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Computing Heights on Elliptic Curves*

By Joseph H. Silverman**

Abstract. We describe how to compute the canonical height of points on elliptic curves.
Täte has given a rapidly converging series for Archimedean local heights over R. We
describe a modified version of Tate's series which also converges over C, and give an
efficient procedure for calculating local heights at non-Archimedean places. In this way
we can calculate heights over number fields having complex embeddings. We also give
explicit estimates for the tail of our series, and present several examples.

Let E be an elliptic curve defined over a number field K, say given by a Weier-
strass equation

(1) y2 + aixy + a3y = x3 + a2x2 + a4x + a6.

The canonical height on E is a quadratic form

h: E(K)->R.

(For the definition and basic properties of h, see [11, VIII, Section 9] or [6, Chapter
VI].) The canonical height is an extremely important theoretical tool in the arith-
metic theory of elliptic curves, being used for such diverse purposes as studying
values of L-functions [5], numbers of integral points [12], and transcendence theory
[9]. It is also important as a computational tool, such as its use in Zagier's algo-
rithm for finding integral points up to large bounds [18]. It is thus of interest to
have an efficient method for calculating the canonical height of a point.

The usual definition of h as a limit h(P) = lim„_00 4~nh(x(2nP)) is not practical
for computation. Instead, one uses the fact that the canonical height can be written
as a sum of local heights, one term for each distinct absolute value on K:

(2) h{P)=   y  nX{P).
vfzMK

(For example, if K = Q, then Mk can be identified with the set of rational primes
together with the usual absolute value on Q. The multiplicities nv are chosen so
that the product formula holds and so that h is independent of the choice of the field
K.) The local height corresponding to a non-Archimedean absolute value is given
by intersection theory in a well-known manner. (See, e.g., [2], [4] or [7, Chapter
11, Section 5].) We will describe a quick way to compute non-Archimedean local
heights in Section 5.

The local height for an Archimedean absolute value is given by a transcendental
function, and so efficient computation is somewhat more difficult.   J. Täte [15]
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340 JOSEPH H. SILVERMAN

has given an easily computed power series which works for real absolute values.
Precisely, for a given curve E and point P = (x,y), he gives a sequence of easily
computed numbers Co, c\,... so that

oo

A„(P) = ¿log|x|v + |^4-nc„;
n=0

and he shows that the cn's are bounded provided that there are no points on E(KV)
with x-coordinate equal to 0. (Here Kv, the completion of K at v, is either R or
C.) If Kv = R, then one can always ensure that 0 0 x(E(Kv)) by making an
initial shift of coordinates x' — x + r for some sufficiently large integer r. Thus,
for computations over Q, Tate's series provides an efficient computational tool,
producing an error on the order of 4~N if one takes TV terms of the sum. It has
been used in this case by a number of people (e.g., [1], [13], [16]). Unfortunately,
if Kv = C, then the shifting trick no longer works; and it is possible for Tate's
series to have poor convergence properties. (See the correction to [19] for a brief
discussion.)

In Section 2 we will present a revised version of Tate's series which converges
in all cases.  The basic idea is as follows.  We start, as Täte does, computing the
sequence of coefficients Cq,C\, ... and the series Co + 4_1ci H-. However, if some
cn+i is going to be large, then we replace cn by a different (still bounded) quantity,
and switch over to a new sequence c'n+1, c'n+2, — This new sequence is essentially
Tate's sequence for the parameter x' = x + 1. We continue with the new sequence,
computing • • • + 4_n_1c^+1 -I- 4~n~2c'n+2 + • • •, until some c'm+i is going to be
large. Then we replace c'm with a corrected (bounded) value and switch back to
the unprimed sequence. In this way we obtain a series for XV(P) which converges
regardless of whether or not 0 G x(E(Kv)). As with Tate's series, the error in using
only TV terms is on the order of 4~N. We will begin in Section 2 by proving that
our series converges under the assumption that the local height function exists and
has certain basic properties, since this makes the proof somewhat easier. Then in
Sections 3 and 4 we will go back and make all of our estimates explicit, thereby
giving an a priori proof that our series converges and obtaining practical error
estimates. This also yields a new proof of the existence of the local height function
for complex absolute values. (Tate's original series previously gave the existence
for real absolute values.)

In the final section we give several examples.

1. Generalities on Local Heights and Tate's Series. Let K be a num-
ber field, and let E/K be an elliptic curve given by a Weierstrass equation (1).
Associated with (1) are the usual quantities (cf. [11, Chapter III, Section 1])

b2 = a\ + 4a2,    b4 — 2a4 + 0^3,    bß = al + 4a6,

b$ = a\as + 4a2ae - aia3a4 + a2a\ - a\,

c4 = b\- 24b4,        c6 = -b\ + 36b2b4 - 21666,
A = -blbs - 8b34 - 21b\ + 9b2b4b6.

We also have the relation

(4) (2y + oxx + o3)2 = 4x3 + b2x2 + 2b4x + b6.
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COMPUTING HEIGHTS ON ELLIPTIC CURVES 341

If P = (x,y) is a point of E, then the duplication formula [11, III.2.3d] reads

(5) x(2P) -  X* ~ b*** ~ 2hX " bs
[b> [     >- 4x3+b2x*+2b4x + b6-

Let | ■ |„ be a nontrivial absolute value on K. Néron proved that there exists a
unique function

Xv:E(Kv)\{0}^R,
called the local height function on E associated with the absolute value v, having
the following three properties:

\V(2P) = 4XV(P) - log \2y + axx + a3\v

for all P = (x, y) € E(KV) with 2P ^ O;

^J^"^ * è loS \x(p)\v) exists,

where P —► O in the i>-adic topology;

(8) A„ is bounded on any u-adic open subset of E(KV) disjoint from O.

