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COMPUTING GROUND STATES OF SPIN-1 BOSE-EINSTEIN
CONDENSATES BY THE NORMALIZED GRADIENT FLOW

WEIZHU BAO ∗ AND FONG YIN LIM †

Abstract. In this paper, we propose an efficient and accurate numerical method for computing
the ground state of spin-1 Bose-Einstein condensates (BEC) by using the normalized gradient flow or
imaginary time method. The key idea is to find a third projection or normalization condition based
on the relation between the chemical potentials so that the three projection parameters used in the
projection step of the normalized gradient flow are uniquely determined by this condition as well as
the other two physical conditions given by the conservation of total mass and total magnetization.
This allows us to successfully extend the most popular and powerful normalized gradient flow or
imaginary time method for computing the ground state of single component BEC to compute the
ground state of spin-1 BEC. An efficient and accurate discretization scheme, the backward-forward
Euler sine-pseudospectral method (BFSP), is proposed to discretize the normalized gradient flow.
Extensive numerical results on ground states of spin-1 BEC with ferromagnetic/antiferromagnetic in-
teraction and harmonic/optical lattice potential in one/three dimensions are reported to demonstrate
the efficiency of our new numerical method.

Key words. Spin-1 Bose-Einstein condensate, coupled Gross-Pitaevskii equations, ground state,
normalized gradient flow, backward-forward Euler sine-pseudospectral method
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1. Introduction. Research in low temperature dilute atomic quantum gases
remains active for more than ten years after the experimental realizations of Bose-
Einstein condensation (BEC) in alkali atomic gases in 1995 [2, 12, 17]. Extensive the-
oretical and experimental studies have been carried out to investigate various novel
phenomena of the condensates. In earlier BEC experiments, the atoms were confined
in magnetic trap [2, 12, 17], in which the spin degrees of freedom is frozen. The
particles are described by a scalar model and the wavefunction of the particles is gov-
erned by the Gross-Pitaevskii equation (GPE) within the mean-field approximation
[16, 11, 23]. In recent years, experimental achievement of spin-1 and spin-2 conden-
sates [10, 18, 21, 26, 28] offers new regimes to study various quantum phenomena
that are generally absent in a single component condensate. The spinor condensate
is achieved experimentally when an optical trap, instead of a magnetic trap, is used
to provide equal confinement for all hyperfine states.

The theoretical studies of spinor condensate have been carried out in several
papers since the achievement of it in experiments [19, 20, 22, 27]. In contrast to single
component condensate, a spin-F (F ∈ N) condensate is described by a generalized
coupled GPEs which consists of 2F + 1 equations, each governing one of the 2F + 1
hyperfine states (mF = −F,−F+1, ..., F−1, F ) within the mean-field approximation.
For a spin-1 condensate, at temperature much lower than the critical temperature Tc,
the three-components wavefunction Ψ(x, t) = (ψ1(x, t), ψ0(x, t), ψ−1(x, t)

T are well
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described by the following coupled GPEs [27, 29, 30, 31],

i~ ∂tψ1(x, t) =

[

− ~
2

2m
∇2 + V (x) + (c0 + c2)

(

|ψ1|2 + |ψ0|2
)

+ (c0 − c2)|ψ−1|2
]

ψ1

+c2 ψ̄−1 ψ
2
0 ,(1.1)

i~ ∂tψ0(x, t) =

[

− ~
2

2m
∇2 + V (x) + (c0 + c2)

(

|ψ1|2 + |ψ−1|2
)

+ c0|ψ0|2
]

ψ0

+2c2 ψ−1 ψ̄0 ψ1,(1.2)

i~ ∂tψ−1(x, t) =

[

− ~
2

2m
∇2 + V (x) + (c0 + c2)

(

|ψ−1|2 + |ψ0|2
)

+ (c0 − c2)|ψ1|2
]

ψ−1

+c2 ψ
2
0 ψ̄1.(1.3)

Here, x = (x, y, z)T is the Cartesian coordinate vector, t is time, ~ is the Planck
constant, m is the atomic mass, and V (x) is the external trapping potential. When
a harmonic trap potential is considered,

(1.4) V (x) =
m

2
(ω2

xx
2 + ω2

yy
2 + ω2

zz
2),

with ωx, ωy and ωz being the trap frequencies in the x-, y- and z-direction, respec-
tively. f̄ and Re(f) denote the conjugate and real part of the function f , respectively.

There are two atomic collision terms, c0 = 4π~2

3m (a0+2a2) and c2 = 4π~2

3m (a2− a0), ex-
pressed in terms of the s-wave scattering lengths, a0 and a2, for scattering channel of
total hyperfine spin 0 (anti-parallel spin collision) and spin 2 (parallel spin collision),
respectively. The usual mean-field interaction, c0, is positive for repulsive interaction
and negative for attractive interaction. The spin-exchange interaction, c2, is posi-
tive for antiferromagnetic interaction and negative for ferromagnetic interaction. The
wave function is normalized according to

(1.5) ‖Ψ‖2 :=
∫

R3

|Ψ(x, t)|2 dx =

∫

R3

1
∑

l=−1

|ψl(x, t)|2 dx :=

1
∑

l=−1

‖ψl‖2 = N,

where N is the total number of particles in the condensate.
By introducing the dimensionless variables: t→ t/ωm with ωm = min{ωx, ωy, ωz},

x → x as with as =
√

~

mωm
, ψl →

√
Nψl/a

3/2
s (l = −1, 0, 1), we get the dimensionless

coupled GPEs from (1.1)-(1.3) as [30, 32, 9]:

i∂tψ1(x, t) =

[

−1

2
∇2 + V (x) + (βn + βs)

(

|ψ1|2 + |ψ0|2
)

+ (βn − βs)|ψ−1|2
]

ψ1

+βs ψ̄−1 ψ
2
0 ,(1.6)

i∂tψ0(x, t) =

[

−1

2
∇2 + V (x) + (βn + βs)

(

|ψ1|2 + |ψ−1|2
)

+ βn|ψ0|2
]

ψ0

+2βs ψ−1 ψ̄0 ψ1,(1.7)

i∂tψ−1(x, t) =

[

−1

2
∇2 + V (x) + (βn + βs)

(

|ψ−1|2 + |ψ0|2
)

+ (βn − βs)|ψ1|2
]

ψ−1

+βs ψ
2
0 ψ̄1;(1.8)

where βn = N c0
a3
s~ωm

= 4πN(a0+2a2)
3as

, βs = N c2
a3
s~ωm

= 4πN(a2−a0)
3as

and V (x) = 1
2 (γ

2
xx

2

+γ2yy
2 + γ2zz

2) with γx = ωx

ωm
, γy =

ωy

ωm
and γz = ωz

ωm
. Similar as those in single
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component BEC [24, 8, 3, 6], in a disk-shaped condensation, i.e. ωx ≈ ωy and ωz ≫ ωx

(⇐⇒ γx = 1, γy ≈ 1 and γz ≫ 1 with ωm = ωx), the 3D coupled GPEs (1.6)-(1.8) can
be reduced to a 2D coupled GPEs; and in a cigar-shaped condensation, i.e. ωy ≫ ωx

and ωz ≫ ωx (⇐⇒ γx = 1, γy ≫ 1 and γz ≫ 1 with ωm = ωx), the 3D coupled
GPEs (1.6)-(1.8) can be reduced to a 1D coupled GPEs. Thus here we consider the
dimensionless coupled GPEs in d-dimensions (d = 1, 2, 3):

i∂tψ1(x, t) =

[

−1

2
∇2 + V (x) + (βn + βs)

