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Geophysical mass flows—debris flows, volcanic avalanches, landslides—are often initiated by
volcanic activity. These flows can conta®(10°—10) m® or more of material, typically soil and

rock fragments that might range from centimeters to meters in size, are typggdym) deep, and

can run out over distances of tens of kilometers. This vast range of scales, the rheology of the
geological material under consideration, and the presence of interstitial fluid in the moving mass, all
make for a complicated modeling and computing problem. Although we lack a full understanding
of how mass flows are initiated, there is a growing body of computational and modeling research
whose goal is to understand the flow processes, once the motion of a geologic mass of material is
initiated. This paper describes one effort to develop a tool set for simulations of geophysical mass
flows. We present a computing environment that incorporates topographical data in order to generate
a numerical grid on which a parallel, adaptive mesh Godunov solver can simulate model systems of
equations that contain no interstitial fluid. The computational solver is flexible, and can be changed
to allow for more complex material models, as warranted.2@3 American Institute of Physics.

[DOI: 10.1063/1.1614253

I. INTRODUCTION Slower moving mass flows of surficial material take the
The risk of volcanic eruptions is a problem that pub”Cform of coarse block and ash flows, debris flows, or ava-

safety authorities throughout the world face several times };\nchgs. Some of these flows carry with them a significgnt
year! Volcanic activity can ruin vast areas of productive quantity of water. The 1998 mud flow at Casita Volcano in
land, destroy structures, and injure or kill the population ofNicaragua caused thousands of deaths. Debris flows associ-

entire cities. The United States Geological Survey report&ted with the 1985 eruption of Nevado del Ruiz, Colombia,
that globally there are approximately 50 volcanoes that erugiesulted in the death of 26 000 peoplalthough scientists
every year. In the 1980s, approximately 30000 people wer8ad developed a hazard map of the region, the people in the
kiled and almost a half million were forced from their devastated area were unaware of the zones of safety and
homes due to volcanic activity. A 1902 volcanic gravity cur- danger. If they had known, many could have saved them-
rent from Mt. Pelee, Martinique destroyed the town of st selves. Debris flows originating from severe rainstorms
Pierre and killed all but one of the 29000 inhabitants, theNréaten many areas throughout the United States, Mount
largest number of fatalities from a volcanic eruption in theR@inier being one principal risk sife

20th century. The 1991 eruption of Pinatubo, Philippines, !N block and ash flows, volcanic avalanches, and debris
impacted over 1 million people. flows, particles are typically centimeter to meter sized, and

Hazardous activities consequent to volcanic eruptiondn® flows, sometimes as fast as hundreds of meters per sec-

range from passive gas emission and slow effusion of lave®"d, Propagate tens of kilometers. As these flows slow, the
to explosions accompanied by the development of a stratglarticle mass sediments out, yielding dgposﬂs thgt can be as
spheric plume with associated dense, descending volcanf@uch as 100 meters deep and many kilometers in length.
gravity currents(pyroclastic flows of red-hot ash, rock, and ~ FOr agencies cha}rged with civil protection QUrlng volca-
gas that race along the surface away from the volcano. ThedlC crises, the question they want answered is “Should we
hot flows can also melt snow on the mountain, creating £vacuate a town or village? And if so, when?” At present, it
muddy mix of ash, water, and rock. Seismic activity at a'S sometimes possible to predict when premonitory activity

volcano can trigger the failure of an entire flank of a volcano,Might lead to a large-scale eruption. It is more difficult to
generating a giant debris avalanche. predict when activity might Iea_d to slope fall_ure of some part
of the volcano, or the generation of a debris flow. However,
o — , _ one can ask the following question: If a mass flow were to be
This work was originally presented at the Symposium on Multicomponent,yiiated at a particular location, what areas are most at risk
and Multiphase Fluid Dynamics, in conjunction with the 14th U.S. Na- s Thic i . .
tional Congress of Applied Mechanics. The Symposium was a celebratiof’OM that flow? This is the issue we address here. In particu-

of Dan Joseph and his many fundamental contributions to fluid mechanicdar, we describe our efforts in developing a computational
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environment for simulations of geophysical mass flows. We
present a numerical algorithm for solving the governing
model equations, and describe our implementation of a par-
allel, adaptive grid Godunov solver to simulate flows. An
important feature of this work is the incorporation of digital
elevation model data into our computational framework.
These ingredients allow us to simulate large flows over a
realistic terrain; here we provide an example of such a simu-
lation, at Volcan de Colima in Mexico.