For a proof of the existence of A„, see [6, Chapter I, Section 7, Chapter III, Section
4]; and for a proof that the canonical height h is the sum of the local heights (i.e.,
a proof of Eq. (2)), see [6, Chapter IV, Section 6]. The explicit estimates we derive
in Section 4 will provide an alternative proof of the existence of A.

Remark. We remark that the local height is sometimes normalized slightly dif-
ferently. Specifically, the duplication formula is often given with \ log |A|„ added
onto the right-hand side. As the reader will easily verify, if we use Â'„ to denote
this new local height, then \v = \'v + ^log|A|w. Thus there is little practical
difference in which one we compute. Further, when adding up the local heights (2)
to get the canonical height, the product formula will ensure that the extra term
vanishes. From a computational viewpoint, we have found it slightly less cumber-
some to compute Av, although it seems that for theoretical purposes, A^ is often
more useful.

Tate's idea [15] is to use 1/x as a parameter and to apply the relation (6) re-
peatedly to derive a series for A. More precisely, let

t = 1/x,
(9) w = 4t + b2t2 + 2b4t3 + b6t4,

z = l-M2-2ft6i3-M4-

Substituting (9) and (4) into the duplication formula (5) yields formulas for x(2P)
and t(2P),

x(2P) =
X4Z z

(2y + aix + a3)2      w'

The former allows us to rewrite (6) as

{A(2P) - | log |x(2P)U = {A(P) - 1 log|x(P)|„} + \ log |*(P)|„.
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342 JOSEPH H. SILVERMAN

Following Täte, we define a new function p by the formula

(11) i/i(P) = Â(P)-ilog|x(P)|„.

(If x(P) = 0, we will formally set p(P) = oo; while we can define p(0) to equal
limQ_>o p(Q), which exists by (7).) From above, p, satisfies the duplication formula

(12) /¿(2P) = 4/i(P)-41og|z(P)|t)    for P <E E(KV) with x(P),x(2P) ^ 0.

Now rewriting (12) as p, = log|z|„ + 4~lp o [2] and substituting it into itself
repeatedly gives the formula

N

(13) p(P) = y 4-" log \z(2nP)\v + 4-Np(2NP),
n=0

valid provided that x(2nP) ^ 0 for n = 0,1,..., N. It is natural to let TV tend to
oo, thereby obtaining a series for p(P), provided that the remainder 4~Np(2NP)
goes to 0. Täte describes conditions under which this limiting procedure is valid.
(Notice that the sequence z(2"P), n = 1,2,..., is easily computed using (10) and
(9)-)

LEMMA 1.1.   For any £> 0, let

V£ = {QeE(Kv): \x(Q)\v>£} = {QeE(Kv): \t(Q)\v < e"1}.

(a) p, is bounded on Ve.
(b) log \z\v is bounded on {Q 6 V£ : 2Q E V£}.

Proof (under the assumption that A exists), (a) From (7) and (11), p(P) ap-
proaches a limit asP-»0; so there is a constant c such that p is bounded on Vc.
(Note that nc>o^c = i^)-) On tne other hand, (8) says that A is bounded on
{Q: c > |x(<5)|t,}, while loglx^ is clearly bounded on {Q: c > |x(<5)|w > e}. It
follows that p is bounded on Ve.

(b) This is immediate from (a) and the duplication formula (12).    D

THEOREM 1.2 (TÄTE). Suppose that there is an £ > 0 so that every point Q
in E(KV) satisfies \x(Q)\v > e.  Then for all P e E(KV) \ {O},

oo

A(P) = § log \x(P)\v + |^4-" log 1^(2^)1,,.
n=0

Further, the error in taking only N terms of the sum is 0(4~N).

Proof. By assumption, there is an £ > 0 so that in the notation of Lemma 1.1,
E(KV) = V£. In particular, Lemma 1.1(a) says that p(2NP) is bounded indepen-
dently of TV. From (13) we obtain the estimate

N
p(P) = y 4~n log |z(2nP)|„ + 0(4"N).

n=0

This and the definition of p (11) give both parts of Theorem 1.2.    D
Remark. Täte actually proceeds somewhat differently. He proves directly that

the series in Theorem 1.2 converges and has the properties (6), (7), (8), thereby
proving simultaneously that A exists and is given by his series. (Always, of course,
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under the conditions of Theorem 1.2.) In the next section we will give a modification
of Tate's series which converges to A with no conditions being imposed on E(KV).
Then in Section 3 we will give explicit estimates for the boundedness in Lemma
1.1(b) and for some similar quantities used in our modified series. Using these, the
reader may construct an a priori proof of the existence of A, valid for any local field
Kv.

2. A Universally Convergent Series for the Local Height. Tate's series
(Theorem 1.2) converges provided that E(KV) has no points with x = 0. More
precisely, Tate's series behaves well for P unless some multiple 2nP has small x-
coordinate. Our idea is to use Tate's series until hitting some multiple with x(2nP)
small. At that time, we make the substitution x' = x + 1. Then x'(2nP) is not
small, so we start using Tate's series associated with the parameter t' = 1/x'. (This
requires a little juggling of the nth term in Tate's series.) We proceed using the t'
series until x'(2mP) is small, at which time we switch back to the t series.

