon
and Multiphase Fluid Dynamics, in conjunction with the 14th U.S. N
tional Congress of Applied Mechanics. The Symposium was a celebra
of Dan Joseph and his many fundamental contributions to fluid mecha
3631070-6631/2003/15(12)/3638/9/$20.00
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Slower moving mass flows of surficial material take t
form of coarse block and ash flows, debris flows, or a
lanches. Some of these flows carry with them a signific
quantity of water. The 1998 mud flow at Casita Volcano
Nicaragua caused thousands of deaths. Debris flows as
ated with the 1985 eruption of Nevado del Ruiz, Colomb
resulted in the death of 26 000 people.2 Although scientists
had developed a hazard map of the region, the people in
devastated area were unaware of the zones of safety
danger. If they had known, many could have saved the
selves. Debris flows originating from severe rainstor
threaten many areas throughout the United States, Mo
Rainier being one principal risk site.3,4

In block and ash flows, volcanic avalanches, and de
flows, particles are typically centimeter to meter sized, a
the flows, sometimes as fast as hundreds of meters per
ond, propagate tens of kilometers. As these flows slow,
particle mass sediments out, yielding deposits that can b
much as 100 meters deep and many kilometers in length

For agencies charged with civil protection during volc
nic crises, the question they want answered is ‘‘Should
evacuate a town or village? And if so, when?’’ At present
is sometimes possible to predict when premonitory activ
might lead to a large-scale eruption. It is more difficult
predict when activity might lead to slope failure of some p
of the volcano, or the generation of a debris flow. Howev
one can ask the following question: If a mass flow were to
initiated at a particular location, what areas are most at
from that flow? This is the issue we address here. In part
lar, we describe our efforts in developing a computatio

t

n
s.
8 © 2003 American Institute of Physics
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environment for simulations of geophysical mass flows.
present a numerical algorithm for solving the governi
model equations, and describe our implementation of a
allel, adaptive grid Godunov solver to simulate flows. A
important feature of this work is the incorporation of digit
elevation model data into our computational framewo
These ingredients allow us to simulate large flows ove
realistic terrain; here we provide an example of such a sim
lation, at Volcan de Colima in Mexico.

II. MODELS

In this section we summarize recent efforts in model
geophysical mass flows. These efforts began with a pape
Savage and Hutter.5 Starting from equations of mass an
momentum balance, using a Mohr–Coulomb constitutive
lation, and making use of scaling arguments, they develo
a one-dimensional model system similar to the shallow wa
equations. Savage and Hutter wrote a code to numeric
solve the resulting equations, reporting some difficulties w
their Eulerian-based algorithm. They also performed a se
of table-top experiments, to test their predictions. Savage
Hutter extended their work to two dimensions, found a sim
larity solution to the governing equations, and examin
flows over more general basal surfaces.6 The effort was taken
up by Iverson,7–9 who extended the modeling to include th
effects of pore fluid, and employed modern shock-captur
numerical techniques to solve the model system. Gray10,11

also rederived the governing equations for general basal
faces, and developed an interesting flow experiment, v
avalanches in a rotating drum. More recently, Gray a
colleagues12 solved the one-dimensional model system
using shock-capturing combined with explicit tracking of t
propagating edge of the granular mass.

We first present a heuristic derivation of a on
dimensional model system, an approach that highlights
fundamental ideas required to develop a hydraulic mo
from the physical system governed by Mohr–Coulomb fr
tional plasticity. We refer the reader to the original work
Savage and Hutter, to gain an appreciation of their appro
and the scaling arguments that guide their derivation.5,6 We
then present a more general model system appropriate
flows over two-dimensional terrains. It is of importance
recognize that the fundamental evolution equations for
incompressible Mohr–Coulomb material are linea
ill-posed.13 That is, the basic balance laws, when lineariz
around a constant state, exhibit runaway growth. In spite
this ill-posedness, the Mohr–Coulomb theory is widely us
for steady-state stress and flow analysis in engineering p
tice. Some degree of well-posedness can be recovere
allowing slight compressibility,14,15 but the fact remains tha
we do not understand the basic physics of time-depen
granular flow.