(

|ψ1|2 + |ψ0|2
)

+ (βn − βs)|ψ−1|2
]

ψ1

+βs ψ̄−1 ψ
2
0 ,(1.9)

i∂tψ0(x, t) =

[

−1

2
∇2 + V (x) + (βn + βs)

(

|ψ1|2 + |ψ−1|2
)

+ βn|ψ0|2
]

ψ0

+2βs ψ−1 ψ̄0 ψ1,(1.10)

i∂tψ−1(x, t) =

[

−1

2
∇2 + V (x) + (βn + βs)

(

|ψ−1|2 + |ψ0|2
)

+ (βn − βs)|ψ1|2
]

ψ−1

+βs ψ
2
0 ψ̄1.(1.11)

In the equations above, V (x) is a real-valued potential whose shape is determined
by the type of system under investigation, βn ∝ N and βs ∝ N correspond to the
dimensionless mean-field (spin-independent) and spin-exchange interaction, respec-
tively. Three important invariants of (1.9)-(1.11) are the mass (or normalization) of
the wave function
(1.12)

N(Ψ(·, t)) := ‖Ψ(·, t)‖2 :=
∫

Rd

1
∑

l=−1

|ψl(x, t)|2 dx ≡ N(Ψ(·, 0)) = 1, t ≥ 0,

the magnetization (with −1 ≤M ≤ 1)

(1.13) M(Ψ(·, t)) :=
∫

Rd

[

|ψ1(x, t)|2 − |ψ−1(x, t)|2
]

dx ≡M(Ψ(·, 0)) =M

and the energy per particle

E(Ψ(·, t)) =
∫

Rd

{ 1
∑

l=−1

(

1

2
|∇ψl|2 + V (x)|ψl|2

)

+ (βn − βs)|ψ1|2|ψ−1|2

+
βn
2
|ψ0|4 +

βn + βs
2

[

|ψ1|4 + |ψ−1|4 + 2|ψ0|2
(

|ψ1|2 + |ψ−1|2
)

]

+βs
(

ψ̄−1ψ
2
0ψ̄1 + ψ−1ψ̄

2
0ψ1

)

}

dx ≡ E(Ψ(·, 0)), t ≥ 0.(1.14)

A fundamental problem in studying BEC is to find the condensate stationary
states Φ(x), in particular the ground state which is the lowest energy stationary
state. In other words, the ground state, Φg(x), is obtained from the minimization of
the energy functional subject to the conservation of total mass and magnetization:

Find (Φg ∈ S) such that

(1.15) Eg := E (Φg) = min
Φ∈S

E (Φ) ,
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where the nonconvex set S is defined as
(1.16)

S =

{

Φ = (φ1, φ0, φ−1)
T | ‖Φ‖ = 1,

∫

Rd

[

|φ1(x)|2 − |φ−1(x)|2
]

=M, E(Φ) <∞
}

.

This is a nonconvex minimization problem. When βn ≥ 0 and βn ≥ |βs| and
lim|x|→∞ V (x) = ∞, the existence of a minimizer of the nonconvex minimization
problem (1.15) follows from the standard theory [25]. For understanding the unique-

ness question note that E(α · Φg) = E(Φg) for all α =
(

eiθ1 , eiθ0 , eiθ−1
)T

with
θ1 + θ−1 = 2θ0. Thus additional constraints have to be introduced to show the
uniqueness.

As derived in [9], by defining the Lagrangian
(1.17)
L(Φ, µ, λ) := E(Φ)− µ

(

‖φ1‖2 + ‖φ0‖2 + ‖φ−1‖2 − 1
)

− λ
(

‖φ1‖2 − ‖φ−1‖2 −M
)

,

we get the Euler-Lagrange equations associated to the minimization problem (1.15):

(µ+ λ) φ1(x) =

[

−1

2
∇2 + V (x) + (βn + βs)

(

|φ1|2 + |φ0|2
)

+ (βn − βs)|φ−1|2
]

φ1

+βs φ̄−1 φ
2
0 := H1 φ1,(1.18)

µ φ0(x) =

[

−1

2
∇2 + V (x) + (βn + βs)

(

|φ1|2 + |φ−1|2
)

+ βn|φ0|2
]

φ0

+2βs φ−1 φ̄0 φ1 := H0 φ0,(1.19)

(µ− λ) φ−1(x) =

[

−1

2
∇2 + V (x) + (βn + βs)

(

|φ−1|2 + |φ0|2
)

+ (βn − βs)|φ1|2
]

φ−1

+βs φ
2
0 φ̄1 := H−1 φ−1.(1.20)

Here µ and λ are the Lagrange multipliers (or chemical potentials) of the coupled
GPEs (1.9)-(1.11). In addition, (1.18)-(1.20) is also a nonlinear eigenvalue problem
with two constraints

‖Φ‖2 :=
∫

Rd

|Φ(x)|2 dx =

∫

Rd

1
∑

l=−1

|φl(x)|2 dx :=

1
∑

l=−1

‖φl‖2 = 1,(1.21)

‖φ1‖2 − ‖φ−1‖2 :=

∫

Rd

[

|φ1(x)|2 − |φ−1(x)|2
]

dx =M.(1.22)

In fact, the nonlinear eigenvalue problem (1.18)-(1.20) can also be obtained from the
coupled GPEs (1.9)-(1.11) by plugging ψl(x, t) = e−iµltφl(x) (l = 1, 0,−1) with

(1.23) µ1 = µ+ λ, µ0 = µ, µ−1 = µ− λ ⇐⇒ µ1 + µ−1 = 2µ0.

Thus it is also called as time-independent coupled GPEs. In physics literatures, any
eigenfucntion Φ of the nonlinear eigenvalue problem (1.18)-(1.20) under constraints
(1.21) and (1.22), whose energy is larger than the energy of the ground state is called
as an excited state of the coupled GPEs (1.9)-(1.11).

A widely used numerical method for computing the ground state of a single
component condensate is the imaginary time method followed by an appropriate
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discretization scheme [15, 5, 3] to evolve the resulted gradient flow equation under
normalization of the wavefunction, which is mathematically justified by using the
normalized gradient flow [5, 3]. However, it is not obvious that this most popular
and powerful normalized gradient flow (or imaginary time method) could be directly
extended to compute the ground state of spin-1 BEC. The reason is that we only have
two normalization conditions (i.e. the two constraints: conservation of total mass and
magnetization) which are insufficient to determine the three projection constants for
the three components of the wavefunction used in the normalization step. In physics
literatures, the imaginary time method is still applied to compute the ground state of
spin-1 BEC through the introduction of a random variable to choose the three pro-
jection parameters in the projection step [30, 32]. Of course, this is not a determinate
and efficient way to compute the ground state of spin-1 BEC due to the choice of
the random variable. Recently, Bao and Wang [9] have proposed a continuous nor-
malized gradient flow (CNGF) for computing the ground state of spin-1 BEC. The
CNGF is discretized by Crank-Nicolson finite difference method with a proper and
very special way to deal with the nonlinear terms and thus the discretization scheme
can be proved to be mass and magnetization conservative and energy diminishing in
the discretized level [9]. However, at each time step, a fully nonlinear system must be
solved which is a little tedious from computational point of view since the CNGF is
an integral-differential equations (see details in (A.1)-(A.9)) which involves implicitly
the Lagrange multipliers in the normalized gradient flow evolution [9]. The aim of this
paper is to introduce a third normalization condition based on the relation between
the chemical potentials of spin-1 BEC, in addition to the two existing normalization
conditions given by the conservation of the total mass and magnetization. Thus we
can completely determine the three projection constants used in the normalization
step for the normalized gradient flow. This allows us to develop the most popular and
powerful normalized gradient flow or imaginary time method to compute the ground
state of spin-1 BEC.