In order to derive the formulas describing this switching procedure, we start
with the well-known description of how the various quantities associated with a
Weierstrass equation (1) change under the substitution x' = x +1 (cf. [11, Chapter
III, Section 1] or [14]):

x' = x + 1, x = x' - 1,
t' = t/(l + t), t = t'/(l-t'),
b'2 = b2- 12, b'6 = b6 - 2b4 + b2-4,

(14) b'4 = b4 - b2 + 6, b'8 = b8- 3b6 + 3b4 -b2 + 3,
w' = 4t' + b'2t'2 + 2b'4t'3 + b'6t'4, z' = l- b'4t'2 - 2b'6t'3 - b'8t'4,

4t' + b'2t'2 + 2b'4t'3 + b'6t'4     «/
1     '   '   1 - b'4t>2 - 2b'6t'3 - b'8t>4        *''

As with the original equation, we define p' by

(15) |/i' = Â-ilog|x'|v;

so p' satisfies the duplication formula

(16) p'(2P) = 4p'(P)-4log\z'(P)\v.

Since A is independent of any shifting of x, we see that

¿(M -p') = \ log \x'/x\v = ¿ log |i/f'|„.

Using (14), this yields

(17) A* = At' + 41og |1 + *!„,        /i' = /i + 41og|l-i'|t,.

As indicated above, our idea is to switch back and forth between p and p'. To
do this, we derive the following "mixed" duplication formula involving both p and
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p':

p(Q) = log \z(Q)\v + \ß(2Q) from (12)
= log\z(Q)\v + \{p'(2Q) + 4log |1 + t(2Q)\v} from (17)
= log\z(Q)\v + log |1 + w(Q)/z(Q)\v + \p'(2Q)       from (10)
= log \z(Q) + w(Q)\v + y'(2Q).

A similar calculation expresses p'(Q) in terms of p(2Q), giving us the two formulas

(18) ß(Q) = log \z(Q) + w(Q)\v + \y!(2Q),
ß'(Q) = log\z'(Q)-w'(Q)\v + 14p(2Q).

Now repeated application of these mixed duplication formulas, together with the
usual ones (10) and (14), will give a convergent series for A. We start with an
estimate, analogous to Lemma 1.1, for the quantities log \z + w\v and log \z' - w'\v
appearing in (18).

LEMMA 2.1.   With notation as above, define two subsets U and U' of E(KV)
by

U = {QE E(KV) : \t(Q)\v < 2},        U'= {Q E E(KV) : |t'(Q)|„ < 2}.

(&) E(Kv) = UliU'.
(b) There exists a constant c so that for all Q & E(KV),

(i) Q,2QEU^\log\z(Q)\v\<c;
(ii) Q E U, 2Q E U' => | log \z(Q) + w(Q)\v\ < c;
(iii) Q,2Qe[/'^|log|z'(Q)U<c;
(iv) Q E U', 2Q E U => | log \z'(Q) - w'(Q)\v\ < c.

Proof, (a) Suppose that Q E E(KV) is not in U. Then t(Q) > 2, so
t(Q)

\t'(Q)\v = 1 + t(Q) <-T <2.
- i - [¿(Q)!.-1 -

Therefore Q E U'.
(b) First we note that (i) and (iii) are special cases of Lemma 1.1(b). Next, to

prove (ii), we apply Lemma 1.1(a), which says that p(Q) and p'(2Q) are bounded
independently of Q (subject to Q E U and 2Q E U'.) Now (18) shows that

log\z(Q) + w(Q)\v=p.(Q)-\p!(2Q)

is similarly bounded. This proves (ii). We leave the analogous proof of (iv) to the
reader.    D

We are now ready to define a sequence of real numbers co, c\,..., depending on
a given point P E E(KV), so that p(P) = 5Z4_ncn. In order to decide which of
the duplication formulae (12), (16), (18) to use, we will assign to each real number
c„ a Boolean value, which we denote by ßn. Thus ßn will be 0 if cn was computed
using the series for p', and it will be 1 if c„ comes from the series for p. (To assist
in the implementation of this theorem, we also provide a pseudocode subroutine.)
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Weierstrass coefficients

x-coordinate of point P

# of terms of sum to compute

formulas given below

PEU

PeU',P<£U

SUBROUTINE to Calculate Local Height of P at an Archimedean Absolute
Value

PARAMETERS needed by the subroutine
b2,b4,b6,bs
x
N

Calculate b'2,b'4,be,b's
IF |Z| > i

í = 1/x
ß = l

ELSE
1 = 1/(1 + 1)
ß = 0

END IF
A = -±log|f|: n = 0: ¿t = 0
LOOP WHILE n < N

IF ß = l
Compute   w and z

IF \w\ < 2\z\
p = ¿t + 4-nlog|z|

t = w/z
ELSE

p = p + 4~n log \z + w\
t = w/(z + w)
ß = l-ß

END IF
ELSE

formulas given below

2nP,2n+1PEU

2nPEU,2n+1P£U

ß = 0
Compute w' and z'

IF \w'\ < 2\z'\
p = p + 4-nlog\z'\
t = w'/z'

ELSE
p, = p, + 4~n log \z' — w'\
t = w'/(z' - w')
ß = l-ß

END IF
END IF

n = n + 1
END LOOP
A = A+¿/í
RETURN (A)

formulas given below

2nP,2n+1PEU'

2nPEU',2n+1P<¿U'

— local height with error 0(4  N)
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b'2 = 6a - 12 b'e = b6 - 2b4 + b2-4
b'4 = b4-b2 + 6_b'8 = bs- 3fr6 + 364 - b2 + 3
w = 4t + b2t2 + 2b4t3 + bet4 w = 4t + b'2t2 + 2b'4t3 + b'6t4
z = l- b4t2 - 266f3 - bst4 z = l- b'4t2 - 2b'6t3 - b'st4

THEOREM 2.2.   Define a sequence of real numbers c_i,co,...  and a sequence
of Boolean values ß-i, ßo, ■ ■ ■  as follows:

( -log\t(P)\v,l     if PEU,
'"1'P~1      l -loglí'ÍPJI^O    ifP£U;

log \z(2nP)\v,l if ßn-i = l and2n+1PEU,
log|2(2nP) + i/i(2nP)|v,0      if ßn-i = l and2n+1P£U,

c    ß   =
' log|«'(2BP)|„,l if ßn-i=0 and 2n+1 PEU',

log\z'(2nP)-w'(2nP)\v,0    if ßn-i =0 and2n+1P<¿U'.