Il. MODELS FIG. 1. A schematic diagram illustrating the average forces acting on a

. . . . . -dimensional m f granular material flowin n an inclin lane.
In this section we summarize recent efforts in modeling™°-dimensional mass of granular material flowing down an inclined plane

geophysical mass flows. These efforts began with a paper by

Savage and Huttér.Starting from equations of mass and

momentum balance, using a Mohr—Coulomb constitutive recause our focus here is on a unified framework for comput-
lation, and making use of scaling arguments, they developeithg flows, we ignore the effects of interstitial fluid, and dis-
a one-dimensional model system similar to the shallow wateguss only the flow of a single constituent material. The
equations. Savage and Hutter wrote a code to numericalljnterested reader may consufor one modeling effort that
solve the resulting equations, reporting some difficulties withincludes fluid effects.

their Eulerian-based algorithm. They also performed a series

of table-top experiments, to test their predictions. Savage and. Flow in one dimension: A heuristic derivation

Hutter extended their work to two dimensions, found a simi- In this section. we illustrate the maior features of a one-
larity solution to the governing equations, and examined ' J

flows over more general basal surfafdhe effort was taken g;mtin;;oﬂﬁl m?ggl icr)r]: g;zgﬁlta;;ﬁmdz\ggsagf'gﬁgﬂeg\ﬁg;
up by Iverson’~® who extended the modeling to include the gniig P P !

effects of pore fluid, and employed modern shock-capturin nd to make explicit connections between the long history of

numerical techniques to solve the model system. &rdy he engineering study of granular flows in bins and hoppers

. ) . n the one hand, and newer applications of granular material
also rederived the governing equations for general basal suf- P 9

faces, and developed an interesting flow experiment, viz.,heorles 0 geolo_glcal phenome_na on th_e other. .
avalanches in a rotating drum. More recently, Gray and In_the Cartesian plan_e, cons_|derath|n layer of an incom-
colleague¥ solved the one-dimensional model system bypresslble granular material flowing down a flat plane making

. . . . L : an angled with the horizontal. Lefx, b(x)] be a point on
using shock-capturing combined with explicit tracking of the | . N )
propagating edge of the granular mass. this plane, and let be the direction normal to the plane; see

We first present a heuristic derivation of a one- Fig. 1. Assume a constant density of materjalConsider-

dimensional model system, an approach that highlights th%_t‘fno?;tga_sz)?/%nzﬁgiafzz /f;rb:Ias::ggscfhtehlt?rr:zydeéri?gt\?\l/eeen
fundamental ideas required to develop a hydraulic mode P

from the physical system governed by Mohr—Coulomb fric-Of material massg,(phAx), and the flux of 'matenab'hu'
tional plasticity. We refer the reader to the original work by across the edgex+Ax/2 and X_.AX/Z' Takm_g the fimit
Savage and Hutter, to gain an appreciation of their approacllf,IeIdS an equation for the evolution of the height,

and the scaling arguments that guide their derivatidive a(ph)+ d,(phu)=0.

then present a more general model system appropriate for

flows over two-dimensional terrains. It is of importance to The slice is subject to forces in theandz directions due
recognize that the fundamental evolution equations for af, gravity, friction, and material deformation, assumed to be
!ncomprei-gsmle ~Mohr—Coulomb  material are linearly oparacterized by Mohr—Coulomb plasticity. This Mohr—
ill-posed:~ That is, the basic balance laws, when linearizedcqjomp theory, the generalization of simple sliding friction

around a constant state, exhibit runaway growth. In spite of, 5 continuum, makes the following assumptions on mate-
this ill-posedness, the Mohr—Coulomb theory is widely used;| pehavior.