The paper is organized as follows. In section 2, the normalized gradient flow
is constructed by introducing the third projection or normalization condition for
computing the ground state of spin-1 BEC. In section 3, the backward-forward Eu-
ler sine-pseudospectral method (BESP) is presented to discretize the normalized
gradient flow. In section 4, ground states of spin-1 BEC are reported with fer-
romagnetic/antiferromagnetic interaction and harmonic/optical lattice potential in
one/three dimensions, respectively. Finally, some conclusions are drawn in section 5.

2. The normalized gradient flow. In this section, we will construct the nor-
malized gradient flow for computing the ground state of spin-1 BEC by introducing
the third normalization condition.

Various algorithms for computing the minimizer of the nonconvex minimization
problem (1.15) have been studied in literature. For instance, a continuous normal-
ized gradient flow (CNGF) and its discretization that preserve the total mass and
magnetization conservation and energy diminishing properties were presented in [9].
Perhaps one of the more popular and efficient techniques for dealing with the nor-
malization constraints in (1.16) is through the following construction: choose a time
step k = ∆t > 0 and denote time steps as tn = n k for n = 0, 1, 2, · · · . To adapt
an efficient algorithm for the solution of the usual gradient flow to the minimization
problem under constraints, it is natural to consider the following splitting (or pro-
jection) scheme, which was widely used in the physics literature for computing the
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ground state of BECs:

∂tφ1(x, t) =

[

1

2
∇2 − V (x) − (βn + βs)

(

|φ1|2 + |φ0|2
)

− (βn − βs)|φ−1|2
]

φ1

−βs φ̄−1 φ
2
0,(2.1)

∂tφ0(x, t) =

[

1

2
∇2 − V (x) − (βn + βs)

(

|φ1|2 + |φ−1|2
)

− βn|φ0|2
]

φ0

−2βs φ−1 φ̄0 φ1, x ∈ R
d, tn−1 ≤ t < tn, n ≥ 1,(2.2)

∂tφ−1(x, t) =

[

1

2
∇2 − V (x) − (βn + βs)

(

|φ−1|2 + |φ0|2
)

− (βn − βs)|φ1|2
]

φ−1

−βs φ20 φ̄1;(2.3)

followed by a projection step as

φ1(x, tn) := φ1(x, t
+
n ) = σn

1 φ1(x, t
−
n ),(2.4)

φ0(x, tn) := φ0(x, t
+
n ) = σn

0 φ0(x, t
−
n ), x ∈ R

d, n ≥ 1,(2.5)

φ−1(x, tn) := φ−1(x, t
+
n ) = σn

−1 φ−1(x, t
−
n );(2.6)

where φl(x, t
±
n ) = limt→t±n

φl(x, t) (l = −1, 0, 1) and σn
l (l = −1, 0, 1) are projection

constants and they are chosen such that

(2.7) ‖Φ(·, tn)‖2 =

1
∑

l=−1

‖φl(·, tn)‖2 = 1, ‖φ1(·, tn)‖2 − ‖φ−1(·, tn)‖2 =M.

In fact, the gradient flow (2.1)-(2.3) can be viewed as applying the steepest decent
method to the energy functional E(Φ) in (1.14) without constraints, and (2.4)-(2.6)
project the solution back to the unit sphere S in order to satisfy the constraints in
(1.16). In addition, (2.1)-(2.3) can also be obtained from the coupled GPEs (1.9)-
(1.11) by the change of variable t → −i t, that is why the algorithm is usually called
as the imaginary time method in the physics literatures [15, 5, 3].

Plugging (2.4)-(2.6) into (2.7), we obtain

1
∑

l=−1

(σn
l )

2 ‖φl(·, t−n )‖2 = 1,(2.8)

(σn
1 )

2 ‖φ1(·, t−n )‖2 −
(

σn
−1

)2 ‖φ−1(·, t−n )‖2 =M.(2.9)

There are three unknowns and only two equations in the above nonlinear system,
so the solution is undetermined! In order to determine the projection constants σn

l

(l = −1, 0, 1), we need to find an additional equation. Based on the relation between
the chemical potentials in (1.23) and the continuous normalized gradient flow proposed
in [9] for computing the ground state of spin-1 BEC, see details in Appendix A, we
propose to use the following equation as the third normalization condition

(2.10) σn
1 σ

n
−1 = (σn

0 )
2 .

Solving the nonlinear system (2.8), (2.9) and (2.10), see details in Appendix B, we
get explicitly the projection constants as
(2.11)

σn
0 =

√
1−M2

[

‖φ0(·, t−n )‖2 +
√

4(1−M2)‖φ1(·, t−n )‖2‖φ−1(·, t−n )‖2 +M2‖φ0(·, t−n )‖4
]1/2

,
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(2.12)

σn
1 =

√

1 +M − (σn
0 )

2‖φ0(·, t−n )‖2
√
2 ‖φ1(·, t−n )‖

, σn
−1 =

√

1−M − (σn
0 )

2‖φ0(·, t−n )‖2
√
2 ‖φ−1(·, t−n )‖

.

From the numerical point of view, the gradient flow (2.1)-(2.3) can be solved via
traditional techniques, and the normalization of the gradient flow is simply achieved
by a projection at the end of each time step.

3. Backward-forward Euler sine-pseudospectral method. In this section,
we will present the backward-forward Euler sine-pseudospectral method (BESP) to
discretize the normalized gradient flow (2.1)-(2.3), (2.4)-(2.6) and (2.11)-(2.12).

Due to the trapping potential V (x) given by (1.4), the solution Φ(x, t) decays to
zero exponentially fast when |x| → ∞. Thus in practical computation, we truncate
the problem into a bounded computational domain Ωx (chosen as an interval (a, b) in
1D, a rectangle (a, b)× (c, d) in 2D, and a box (a, b)× (c, d) × (e, f) in 3D, with |a|,
|c|, |e|, b, d and f sufficiently large) with homogeneous Dirichlet boundary conditions.

For simplicity of notation we introduce the method for the case of one spatial di-
mension (d = 1) defined over the interval (a, b) with homogeneous Dirichlet boundary
conditions. Generalization to higher dimension are straightforward for tensor product
grids, and the results remain valid without modifications. For d = 1, we choose the
spatial mesh size h = ∆x > 0 with h = (b − a)/M for M an even positive integer,
and let the grid points be

xl := a+ j h, j = 0, 1, · · · ,M.