(a)Â(P) = ic_1 + |Er=o4-n^.
(b) More precisely,

1 1 ^_1
A(P) = -c_1 + -£ 4-^ + 0(4-")

n=0

for a big-0 constant independent of both TV and P.

Remark. An explicit expression for the 0(4~N) error term is given below in
Theorem 4.2.

Proof. Using either (11) or (15), depending on whether or not P E U, we see
that

urn = !«-. + { "(P)  i!PeU'
We then repeatedly apply the duplication formulas (12), (16) and (18), following
the instructions provided above for producing the cn's. After TV steps, this leads
to the equation

i(P) = lCl+|rr,        Í4-V(2"P)     if/?„ = !,
{)     2     l     \V      n+l4-V(2^P)    if^=0.

Further, one easily checks that

ßN = i=>PeU,
ßN=0=>PEU'.

(Remember that U U £/' = E(KV) from Lemma 2.1(a).) But Lemma 1.1(a) says
that p(Q) (respectively p'(Q)) is bounded for Q E U (respectively Q E U'). Hence
in both cases we obtain the desired estimate, thereby proving (b). Then (a) follows
immediately on letting TV tend to ce.    D

3. Some Resultant Results. In this section we prove two results concerning
resultants which will be used in the next section to derive explicit error estimates for
our local height series. We start by computing the resultant of the two polynomials
(9) which are used in Tate's series. We will sketch three quite different proofs.
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PROPOSITION 3.1.   Let z(T) and w(T) be the usual polynomials (9),

z(T) = 1 - b4T2 - 2b6T3 - b8T4,        w(T) = 4T + b2T2 + 2b4T3 + b6T4;

and let A be the discriminant of the Weierstrass equation (1), given by formula (3).
Then

Res(z(T),w(T)) = A2,
where Res(z(T),w(T)) denotes the resultant of z(T) andw(T).

Proof (version 1, quick and dirty). Compute the resultant directly from the
definition as an 8 x 8 determinant, either by hand (ugh!) or using a symbolic
processor like MACSYMA.

Proof (version 2, elegant but a lot of machinery). Consider the projective scheme
If given by the equation

Y2Z + aiXYZ + a3YZ2 = X3 + a2X2 Z + a4XZ2 + a6Z3

over the ring 31 = Z[ai, a2,az, a4,ae, A-1], where b2,b4,be,b8 and A are given by
(3). Then §* is a group scheme over 31 (see, for example, [3, §7]), and the doubling
map [2]: If —> % is a finite morphism which descends to a finite morphism <j>: P^, —»
P1^ (i.e., 4>o [X,Z] = [X,Z] o [2]). The map 0 is given by [1,T] -» \z(T),w(T)}.
Since 4> is finite, the resultant of z(T) and w(T) must be a unit in 3ê. Therefore,

Res(z(T),w(T)) = ±Ar

for some integer r. To find r and the proper sign, one can explicitly calculate the
special case ai = a2 = az — a4 = 0, ae — A, which gives a very sparse 8x8
matrix to compute. (Alternatively, assigning weights wt(ax) = i, it is easy to see
that A and Res(2, w) are homogeneous of weights 12 and 24, respectively; so r = 2
is immediate.)

Proof (version 3, straightforward calculation). Let f(x) = 4x3 + b2x2 + b4x + be-
Then the doubling formula (5) can be written as

_ (\f'(x))2-(a2 + 2x)f(x)      x4z(l/x)
X°W- f(x) x4w(l/x)'

(This is easily derived from the geometric definition of the group law [11, Chapter
III, Section 2].) If we factor f(x) as 4(x — a)(x — ß)(x - 7), then the roots of w(T)
are 0, q_1, ß~l and 7_1. A standard formula for the resultant ([17, Section 5.9])
gives

ResMT),z(T)) = b4 ■ z(0) ■ z(a~1) ■ z(ß~l) ■ z(^)

= b4-l- a~4(\f'(a))2 ■ ß-4(\f'(ß))2 • rWf'd))2
= 4-\be/aß1)4(f'(a)f'(ß)f'(1))2.

Note that 66 = —4aß^. Further,

/»/'(W(7) = 4-Disc(/) = -4A.
(The first equality is [17, Section 5.9], the second follows from [17, Section 5.7] and
(3).) Substituting these in above gives the desired result.    D

It is clear that if two polynomials have distinct roots, then they cannot be si-
multaneously small. The following standard sort of result quantifies this observa-
tion. For lack of a suitable reference, we sketch a proof.

Notation. For F(X) = ¿2AxXl E C[X], let |F| = max{|A¿|}.
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LEMMA 3.2.  Let F(X),G(X) E C[X], deg(F) = m, deg(G) = n. Then for all
xEC,

max í\F(x)\   \G(x)\]        \Res(F,G)\ f 1_1__1
1   |P|   '    \G\   I - 2mn\F\n\G\m        \ 2m(m + l)"-1'2"(n + l)™-i J

Proo/. By homogeneity, it suffices to prove the lemma for monic polynomials.
(Note that Res(ciP,c2G) = c^c^Res(P,G).) Write

F(X) = y AiX* = Y[(X - a3),        G(X) = y BiX* = ]](X - ß3).
Let x E C. Switching F and G and relabeling the roots if necessary, we may assume
that
(19) min   |x-a,|>   min  Ix - 8A = Ix - ßi\.
v                                     l<j<m' J   ~ l<j<n J