Actual debris and avalanche flows are often accom
nied by significant quantities of liquid mixed into the roc
and soil mass. This liquid can be important in the initiati
of these flows. Liquid in the interstitial matrix also chang
the rheological character of the flowing material. It is n
clear how to best incorporate these important effects.
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cause our focus here is on a unified framework for comp
ing flows, we ignore the effects of interstitial fluid, and di
cuss only the flow of a single constituent material. T
interested reader may consult7 for one modeling effort that
includes fluid effects.

A. Flow in one dimension: A heuristic derivation

In this section, we illustrate the major features of a on
dimensional model of granular flow down an incline. We
so to highlight the important assumptions of such a mod
and to make explicit connections between the long history
the engineering study of granular flows in bins and hopp
on the one hand, and newer applications of granular mate
theories to geological phenomena on the other.

In the Cartesian plane, consider a thin layer of an inco
pressible granular material flowing down a flat plane mak
an angleu with the horizontal. Let@x, b(x)# be a point on
this plane, and letz be the direction normal to the plane; se
Fig. 1. Assume a constant density of material,r. Consider-
ation of mass conservation for a slice of this layer betwe
the pointsx2Dx/2 andx1Dx/2 balances the time derivativ
of material mass,] t(rhDx), and the flux of materialrhu
across the edgesx1Dx/2 and x2Dx/2. Taking the limit
yields an equation for the evolution of the height,

] t~rh!1]x~rhu!50.

The slice is subject to forces in thex andz directions due
to gravity, friction, and material deformation, assumed to
characterized by Mohr–Coulomb plasticity. This Mohr
Coulomb theory, the generalization of simple sliding frictio
to a continuum, makes the following assumptions on ma
rial behavior.

~i! Material deforms when the total stress reaches yie
described by the conditionidev(T)i5k tr(T), whereT
is the 232 stress tensor, dev is the deviator of t
tensor, dev(T)5T21/2tr(T)I , and tr(T) is the trace of
the stress tr(T)5( i 51

2 Txixi.
~ii ! As material deforms, the stress and strain-rate tens

are aligned, dev(T)5l dev(V); where the strain-rate
V52 1

2(]xi
uxj

1]xj
uxi

), whereu5(u1 , u2) is the ve-
locity.

~iii ! Material is rigid if stresses are below yield.

FIG. 1. A schematic diagram illustrating the average forces acting o
two-dimensional mass of granular material flowing down an inclined pla
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp



-
l

r

et

y

-

bl
a
c
t

e
; a
ry

c
to
n

na
-

y

t
lo
-
r
n

sio

an
er
a

a
ila

h
er
h

atic
tter

his
pen-
can

re-
f the
of

,
tro-

is
on-

iva-
ex-

ec-
ua-
rive
ing
ms
ag-
te
t
e

e

d
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Let us now develop balance laws forT̄, the stresses av
eraged over the layer depthh. If motion normal to the basa
surface is negligible, the only forces in thez direction are
lithostatic,

]zT̄
zz52rg cos~u!.

Because the stress vanishes on the top surface, we findT̄zz

5rg cos(u)(h2z), whereh(x) is the thickness of the laye
above the point@x, b(x)#.

In the x direction, the total time rate of change of n
momentum of the slice is given by (d/dt)(rhuDx), and is
balanced by the derivative of the downslope stress]xT̄

xx, the
basal friction T̄xzub , and the lateral component of gravit
rgh sin(u).