Let Φn
j = (φn1,j , φ

n
0,j , φ

n
−1,j)

T be the approximation of Φ(xj , tn) = (φ1(xj , tn), φ0(xj , tn),

φ−1(xj , tn))
T and Φn be the solution vector with component Φn

j . In the discretization,
we use sine-pseudospectral method for spatial derivatives and backward/forward Euler
scheme for linear/nonlinear terms in time discretization. The gradient flow (2.1)-(2.3)
is discretized, for j = 1, 2, . . . ,M − 1 and n ≥ 1, as

φ∗1,j − φn−1
1,j

∆t
=

1

2
Ds

xxφ
∗
1|x=xj

− α1φ
∗
1,j +Gn−1

1,j ,(3.1)

φ∗0,j − φn−1
0,j

∆t
=

1

2
Ds

xxφ
∗
0|x=xj

− α0φ
∗
0,j +Gn−1

0,j , ,(3.2)

φ∗−1,j − φn−1
−1,j

∆t
=

1

2
Ds

xxφ
∗
−1|x=xj

− α−1φ
∗
−1,j +Gn−1

−1,j ;(3.3)

where

Gn−1
1,j =

[

α1 − V (xj)− (βn + βs)
(

|φn−1
1,j |2 + |φn−1

0,j |2
)

− (βn − βs)|φn−1
−1,j |2

]

φn−1
1,j

−βs φ̄n−1
−1,j

(

φn−1
0,j

)2
,(3.4)

Gn−1
0,j =

[

α0 − V (xj)− (βn + βs)
(

|φn−1
1,j |2 + |φn−1

−1,j |2
)

− βn|φn−1
0,j |2

]

φn−1
0,j

−2βs φ
n−1
−1,j φ̄

n−1
0,j φn−1

1,j ,(3.5)

Gn−1
−1,j =

[

α−1 − V (xj)− (βn + βs)
(

|φn−1
−1,j |2 + |φn−1

0,j |2
)

− (βn − βs)|φn−1
1,j |2

]

φn−1
−1,j

−βs
(

φn−1
0,j

)2
φ̄n−1
1,j .(3.6)
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Here, Ds
xx, a pseudospectral differential operator approximation of ∂xx, is defined as

Ds
xxU |x=xj

= −
M−1
∑

m=1

µ2
m(Û)m sin(µm(xj − a)), j = 1, 2, · · · ,M − 1,

where (Û)m (m = 1, 2, · · · ,M − 1), the sine transform coefficients of the vector U =
(U0, U1, · · · , UM )T satisfying U0 = UM = 0, are defined as

µm =
πm

b− a
, (Û)m =

2

M

M−1
∑

j=1

Uj sin(µm(xj − a)), m = 1, 2, · · · ,M − 1;

and αl (l = −1, 0, 1) are the stabilization parameters which are chosen in the ‘optimal’
form (such that the time step can be chosen as large as possible) as [4]

(3.7) α1 =
1

2

(

bmax
1 + bmin

1

)

, α0 =
1

2

(

bmax
0 + bmin

0

)

, α−1 =
1

2

(

bmax
−1 + bmin

−1

)

;

with

bmax
1 = max

1≤j≤M−1

[

V (xj) + (βn + βs)
(

|φn−1
1,j |2 + |φn−1

0,j |2
)

+ (βn − βs)|φn−1
−1,j |2

]

,

bmin
1 = min

1≤j≤M−1

[

V (xj) + (βn + βs)
(

|φn−1
1,j |2 + |φn−1

0,j |2
)

+ (βn − βs)|φn−1
−1,j |2

]

,

bmax
0 = max

1≤j≤M−1

[

V (xj) + (βn + βs)
(

|φn−1
1,j |2 + |φn−1

−1,j |2
)

+ βn|φn−1
0,j |2

]

,

bmin
0 = min

1≤j≤M−1

[

V (xj) + (βn + βs)
(

|φn−1
1,j |2 + |φn−1

−1,j |2
)

+ βn|φn−1
0,j |2

]

,

bmax
−1 = max

1≤j≤M−1

[

V (xj) + (βn + βs)
(

|φn−1
−1,j |2 + |φn−1

0,j |2
)

+ (βn − βs)|φn−1
1,j |2

]

,

bmin
−1 = min

1≤j≤M−1

[

V (xj) + (βn + βs)
(

|φn−1
−1,j |2 + |φn−1

0,j |2
)

+ (βn − βs)|φn−1
1,j |2

]

.

The homogeneous Dirichlet boundary conditions are discretized as

(3.8) φ∗1,0 = φ∗1,M = φ∗0,0 = φ∗0,M = φ∗−1,0 = φ∗−1,M = 0.

The projection step (2.4)-(2.4) is discretized, for 0 ≤ j ≤M and n ≥ 1, as

φn1,j = σn
1 φ

∗
1,j , φn0,j = σn

0 φ
∗
0,j , φn−1,j = σn

−1 φ
∗
−1,j ,(3.9)

where

(3.10) σn
0 =

√
1−M2

[

‖φ∗0‖2 +
√

4(1−M2)‖φ∗1‖2‖φ∗−1‖2 +M2‖φ∗0‖4
]1/2

,

(3.11) σn
1 =

√

1 +M − α2
0‖φ∗0‖2√

2 ‖φ∗1‖
, σn

−1 =

√

1−M − α2
0‖φ∗0‖2√

2 ‖φ∗−1‖
;

with

‖φ∗1‖2 = h

M−1
∑

j=1

|φ∗1,j |2, ‖φ∗0‖2 = h

M−1
∑

j=1

|φ∗0,j |2, ‖φ∗−1‖2 = h

M−1
∑

j=1

|φ∗−1,j |2.
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The initial data (A.10) is discretized as

φ0l,j = φl(xj , 0), j = 0, 1, 2, · · · ,M, l = −1, 0, 1.

The linear system (3.1)-(3.3) can be solved very efficiently by using the fast sine
transform. In fact, take discrete sine transform at both sides, we get

1

∆t

[

(φ̂∗1)m − (φ̂n−1
1 )m

]

= −
[

1

2
µ2
m + α1

]

(φ̂∗1)m + (Ĝn−1
1 )m,(3.12)

1

∆t

[

(φ̂∗0)m − (φ̂n−1
0 )m

]

= −
[

1

2
µ2
m + α0

]

(φ̂∗0)m + (Ĝn−1
0 )m, 1 ≤ m < M,(3.13)

1

∆t

[

(φ̂∗−1)m − (φ̂n−1
−1 )m

]

= −
[

1

2
µ2
m + α−1

]

(φ̂∗−1)m + (Ĝn−1
−1 )m.(3.14)

Solve the above system in the phase space, we obtain

(φ̂∗1)m =
1

1 +∆t [α1 + µ2
m/2]

[

(φ̂n−1
1 )m + (Ĝn−1

1 )m

]

,(3.15)

(φ̂∗0)m =
1

1 +∆t [α1 + µ2
m/2]

[

(φ̂n−1
0 )m + (Ĝn−1

0 )m

]

, 1 ≤ m < M,(3.16)

(φ̂∗−1)m =
1

1 +∆t [α1 + µ2
m/2]

[

(φ̂n−1
−1 )m + (Ĝn−1

−1 )m

]

.(3.17)

Remark 3.1. The gradient flow (2.1)-(2.3) can also be discretized by using
the backward Euler finite difference method proposed in [5] or the backward Euler
sine-pseudospectral method proposed in [4] for computing the ground state of one-
component BEC.