There is a formula for the resultant [17, Section 5.9] of the form

(20) ReS(F,G) = f[F(ßJ).
j=i

For any z E C, let \z,l\ denote the maximum of |^r| and 1.   We have the trivial
bound
(21) |P(x)| <(m + l)|P||x,l|m    forallxeC;

and in [7, Chapter 3, Lemma 2.1] we find the estimate

(22) niß,l|<2"|G|.
3=1

Using these, we calculate

\F(ßi)\ = |Res(F,G)| / f[ \F(ß3)\    using (20)
1    J=2

(23) / "
> |Res(P,G)| / H(m + 1)\F\ \ßj,l\m    using (21)

/    j=2

> |Res(P,G)|/((m + l)|P|)n-12mn|Gr    using (22).
Finally,

m

|P(z)| ^ II \\x ~ ai\ + \{\ßi ~ ai\ ~\x ~ ßi\}    triangle inequality
3 = 1

m

>Y[\\ßi-a3\    from (19)
3 = 1

= 2~m\F(ßi)\.
Combining this with (23) gives the desired result.    □

4. Explicit Error Estimates. We now use the estimates from the last section
to give an explicit bound for the tail of the series in Theorem 2.2. Although this
bound will not be sharp, we will see below that from a computational viewpoint
there is little reason to search for a sharp bound. (See the remark following the
statement of Theorem 4.2.) We begin by reproving Lemma 2.1 with specific values
in place of the undetermined constants. As usual, let b2,b4,be,b8 and A be the
quantities (3) associated with the Weierstrass equation (1).
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LEMMA 4.1. Let U and U' be the sets described in Lemma 2.1 and define the
quantity H by

H = max{4,\b2\,2\b4\,2\be\,\bs\}.
LetQEE(Kv).  Then

(i) Q,2QEU=> \A\2v/228Hs < \z(Q)\v < 26H;
(ii) QEU,2QEU'=> \A\2V/228HS < \z(Q) + w(Q)\v < 27H;

(iii) Q, 2QEU'=> \A\2J260H8 < \z'(Q)\v < 210H;
(iv) QeU',2QeU=> \A\2v/2eoH8 < \z'(Q) - w'(Q)\v < 2nH.

Proof. First we apply Lemma 3.2 to the polynomials w(t) and z(t), using Propo-
sition 3.1 for the value of their resultant. Since |w| > 1 and |z| > 1, it follows that
for all í E C,

(24) nuK{|«(í)|.,W«)l.} > 2i^4mill{¿3'¿} * 2^-

(i) Let t = t(Q). By assumption, Q E U, so |i|„ < 2. This gives the trivial
estimate

(25) \z(Q)\v = |1 - b4t2 - 2bet3 - b8t% < 4H\t, 1\4V < 26H.

On the other hand, since 2Q E U, we have |t(2Q)|„ < \w(Q)/z(Q)\v < 2.  Now
using (24) gives

\z(Q)\v > ±max{\z{Q)\v,\w{Q)\v} > \A\2J228HS.

(ii) Since Q E U, we again get the estimate (25), and by a similar calculation,
|w(<2)|v ̂  26H. This gives the upper bound

\z(Q) + w(Q)\v < \z(Q)\v + \w(Q)\v < 27H.
Next, since 2Q E U', we have

t(2Q)
1 + t(2Q)

w(Q)
z(Q)+w(Q)2 > \t'(2Q)\v

so
\z(Q) + w(Q)\v>±\w(Q)\v.

Now using this, a trivial estimate and (24), we obtain

\z(Q) + w(Q)\v > max{\z(Q) + w(Q)\v, ||w(Q)|„}
> ím¡ot{\z(Q)\v,\w(Q)\v}

> \A\2J228HS.
(iii) and (iv). These are proven in exactly the same manner as (i) and (ii), but

with H replaced by

H' = max{4,\b'2\v,2\b'4\v,2\b'e\v,\b'8\v}

< max{4, |62|„ + 12, \b4\v + \b2\v + 6, |6b|v + 2\b4\v + \b2\v + 4,

\b8\v + 3\be\v + 3\b4\v + \b2\v + 3}
<IQH.

Substituting 24H for H in the bounds for (i) and (ii) gives (iii) and (iv).    D
We are now ready for our main error analysis.
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THEOREM 4.2.   Let {cn} be the sequence described in Theorem 2.2.
(a) For all n > 0,

log\\A\2v/260H8\ < cn <log(2nH).

(b) Define the error term R(N) by

N-l
\v(P) = ±c-i + ±y4-ncn + R(N).

n=0

Then
¿ ■ 4TN ■ log | \A\2v/2mH8\ < R(N) < \ • 4~N ■ log(2nH).

(c) In order to make |P(TV)| less than ^ ■ 10~d (i.e., to calculate A to d decimal
places), it suffices to take

TV > §d + I + | log(7 + | log H + ± logmax{l, IAI;1}).

Example 4.3. Suppose that we wish to calculate A„(P) to 50 decimal places
for a curve whose coefficients satisfy H < 10100 and |A|„ > 10-100. Then part
(c) of the theorem says that it suffices to take 89 terms in the series X^4_ncn.
Suppose now that by a more careful analysis we were able to replace the bounds
A2/2G0H8 and 211/7 in Lemma 4.1 by just H. (It seems very unlikely that this
large an improvement is even possible.) Then the estimate in Theorem 4.2(c) could
be replaced by

TV>§d+± + fiog|log//;

and this means that in the problem just posed we would only need to use 87 terms
to compute A„(P) to 50 decimal places. Thus, for the purpose of giving error
estimates for our series, there seems little point in bothering to improve the coarse
bounds in Lemma 4.1. (Of course, for other applications, such as giving explicit
estimates for the difference of the canonical and Weil heights, more accurate bounds
are important. See, for example, [16, Section 3].)

