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The monomial initial ideals of a graded polynomial ideal are in

bijection with the vertices of a convex polytope known as the

state polytope of the ideal. The Gröbner fan of the ideal is the

normal fan of its state polytope. In this paper we present a soft-

ware system called TiGERS (Toric Gröbner bases Enumeration by

Reverse Search) for computing the Gröbner fan of a toric ideal

by enumerating the edge graph of its state polytope. The key

contributions are an inexpensive algorithm for local change of

Gröbner bases in toric ideals and the identification of a reverse

search tree on the vertices of the state polytope. Using these

ideas we obtain a combinatorial Gröbner walk procedure for

toric ideals. TiGERS has been used to compute state polytopes

with over 200,000 vertices.

1. INTRODUCTIONConsider the polynomial ring k[x] := k[x1; : : : ; xn]where k is a �eld and an ideal I � k[x] that ishomogeneous with respect to a positive gradingdegree(xi) = !i 2 N nf0g:We use N to denote the set of nonnegative integers.The initial ideal of I with respect to a term order� on k[x] is the monomial idealin�(I) := hin�(f) : f 2 Ii;where in�(f) is the initial term of f 2 I with respectto �. The reduced Gr�obner basis of I with respectto � is the unique �nite set of monic polynomialsG�(I) = fg1; : : : ; gtg � I such that
(i) in�(I) = hin�(g1); : : : ; in�(gt)i, and
(ii) for i 6= j, no term of gi is divisible by in�(gj).Reduced Gr�obner bases of polynomial ideals can becomputed using Buchberger's algorithm. See [Adamsand Loustaunau 1994] or [Cox et al. 1997] for furtherdetails.Given an arbitrary weight vector c 2 R n, and apolynomial f = P k�x� 2 k[x], the initial term off with respect to c is de�ned to be the sum of all
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terms k�x� in f such that the inner product c � �is maximal. The initial ideal of I with respect toc is then inc(I) := hinc(f) : f 2 Ii. If inc(I) is amonomial ideal then c is said to be generic for I.It is known that for a term order � on k[x], thereexists a weight vector c 2 N n such that inc(I) =in�(I). In this case we say that c represents � andit can be shown that inc(I) = in�(I) if and only ifinc(g) = in�(g) for each g in G�(I).Two weight vectors c1 and c2 in R n are said tobe equivalent modulo I whenever inc1(I) = inc2(I).The set of all weight vectors that are equivalent toc 2 R n form a relatively open polyhedral cone in R n,the closure of which is called the Gr�obner cone of c.The Gr�obner cone of c is n-dimensional if and onlyif c is generic for I. The set of all equivalence classesof cost vectors �t together to form a polyhedral fanin R n called the Gr�obner fan of I [Mora and Rob-biano 1988]. Since I is homogeneous with respect toa positive grading, this fan is, in fact, complete (i.e.,covers R n) and further, each Gr�obner cone of I con-tains a strictly positive vector of R n in its relativeinterior.The Gr�obner fan of I is the normal fan of a poly-tope in R n called the state polytope of I [Bayer andMorrison 1988], denoted as St(I). Therefore, I hasonly �nitely many distinct reduced Gr�obner bases asc varies over all weight vectors in R n. (See [Macla-gan 1998] for a new proof.) The faces of St(I) arein bijection with the distinct initial ideals of I, withthe vertices of St(I) corresponding bijectively to thedistinct monomial initial ideals of I. The distinctmonomial initial ideals of I, in turn, are in bijec-tion with the distinct reduced Gr�obner bases of Iobtained from term orders. Hence, computing allmonomial initial ideals (or reduced Gr�obner basesfrom term orders) of I amounts to searching the edgegraph of St(I). Two monomial initial ideals inc1(I)and inc2(I) are said to be adjacent if the correspond-ing vertices of St(I) are adjacent or equivalently, ifthe Gr�obner cones of the generic weight vectors c1and c2 share a common facet. See [Sturmfels 1996,Chapters 1{3] for proofs of the results quoted aboveand a full discussion of Gr�obner fans and state poly-topes of graded polynomial ideals. Algorithms fortheir construction are also included.Given a matrix A = [a1 � � � an] 2 Z d�n of rank d,the toric ideal of A, denoted as IA, is the kernel of