4. Numerical Results. In this section, we first show that the ground states
computed by our new numerical method are independent of the choice of the initial
data in (A.10) and verify numerically the energy diminishing property of the method.
Finally, we apply the method to compute the ground state of spin-1 BEC with different
interactions and trapping potentials. In our computations, the ground state is reached
by using the numerical method (3.1)-(3.3), (3.9)-(3.11) when ‖Φn+1

h − Φn
h‖ ≤ ε :=

10−7. In addition, in the ground state of spin-1 BEC, we have M ↔ −M ⇐⇒ φ1 ↔
φ−1, thus we only present results for 0 ≤M ≤ 1.

4.1. Choice of initial data. In our tests, two typical physical experiments are
considered:

• Case I. With ferromagnetic interaction, e.g. 87Rb confined in a cigar-shaped
trapping potential with parameters: m = 1.443× 10−25[kg], a0 = 5.387[nm],
a2 = 5.313[nm], ωx = 2π × 20[Hz], ωy = ωz = 2π × 400[Hz]. This sug-
gests us to use dimensionless quantities in (1.9)-(1.11) for our computa-

tions as: d = 1, V (x) = x2/2, βn ≈ 4π(a0+2a2)N
3as

√
ωyωz

2πωx
= 0.0885N and

βs ≈ 4π(a2−a0)N
3as

√
ωyωz

2πωx
= −0.00041N withN the total number of atoms in the

condensate and the dimensionless length unit as =
√

~/mωx = 2.4116×10−6

[m] and time unit ts = 1/ωx = 0.007958[s].
• Case II. With antiferromagnetic interaction, e.g. 23Na confined in a cigar-
shaped trapping potential with parameters: m = 3.816 × 10−26[kg], a0 =
2.646[nm], a2 = 2.911[nm], ωx = 2π × 20[Hz], ωy = ωz = 2π × 400[Hz].
Again, this suggests us to use the following dimensionless quantities in our
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computations: d = 1, V (x) = x2/2, βn ≈ 0.0241N and βs ≈ 0.00075N
with the dimensionless length unit as = 4.6896 × 10−6 [m] and time unit
ts = 0.007958[s].

We first test that the converged solution is independent of different choices of
the initial data in (A.10) and energy diminishing property of the normalized gradient
flow. In order to do so, we choose the initial data in (A.10) as

• Gaussian profiles satisfying the constraints in (1.16) initially, i.e.

φ1(x, 0) =

√

0.5(1 +M − κ)

π1/4
e−x2/2,(4.1)

φ0(x, 0) =

√
κ

π1/4
e−x2/2, −∞ < x <∞,(4.2)

φ−1(x, 0) =

√

0.5(1−M − κ)

π1/4
e−x2/2,(4.3)

where κ is a constant satisfying 0 < κ < 1− |M |.
• Unnormalized Gaussian profiles, i.e.

(4.4) φ1(x, 0) = φ0(x, 0) = φ−1(x, 0) = e−x2/2, ∞ < x <∞.
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||
2
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||
φ −

1
||

2

Fig. 4.1. Time evolution of N1 = ‖φ1(·, t)‖2 (‘left’), N0 = ‖φ0(·, t)‖2 (‘middle’) and N−1 =
‖φ−1(·, t)‖2 (‘right’) by our method (2.4)-(2.6) for 87Rb in Case I with M = 0.5 and N = 104 to
analyze the convergence of different initial data in (4.4) (solid line) and (4.1)-(4.3) with κ = 0.1
(dotted line), κ = 0.2 (dash-dot line) and κ = 0.4 (dashed line), respectively.

We solve the problem (1.15) by our method on [−16, 16] with time step ∆t = 0.005
and mesh size h = 1/64 for different values of κ in (4.1)-(4.3). Figure 4.1 plots time
evolution of Nl(t) := ‖φl(·, t)‖2 (l = 1, 0,−1) for 87Rb in Case I with M = 0.5 and
N = 104 for different choices of the initial data in (4.4) and (4.1)-(4.3), and Figure
4.2 shows similar results for 23Na in Case II. In addition, Figure 4.3 depicts time
evolution of the energy for the two cases with M = 0.5 and N = 104 for different
choices of the initial data in (4.4).

From Figs. 4.1 and 4.2, we can see that the converged ground states are in-
dependent of the choice of initial data. In fact, based on our extensive numerical
experiments on other types of initial data (not shown here for brevity), our numerical
method always gives the ground state if all the three components in the initial data
are chosen as nonnegative functions. In addition, Fig. 4.3 demonstrates the energy
diminishing property of the normalized gradient flow and its full discretization when
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Fig. 4.2. Time evolution of N1 = ‖φ1(·, t)‖2 (‘left’), N0 = ‖φ0(·, t)‖2 (‘middle’) and N−1 =
‖φ−1(·, t)‖2 (‘right’) by our method (2.4)-(2.6) for 23Na in Case II with M = 0.5, and N = 104 to
analyze the convergence of different initial data in (4.4) (solid line) and (4.1)-(4.3) with κ = 0.1
(dotted line), κ = 0.2 (dash-dot line) and κ = 0.4 (dashed line), respectively.
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Fig. 4.3. Time evolution of the energy by our method (2.4)-(2.6) with M = 0.5, and N = 104

for a) 87Rb in case I; and b) 23Na in case II with different initial data in (4.4) (solid line) and
(4.1)-(4.3) with κ = 0.1 (dotted line), κ = 0.2 (dash-dot line) and κ = 0.4 (dashed line), respectively.

time step ∆t is small. Based on our numerical experiments, for 0 ≤ M ≤ 1, we
suggest the initial data in (A.10) be chosen as: i) with ferromagnetic interaction, i.e.
βs ≤ 0

φ1(x) =
1

2

√
1 + 3Mφapg (x), φ0(x) =

√

1−M

2
φapg (x), φ1(x) =

1

2

√
1−Mφapg (x);

and ii) with antiferromagnetic interaction, i.e. βs > 0

φ1(x) =

√

1 +M

2
φapg (x), φ0(x) = 0, φ1(x) =

√

1−M

2
φapg (x);

where φapg (x) can be chosen as the approximate ground state solution of single com-
ponent BEC, e.g. the harmonic oscillator approximation when βn small and the
Thomas-Fermi approximation when βn ≫ 1 [5, 8, 7]. Based on these choices of initial
data, we report the ground states computed by our numerical method.

Figure 4.4 shows the ground state solutions of 87Rb in Case I with N = 104

for different magnetization M and Table 4.1 lists the corresponding ground state
energies and their Lagrange multipliers (see their detailed formulation in Appendix
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C). In addition, Figure 4.5 shows similar ground state solutions with M = 0.5 for
different particle number N .
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Fig. 4.4. Wave functions of the ground state, i.e. φ1(x) (dashed line), φ0(x) (solid line)
and φ−1(x) (dotted line), of 87Rb in Case I with fixed number of particles N = 104 for different
magnetization M = 0, 0.2, 0.5, 0.9.

Similarly, Figure 4.6 shows the ground state solutions of 23Na in Case II with
N = 104 for different magnetization M and Table 4.2 lists the corresponding ground
state energies and their Lagrange multipliers. In addition, Figure 4.7 shows similar
ground state solutions with M = 0.5 for different particle number N .