Proof of Theorem 4.2. (a) Comparing the description of the sequence {cn} in
Theorem 2.2 with the conditions (i)-(iv) in Lemma 4.1 above, we see that exp(c„)
satisfies one of the inequalities (i) (iv). Taking logarithms gives the desired result.

(b) From the definition of R(N),

oo /   oo \

w = èE4""c"<î Er" sup{c«} = I• !■ 4~"■ sup<c«}-
nt}v \n^N Jn^N n>N

Similarly, R(N) > g • 4~N ■ inf{cn}. Substituting in the estimate for cn obtained
in (a) yields something stronger than (b).

(c) Using (b), we see that it suffices to take TV satisfying

TV > (log4 10)d+ i +log4 ilogmax{211/7,260//8/|A|2}.

An elementary calculation shows that this is weaker than the condition imposed by
(c).    □
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5. Local Height for Non-Archimedean Valuations. Suppose now that
v E Mk is a non-Archimedean absolute value, and let

ord„:tf;ÄZ
be the corresponding normalized valuation. Thus, if the residue field at v has order
qv, then

log|x|„ = -T7-——-ovàv(x)log(qv)    for all xEK*.
[Kv: i4v\

(See, e.g., [7, Chapter 1, Section 2].)
Let E/K be an elliptic curve given by a Weierstrass equation (1), and let P =

(x,y) E E(K). We wish to compute A„(P), the local height of P at v. The first
step is to replace (1) by an equation which is minimal at v (cf. [11, Chapter VII,
Section 1]). An efficient way to do this is given by an algorithm of Laska [8]. (As
formulated in [8], Laska's algorithm gives a global minimal Weierstrass equation,
provided that K has class number 1. However, it is not hard to modify Laska's
routine so as to produce an equation which is minimal for all v & S, where S is
any set of places such that the ring of 5-integers in K is a PID.) An alternative
method for finding a minimal equation is to use the algorithm of Täte [14], but this
is somewhat more complicated. (In fairness, it should be pointed out that Tate's
algorithm also gives the reduction type and conductor of E at v, so it is in no way
superseded by Laska's algorithm.) For the remainder of this section we will assume
without further comment that the Weierstrass equation (1) is minimal at v.

If the reduction E of E at v is nonsingular, then the local height is given by the
simple formula

(26) Av(P)=max{0,-±log|z|„};

and more generally, this formula holds provided Pis a nonsingular point of E. (See
[6, Chapter III, Theorem 4.3] for the proof when E is smooth. However, the proof
given in [6] works whenever P is nonsingular. For general facts about the reduction
of elliptic curves, see [11, Chapter VII].) P will be nonsingular if and only if one of
the partial derivatives of (1) at P does not vanish modulo v. Thus,

ord„(3x2 + 2a2x + a4 — aiy) < 0    or   ord„(2i/ + aix + a3) < 0

=> XV(P) = max{0, -± log |x|„}.

Next suppose that E has multiplicative reduction at v. Referring to Tate's
algorithm [14], this occurs if ord„(A) > 1 and ordt,^) = 0. Let TV = ord„(A).
Then E(Kv)/Eo(Kv) is cyclic of order TV; and if P lies in the nth component (with
0 < n < TV), then

(28) Át)(P) = ^^log|A|w.

(Here, Eo(Kv) is the subset of E(KV) consisting of those points whose reduction is
nonsingular. For a proof of (28), see [6, Chapter III, Theorem 5.1].) Our problem
now is to compute n. Notice that (28) is invariant under the substitution n —► TV—n,
which corresponds to P —» -P. Further, we already know A^P) from (26) if n = 0.
We may thus assume that 0 < n < |TV. An easy way to compute n is provided by
the following lemma, which first appeared in the author's thesis [10].
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LEMMA 5.1.   With notation as above,

n — min{ord„(2y + oix + 03), |ord„(A)}.

Proof. We substitute the formula (28) for P and 2P into the duplication formula
for the local height (6). If 0 < n < ±TV, then Â„(2P) is given by (28) with 2n in
place of n, so we obtain

2n(TV-2n),     ... n(TV - n) ,     ...       ,     .„
2N2—- log |A|„ = 4   v2Ar2     log |A|„ - log \2y + an + a3\v.

A little bit of algebra now yields

log|2y + aix + a3|,, . .
n =-—■—i-7-¡--N = ord„(22/ + aix + a3).log I A|t,

Similarly, if n = §JV, then 2P E E0(KV), so (26) says that Â„(2P) > 0. Using this
and (28) in (6) gives

0Slfflya!^|A|,.los|2,+,i+.!t
_ 1 log |A|„ - log \2y + axx + a3\v.

Hence,

j /n ï     log|22/ + aix + a3|w        .   .      x        .ordv(2y + axx + 03) =-——-r-j--ord„(A) > ¿ord^A) = n.
log I Alt,

(Note that log | A|„ < 0.) This completes the proof of Lemma 5.1.    D
It remains to deal with the case that E has additive reduction at v and P is

singular. One approach is to compute successively nP for n = 1,2,3,4, one of
which is guaranteed to lie in Eq(Kv). Then one can use (26) to compute A„(nP),
and thence (6) and similar formulas to recover \V(P). This approach (with the
relevant formulas) is given in [16]. For variety, we will describe a somewhat different
approach which we feel is slightly more efficient. (Of course, if one has already
implemented the group law on E, then it is probably just as easy to use [16].
However, we note that in the case of multiplicative reduction, this method may
necessitate computing a large multiple of P; so for multiplicative reduction it is
certainly preferable to use (28) in conjunction with Lemma 5.1.)