for steady-state stress and flow analysis in engineering prac- ' '
tice. Some degree of well-posedness can be recovered Bi)  Material deforms when the total stress reaches yield,

allowing slight compressibility**° but the fact remains that described by the conditiofdev(T)||=«tr(T), whereT

we do not understand the basic physics of time-dependent is the 2<2 stress tensor, dev is the deviator of the

granular flow. tensor, dev()=T—21/2tr(T)I, and tr(T) is the trace of
Actual debris and avalanche flows are often accompa- the stress ti) =32 , 7%,

nied by significant quantities of liquid mixed into the rock (i)  As material deforms, the stress and strain-rate tensors

and soil mass. This liquid can be important in the initiation are aligned, dew)=\ dev(V); where the strain-rate,

of these flows. Liquid in the interstitial matrix also changes V=-— %((7xiuxj+(9xjuxi). whereu= (uy, Up) is the ve-

the rheological character of the flowing material. It is not locity.

clear how to best incorporate these important effects. Befiii) Material is rigid if stresses are below yield.
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Let us now develop balance laws for the stresses av- Janssen approach is traditionally invoked only under static
eraged over the layer depth If motion normal to the basal conditions. A central assumption of the Savage—Hutter
surface is negligible, the only forces in tkedirection are  theory is to apply this idea undelynamicconditions.

lithostatic, To better appreciate the relative sizes of terms in this
model system, the equations should be scaled in both depen-
9,T?*= — pg coq 6). dent and independent variables. Clearly, overall stresses can

be scaled by the lithostatic forgegH cos(@), whereH is a

Because the stress vanishes on the top surface, we fhd characteristic thickness of the flowing layer. This scaling re-

= pg cos()(h—2), whereh(x) is the thickness of the layer moves the density as a parameter, and clears some of the

above the poinfx, b(x)]. trigonometric functions. But more important is a scaling of
In the x direction, the total time rate of change of net the independent variables. Scateby L, a characteristic

momentum of the slice is given byl{dt)(phuAx), and is  downslope lengthz by H, andt by yL/g, and make the long

balanced by the derivative of the downslope stigdg¥, the ~ Wave assumption, namelji/L =e<1. With these scalings,
T .. the equations as presented above are modified by the intro-

basal frictionT*4,, and the lateral component of gravity . o . 5

pghsin(o). duction of ¢, modifying the pressure-like terfBpgh“. See

In all its details, Mohr—Coulomb plasticity is too com- Eq. ().

plex a theory to apply here. Instead we make a series of Similar to thg shz_allow_ water equati.ons in struqture, this
simplifying assumptions that allow us to derive a tractables.'yStem of equations 'f strictly hyper?ohc and genuinely non-

; ) L linear away from the “vacuum state” where=0; the char-
set of equations. First, we assume that material is always teristi ds for th tem are—u= \Bh
deforming, so no region is rigid. Next, at the basal surfacdCterstic speeds for the syste e=uxyph.

we assume perfect alignment of the normal stress and t

shear stress, s0*,=uT*4,. We further assume that the
stresses remained aligned throughout the layer thickness; any The approach sketched above, or a more formal deriva-
misalignment is likely to be small if the layer is not very tion of model equations using scaling arguments, can be ex-
thick. Finally, we assume that thes stress and thezstress  tended to flow over a two-dimensional surfdce! As rec-

are proportional throughout the |ayé_ﬁ<x: KT2% hereK is ognized by Iverson and Denling&for the model system to

taken to be the earth pressure coefficient, a classical fact@PP!V t0 flow over terrain, there can be no preferential direc-
that is widely usetf and whose origins extend back to tion, as is present in earlier derivations. The governing equa-
17 |n ‘essence, these assumptions replace the fundions must possess rotational invariance. Rather than rederive

Rankine. - - - 3
tional relation between stress and strain rated the factor 1€ gOVerning equations, we simply present the governing

\) of plasticity by a state and space-dependent proportionaf-hin layer equations as in Re_f. 9 except we ignore all terms
ity “constant” together with fixed axes of alignment, a sig- _rela'Fed to t_he presence (_)f fluid in the m_|xture. Depth averag-
nificant simplification of the constitutive theory. ing is applied to an arbitrary element in a local coordinate

Bringing all of these terms together, and using the hy_system that has th®z axis directed normal to the element

drostatic relation for the normal stre&and thus for all the ~Surface, an®Oxythe plane tangent to the terrain locally. The
stresseks the balance law reads as flowing layer has thickneds, and the velocity field isl, v in
the downslope and cross-slope directions, respectively,

hﬁ. Two-dimensional model equations

d(phu)+dy(phu®+ 3 Bpgh?)
= pghsin(#) —sgn(u)cog #)tan( ) pgh. 1)

Here, the coefficienB=K cos().