Figure 4.8 plots the mass of the three components in the spin-1 BEC ground
states with N = 104 for different magnetizationM , and Figure 4.9 depicts the energy
and chemical potentials with M = 0.5 for different particle number N .

From Figs. 4.4-4.6 as well as Tabs. 4.1-4.2, we can draw the following conclusions:
(i) For ferromagnetic interaction in the spin-1 BEC, i.e. βs ≤ 0, the three components
in the ground state solutions are all positive functions (c.f. Figs. 4.4 and 4.5) ; while
for antiferromagnetic interaction, i.e. βs ≥ 0, φ1 and φ−1 are positive functions and
φ0 ≡ 0 (c.f. Figs. 4.6 and 4.7). (ii) For ferromagnetic interaction in the spin-1 BEC,
i.e. βs ≤ 0, for fixed number of particles N in the condensate, when the magnetization
M increases from 0 to 1, the mass N1 increases from 0.25 to 1, the mass N−1 decreases
from 0.25 to 0 and the mass N0 decreases from 0.5 to 0 (c.f. Fig. 4.9a); while for
antiferromagnetic interaction, i.e. βs ≥ 0, N1 increases from 0.5 to 1, N−1 decreases
from 0.5 to 0 and N0 = 0 (c.f. Fig. 4.9b). (iii) For ferromagnetic interaction in
the spin-1 BEC, i.e. βs ≤ 0, for fixed number of particles N in the condensate,
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M E µ λ(×10−5)
0 36.1365 60.2139 0
0.1 36.1365 60.2139 1.574
0.2 36.1365 60.2139 1.621
0.3 36.1365 60.2139 1.702
0.4 36.1365 60.2139 1.827
0.5 36.1365 60.2139 2.014
0.6 36.1365 60.2139 2.218
0.7 36.1365 60.2139 2.062
0.8 36.1365 60.2139 2.081
0.9 36.1365 60.2139 2.521

Table 4.1

Ground state energy E and their chemical potentials µ and λ for 87Rb in Case I with N = 104

for different magnetization M .
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Fig. 4.5. Wave functions of the ground state, i.e. φ1(x) (dashed line), φ0(x) (solid line) and
φ−1(x) (dotted line), of 87Rb in Case I with magnetization M = 0.5 for different number of particles
N .

the energy and chemical potentials are almost independent of the magnetization (c.f.
Tab. 4.1); while for antiferromagnetic interaction, i.e. βs ≥ 0, when the magnetization
M increases from 0 to 1, the energy E increases and the main chemical potential µ
decreases and the second chemical potential λ increases (c.f. Tab. 4.2). In both cases,
for fixed magnetizationM , when the number of particles N increases, the energy and
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Fig. 4.6. Wave functions of the ground state, i.e. φ1(x) (dashed line), φ0(x) (solid line)
and φ−1(x) (dotted line), of 23Na in Case II with fixed number of particles N = 104 for different
magnetization M = 0, 0.2, 0.5, 0.9.

chemical potentials increase (c.f. Fig. 4.8). These observations agree with those
obtained in [9] and [30] by different numerical methods.

4.2. Application in 1D with optical lattice potential. In this subsection,
our method is applied to compute the ground state of spin-1 BEC in one dimension
(1D) with an optical lattice potential. Again, two different interaction are considered:

• Case I. For 87Rb with dimensionless quantities in (1.9)-(1.11) used as: d = 1,
V (x) = x2/2+ 25 sin2

(

πx
4

)

, βn = 0.0885N and βs = −0.00041N , with N the
total number of atoms in the condensate and the dimensionless length unit
as = 2.4116× 10−6 [m] and time unit ts = 0.007958[s].

• Case II. For 23Na with dimensionless quantities in (1.9)-(1.11) used as: d = 1,
V (x) = x2/2 + 25 sin2

(

πx
4

)

, βn = 0.0241N and βs = 0.00075N , with N the
total number of atoms in the condensate and the dimensionless length unit
as = 4.6896× 10−6 [m] and time unit ts = 0.007958[s].

Figure 4.10 shows the ground state solutions of 87Rb in Case I with N = 104 for
different magnetizationM and Table 4.3 lists the corresponding ground state energies
and their Lagrange multipliers. Figure 4.11 and Table 4.4 show similar results for 23Na
in Case II.

From Figs. 4.10&4.11 and Tabs. 4.3&4.4, it can be seen that our method can
be used in computing ground state of spin-1 BEC with general potential. In addition
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M E µ λ
0 15.2485 25.3857 0
0.1 15.2514 25.3847 0.0569
0.2 15.2599 25.3815 0.1142
0.3 15.2743 25.3762 0.1725
0.4 15.2945 25.3682 0.2325
0.5 15.3209 25.3572 0.2950
0.6 15.3537 25.3423 0.3611
0.7 15.3933 25.3220 0.4326
0.8 15.4405 25.2939 0.5121
0.9 15.4962 25.2527 0.6049

Table 4.2

Ground state energy E and their chemical potentials µ and λ for 23Na in Case II with N = 104

for different magnetization M .

M E µ λ(×10−4)
0 47.6944 73.0199 0
0.1 47.6944 73.0199 0.711
0.2 47.6944 73.0199 0.788
0.3 47.6944 73.0199 0.859
0.4 47.6944 73.0199 0.948
0.5 47.6944 73.0199 1.072
0.6 47.6944 73.0199 1.178
0.7 47.6944 73.0199 1.164
0.8 47.6944 73.0199 1.200
0.9 47.6944 73.0199 1.477

Table 4.3

Ground state energy E and their chemical potentials µ and λ for 87Rb in Case I with N = 104

for different magnetization M in an optical lattice potential.

to that, similar conclusions as those in the end of previous subsection can also be
observed in this case.

4.3. Applications in 3D with optical lattice potential. In this subsection,
our method is applied to compute the ground state of spin-1 BEC in three dimensions
(3D) with an optical lattice potential. Again, two different interaction are considered:

• Case I. For 87Rb with dimensionless quantities in (1.9)-(1.11) used as: d =
3, V (x) = 1

2

(

x2 + y2 + z2
)

+ 100
[

sin2
(

πx
2

)

+ sin2
(

πy
2

)

+ sin2
(

πz
2

)]

, βn =
0.0880N and βs = −0.00041N , with N the total number of atoms in the
condensate and the dimensionless length unit as =

√

~/mωx = 7.6262×10−7

[m] and time unit ts = 1/ωx = 7.9577 × 10−4[s] (corresponding to physical
trapping frequencies ωx = ωy = ωz = 2π × 200[Hz]).

• Case II. For 23Na with dimensionless quantities in (1.9)-(1.11) used as: d =
3, V (x) = 1

2

(

x2 + y2 + z2
)

+ 100
[

sin2
(

πx
2

)

+ sin2
(

πy
2

)

+ sin2
(

πz
2

)]

, βn =
0.0239N and βs = 0.00075N with N the total number of atoms in the con-
densate and the dimensionless length unit as = 1.4830× 10−6 [m] and time
unit ts = 7.9577 × 10−4[s](corresponding to physical trapping frequencies
ωx = ωy = ωz = 2π × 200[Hz]).
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Fig. 4.7. Wave functions of the ground state, i.e. φ1(x) (dashed line), φ0(x) (solid line)
and φ−1(x) (dotted line), of 23Na in Case II with magnetization M = 0.5 for different number of
particles N .