The algorithm we devise will depend on the duplication formula (6) and the
corresponding triplication formula. To ease notation, we let

</>2 = 2y + aix + a3,

ip3 = 3x4 + 62x3 + 364x2 + 3b6x + b8.

Thus, tp2 vanishes at the 2-torsion points of E, and tp3 vanishes at the 3-torsion
points. The local height then satisfies the following two relations:

(30) Â„(2P)=4Â„(P)-log|^2(P)|t;,
(31) Aw(3P) = 9At)(P)-log|V3(P)k.

Suppose now that E has additive reduction at v and that P ^ E0(KV). Referring
to a table of reduction types such as given in [11, Table 15.1] or [14], we see that E is
one of the types III, IV, VM, IV* or III*. From general theory (cf. [7] or [4]) one finds
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that A„(P) is determined by the image of P in the finite group $ = E(KV)/E0(KV);
and further, Xv(-P) = XV(P). We now consider three cases.

Case 1. 3P E E0(KV). We must have type IV or IV* reduction, with $ = Z/3Z.
Since P and -2P have the same images in $, it follows that AV(2P) = A„(P).
Further, since 3P E Eq(Kv), (26) says that Â„(3P) > 0. Substituting these facts
into (30) and (31) and solving for A„(P) yields

(32) XV(P) = i log \ii2(P)\v > è log \MP)\v

Case 2. 2P E E0(KV). In this case we have one of the reduction types III, III*,
l*M; and P and 3P have the same image in $. Therefore, AV(3P) = A„(P) and,
since 2P E E0(KV), XV(2P) > 0. Substituting into (30) and (31) and solving gives

(33) XV(P) = i log \t¡i3(P)\v > \ log \MP)\v

We now note that the inequalities in (32) and (33) cannot both hold. (x(P) is
u-integral since P & Eq(Kv), and i/>2(P) is not a w-adic unit (27), so \ip2(P)\v < 1
and \îpz(P)\v < 1-) Hence we can use these inequalities to distinguish between the
two cases.

Case 3. 2P,3P £ Eo(Kv). The only possibility is reduction type l*M with M
odd, $ = Z/4Z, and the image of P generating $. Then P and -3P have the same
image in $, so XV(3P) = XV(P). Substituting into (31) gives the same value for
XV(P) as in Case 2,

XV(P) = llog\tPz(P)\v.
Unfortunately, the inequality in (33) is no longer true. However, one can verify in
this case (e.g., by using Tate's algorithm [14]) that

ord„V2(P) = \(M + 3)    and   ord^P) = M + 4.

Hence the inequality in (32) does not hold; so in all cases we can use the inequality
in (32) to decide whether XV(P) is given by (32) or (33).

Combining all of the above discussion, we obtain the following algorithm for com-
puting the local height at a non-Archimedean place. (We also include pseudocode
implementing this algorithm.)

THEOREM 5.2 (Local Height at Non-Archimedean Valuations). Let E/K be
an elliptic curve given by a Weierstrass equation (1) which is minimal at v, and let
P E E(KV). Also let ip2 and tpz be the functions on E defined by (29).

(a)//

ordv(3x2 + 2a2x + a4 - aiy) < 0    or   ord„(2y + aix + a3) < 0,

then (PeE0(Kv))
Xv(P) = max{0,-\log\x(P)\v}.

(b) Otherwise, if
ord„(c4) = 0,

then (multiplicative reduction)

TV = ord„A,        n — min{ord„V2(P), ^ord^A},
;   . _.      n(TV - n) ,     .    .
K(P)=    \N2   Mog|A|„.
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(c) Otherwise, if
ordvi¡iz(P)>3ordvvJ2(P),

then (additive reduction of type IV or IV*)

Â„(P) = |log|^2(P)|„.
(d) Otherwise (additive reduction of type III, III*, or l*M)

XV(P) = Uog\tliz(P)\v

Minimal Weierstrass coefficients

x, ^-coordinates of point P

SUBROUTINE to Calculate Local Height of P at a Non-Archimedean Absolute
Value v

PARAMETERS needed by the subroutine
cti,ci2,az,a4,ae
x,y

Calculate b2, b4, be, b8, c4, A
TV = ord„(A)
A = ord„(3x2 + 2a2x + a4 - aiy)
B = ord„(2y + aix + a3)
C = ordv(3x4 + b2x3 + 3b4x2 + 3b6x + b8)

IF A < 0 OR B < 0

see formulas (3)

A = max{0, -¿ord„(x)}
ELSE IF ord„(c4) = 0

n = min{P, ±TV}
A = -n(N - n)/2N

ELSE IF C > 3B
A = -iß

ELSE
A = -|C

END IF
RETURN (Alog(qv)/[Kv: Qv})

PEE0(KV)

TypelN

Types IV, IV*

Types III, III*, \M

= K(P)

6. Computing the Canonical Height: Examples. The canonical height h
on an elliptic curve E defined over a number field K can be computed as the sum
of local heights as described by Eq. (2), which we repeat here for reference:

h(p)= y nX{py
vEMk

To make this formula precise, we must specify the multiplicities nv and the nor-
malization of the absolute values in Mk (which affect the definition of A^ via the
duplication formula (7)). Let Mq be the usual set of absolute values on Q,

|p|p = 1/p, \x\oo = max{x, -x},

and let Mk be the set of all possible extensions to K of elements of Mq. This
defines MK\ and then for v E Mk, we set

nv = [Kv:Qv]/[K:Q).
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We now use the algorithms given earlier (Theorems 2.2 and 5.2) to compute the
canonical height for several specific examples.

Example 1. Let E be the elliptic curve

E: y2 +y = x3 - x2.