the homomorphism k[x1; : : : ; xn] ! k[t�11 ; : : : ; t�1d ],such that xj 7! taj [Sturmfels 1996, Chapter 4]. Theideal IA is a d-dimensional prime ideal that is gener-ated by the binomials xu+ �xu� where u = u+�u�lies in the (n� d)-dimensional saturated latticekerZ(A) := fu 2 Z n : Au = 0g:Here u� = (�u)+ and u+ is de�ned as u+i = uiif ui > 0 and u+i = 0 otherwise. Hence u+; u� 2N n. The mechanics of the Buchberger algorithmensure that every reduced Gr�obner basis of IA againconsists of �nitely many binomials of the above type.We will assume that kerZ(A) \ N n = f0g, whichguarantees a positive integral vector ! in the rowspace of A. Then IA is homogeneous with respectto the grading degree(xi) = !i for i = 1; : : : ; n.Let Gc = fx�i � x�i : i = 1; : : : ; tg be the reducedGr�obner basis of IA with respect to a generic weightvector c 2 R n. (The positive term of a binomialin Gc is always assumed to be the initial term withrespect to c.) The Gr�obner cone of c is then then-dimensional polyhedral coneKc := fu 2 R n : �i � u � �i � u; i = 1; : : : ; tg;whose lineality space Kc \ �Kc is the row space ofA. The equivalence class of c is the interior �Kc ofKc; in particular, c lies in �Kc. We may assume thatc is a strictly positive integral vector since Kc is arational cone and ! 2 Kc. The weight vector c0 isequivalent to c if and only if inc0(x�i�x�i) = x�i foreach binomial x�i � x�i 2 Gc. State polytopes andGr�obner fans of toric ideals were studied in [Sturm-fels and Thomas 1997]. That paper gives severalcustom-tailored construction methods for these en-tities.The Gr�obner fan of IA has various applications:In [Sturmfels and Thomas 1997] it was used as amodel for sensitivity analysis for the family of inte-ger programs minfc �x : Ax = b; x 2 N ng as b variesin Z d and c in R n. The secondary fan of A [Billeraet al. 1990; Gel'fand et al. 1994] is a coarsening of theGr�obner fan of IA [Sturmfels 1996, Chapter 8]. Thisfan has important applications in discrete geometry.In between the secondary fan and the Gr�obner fanof A lives the hypergeometric fan of A which hasbeen used for studying A-hypergeometric di�erentialequations using Gr�obner deformations [Saito et al.2000]. Both these coarser fans can be obtained from
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the Gr�obner fan of IA. Finally, the Gr�obner walkprocedure introduced in [Collart et al. 1997] usesthe Gr�obner fan for Gr�obner basis conversions.
Example 1.1. Let A := 0@ 1 1 1 1 10 1 2 1 00 0 1 2 1

1A. For easeof exposition we associate the variables a; b; c; d; e tothe �ve columns of A and consider the toric idealIA � k[a; b; c; d; e]. This ideal yields eight distinctmonomial initial ideals. The state polytope St(IA)is an octagon in R 5 and the Gr�obner fan of IA canbe drawn in R 2 after moding out the row space of Afrom each Gr�obner cone. Figure 1 shows a schematicrepresentation of the resulting pointed Gr�obner fanof IA. Each maximal cone is labeled by the reducedGr�obner basis induced by the weight vectors in theinterior of that cone. The binomials in a reducedGr�obner basis that contribute the facet inequalitiesof its Gr�obner cone are marked with dots. Noticethat for two adjacent reduced Gr�obner bases, theircommon facet binomial x� � x� appears in both re-duced Gr�obner bases with x� as initial term in onebasis and x� as initial term in the other.In this paper we introduce a software system calledTiGERS (Toric Gr�obner bases Enumeration by Re-verse Search) for computing the Gr�obner fan of a