The earth pressure coefficigdtmay not be constant, but
depends on whether the local downslope and cross-slope
flows are expanding or contractirige., in the active or pas- +5gr(a,u)d,
sive states, respectivelyThat is,K may depend on whether
a,u>0 or 9,u<0 at a particular location. The next section
provides a specific definition and a more complete discussion =hg,—sgr(u)h tan(5)
of K.

We note that a fuller accounting for shearing stresses and
slope changes would introduce an additional source term B .
proportional tou? [see Eq.(2)]. See Refs. 8 and 11 for a 0t(hu)+(7X(hUU)+sgr{0xv)&x(§sm(¢)hzgz>
derivation that includes this term.

The general approach suggested by this derivation, and |
the specific alignment and friction assumptions, are similar Y
to the theory of bin loads due to Jans$@see Ref. 19 for a
development of the long history of related applications. TheHere, 8= €K is small,r,, r, denote the radius of curvature
papef° compares the Janssen assumption with a full numerief the local basal surface, argj,, gy, 9, gives the local
cal solution of the governing equations in a circular bin. Thedirection of gravity. In the computational algorithm detailed

dth+dy(hu)+d,(hv)=0, 3]

d(hu)+a,

B
hu?+ Egth)Jray(hUU)

B .
E sin( ¢)hzgz)
u2

g,t+ I’_

X

LU
0 .
ly

ho2+ ggth) :hgy_sgr(v)h tan( 5)
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below, one can approximate tH@verse of the radius of Currently our GIS data provide a uniform degree of
curvature by derivatives of the basal slope, e.gr, 1/ resolution. Depending on the specific site under consider-
=dy 0y, Whereg, is the local bed slope. ation, a typical coarse grid provides blocks of about 100 m

Away from the vacuum state=0, this system is again X100 m in size with a-t30 m vertical accuracy, while a fine
hyperbolic, with two nonlinear wave families similar to the grid has blocks of 5 5 m, with =1 m vertical accuracy.
one-dimensional case, and a linear family whose wave speddf course, it is possible to have elevation data of differing
is the convection speed. fidelity in a region of interest. In such a case, the code must

The earth pressure coefficieltis in the active or pas- query the data source for the most accurate information
sive state, depending on whether the downslope and crosavailable, and the computational mesh must be generated
slope flows are expanding or contracting. Glajefines four  appropriately. Building the software apparatus to query the
values ofK, depending on whetheru andd,v are positive  GIS data during mesh refinement would greatly improve the
or negative. We follow Iversofiwho defines two values for overall accuracy of our simulations.

K:
B. Finite volume Godunov solver

1+[1—coS(p)[1+tarf(8)]]?
Kactpas™ coZ(¢) - To solve this hyperbolic system of equatiai2$, we use
) ] _a parallel, adaptive mesh, Godunov solver. The basic ingre-
where the + (passive staje applies when flow is gient in the method is an approximate Riemann solver. We
converging—that is, ifd,u+dyw<0—and the — (active  phaye coded a solver originally due to Datishased on the
statg applies ifd,u+dyv>0. ideas of Harten, Lax and vanLegrin brief, the dependent
variables are considered as cell averages, and their values are
advanced by a predictor—corrector method; the source terms
IIl. COMPUTING FLOW ALONG A TWO-DIMENSIONAL are included in these updates, and no splitting—neither for

SURFACE the source nor the multiple dimensions—is necessary. Slope
In this section, we briefly describaTan2D, a parallel, limiting is used to prevent unphysical oscillations. The Davis

adaptive grid, shock capturing method to solve the governingPProximate Riemann solver is a centered scheme, akin to an

equations(3). We begin with a discussion of the integration @PProach introduced by Rusarfdv. _

of digital elevation model data—a description of the local ~ Consider, then, a hyperbolic system written as

topography—into our solver. The synthesis of these compu- HU+V,f(U)+V,g(U)=s(U),

tational techniques makes possible the solution of mass flows _ _
over a realistic terrain. or, if A andB are the Jacobians éfandg, respectively, as