In all its details, Mohr–Coulomb plasticity is too com
plex a theory to apply here. Instead we make a series
simplifying assumptions that allow us to derive a tracta
set of equations. First, we assume that material is alw
deforming, so no region is rigid. Next, at the basal surfa
we assume perfect alignment of the normal stress and
shear stress, soT̄xzub5mT̄zzub . We further assume that th
stresses remained aligned throughout the layer thickness
misalignment is likely to be small if the layer is not ve
thick. Finally, we assume that thexx stress and thezzstress
are proportional throughout the layer,T̄xx5KT̄zz; hereK is
taken to be the earth pressure coefficient, a classical fa
that is widely used16 and whose origins extend back
Rankine.17 In essence, these assumptions replace the fu
tional relation between stress and strain rate~and the factor
l! of plasticity by a state and space-dependent proportio
ity ‘‘constant’’ together with fixed axes of alignment, a sig
nificant simplification of the constitutive theory.

Bringing all of these terms together, and using the h
drostatic relation for the normal stress~and thus for all the
stresses!, the balance law reads as

] t~rhu!1]x~rhu21 1
2 brgh2!

5rgh sin~u!2sgn~u!cos~u!tan~d!rgh. ~1!

Here, the coefficientb5K cos(u).
The earth pressure coefficientK may not be constant, bu

depends on whether the local downslope and cross-s
flows are expanding or contracting~i.e., in the active or pas
sive states, respectively!. That is,K may depend on whethe
]xu.0 or ]xu,0 at a particular location. The next sectio
provides a specific definition and a more complete discus
of K.

We note that a fuller accounting for shearing stresses
slope changes would introduce an additional source t
proportional tou2 @see Eq.~2!#. See Refs. 8 and 11 for
derivation that includes this term.

The general approach suggested by this derivation,
the specific alignment and friction assumptions, are sim
to the theory of bin loads due to Janssen,18 see Ref. 19 for a
development of the long history of related applications. T
paper20 compares the Janssen assumption with a full num
cal solution of the governing equations in a circular bin. T
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Janssen approach is traditionally invoked only under st
conditions. A central assumption of the Savage–Hu
theory is to apply this idea underdynamicconditions.

To better appreciate the relative sizes of terms in t
model system, the equations should be scaled in both de
dent and independent variables. Clearly, overall stresses
be scaled by the lithostatic forcergH cos(u), whereH is a
characteristic thickness of the flowing layer. This scaling
moves the density as a parameter, and clears some o
trigonometric functions. But more important is a scaling
the independent variables. Scalex by L, a characteristic
downslope length,z by H, andt by AL/g, and make the long
wave assumption, namelyH/L5e!1. With these scalings
the equations as presented above are modified by the in
duction of e, modifying the pressure-like termbrgh2. See
Eq. ~2!.

Similar to the shallow water equations in structure, th
system of equations is strictly hyperbolic and genuinely n
linear away from the ‘‘vacuum state’’ whereh50; the char-
acteristic speeds for the system arel65u6Abh.

B. Two-dimensional model equations

The approach sketched above, or a more formal der
tion of model equations using scaling arguments, can be
tended to flow over a two-dimensional surface.6,8,11 As rec-
ognized by Iverson and Denlinger,8 for the model system to
apply to flow over terrain, there can be no preferential dir
tion, as is present in earlier derivations. The governing eq
tions must possess rotational invariance. Rather than rede
the governing equations, we simply present the govern
thin layer equations as in Ref. 9, except we ignore all ter
related to the presence of fluid in the mixture. Depth aver
ing is applied to an arbitrary element in a local coordina
system that has theOz axis directed normal to the elemen
surface, andOxy the plane tangent to the terrain locally. Th
flowing layer has thicknessh, and the velocity field isu, v in
the downslope and cross-slope directions, respectively,

] th1]x~hu!1]y~hv !50, ~2!

] t~hu!1]xS hu21
b

2
gzh

2D1]y~huv !

1sgn~]yu!]yS b

2
sin~f!h2gzD

5hgx2sgn~u!h tan~d!Fgz1
u2

r x
G ,

] t~hv !1]x~huv !1sgn~]xv !]xS b

2
sin~f!h2gzD

1]yS hv21
b

2
gzh

2D5hgy2sgn~v !h tan~d!Fgz1
v2

r y
G .