toric ideal. The program searches the edge graphof the state polytope St(IA) to �nd all the distinctmonomial initial ideals (reduced Gr�obner bases) ofIA. (For now on, when we refer to a reduced Gr�obnerbasis of IA we assume that it has been computed us-ing a generic weight vector and hence is indexed bya vertex of St(IA).) This search can be done in twoways: For moderate sized examples, the graph issearched by a breadth-�rst search strategy on theentire edge graph of St(IA). This approach needsto maintain and search the list of all Gr�obner basesfound. When St(IA) is too large this approach willbog down and we use a reverse search technique in-stead. This involves a depth-�rst search on a di-rected subgraph of the edge graph of St(IA) calledthe reverse search tree, and can be implemented sothat no more than one Gr�obner basis ever needsto be stored. In Section 2 we give an overview ofthe main algorithm in TiGERS and describe the re-verse search procedure. These ideas allow combina-torial Gr�obner walks in toric ideals. For each re-duced Gr�obner basis found, the algorithm does twomain local computations. The �rst is to determineall the facets of that Gr�obner cone and the secondis to determine an adjacent Gr�obner basis to thecurrent one. In Section 3 we give an algorithm forlocal change of Gr�obner bases in toric ideals based
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FIGURE 1. A schematic of the Gr�obner fan in Example 1.1.
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on [Collart et al. 1997]. Unlike usual local change al-gorithms, our procedure does not require any weightvectors to be computed. We then discuss some spe-cial tricks to �nd the facets of a �xed Gr�obner conein the case of toric ideals. Section 4 reports compu-tational experience with TiGERS.
2. THE MAIN ALGORITHM IN TiGERSLet Gc = fx�i � x�i : i = 1; : : : ; tgbe the reduced Gr�obner basis of IA with respect tothe generic weight vector c 2 R n. An inequality�k � u � �k � u, with k 2 f1; : : : ; tg, is irredundantfor the Gr�obner coneKc = fu 2 R n : �i � u � �i � u for i = 1; : : : ; tgif the relaxed cone fu 2 R n : �i � u � �i � u for i =1; : : : ; t; i 6= kg properly containsKc. If �k �u � �k �uis irredundant for Kc thenKc \ fu 2 R n : �k � u = �k � ugis called a facet of Kc and x�k �x�k is a facet bino-mial of Gc.
Lemma 2.1 [Sturmfels and Thomas 1997]. The bi-nomial x�k � x�k 2 Gc is a facet binomial of Gc ifand only if the linear system f�i � u > �i � u : i =1; : : : ; t; i 6= k; u 2 R ng \ f�k � u > �k � u : u 2 R ngis feasible.Therefore, all facets of the Gr�obner cone Kc can befound by checking the feasibility of t systems of lin-ear inequalities, which in turn can be done by linearprogramming. In practice this can be computation-ally expensive when t is large and we discuss certainspeed-ups in Section 3.2.Suppose x� � x� is a facet binomial of Gc suchthat inc(x� � x�) = x� and Gc0 be adjacent to Gcwith inc0(x� � x�) = x�. In order to compute theedge graph of St(IA), we require a subroutine tomake a local change of reduced Gr�obner bases fromGc to Gc0 through the facet given by x� � x�. Weuse ip(Gc; x� � x�) to denote both the subroutinethat yields Gc0 from Gc and the reduced Gr�obnerbasis Gc0 that results from the \ip". In Section3.1 we describe the precise local change algorithmin TiGERS.

Remark 2.2. If x��x� lies in the reduced Gr�obner ba-sis of a toric ideal, then the supports of � and � aredisjoint. This guarantees that each facet in a toricGr�obner cone corresponds to precisely one binomialin the corresponding Gr�obner basis. However, thisis not true for general homogeneous binomial ideals.Consider J = hb3d� b2ce; a2c� b2e; bcd � c2ei. Un-der the reverse lexicographic order a � c � d � e �b, its reduced Gr�obner basis is G = fceb2 � db3;c2e � cdb; a2db3 � e2b4; a2c � eb2g. The inequal-ity u3 + u5 � u2 + u4 is a facet inequality of theGr�obner cone of G. For ! in the relative interior ofthis facet, we get both in!(ceb2 � db3) = ceb2 � db3and in!(c2e� cdb) = c2e� cdb.
Algorithm 2.3 (Enumerating the edge graph of St(IA) via

breadth-first search).

Input: Any reduced Gr�obner basis G0 of IA.
Output: All reduced Gr�obner bases of IA (all verticesof St(IA)).Todo := [G0];Verts := [ ];While(Todo not empty) doG := �rst-element-in(Todo);Remove G from Todo;add G to Verts;determine list L of facet binomials of Gfor each x� � x� in L doCompute G0 = ip(G; x� � x�)If G0 62 Todo [ Verts then add G0 to Todo;EndEndoutput VertsThis algorithm works well in practice but does havethe drawback that all vertices must be stored, andthat every time a vertex is visited it must be checkedagainst all other vertices seen thus far in order to de-termine if it is indeed a new vertex. The storage andsearch costs involved in this procedure can becomeprohibitive as the size of St(IA) increases. As anexample consider

A := 0@ 3 2 2 1 1 0 0 0 00 1 0 2 0 3 2 1 00 0 1 0 2 0 1 2 3
1A :