#U+AV,U+BV U=s(U).
o . . . Given U]}, the(i,j) cell average ofJ at timenAt, the mid-
A principal feature of our code is the incorporation of time pre(]jictor is
topographical data into our simulation and grid structure. We
have written a preprocessing routine in which digital eleva- ni1z oo At N
tion data are imported. These data define a two-dimensional Uiy 7 =Uj— ?AiijUiJ -
spatial box in which the simulation will occur. The raw data
provide elevations at specified locations. By using these dat
and interpolating between data points where necessary,
rectangular, Cartesian mesh is created. This mesh is then | nr1/2
indexed in a manner consistent with our computationa May have, namely, the left S‘t""teji+(1/2)i:UHH/2
solver. The elevations provided on this mesh are then used t6 (AX/2)A,Uy - or the right state Uj, (1= U]
create surface normals and tangents, ingredients in the gov=(AX/2)A,Ui 4. To resolve this multivaluedness, an ap-
erning PDEs. Finally, the grid data are written out for use,Proximate Riemann solver generates a numerical flux
together with simulation ouput, in post-computation visual-F(U',U") depending on these left and right states and the
ization. physical fluxf. The interested reader may consult Refs. 25

The digital elevation data may be obtained from a num-@nd 26, among other sources, for a guide to the vast literature

ber of geographic information systen@IS) sources. We Of Riemann solvers. We follow the early work of D_a@?s,
have implemented a version that imports GRASS ¢&teo- who generates a soIve_r b:_alsed on a single intermediate state,
graphic Resource Analysis Support Systemhich is then produced by the gxamlnatlon of the fastest and slowest wave
georectified and coded into a grid, in a manner similar to théPeeds propagating from the local states:

GRID module of ARC/INFG* Although we wish to facili- 1 a

tate the use of GIS data standards in our simulation environ- F(U',U")= E[f(ur)+ f(UH]— E(Ur— uh.

ment, commercial GIS software is not efficient at data re-

trieval. In addition, hierarchical and variable resolution In this formula,« is an upper bound on the magnitude of the
elevation data are not readily available in commercial packeharacteristic speeds of all wavésormal to the cell edge
ages. Our preprocessing module addresses at least someuoider consideratiorevaluated at both thieand ther states.
these difficulties. A related Riemann solvefHLL or its HLLE extensior®)

A. Digital elevation data

At At

4n this formula,A,U andA U are the limited slopes fdd in
tge x andy directions, respectively.
Now at, say, cell edge+ 1/2, there are two values that
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H ing precise conservation at edges where refined and unre-
++ fined grids meet also provides a highly accurate computation.
=S Hivstreton of Adaptive Grid to Resalve a Fron We have also experimented with a simple scaled
HH Ry I-L\-—-1:2reﬁnementstencilimposedonedgewithreﬁnement norm of the flux around the boundary of each cell as the
T T refinement indicator. That is, the refinement indicator for the

. _ 2 - .
FIG. 2. Grid transition with a conservative distribution of the flux across thekth cell is 7= 1/dk9$99k|':| dx, whered, is the diameter of
interfacel’, and'gUTg,. the cell andd}, is its boundary. The cells to be refined are
those for whichy, is the largesp% of all cells; of coursep
is adjusted by the user.
. . . . In a similar way, if indicators suggest that a coarser dis-
uses two intermediate states—in essence, a complete Rie- . . . )
. Cretization will not adversely affect the solution quality, we
mann solution for our system. We have found there to be . L
X . . . . temove refined cells. Thus, we are able to maintain the solu-
little difference between these two solvers in our simulations,. : X ) :
. . s . : tion quality and track special features, while not making the
provided the computational grid is sufficiently fine.