Here,b5eK is small,r x , r y denote the radius of curvatur
of the local basal surface, andgx , gy , gz gives the local
direction of gravity. In the computational algorithm detaile
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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below, one can approximate the~inverse of the! radius of
curvature by derivatives of the basal slope, e.g., 1r x

5]xux , whereux is the local bed slope.
Away from the vacuum stateh50, this system is again

hyperbolic, with two nonlinear wave families similar to th
one-dimensional case, and a linear family whose wave sp
is the convection speed.

The earth pressure coefficientK is in the active or pas-
sive state, depending on whether the downslope and cr
slope flows are expanding or contracting. Gray11 defines four
values ofK, depending on whether]xu and]yv are positive
or negative. We follow Iverson,8 who defines two values fo
K:

Kact/pas52
16@12cos2~f!@11tan2~d!##1/2

cos2~f!
21,

where the 1 ~passive state! applies when flow is
converging—that is, if]xu1]yv,0—and the 2 ~active
state! applies if]xu1]yv.0.

III. COMPUTING FLOW ALONG A TWO-DIMENSIONAL
SURFACE

In this section, we briefly describeTITAN2D, a parallel,
adaptive grid, shock capturing method to solve the govern
equations~3!. We begin with a discussion of the integratio
of digital elevation model data—a description of the loc
topography—into our solver. The synthesis of these com
tational techniques makes possible the solution of mass fl
over a realistic terrain.

A. Digital elevation data

A principal feature of our code is the incorporation
topographical data into our simulation and grid structure.
have written a preprocessing routine in which digital ele
tion data are imported. These data define a two-dimensi
spatial box in which the simulation will occur. The raw da
provide elevations at specified locations. By using these d
and interpolating between data points where necessar
rectangular, Cartesian mesh is created. This mesh is
indexed in a manner consistent with our computatio
solver. The elevations provided on this mesh are then use
create surface normals and tangents, ingredients in the
erning PDEs. Finally, the grid data are written out for u
together with simulation ouput, in post-computation visu
ization.

The digital elevation data may be obtained from a nu
ber of geographic information system~GIS! sources. We
have implemented a version that imports GRASS data~Geo-
graphic Resource Analysis Support System!, which is then
georectified and coded into a grid, in a manner similar to
GRID module of ARC/INFO.21 Although we wish to facili-
tate the use of GIS data standards in our simulation envi
ment, commercial GIS software is not efficient at data
trieval. In addition, hierarchical and variable resoluti
elevation data are not readily available in commercial pa
ages. Our preprocessing module addresses at least som
these difficulties.
Downloaded 25 Nov 2003 to 128.205.152.93. Redistribution subject to A
ed

ss-

g

l
u-

s

e
-
al

ta,
a

en
l
to
v-
,
-

-

e

n-
-

-
of

Currently our GIS data provide a uniform degree
resolution. Depending on the specific site under consid
ation, a typical coarse grid provides blocks of about 100
3100 m in size with a630 m vertical accuracy, while a fine
grid has blocks of 5 m35 m, with 61 m vertical accuracy.
Of course, it is possible to have elevation data of differi
fidelity in a region of interest. In such a case, the code m
query the data source for the most accurate informa
available, and the computational mesh must be gener
appropriately. Building the software apparatus to query
GIS data during mesh refinement would greatly improve
overall accuracy of our simulations.

B. Finite volume Godunov solver

To solve this hyperbolic system of equations~2!, we use
a parallel, adaptive mesh, Godunov solver. The basic ing
dient in the method is an approximate Riemann solver.
have coded a solver originally due to Davis,22 based on the
ideas of Harten, Lax and vanLeer.23 In brief, the dependen
variables are considered as cell averages, and their value
advanced by a predictor–corrector method; the source te
are included in these updates, and no splitting—neither
the source nor the multiple dimensions—is necessary. S
limiting is used to prevent unphysical oscillations. The Da
approximate Riemann solver is a centered scheme, akin t
approach introduced by Rusanov.24

Consider, then, a hyperbolic system written as

] tU1“xf ~U !1“yg~U !5s~U !,

or, if A andB are the Jacobians off andg, respectively, as

] tU1A“xU1B“yU5s~U !.