The ideal IA involves only nine variables and mostreduced Gr�obner bases of this ideal have fewer than36 elements each of degree no greater than seven.
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Yet, St(IA) has 54;828 vertices and our breadth �rstsearch algorithm was exhausting a personal com-puter with 64 megabytes of memory before gettingthrough about 13;000 vertices.To push this calculation through we resorted tothe reverse enumeration paradigm of Avis and Fu-kuda [1992], a memoryless algorithm that runs inlinear time in the size of the output. It was origi-nally formulated for enumerating the vertices of theedge graphs of polytopes. Suppose G is the edgegraph of a polytope P and c a generic cost vectorsuch that no two vertices of P have the same costvalue c �x. Let v0 be the unique vertex of P at whichc�x is maximized. We �x a pivot rule on the verticesof P that assigns a unique neighbor to a vertex vfrom among all neighboring vertices of v with highercost value than v. Together, these create a directedgraph on the vertices of P with a unique sink at v0and out degree one for every other vertex. The basicidea in the Avis-Fukuda algorithm is to start at v0and do a depth �rst reverse search on this directedsubgraph. No intermediate storage of vertices is re-quired during the search since a vertex seen oncewill not be encountered again as one traverses downa branch in the directed tree. See Algorithm 2.8 fordetails. This algorithm has been used with greatsuccess in several applications such as enumeratingall vertices of a polytope, all regular triangulationsof a point con�guration [Masada et al. 1996], all cellsin a hyperplane arrangement and all lattice pointsin a polytope [Sturmfels 1996, Algorithm 5.7].We say that a polynomial f 2 k[x] is marked bya term order � on k[x], if the initial term of f withrespect to � has been distinguished from among allterms in f . A polynomial f that has been markedwith respect to � is said to be mismarked with re-spect to �0, if in�(f) 6= in�0(f).
Lemma 2.4. Let G� be the reduced Gr�obner basis ofIA with respect to the term order �. Then for aterm order �0 6= �, the reduced Gr�obner basis G�0equals G� if and only if no facet binomial of G� ismismarked with respect to �0.
Proof. Suppose no facet binomial of G� is mismarkedwith respect to �0 and let c0 be a weight vector fromthe interior of the Gr�obner cone K�0 . Then for eachfacet binomial x� � x� in G�, we have c0 � � > c0 ��, which implies that c0 lies in the interior of the

Gr�obner cone K�. Hence K�0 = K� which impliesthat G� = G�0 . Conversely, if G� = G�0 , no binomialin G� is mismarked with respect to �0. �
Definition 2.5. For a given term order � we de�nethe reverse search tree T�(IA) as follows:The vertices of T�(IA) are the vertices of St(IA) (i.e.,the various reduced Gr�obner bases of IA arising fromterm orders). For two reduced Gr�obner bases Giand Gj , [Gi;Gj ] directed from Gi to Gj is an edge ofT�(IA) if Gj is obtained from Gi by the subroutineip(Gi; x� � x�) where x� � x� is the unique facetbinomial of Gi whose leading term is lexicographi-cally maximal among all facet binomials of Gi thatare mismarked with respect to �.
Theorem 2.6. The reverse search tree T�(IA) is anacyclic directed graph with a unique sink .
Proof. By Lemma 2.4 each reduced Gr�obner basis Gof IA (vertex of St(IA)) except G� has at least onemismarked facet binomial with respect to �. By thede�nition of T�(IA), each such G has a unique adja-cent reduced Gr�obner basis given by ip(G; x��x�)where x��x� is the unique facet binomial of G whoseleading term is lexicographically maximal among allmismarked facet binomials of G. Therefore T�(IA)is a directed graph such that the out-degree of G�in T�(IA) is zero and of all other reduced Gr�obnerbases is one.Suppose there was a cycle C = (v1; : : : ; vl) oflength l in T�(IA) where vertex vi corresponds tothe reduced Gr�obner basis Gi of IA and vl+1 = v1and Gl+1 = G1. If x�i � x�i is the common facetbinomial of Gi and Gi+1 with x�i the leading term inGi and x�i the leading term in Gi+1 for i = 1; : : : ; l,then vi+1� vi = �i��i for i = 1; : : : ; l. Since C is acycle in T�(IA) we get (�1 � �1) + (�2 � �2) + � � �+(�l � �l) = 0. However, each binomial x�i � x�i fori = 1; : : : ; l is mismarked with respect to � whichimplies that for a weight vector c representing � wehave, c � (�i � �i) > 0. This leads to the contradic-tion 0 = c �Pli=1(�i��i) =Pli=1 c � (�i��i) > 0. �
Corollary 2.7. From any reduced Gr�obner basis Gc ofIA there is a unique path in the reverse search treeT�(IA) to the sink G�.This implies that toric ideals admit combinatorialGr�obner walks that can be used for converting onereduced Gr�obner basis of IA into another. Given any
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FIGURE 2. T�(IA) with A as in Example 1.1 using pure lex for �. Mismarked facet binomials are underlined andarrows are labeled by the binomials which are being ipped.reduced Gr�obner basis G of IA and any term order�, we can move from G to G� by tracing the uniquepath in the reverse search tree T�(IA) from G to G�.Unlike in the usual Gr�obner walk procedure [Col-lart et al. 1997; Amrhein et al. 1997], to convert oneGr�obner basis into another there are no explicit costvectors involved in these walks. These combinato-rial walks also have the advantage that there is nodanger of walking through a lower dimensional faceof a Gr�obner cone, thus eliminating several numer-ical considerations that otherwise have to be dealtwith. The tradeo� is that at every vertex of the statepolytope, all facets of the current Gr�obner cone haveto be computed, which can be highly nontrivial forgeneral ideals, but is relatively easy for toric ideals.
Algorithm 2.8 (Enumerating the edge graph of St(IA) via

reverse search).