. ; . computation prohibitively expensive.
Finally, a conservative updated bfis computed as We also monitor the change of the pile height on every

At time step:h(t,) —h(t,,_1); when this change is below a user
Ujitt=uj - H[F(U:+(1/2)j Uik 1) defined threshold, we unrefine the grid locally.
Both the refinement and unrefinement indicators are heu-
—F(U!_(l,z)j ,U{_(l,z)j)] ristic, and based on experience and physical intuition.
We must also define the frequency of grid adaption. In
_ E[G(Uib P Ut 1) the calculations reported here, we examine the indicators ev-
Ay J+{13 =+ ery two time steps to decide whether or not to refine or
unrefine. Again, this adaption frequency is heuristic. We are
investigating more sophisticated strategies, based on esti-
Here UP and U! are bottom and top statd$or y fluxes  mates of local error.
analogous tdJ' andU". Although the Davis methohnd the In Fig. 6 of Sec. IV, a grid adapted to a simulation over
more general HLL solveris not as accurate as other solvers, @ realistic terrain is shown.
its ease of use for systems with sources and for systems in
several spatial dimensions, and its small operation counP- Parallelization

recommend its use for our model equations. Parallelization of adaptively refined grids has been ad-
We note that this approach avoids a splitting of thegressed by several researchers over the last several years;

source terms from the propagation terms. Splitting often cresee for example, Flaherst al,?® Carter and Stewaff, and

ates difficulties for quasisteady flows. In particular, unless asz|offy, Patra, and Lond. To take full advantage of mul-

special precautions are taken, many hyperbolic soliers  tiprocessor computing, the critical issues are the number and

cluding the Davis and HLL solversintroduce dissipation |ocation of cells created and deleted during grid refinement,

—G(UP 12,V 1) 1+ Ats 2. 3

that can destroy special time-independent solutions of |53 palance, and the efficiency of storage and data access.
_ For the model system here, we extend the approach de-
V., f(U)+V,g(U)=s(U).
(L) y9(U)=s(V) scribed in our earlier work on adaptive steady-state finite
See Refs. 25 and 26 for details. element code® The primary modifications to this earlier
work that have been necessary to accommodate the time-
C. Adaptive gridding dependent hyperbolic nature of our model equations(Bre

Since the work of Berger and Colletathe advantages the addition of r_n_odules to enable the unrefinement ?f cells;
and (2) the addition of data storage for a layer of “ghost

of adaptive gridding for an accurate resolution of solutions to lis” h subd )
hyperbolic partial differential equations have been recog-Ce s on ee:c su om”am.
These “ghost cells” are a layer of cell data for all cells

nized. Together with parallel computing to enable the use of . L : . -
¢ P puting djacent to the lindin two dimensiony that partitions the

very fine grids, these methods provide the opportunity fo*C . .
sim)l/JIationgs of unmatched fidelityp PP y grid among some pair of processors. The data of a cell adja-

Here we have implemented a simple adaptive grid strucSent to the partition and belonging to one processor are rep-

ture (see Fig. 2that refines cells based on indicators derived“cated on the other processor. This replication enables us to

from the solution at the previous time step. Perhaps the sirTFerform the computations necessary for the Godunov scheme
plest indicator to consider is “l>07?" That is, all cells or every cell, without explicit communication. However, the

containing material are refined. In experiments with this!S€ of ghost cells requires us to synchronize the data among

simple indicator, we may also refine all cells immediatelythe processors at the end of each time step.
adjacent to cells containing material. In this way, a one-cel
thick band of refined but emptyh&0) cells surrounds the
refined cells containing material. This additional band of re-  Although we use only regular Cartesian grids in the
fined cells ensures that no spurious waves are generated sisnulations reported here, our data management scheme is
material passes across different grids. Alternatively, enforcimported from FEM computations, where unstructured grids

IE. Data management and load balancing
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Height Contour Plot Height Contour Plot

lo:s FIG. 3. Granular avalanche down an
03 inclined plane. Contour plots show a
0.05 . .
1000 1306 paraboloid shape, which can be shown
(a) X-Anxis () X-Axis to be a similarity solution of the gov-
erning system. The plane makes an
angle of 45° until 1000 m, at which
Height Contour Plot point the surface rapidly flattens to be-
come horizontal. The internal friction
g angle of the flowing mass is 30°, and
- 8 the bed friction is 20°.
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often arise. Thus our design allows for general grids, and oumine the distribution of the mass flow and deposit. Addi-
data structure are not simple arrays. Because all data acca#snal comparisons may be found in Refs. 31 and 32.
p Yy p y

operations involve some kind of search, this procedure must
be fast and efficient. A. Flow down an inclined plane