Given Ui j
n , the ~i,j! cell average ofU at timenDt, the mid-

time predictor is

Ui j
n11/25Ui j

n 2
Dt

2
Ai j

n DxUi j
n 2

Dt

2
Bi j

n DyUi j
n 1

Dt

2
si j

n .

In this formula,DxU andDyU are the limited slopes forU in
the x andy directions, respectively.

Now at, say, cell edgei 11/2,j , there are two values tha
U may have, namely, the left stateUi 1(1/2)j

l 5Ui j
n11/2

1(Dx/2)DxUi j
n or the right state Ui 1(1/2)j

r 5Ui 11 j
n11/2

2(Dx/2)DxUi 11 j
n . To resolve this multivaluedness, an a

proximate Riemann solver generates a numerical fl
F(Ul ,Ur) depending on these left and right states and
physical flux f. The interested reader may consult Refs.
and 26, among other sources, for a guide to the vast litera
of Riemann solvers. We follow the early work of Davis,22

who generates a solver based on a single intermediate s
produced by the examination of the fastest and slowest w
speeds propagating from the local states:

F~Ul ,Ur !5
1

2
@ f ~Ur !1 f ~Ul !#2

a

2
~Ur2Ul !.

In this formula,a is an upper bound on the magnitude of t
characteristic speeds of all waves~normal to the cell edge
under consideration! evaluated at both thel and ther states.
A related Riemann solver~HLL or its HLLE extension26!
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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uses two intermediate states—in essence, a complete
mann solution for our system. We have found there to
little difference between these two solvers in our simulatio
provided the computational grid is sufficiently fine.

Finally, a conservative updated ofU is computed as

Ui j
n115Ui j

n 2
Dt

Dx
@F~Ui 1~1/2! j

l ,Ui 1~1/2! j
r !

2F~Ui 2~1/2! j
l ,Ui 2~1/2! j

r !#

2
Dt

Dy
@G~Ui j 1~1/2!

b ,Ui j 1~1/2!
t !

2G~Ui j 2~1/2!
b ,Ui j 2~1/2!

t !#1Dtsi j
n1~1/2! . ~3!

Here Ub and Ut are bottom and top states~for y fluxes!
analogous toUl andUr . Although the Davis method~and the
more general HLL solver! is not as accurate as other solve
its ease of use for systems with sources and for system
several spatial dimensions, and its small operation co
recommend its use for our model equations.

We note that this approach avoids a splitting of t
source terms from the propagation terms. Splitting often c
ates difficulties for quasisteady flows. In particular, unle
special precautions are taken, many hyperbolic solvers~in-
cluding the Davis and HLL solvers! introduce dissipation
that can destroy special time-independent solutions of

“xf ~U !1“yg~U !5s~U !.

See Refs. 25 and 26 for details.

C. Adaptive gridding

Since the work of Berger and Collela,27 the advantages
of adaptive gridding for an accurate resolution of solutions
hyperbolic partial differential equations have been rec
nized. Together with parallel computing to enable the use
very fine grids, these methods provide the opportunity
simulations of unmatched fidelity.

Here we have implemented a simple adaptive grid str
ture ~see Fig. 2! that refines cells based on indicators deriv
from the solution at the previous time step. Perhaps the s
plest indicator to consider is ‘‘Ish.0?’’ That is, all cells
containing material are refined. In experiments with t
simple indicator, we may also refine all cells immediate
adjacent to cells containing material. In this way, a one-c
thick band of refined but empty (h50) cells surrounds the
refined cells containing material. This additional band of
fined cells ensures that no spurious waves are generate
material passes across different grids. Alternatively, enfo

FIG. 2. Grid transition with a conservative distribution of the flux across
interfaceGL andGR1øGR2 .
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ing precise conservation at edges where refined and u
fined grids meet also provides a highly accurate computat

We have also experimented with a simple scaledL2

norm of the flux around the boundary of each cell as
refinement indicator. That is, the refinement indicator for
kth cell is hk51/dkr]Vk

uFu2dx, wheredk is the diameter of

the cell and]Vk is its boundary. The cells to be refined a
those for whichhk is the largestp% of all cells; of course,p
is adjusted by the user.