Input: A reduced Gr�obner basis R� of IA and itsterm order �.
Output: All reduced Gr�obner bases of IA (all verticesof St(IA)).

G := R�; j := 0;L := list of facet binomials of G marked by �output Grepeatwhile j < jLj doj := j + 1G0 := ip(G; L[j]);if [G0,G] in T�(IA) thenG:= G0; j := 0;L := list of facets of G marked by �output GendifendwhileIf G 6= R� thenG0 := unique element such that [G,G0] in T�(IA);j := 0; L := list of facets of G0 marked by �repeat j := j + 1 until the common facet of Gand G0 is the j-th facet of L.G := G0endifuntil G = R� and j = jLj.
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3. LOCAL COMPUTATIONSNow that we have given an overview of the algorithmin TiGERS for computing the Gr�obner fan of a toricideal, we focus on the computations that have to bemade at a �xed reduced Gr�obner basis encounteredwhile searching the edge graph of St(IA). The twomain issues here are how to compute a Gr�obner ba-sis that shares a prescribed facet binomial with thecurrent basis, and how to compute all the facets ofa toric Gr�obner cone.
3A. Local Change of Gröbner Bases in Toric IdealsThe following algorithm is a specialization of [Col-lart et al. 1997] and [Sturmfels 1996, Subroutine 3.7].
Algorithm 3.1 (Local change of reduced Gröbner bases in

IA).

Input: (i) A reduced Gr�obner basis G = fxak � xbk :k = 1; : : : ; tg of IA. (The weight vector inducing Gis generic and the underlined terms are the leadingterms.)
(ii) A prescribed facet binomial xai � xbi of G.
Output: The reduced Gr�obner basis adjacent to G inwhich xbi � xai is a facet binomial.
a. Old := fxai � xbig [ fxaj : xaj � xbj 2 G; j 6= ig.
b. Let Temp be obtained from Old by switching themarking on the binomial in Old, that is, Temp :=fxbi � xaig [ fxaj : xaj 2 Oldg.
c. Compute the reduced Gr�obner basis of Temp withrespect to the new marking. Store the (marked)result in New.
d. G0 := fxbi � xaig.
e. For each monomial h in New, do:Reduce h with G to obtain the monomial h0.Add h� h0 to G0 with h marked as the leadingterm.
f. Auto-reduce G0 to get Gnew.Then Gnew is the reduced Gr�obner basis adjacentto G such that xai � xbi is a facet binomial in Gand xbi � xai is a facet binomial in Gnew.
Proof of of correctness. LetK andKnew be the Gr�obnercones of G and Gnew respectively. The linear span ofthe common facet of K and Knew is fu 2 R n : ai �u =bi � ug. Let c1 2 �K, c2 2 �Knew and let c be a vectorin the relative interior of K \ Knew. By de�nition,Old = inc(G) := finc(f) : f 2 Gg and with respect tothe markings speci�ed in Step a, Old is the reduced