Our data storage model is a distributed hash table. Data This is a simple test of the numerical methodology de-
are indexed by an orQermg along a space f||||ng cubeQ), scribed here. Laboratory experiments using this type of ge-
anq are then ;torgd n th_e taBfeEach cell is mapped to a ometry have been described by Refs. 5, 9, and 11, among
unique key using its location along the SFC passing throug%thers. We show in Fig. 3 flow down an inclined plane at a
its centroid. This key also provides a unique identifier that is450 angle. At 1000 m, the surface becomes horizontal. Sav-
easily gener'c_lte(typically i.t Is g_enerat_ed di_rectly from_geo- age and Huttérfound ,that a parabolic distribution of mate-
metric coo_r_dlnates by using bit mgmpulatl())nio ot_)t_am_ 4 ralisa similarity solution to the governing equations in one
depomposmon of the problem, we |nt.rodl.Jce a partitioning Ofdimension, and Ref. 6 derives an analogous solution for two-
.th|s key space. Th's induces a dlstr|but|o-n qf the data S€%Yjimensional flows. This result is borne out in our simula-
€., a d.ecomposmon of Fhe problem for distributed MEeMOYions. Figure 3 shows contour plots of the flowing hump, and
computing. Wher_1 th? grid changes and new cells are IntroI':ig. 4 gives a cross section through the middle of the mass,
duged,. a red|str|but|or_1 of c;ells among the processors t%pproximately halfway down the incline. After the hump
ma'f‘Fa'” load balance is achieved by adjusting this key SPaCkaches the flat portion of the surface, flow quickly ceases.
partition. For this run, a free-flowing material was used, with an inter-

nal friction angle of 30°, and a bed friction of 20°.

F. Parallel solver

A parallel solution of the model partial differential equa- B. Realistic terrain

tions of Sec. Il is easily implemented within the infrastruc- Our efforts in this project are motivated by the desire to

ture .JUSt de;crlbed. After a decom.p_os['uon of the domain 'Ssimulate debris and avalanche flows over realistic terrain. To
obtained using the key space partitioning, we introduce one

layer of ghost cells on each processor. Each cell maintains a

. . . . Parabolic Similarity Solution
list of the keys of its neighbors. These features, together with o355

the finite range of influencef any individual cell that char- 4

acterizes a hyperbolic problem, make access to on-processor

and off-processor data for the Godunov solver relatively 4

simple. By adjusting the key space partition after grid
refinement/unrefinement stages, good load balance is main-
tained.

Phe Helght

IV. RESULTS

We demonstrate our computational solver by examining E
two test cases. The first flow is a mass moving down an
inclined plane. For this case, topography is not an issue, and

. . . 200 300 400 SO0 600 700 800 8985
the simulation probes the accuracy of the numerical solver. Dowstream Distance
The second case 'S_ flow down Volcan de C_Ol'ma n MeX|C0'FIG. 4. A cross-sectional profile of the sliding granular mass approximately
and the topographical features of the region largely detemalfway down the inclined plane.
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this end, we have selected a small set of volcano sites a
which we have detailed information about historical mass
flow events, information either from real-time reports of the
event or from geological field work and reconstruction. Our
simulations, then, will attempt to reproduce these flows with
a minimum of parameter adjustment. To this end, the model
introduced in Sec. Il is well-suited—there are only two pa-
rameters to choose: the internal and basal friction angles =
Here we report on a simulated flow at Volcan de Colima in
Mexico.

In 1991, a block and ash flow of abott1C® m® initi-
ated from the SW face of a lava dome located at the summit
We do not know the exact geometry of the failure surface.
The TITAN2D computation begins by loading topographical
data—recent digital elevation data for Colima and its sur-
roundings. For the simulation reported here, this elevation =
data are gridded by cells 6060 m, with a vertical accu-
racy that, in some locations, is oniy40 m.