In a similar way, if indicators suggest that a coarser d
cretization will not adversely affect the solution quality, w
remove refined cells. Thus, we are able to maintain the s
tion quality and track special features, while not making t
computation prohibitively expensive.

We also monitor the change of the pile height on eve
time step:h(tn)2h(tn21); when this change is below a use
defined threshold, we unrefine the grid locally.

Both the refinement and unrefinement indicators are h
ristic, and based on experience and physical intuition.

We must also define the frequency of grid adaption.
the calculations reported here, we examine the indicators
ery two time steps to decide whether or not to refine
unrefine. Again, this adaption frequency is heuristic. We
investigating more sophisticated strategies, based on
mates of local error.

In Fig. 6 of Sec. IV, a grid adapted to a simulation ov
a realistic terrain is shown.

D. Parallelization

Parallelization of adaptively refined grids has been
dressed by several researchers over the last several y
see, for example, Flahertyet al.,28 Carter and Stewart,29 and
Laszloffy, Patra, and Long.30 To take full advantage of mul-
tiprocessor computing, the critical issues are the number
location of cells created and deleted during grid refineme
load balance, and the efficiency of storage and data acc

For the model system here, we extend the approach
scribed in our earlier work on adaptive steady-state fin
element codes.30 The primary modifications to this earlie
work that have been necessary to accommodate the t
dependent hyperbolic nature of our model equations are~1!
the addition of modules to enable the unrefinement of ce
and ~2! the addition of data storage for a layer of ‘‘gho
cells’’ on each subdomain.

These ‘‘ghost cells’’ are a layer of cell data for all cel
adjacent to the line~in two dimensions! that partitions the
grid among some pair of processors. The data of a cell a
cent to the partition and belonging to one processor are
licated on the other processor. This replication enables u
perform the computations necessary for the Godunov sch
for every cell, without explicit communication. However, th
use of ghost cells requires us to synchronize the data am
the processors at the end of each time step.

E. Data management and load balancing

Although we use only regular Cartesian grids in t
simulations reported here, our data management schem
imported from FEM computations, where unstructured gr

e
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FIG. 3. Granular avalanche down a
inclined plane. Contour plots show
paraboloid shape, which can be show
to be a similarity solution of the gov-
erning system. The plane makes a
angle of 45° until 1000 m, at which
point the surface rapidly flattens to be
come horizontal. The internal friction
angle of the flowing mass is 30°, an
the bed friction is 20°.
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tely
often arise. Thus our design allows for general grids, and
data structure are not simple arrays. Because all data ac
operations involve some kind of search, this procedure m
be fast and efficient.

Our data storage model is a distributed hash table. D
are indexed by an ordering along a space filling curve~SFC!,
and are then stored in the table.30 Each cell is mapped to a
unique key using its location along the SFC passing thro
its centroid. This key also provides a unique identifier tha
easily generated~typically it is generated directly from geo
metric coordinates by using bit manipulations!. To obtain a
decomposition of the problem, we introduce a partitioning
this key space. This induces a distribution of the data s
i.e., a decomposition of the problem for distributed memo
computing. When the grid changes and new cells are in
duced, a redistribution of cells among the processors
maintain load balance is achieved by adjusting this key sp
partition.

F. Parallel solver

A parallel solution of the model partial differential equ
tions of Sec. II is easily implemented within the infrastru
ture just described. After a decomposition of the domain
obtained using the key space partitioning, we introduce
layer of ghost cells on each processor. Each cell maintai
list of the keys of its neighbors. These features, together w
the finite range of influence~of any individual cell! that char-
acterizes a hyperbolic problem, make access to on-proce
and off-processor data for the Godunov solver relativ
simple. By adjusting the key space partition after g
refinement/unrefinement stages, good load balance is m
tained.