Figure 4.12 shows the ground state solutions with N = 104 and M = 0.5 for the
two cases.

From Fig. 4.12, we can see that our method can be used to compute the ground
state of spin-1 BEC in 3D with general trapping potential.

5. Conclusions. We have proposed an efficient and accurate normalized gra-
dient flow or imaginary time method to compute the ground state of spin-1 Bose-
Einstein condensates by introducing a third normalization condition, in addition to
the conservation of total particle number and the conservation of total magnetization.
The condition is derived from the relationships between the chemical potentials of the
three spinor components together with a splitting scheme applied to the continuous
normalized gradient flows proposed to compute the ground state of spin-1 BEC. The
backward-forward sine-pseudospectral method is applied to discretize the normalized
gradient flow for practical computation. The ground state solutions and fraction of
each component are reported for both ferromagnetic and antiferromagnetic interac-
tion cases. The energy and chemical potentials of the condensate are also reported. In
addition, the method may be further extended to other spinor condensate with higher
degree of freedom as well as spinor condensate in the presence of external magnetic
field, which will be our future study.

Finally, based on our extensive numerical experiments and results, we conjecture
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Fig. 4.8. Mass of the three components of the ground state, i.e. Nl = ‖φl‖
2 (l = 1, 0,−1), of

spin-1 BEC with fixed number of particles N = 104 for different magnetization 0 ≤ M < 1. a) for
87Rb in case I; and b) for 23Na in case II.

a)
10

1
10

2
10

3
10

4
10

5
10

−1

10
0

10
1

10
2

10
3

N

E

µ

b)
10

1
10

2
10

3
10

4
10

5
10

6
10

−3

10
−2

10
−1

10
0

10
1

10
2

10
3

N

E

µ
λ

Fig. 4.9. Energy E and chemical potentials µ and λ of spin-1 BEC with fixed magnetization
M = 0.5 for different number of particles N . a) for 87Rb in case I; and b) for 23Na in case II.

that when βn ≥ 0, βn ≥ |βs| and V (x) ≥ 0 satisfying lim|x|→∞ V (x) → ∞, there
exists minimizer of the nonconvex minimization problem (1.15). In addition, when
βs < 0, positive minimizer (the three components are positive function) is unique;
when βs > 0, nonnegative minimizer (φ1 and φ−1 are positive and φ0 ≡ 0) is unique.
Rigorous mathematical justification are on-going.
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Appendix A Derivation of the third projection equation (2.10)

In order to find the third projection or normalization equation used in the projec-
tion step of the normalized gradient flow, we first review the continuous normalized
gradient flow (CNGF) constructed in [9] for computing the ground state of spin-1
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Fig. 4.10. Wave functions of the ground state, i.e. φ1(x) (dashed line), φ0(x) (solid line)
and φ−1(x) (dotted line), of 87Rb in Case I with fixed number of particles N = 104 for different
magnetization M = 0, 0.2, 0.5, 0.9 in an optical lattice potential.

BEC in (1.15):

∂tφ1(x, t) =

[

1

2
∇2 − V (x) − (βn + βs)

(

|φ1|2 + |φ0|2
)

− (βn − βs)|φ−1|2
]

φ1

−βs φ̄−1 φ
2
0 + [µΦ(t) + λΦ(t)] φ1,(A.1)

∂tφ0(x, t) =

[

1

2
∇2 − V (x) − (βn + βs)

(

|φ1|2 + |φ−1|2
)

− βn|φ0|2
]

φ0

−2βs φ−1 φ̄0 φ1 + µΦ(t) φ0,(A.2)

∂tφ−1(x, t) =

[

1

2
∇2 − V (x) − (βn + βs)

(

|φ−1|2 + |φ0|2
)

− (βn − βs)|φ1|2
]

φ−1

−βs φ20 φ̄1 + [µΦ(t)− λΦ(t)] φ−1.(A.3)

µΦ(t) and λΦ(t) are chosen such that the above CNGF is mass (or normalization) and
magnetization conservative and they are given as [9]

(A.4) µΦ(t) =
RΦ(t)DΦ(t)−MΦ(t)FΦ(t)

NΦ(t)RΦ(t)−M2
Φ(t)

, λΦ(t) =
NΦ(t)FΦ(t)−MΦ(t)DΦ(t)

NΦ(t)RΦ(t)−M2
Φ(t)

,
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Fig. 4.11. Wave functions of the ground state, i.e. φ1(x) (dashed line), φ0(x) (solid line) and
φ−1(x) (dotted line), of 23Na in Case II with N = 104 for different magnetization M = 0, 0.2, 0.5, 0.9
in an optical lattice potential.

Fig. 4.12. Contour plots for the wave functions of the ground state, i.e. φ1(x, y, 0) (top row),
φ0(x, y, 0) (middle row) and φ−1(x, y, 0) (bottom row) with N = 104 and M = 0.5 in an optical
lattice potential. Left column: for 87Rb in Case I; and right column: for 23Na in Case II.

with

NΦ(t) =

∫

Rd

[

|φ−1(x, t)|2 + |φ0(x, t)|2 + |φ1(x, t)|2
]

dx,(A.5)

MΦ(t) =

∫

Rd

[

|φ1(x, t)|2 − |φ−1(x, t)|2
]

dx,(A.6)

RΦ(t) =

∫

Rd

[

|φ1(x, t)|2 + |φ−1(x, t)|2
]

dx,(A.7)

DΦ(t) =

∫

Rd

{ 1
∑

l=−1

(

1

2
|∇φl|2 + V (x)|φl|2

)

+ 2(βn − βs)|φ1|2|φ−1|2 + βn|φ0|4

+(βn + βs)
[

|φ1|4 + |φ−1|4 + 2|φ0|2
(

|φ1|2 + |φ−1|2
)

]

+2βs
(

φ̄−1φ
2
0φ̄1 + φ−1φ̄

2
0φ1
)

}

dx,(A.8)
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M E µ λ
0 25.6480 37.4489 0
0.1 25.6509 37.4476 0.0593
0.2 25.6597 37.4400 0.1197
0.3 25.6753 37.4248 0.1931
0.4 25.6983 37.4025 0.2687
0.5 25.7291 37.3775 0.3458
0.6 25.7676 37.3492 0.4252
0.7 25.8144 37.3167 0.5079
0.8 25.8696 37.2305 0.6920
0.9 25.9340 37.2305 0.6920

Table 4.4

Ground state energy E and their chemical potentials µ and λ for 23Na in Case II with N = 104

for different magnetization M in an optical lattice potential.

FΦ(t) =

∫

Rd

{

1

2

(

|∇φ1|2 − |∇φ−1|2
)

+ V (x)
(

|φ1|2 − |φ−1|2
)

+(βn + βs)
[

|φ1|4 − |φ−1|4 + |φ0|2
(

|φ1|2 − |φ−1|2
)

]

}

dx.(A.9)

For the above CNGF, for any given initial data

(A.10) Φ(x, 0) = (φ1(x, 0), φ0(x, 0), φ−1(x, 0))
T := Φ(0)(x), x ∈ R

d,

satisfying

(A.11) NΦ(t = 0) := NΦ(0) = 1, MΦ(t = 0) :=MΦ(0) =M,

it was proven that the total mass and magnetization are conservative and the energy
is diminishing [9], i.e.