The initial mass is assumed to be of a paraboloid shape
10° m® in volume, located near the top of the cone. We as-
sume internal and bed friction angles of 30 and 15, respec:
tively. This bed friction value is lower than what is often
measured for geologic materials, but the initial mass flowed
easily upon release; simulations with a more realistic bed
friction value of 25° did not flow as rapidly as desired.

The paraboloid shape exaggerates the initial inclination
of the flowing material, and makes the very early time course
of our simulation highly questionable. The flow a little later
appears more as is to be expected. The contour maps of Fi
5 show the flow simulation at two times. The map on top
shows the mass as it gathers momentum and begins to elor
gate. The map on the bottom is somewhat later; the mass he
consolidated again, as it encounters the hillock shown in the (b)
terrain map. Interestingly the flowing mass does split along a
ridge between barancas, similar to the real flow. The simuFIG. 5. The spreading of an avalanche, modeled using the thin layer system
lated flow does not channelize in quite the same way as th@_’) and terrain data from Vo'lcan de .Colima in Mexico. The cont_our maps
1991 flow did. and there are real differences between ou ive the flow depyh at tV\_lo different tlm_es. On the top, the mass is acceler-

' ting and elongating as it flows downhill. On the bottom, the mass encoun-
computations and the 1991 event. Nonetheless, the qualitgrs a small hillock and consolidates as it spreads around the obstacle. The
tive features and general characteristics match reports of thifgishes represent contours of pile height lower than those of the darker
avalanché?® shaded mass.

In Fig. 6, the grid corresponding to the flow times of Fig.

5 is shown. Here one can see the refinement of the compu-
tational grid as it follows the flowing mass. is still required. Although the Mohr—Coulomb theory at the

(Aside In this Colima simulation and many others, the heart of the physical modeling presented here requires only a
digital elevation data available incorporate the deposit of angmall number of physical parametéisternal and basal fric-
erosion from the very flows we wish to simulate. There aretion angles, these parameters are only loosely defined, and
few sites where pre- and post-flow elevation data are availthe measurements of these quantities are crude.
able. We do not know how much our simulations are im-  On the one hand, our model system is flexible enough to
pacted by such topographical inaccuragies. allow several candidate constitutive relatigméich may not
suffer the ill-posedness of the Mohr—Coulomb thedoybe
used. On the other hand, any “thin layer” model of flow, by
necessity, hides important information through the averaging

We now have in place a computational environment forprocess. An open problem is to recover some of that hidden
simulating the system of equations modeling single-phaseformation—for example, to understand the internal dynam-
geophysical mass flows, a computational environment thats of recirculation—without recourse, to a direct simulation
integrates accurate topographical data into a parallel, adapf the complete Mohr—Coulomb model equations. A related
tive mesh Godunov solver. Simulation results are qualitaquestion is the following: Does the specific constitutive
tively correct, but detailed experimental work, especiallytheory employed in such a thin layer model qualitatively
large-scale field work against which to compare simulationsgchange simulation results?

V. DISCUSSION
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from a modeling defect easily appreciated by considering
finite size computational cells. Equatio(® are derived by
depth averaging, referred to as a basal surface that conforms
(as best as possibl¢o the local topography. Computational
cells can be thought of as being locally tangent to this topog-
raphy. Thus, for two adjacent cells, the numerical fluxes
across cell edges are obtained by depth averaging in slightly
different directions. Unfortunately, this discrepancy does not
disappear as the cell sizes shrink to zero. In spite of the
shortcomings of the modeling and the computational ap-
proaches, the thin layer equations appear to give good
results—even when they may be supposed not to hold.

Another concern for applications to real systems is the
bulking of material during flow due to erosion. It is estimated
that, in large debris flows, up to half—or more—of the final
deposit may be eroded material. Thin layer models of the
kind used here have been extended to incorporate mass
changed due to erosidfi.Such a model must address how
the erosion of a bed, in turn, changes the local topography,
and how such elevation changes are fed back into the nu-
merical solver.

Finally, the Mohr—Coulomb model used here accounts
only for the deformation of solids material. Missing is the
effect of interstitial fluid—either air, in dilute flows, or water,
in muddy flows. Pore fluid may also be important in initiat-
ing mass flows. Iversdrf has taken a first step by including
fluid into a thin layer model, but more work is required be-
fore we can be confident of any approach.
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