Gr�obner basis of inc(IA) with respect to c1. SinceTemp is obtained from Old by simply reversing themarking on the facet binomial xai � xbi , Temp is agenerating set for inc(IA).We �rst show that the set New computed in Step c,using Temp as input, is the reduced Gr�obner basisof inc(IA) with respect to c2. The marked monomi-als in Temp are the leading terms with respect to c2of each polynomial in Temp. The nontrivial S-paircomputations in Step c are those between a mono-mial xaj , j 6= i, and the binomial xbi � xai . Thisresults in a monomial which either reduces to zerowith respect to the current partial Gr�obner basis orreduces to a monomial that gets added to the cur-rent partial Gr�obner basis. There is no point duringthis process at which an unmarked binomial is pro-duced that is required to be marked. No binomialsare produced during such an S-pair reduction either.Hence all subsequent S-pair computations are alsoof the above nature and so in fact, the set New is asclaimed above and consists of the binomial xbi �xaialong with monomials some of which were possiblyproduced during the Buchberger process. Step e liftsNew to the set of marked binomials G0, the leadingterms of whose elements are precisely the minimalgenerators of inc2(inc(IA)) = inc+"c2(IA) for somesmall " > 0. However, c + "c2 lies in the interiorof Knew and hence, inc2(inc(IA)) = inc2(IA). HenceG0 is a minimal Gr�obner basis of IA with respect toc2. Step f then auto-reduces this minimal Gr�obnerbasis to the reduced Gr�obner basis Gnew of IA withrespect to c2. �The most important computational advantage of theabove local change algorithm is that it does notrequire the computation of a weight vector in theinterior of Knew in order to compute the reducedGr�obner basis Gnew. This is possible due to the bino-mial/monomial nature of all intermediate polynomi-als produced during the algorithm. The weight vec-tors are carried implicitly in the markings of theseelements. This observation leads to considerablespeed-up of the procedure.
Remark 3.2. As in the proof of Algorithm 3.1, let c1 2�K and c2 2 �Knew. Then notice that inc1(IA) is theinitial ideal ofWai�bi := hxai�xbii+hxaj : i 6= j; xajminimal generator of inc1(IA)i with respect to themarking xai > xbi while inc2(IA) is the initial ideal
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of Wai�bi with respect to xbi > xai . See [Maclaganand Thomas 1999] for a generalization of this obser-vation to the theory of A-graded ideals [Sturmfels1996, Chapter 10] and the toric Hilbert scheme.
Example 3.3. For

A := 0@ 1 1 1 1 10 1 2 1 00 0 1 2 1
1A ;

consider the adjacent reduced Gr�obner bases G1 andG2 that share the facet binomial a2d � be2. Thebasis G1 = fbd � ce; a2d � be2; b2e � a2cg has facetbinomials a2d� be2 and b2e�a2c and G2 = fbd� ce;be2 � a2d; a2d2 � ce3; b2e� a2cg has facet binomialsa2d2 � ce3 and be2 � a2d. We use Algorithm 3.1 tocompute G2 from G1.
Step a. Old := fa2d� be2; bd; b2eg.
Step b. Temp := fbe2 � a2d; bd; b2eg.
Step c. (i) S-pair(be2 � a2d; bd) = a2d2. Temp =fbe2 � a2d; bd; b2e; a2d2g. (ii) S-pair(be2 � a2d;b2e) = a2bd! 0. (iii) S-pair(be2�a2d; a2d2)! 0.Therefore New = fbe2 � a2d; bd; b2e; a2d2g.
Step d. G0 := fbe2 � a2dg.
Step e. bd reduces modulo G1 to ce. Therefore we addbd� ce to G0.b2e reduces to a2c modulo G1. Therefore we addb2e� a2c to G0.a2d2 = d(a2d � be2) + e2(bd � ce) + ce3. Thereforewe add a2d2 � ce3 to G0.Hence G0 = fbe2�a2d; bd�ce; b2e�a2c; a2d2�ce3g,with the positive terms as the leading terms.
Step f. Gnew = fbe2 � a2d; bd � ce; b2e � a2c; a2d2 �ce3g.
3B. Finding the Facets of a Toric Gröbner ConeFor a general ideal, the Gr�obner cone of one of itsreduced Gr�obner bases is described by a large setof inequalities many of which are redundant. Evenfor a toric ideal, empirical evidence shows that thenumber of facet binomials of a reduced Gr�obner ba-sis may be much smaller than the cardinality ofthe Gr�obner basis. In fact, it was conjectured in[Sturmfels and Thomas 1997] that there is a func-tion ' : N ! N such that the number of facet bino-mials of a reduced Gr�obner basis of IA of codimen-sion k is bounded above by '(k). As a special case,it was conjectured in [Sturmfels and Thomas 1997]

that '(3) = 4 based on empirical evidence with ex-isting codes at the time. Recently, Serkan Hostenand Diane Maclagan have found counterexamples tothis second conjecture using TiGERS. Lower boundsfor ' are given in [Sturmfels and Thomas 1997], al-though no good upper bound is known for the num-ber of facets of a toric Gr�obner cone. Hence, identi-fying the facet binomials in a reduced Gr�obner basiscan become a computationally expensive subroutineduring the computation of the Gr�obner fan. In thissection we discuss several ways to �nd the facet bi-nomials of a Gr�obner cone in the case of a toric ideal.A �rst algorithm to compute the facets of a toricGr�obner cone follows from Lemma 2.1. In practicethis can be an expensive procedure since we need tosolve as many linear programs as the cardinality ofG, and most binomials in G are not facet binomials.
Algorithm 3.4 (Finding the facet binomials of a reduced

Gröbner basis of IA).