IV. RESULTS

We demonstrate our computational solver by examin
two test cases. The first flow is a mass moving down
inclined plane. For this case, topography is not an issue,
the simulation probes the accuracy of the numerical sol
The second case is flow down Volcan de Colima in Mexi
and the topographical features of the region largely de
Downloaded 25 Nov 2003 to 128.205.152.93. Redistribution subject to A
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mine the distribution of the mass flow and deposit. Ad
tional comparisons may be found in Refs. 31 and 32.

A. Flow down an inclined plane

This is a simple test of the numerical methodology d
scribed here. Laboratory experiments using this type of
ometry have been described by Refs. 5, 9, and 11, am
others. We show in Fig. 3 flow down an inclined plane a
45° angle. At 1000 m, the surface becomes horizontal. S
age and Hutter5 found that a parabolic distribution of mate
rial is a similarity solution to the governing equations in o
dimension, and Ref. 6 derives an analogous solution for t
dimensional flows. This result is borne out in our simu
tions. Figure 3 shows contour plots of the flowing hump, a
Fig. 4 gives a cross section through the middle of the ma
approximately halfway down the incline. After the hum
reaches the flat portion of the surface, flow quickly ceas
For this run, a free-flowing material was used, with an int
nal friction angle of 30°, and a bed friction of 20°.

B. Realistic terrain

Our efforts in this project are motivated by the desire
simulate debris and avalanche flows over realistic terrain

FIG. 4. A cross-sectional profile of the sliding granular mass approxima
halfway down the inclined plane.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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this end, we have selected a small set of volcano site
which we have detailed information about historical ma
flow events, information either from real-time reports of t
event or from geological field work and reconstruction. O
simulations, then, will attempt to reproduce these flows w
a minimum of parameter adjustment. To this end, the mo
introduced in Sec. II is well-suited—there are only two p
rameters to choose: the internal and basal friction ang
Here we report on a simulated flow at Volcan de Colima
Mexico.

In 1991, a block and ash flow of about;106 m3 initi-
ated from the SW face of a lava dome located at the sum
We do not know the exact geometry of the failure surfa
The TITAN2D computation begins by loading topographic
data—recent digital elevation data for Colima and its s
roundings. For the simulation reported here, this eleva
data are gridded by cells 60 m360 m, with a vertical accu-
racy that, in some locations, is only640 m.

The initial mass is assumed to be of a paraboloid sha
106 m3 in volume, located near the top of the cone. We
sume internal and bed friction angles of 30 and 15, resp
tively. This bed friction value is lower than what is ofte
measured for geologic materials, but the initial mass flow
easily upon release; simulations with a more realistic b
friction value of 25° did not flow as rapidly as desired.

The paraboloid shape exaggerates the initial inclinat
of the flowing material, and makes the very early time cou
of our simulation highly questionable. The flow a little lat
appears more as is to be expected. The contour maps of
5 show the flow simulation at two times. The map on t
shows the mass as it gathers momentum and begins to
gate. The map on the bottom is somewhat later; the mass
consolidated again, as it encounters the hillock shown in
terrain map. Interestingly the flowing mass does split alon
ridge between barancas, similar to the real flow. The sim
lated flow does not channelize in quite the same way as
1991 flow did, and there are real differences between
computations and the 1991 event. Nonetheless, the qua
tive features and general characteristics match reports of
avalanche.33

In Fig. 6, the grid corresponding to the flow times of Fi
5 is shown. Here one can see the refinement of the com
tational grid as it follows the flowing mass.

~Aside: In this Colima simulation and many others, th
digital elevation data available incorporate the deposit of
erosion from the very flows we wish to simulate. There a
few sites where pre- and post-flow elevation data are av
able. We do not know how much our simulations are i
pacted by such topographical inaccuracies.!