NΦ(t) ≡ 1, MΦ(t) ≡M, E (Φ(·, t) ≤ E (Φ(·, s)) , for any t ≥ s ≥ 0.

The normalized gradient flow (2.1)-(2.6) can be viewed as applying a time-splitting
scheme to the CNGF (A.1)-(A.3) and the projection step (2.4)-(2.6) is equivalent to
solving the following nonlinear ordinary differential equations (ODEs):

∂tφ1(x, t) = [µΦ(t) + λΦ(t)]φ1,(A.12)

∂tφ0(x, t) = µΦ(t) φ0, tn−1 ≤ t ≤ tn, n ≥ 1,(A.13)

∂tφ−1(x, t) = [µΦ(t)− λΦ(t)]φ−1.(A.14)

The solution of the above ODEs can be expressed as

φ1(x, tn) = exp

(

∫ tn

tn−1

[µΦ(τ) + λΦ(τ)] dτ

)

φ1(x, tn−1),(A.15)

φ0(x, tn) = exp

(

∫ tn

tn−1

µΦ(τ) dτ

)

φ0(x, tn−1),(A.16)

φ−1(x, tn) = exp

(

∫ tn

tn−1

[µΦ(τ)− λΦ(τ)] dτ

)

φ−1(x, tn−1).(A.17)
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This solution suggests the following relation between the coefficients

exp

(

∫ tn

tn−1

[µΦ(τ) + λΦ(τ)] dτ

)

exp

(

∫ tn

tn−1

[µΦ(τ) − λΦ(τ)] dτ

)

= exp

(

∫ tn

tn−1

2µΦ(τ) dτ

)

=

[

exp

(

∫ tn

tn−1

µΦ(τ) dτ

)]2

.(A.18)

This immediately suggests us to propose the third normalization equation (2.10) to
determine the projection parameters. In fact, equation (2.10) can be also obtained
from the relation between the chemical potentials in (1.23) by physical intuitions.

Appendix B Derivation of the projection parameters in (2.11)-(2.12)

Summing (2.11) and (2.12), we get

(B.1) 2(σn
1 )

2‖φ1(·, t−n )‖2 = 1 +M − (σn
0 )

2‖φ0(·, t−n )‖2.

This immediately implies

(B.2) σn
1 =

√

1 +M − (σn
0 )

2‖φ0(·, t−n )‖2
√
2 ‖φ1(·, t−n )‖

.

Subtracting (2.12) from (2.11), we obtain

(B.3) 2(σn
−1)

2‖φ−1(·, t−n )‖2 = 1−M − (σn
0 )

2‖φ0(·, t−n )‖2.

Again, this immediately implies

(B.4) σn
−1 =

√

1−M − (σn
0 )

2‖φ0(·, t−n )‖2
√
2 ‖φ−1(·, t−n )‖

.

Multiplying (B.2) and (B.4) and noticing (2.10), we get
[

1 +M − (σn
0 )

2‖φ0(·, t−n )‖2
] [

1−M − (σn
0 )

2‖φ0(·, t−n )‖2
]

= 4‖φ−1(·, t−n )‖2 ‖φ1(·, t−n )‖2 (σn
0 )

4.(B.5)

Simplifying the above equation, we obtain
[

‖φ0(·, t−n )‖4 − 4‖φ−1(·, t−n )‖2 ‖φ1(·, t−n )‖2
]

(σn
0 )

4 − 2‖φ0(·, t−n )‖2 (σn
0 )

2

+(1−M2) = 0.(B.6)

Solving the above equation and noticing (σn
0 )

2 ‖φ0(·, t−n )‖2 ≤ (1−M2), we get

(σn
0 )

2 =
‖φ0(·, t−n )‖2 −

√

4(1−M2)‖φ1(·, t−n )‖2‖φ−1(·, t−n )‖2 +M2‖φ0(·, t−n )‖4

‖φ0(·, t−n )‖4 − 4‖φ−1(·, t−n )‖2 ‖φ1(·, t−n )‖2

=
1−M2

‖φ0(·, t−n )‖2 +
√

4(1−M2)‖φ1(·, t−n )‖2‖φ−1(·, t−n )‖2 +M2‖φ0(·, t−n )‖4
.(B.7)

Thus immediately implies the solution in (2.11).
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Appendix C Computing the chemical potentials µ and λ
After we get the ground state Φ numerically, the energy of the ground state

can be computed from the discretization of (1.14) immediately. In order to compute
the chemical potentials numerically, different formulations can be applied. Here we
propose one of the most reliable way to compute them. Multiplying both sides of
(1.18) by φ̄1 and integrate over Rd, we get

(C.1) (µ+ λ)‖φ1‖2 =

∫

Rd

φ̄1 H1φ1 dx := (φ1, H1φ1).

Similarly, take the same procedure to (1.19) and (1.20) by multiplying φ̄0 and φ̄−1,
respectively, we obtain

µ‖φ0‖2 =

∫

Rd

φ̄0 H0φ0 dx := (φ0, H0φ0),(C.2)

(µ− λ)‖φ−1‖2 =

∫

Rd

φ̄−1 H−1φ−1 dx := (φ−1, H−1φ−1).(C.3)

Summing (C.1), (C.2) and (C.3), noticing that the ground state Φ satisfying the
constraints (1.16), we get

(C.4) µ+M λ = (φ1, H1φ1) + (φ0, H0φ0) + (φ−1, H−1φ−1).

Subtracting (C.3) from (C.1), we get

(C.5) M µ+
(

‖φ1‖2 + ‖φ−1‖2
)

λ = (φ1, H1φ1)− (φ−1, H−1φ−1).

Solving the linear system (C.4) and (C.5) for the chemical potentials µ and λ as
unknowns and integrating by parts to the right hand sides, we have

(C.6) µ =

(

‖φ1‖2 + ‖φ−1‖2
)

D(Φ)−M F (Φ)

‖φ1‖2 + ‖φ−1‖2 −M2
, λ =

F (Φ)−M D(Φ)

‖φ1‖2 + ‖φ−1‖2 −M2
,

where

D(Φ) =

∫

Rd

{ 1
∑

l=−1

(

1

2
|∇φl|2 + V (x)|φl|2

)

+ 2(βn − βs)|φ1|2|φ−1|2 + βn|φ0|4

+(βn + βs)
[

|φ1|4 + |φ−1|4 + 2|φ0|2
(

|φ1|2 + |φ−1|2
)

]

+2βs
(

φ̄−1φ
2
0φ̄1 + φ−1φ̄

2
0φ1
)

}

dx,(C.7)

F (Φ) =

∫

Rd

{

1

2

(

|∇φ1|2 − |∇φ−1|2
)

+ V (x)
(

|φ1|2 − |φ−1|2
)

+(βn + βs)
[

|φ1|4 − |φ−1|4 + |φ0|2
(

|φ1|2 − |φ−1|2
)

]

}

dx.(C.8)

Thus the chemical potentials µ and λ can be computed numerically from the dis-
cretization of (C.6), (C.7) and (C.8).
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