Input: A reduced Gr�obner basis G = fxai � xbi : i =1; : : : ; tg of IA.
Output: The facet binomials of G.Facets := ?.For each binomial xai � xbi in G do:If ai�bi is not in the cone generated by the vectorsfaj�bj : xaj�xbj 2 G; i 6= jg, set Facets := Facets[ fxai � xbig.Output Facets.Algorithm 3.4 is dual to the algorithm suggestedby Lemma 2.1 since ai � u � bi � u is a facet in-equality of the Gr�obner cone K of G if and onlyif ai � bi is an extreme ray (essential generator) ofK� := fv 2 R n : v �u � 0; 8u 2 Kg the polar cone ofK. The vector ai� bi is an extreme ray of K� if andonly if ai � bi cannot be expressed as a nonnegativelinear combination of the vectors aj�bj, i 6= j wherexaj �xbj 2 G. Algorithm 3.4 can be implemented bysolving one linear program per binomial in G or by�nding the generators of the cone K� using a con-vex hull package. We also obtain an easy su�cientcondition for a binomial in G to be a facet binomial.
Lemma 3.5. Let xai � xbi be an element of a reducedGr�obner basis G of IA � k[x1; : : : ; xn] and xk bea variable in k[x1; : : : ; xn] such that xk divides theleading term xai (respectively , the trailing term xbi)of xai�xbi but does not divide the leading terms (re-
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spectively , trailing terms) of any other binomial inG. Then xai � xbi is a facet binomial of G.
Proof. If k is in the support of ai (respectively bi) butnot in the support of aj (respectively bj) for j 6= i,j = 1; : : : ; t, then ai � bi cannot be a nonnegativelinear combination of aj � bj for j 6= i, j = 1; : : : ; t.Hence ai � bi is an extreme ray of the cone polar tothe Gr�obner cone of G. �We now describe an algorithm to �nd a superset ofthe facet binomials of a �xed reduced Gr�obner basisof IA that does not require linear programming. Ouridea comes from results in [Maclagan and Thomas1999] (compare Remark 3.2).
Theorem 3.6 [Maclagan and Thomas 1999]. Let Gc bethe reduced Gr�obner basis of IA with respect to thegeneric weight vector c 2 R n. Then xa�xb 2 Gc is afacet binomial of Gc only if inc(IA) is the initial idealofWa�b := hxa�xbi+hxc : xc is a minimal generatorof inc(IA); xc 6= xai with respect to xa > xb.The exact result in [Maclagan and Thomas 1999] isthat if xa�xb 2 Gc and inc(IA) is the initial ideal ofWa�b with respect to xa > xb, then the initial idealM of Wa�b with respect to xb > xa has the sameA-graded Hilbert function as inc(IA). The latter isa necessary condition for M to be an initial ideal ofIA. For M to be an adjacent initial ideal to inc(IA),you need the additional geometric requirement thatM and inc(IA) share the facet given by xa � xb.Hence the binomials in Gc that satisfy the conditionin Theorem 3.6 form a superset of the facet binomi-als of Gc. Once this superset has been found, we uselinear programming as before to identify the truefacet binomials.
Algorithm 3.7 (Finding a superset of the facet binomials

of a reduced Gröbner basis of IA).

Input: A reduced Gr�obner basis Gc of IA.
Output: A superset SS of the facet binomials of Gc.SS := ?For xa � xb 2 Gc, do:SetWa�b := hxa�xbi+hxc : xc minimal generatorof inc(IA); xc 6= xai.If inc(IA) is the initial ideal of Wa�b with respectto xa > xb, set SS := SS [ fxa � xbg.Output SS.

The computation of the reduced Gr�obner basis andhence of the initial ideal of Wa�b with respect toxa > xb proceeds exactly as in Algorithm 3.1 and ispossible because of the speci�c monomial/binomialstructure of Wa�b. Surprisingly, the use of Algo-rithm 3.7 can often result in a 50% speed-up overusing linear programming alone.
4. COMPUTATIONAL EXPERIENCETiGERS, the program that implements the algo-rithms described in this paper, is written in C andis available from http://www.math.washington.edu/~thomas/programs.html. In this section we describesome implementation issues, optimizations and tim-ings. All timings in Table 1 were obtained by run-ning TiGERS on a dual processor Pentium 450 with1GB of RAM. With each example problem, we listthe following information about its state polytope:d its dimension, f0 the number of vertices, f1 thenumber of edges, and td the tree depth|the longestchain in the reverse search tree. We also listmn, thecardinality of the largest Gr�obner basis computed,mf , the largest number of facets in any Gr�obner ba-sis, andmd, the highest degree of a binomial appear-ing in any of the Gr�obner bases. Timings are thengiven both for reverse search (RS) and exhaustivesearch (ES). Timings computed using Algorithm 3.7to cut down on the use of linear programming aregiven in parentheses.We �rst give a brief description of the examplesin Table 1. The �rst four examples are unrelated:In Pent the matrix is