V. DISCUSSION

We now have in place a computational environment
simulating the system of equations modeling single-ph
geophysical mass flows, a computational environment
integrates accurate topographical data into a parallel, a
tive mesh Godunov solver. Simulation results are qual
tively correct, but detailed experimental work, especia
large-scale field work against which to compare simulatio
Downloaded 25 Nov 2003 to 128.205.152.93. Redistribution subject to A
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is still required. Although the Mohr–Coulomb theory at th
heart of the physical modeling presented here requires on
small number of physical parameters~internal and basal fric-
tion angles!, these parameters are only loosely defined, a
the measurements of these quantities are crude.

On the one hand, our model system is flexible enough
allow several candidate constitutive relations~which may not
suffer the ill-posedness of the Mohr–Coulomb theory! to be
used. On the other hand, any ‘‘thin layer’’ model of flow, b
necessity, hides important information through the averag
process. An open problem is to recover some of that hid
information—for example, to understand the internal dyna
ics of recirculation—without recourse, to a direct simulati
of the complete Mohr–Coulomb model equations. A rela
question is the following: Does the specific constituti
theory employed in such a thin layer model qualitative
change simulation results?

FIG. 5. The spreading of an avalanche, modeled using the thin layer sy
~3! and terrain data from Volcan de Colima in Mexico. The contour ma
give the flow depth at two different times. On the top, the mass is acce
ating and elongating as it flows downhill. On the bottom, the mass enco
ters a small hillock and consolidates as it spreads around the obstacle
dashes represent contours of pile height lower than those of the da
shaded mass.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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The numerical method described here, and similar
proaches by Refs. 9 and 11, are formally second-order a
rate~though perhaps with a first-order splitting of the sour
terms!. The sheer size of the regions on which we wish
simulate flow, however, normally necessitates large g
cells. Our adaptive gridding and parallel framework gives
the capacity to perform computations on reasonably si
grid cells. Our experience shows that a grid with sufficien
small cells is necessary for reasonable simulations. At
same time, elevation data must be accurate enough to a
these fine grids to be faithful to the actual topography. Th
topographical data are available down to a 5 m35 m scale
with a 61 m vertical accuracy. We are investigating a str
egy for computational mesh refinement coupled to a hie
chy of refined topographical mappings. This marriage is
pecially important in circumstances where very accur
elevation data are available only in a portion of the simu
tion area.

The numerical solver for the thin layer equations suff

FIG. 6. The computational grid, adapted to the moving mass. The
figures show the refined grid corresponding to the two flow times of
previous figure. The inset is a blow-up of the region immediately around
flowing mass, showing up to three levels of refinement.
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from a modeling defect easily appreciated by consider
finite size computational cells. Equations~3! are derived by
depth averaging, referred to as a basal surface that confo
~as best as possible! to the local topography. Computationa
cells can be thought of as being locally tangent to this top
raphy. Thus, for two adjacent cells, the numerical flux
across cell edges are obtained by depth averaging in slig
different directions. Unfortunately, this discrepancy does
disappear as the cell sizes shrink to zero. In spite of
shortcomings of the modeling and the computational
proaches, the thin layer equations appear to give g
results—even when they may be supposed not to hold.

Another concern for applications to real systems is
bulking of material during flow due to erosion. It is estimat
that, in large debris flows, up to half—or more—of the fin
deposit may be eroded material. Thin layer models of
kind used here have been extended to incorporate m
changed due to erosion.34 Such a model must address ho
the erosion of a bed, in turn, changes the local topograp
and how such elevation changes are fed back into the
merical solver.

Finally, the Mohr–Coulomb model used here accou
only for the deformation of solids material. Missing is th
effect of interstitial fluid—either air, in dilute flows, or wate
in muddy flows. Pore fluid may also be important in initia
ing mass flows. Iverson7,8 has taken a first step by includin
fluid into a thin layer model, but more work is required b
fore we can be confident of any approach.
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