A = 0@ 1 1 1 1 10 1 2 1 00 0 1 2 1
1A ;

the convex hull of whose columns is a pentagon inthe plane. The matrix for V23 is
A = 0@ 2 1 0 1 0 00 1 2 1 1 00 0 0 0 1 2

1A ;
whose toric variety is the second Veronese embed-ding of P 2 . The name PV33 refers to the pinchedVeronese surface, for which

A = 0@ 3 2 2 1 1 0 0 0 00 1 0 2 0 3 2 1 00 0 1 0 2 0 1 2 3
1A :
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The name gti stands for the generic toric ideal from[Peeva and Sturmfels 1998, Example 4.5], for whichA = (20 24 25 31). Examples K5 and K6 are spe-ci�c instances of Kn, the complete graph on n ver-tices. The matrix associated to Kn is the node-edge incidence matrix of the graph [Sturmfels 1996,Chapter 9]. The matrix An := (1 2 3 : : : n) and theGr�obner basis elements of the toric ideal IAn corre-spond to primitive partition identities with largestpart n (see [Sturmfels 1996, Chapter 6] for details).The name Dr�s refers to the (r+s)�rs node-edgeincidence matrix of an undirected bipartite graphwith r nodes in one vertex class and s nodes in theother. The last example, HM, is explained at theend of this section.The exhaustive search approach required a largeamount of memory| in the A9 example, for in-stance, it was using about 600MB by the end. Inaddition to this, the amount of time needed to deter-mine if a vertex has been seen increases as the num-ber of vertices found increases. Even when memorysize is not an issue we found that the reverse searchapproach could end up being faster than the exhaus-tive search (see the A9 example).On the other hand, the reverse search implemen-tation requires us to traverse every edge and then

check if it belonged to the reverse search tree by�nding the down edge for the new vertex. If the edgeused belongs to the reverse search tree, we keep thenew vertex, otherwise we discard it knowing that ithas been seen before or will be seen again. Thusinstead of a large list search we need only �nd the�rst mismarked facet binomial to decide whether avertex should be output. Furthermore, at each nodewe keep, we must recompute its facet list every timewe pass through it. By comparison the exhaustivesearch algorithm required us to �nd facets only onceper vertex. One trick that we used to mitigate thisre-computation of facets was to save vertices andfacet information every time we went up in the tree,so as to avoid recomputing the facets already vis-ited. While this approach means that we are nolonger storing just one Gr�obner basis, the amount ofstorage required is still quite small, being boundedby the tree depth. In all the examples listed, thereverse search (with caching) ran in under 750KB.The last line on the table, HM, is Hosten andMaclagan's original counterexample, found using Ti-GERS, to the conjecture that the maximum valencyof a vertex in the state polytope of a corank threematrix is four [Sturmfels and Thomas 1997]. It cor-responds to A = (247 248 345 15).
Example d f0 f1 td mn mf md RS ESPent 2 8 8 4 4 2 4 0.00 0.00V23 3 29 45 6 7 4 3 0.02 0.02 (0.01)gti 3 288 467 30 18 4 31 2.30 (1.27) 1.50 (0.76)PV33 6 54828 190253 48 36 12 7 (4343.31) (3731.24)K5 5 102 255 14 11 5 3 0.36 (0.32) 0.28 (0.24)K6 9 195720 56 37 14 4 110111.68 (50662.29)A4 3 20 31 6 8 4 4 0.01 (0.01) 0.01 (0.01)A5 4 114 249 11 14 8 5 0.35 (0.28) 0.25 (0.16)A6 5 488 1394 18 20 12 6 6.78 (4.39) 4.33 (2.37)A7 6 4073 14800 28 29 18 7 239.80 (139.40) 159.96 (82.01)A8 7 25334 111558 41 38 24 8 5010.37 (2732.71) 3624 (1867.85)A9 8 206444 1080981 58 49 32 9 127978.46 (67565.22) (71404.29)A10 9 > 578435D2�2 3 108 222 9 10 6 3 0.24 (0.20) 0.23 (0.16)D2�3 5 4488 14184 19 20 8 3 171.74 (97.48) 124.06 (71.02)D3�3 8 > 257057HM 3 904 1546 52 40 5 345 96.72 (35.80) 76.08 (21.53)
TABLE 1. TiGERS performance. The middle columns give the characteristics of the state polytope (see beginningof Section 4) and the two rightmost columns give timings, in seconds, for the reverse search and exhaustive search.
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ELECTRONIC AVAILABILITYTiGERS, the program that implements the algo-rithms described in this paper, is written in C andis available from http://www.math.washington.edu/~thomas/programs.html.
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