As is well known, E(Q) = Z/5Z. (The reader may recognize that E is the modular
curve Xi(ll).) We now look at E over the field K = Qtv^) and note that E(K)
contains the point

P = (2 + s/^2,1 + 2v^2) € E(K).
We also compute

A = -ll = -(3 + v/=2)(3- v711^),        c4 = 16 = (v/=2)8.

Since
(2y + 1)(P) = 3 + 4V/Z2 £ 0 (mod 3 ± \^2),

and x(P) is integral (i.e., in Zf-y/-^]), we see from Theorem 5.2 that XV(P) = 0 for
all non-Archimedean v E Mk-

It remains to compute A00(P), where oo is the (unique) Archimedean absolute
value in Mk- We have done this by implementing the algorithm described in
Theorem 2.2. In order to obtain 50 decimals of accuracy, Theorem 4.2 says to take
H — 4 (as specified in Lemma 4.1) and use TV terms of the series, with

TV> | -50+ \ + flog(7+§logff) = 85.46... .
Since we need less than 100 terms of the series, it suffices to calculate each term to
(say) 55 decimals to avoid round-off errors in the final answer. Having done this
calculation, we obtain the value

A00(P) = 0.45754773287523276736211210741423654346576029814695....

(As an aside, we remark that the algorithm started with ß = 1, switched to ß = 0
after 11 terms, and stayed there for the remainder of the computation.)

Finally we note that

noo = [ff«,: Qoo]/[K: Q] = [C: R]/[K: Q] = 1,

so

h(P) = Xoo(P) = 0.45754773287523276736211210741423654346576029814695 ....

Example 2. Let E be the elliptic curve

E : y2 + 4y = x3 + 6ix,

which we consider over the field K = Q(i), where i = y/~—i. We compute for E the
usual quantities (3),

b2 = 0,    b4 =-i(l + i)43,    be = (l + i)8,    b8 = -(1 + ¿)432,
c4 = -(l + ¿)1o32î        A = -(1 + z)1633(l - 2i).

It is clear that the equation for E is minimal at all primes except possibly (1 +i),
since A has order less than 12 except at (1 + i). But b8 only has order 4 at (1 -I- i),
so the equation is minimal at (1 -I- i) also.
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We will compute the canonical height of the point

P = (0,0) E E(K).

First we note that (2y + 4)(P) = 4 is not divisible by 3 or 1 — 2i, so Theorem 5.2
gives

Â(3)(P) = Â(1_2î)(P)=0.
Next,

(2y + 4)(P) = 4 = 0 (mod 1 + i)    and    (3x2 + 6t) = 6i = 0 (mod 1+i),

so we continue the algorithm specified by Theorem 5.2. Since C4 = 0 (modi + i),
the reduction type is additive. We compute

MP) = a3 = 4 = -(1 + i)4,        MP) = bs = -(1 + i)432,
ord{i+x)(i>z(P)) = 4 < 12 = 3ord{1+l)(V2(P)).

Therefore

Â(1+0(P) = § log 1^(^)1(1+0 = s log I - (l + î)432|(1+t) = -¿log 2.

Next we use the series in Theorem 2.2 to compute Aoo(P) for the Archimedean
place 00 of K, obtaining

XX(P) = 0.5101849952...

accurate to 10 decimals.
Finally, we note that n<x, = 1 and «(1+,-) = 1. Now putting everything together

gives the estimate

Â(P) = Âoo(P) + Â(1+i)(P) =0.3368982000... .
Example 3. Let E and K be as in Example 2, and let

Then
(22/ + 4)(0)=-16 + 27l-(1-2^14 + i)

(3x2+6¿)(Q) =

4 (1 + i)4       '
243 + 96ï _ 3(1 + 2t')(6 + i)(4 - 5i)

16 (1 + z)8
Thus,

(2y + 4)(Q) ¿ 0 (mod3)    and    (3x2 + 6»)(Q) ¿ 0 (mod 1 - 2»),

so

Â(3)(Q) = Â(i-2l,(Q) = 0   and   Â(1+i)(Q) = |log|-f|(1+0=log2.
'Using the series from Theorem 2.2, we compute

Aoo(<2) =0.6544456195...,
and so

h(Q) = Xoo(Q) + X{1+l)(Q) = 1.3475928001....
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Notice that h(Q) « 4h(P); and sure enough, one can easily check that Q = 2P.
(Of course, if we had noticed this originally, then there would have been no need
to compute h(Q) separately!)

Example 4. We conclude by computing the canonical height of the point over
Q with the smallest known h(P)/ log |A| ratio. (This ratio figures prominently in
a conjecture of S. Lang [6, p. 92] and occurs naturally in the counting arguments
of [12].) This example illustrates how the algorithm in Theorem 5.2 works for
multiplicative reduction. (Compare with the procedure used in [16], which requires
computing the denominator of the x-coordinate of 13P.)

Let E/Q be the elliptic curve

E:y2 + 21xy + 494y = x3 + 26x2,

and let P = (0,0) E E(Q). Using Theorem 2.2, we compute

Âoo(P) = 1.921499008... .
Next, we have

A = -6497214464 = -213133192,        c4 = 48049.

Further,

(3x2 + 2o2x + a4-ai?/)(P) =0   and    (2y + axx + a3)(P) = 494 = 2 • 13 ■ 19;

while C4 is prime to 2 • 13 ■ 19. Examining Theorem 5.2, we see that E has multi-
plicative reduction at 2, 13 and 19; and P is not in Eo(Qp) for these three primes.
Using the formulas in Theorem 5.2(b), we calculate

n = Xp(P) =
p    TV = ordpA   min{ordpa3,èTV}        (n(N - n)/2N2) log |A|P

1 -^log2 =-0.319914083...
1 -4 log 13 = -0.854983119...
1 - \ log 19 = -0.736109745...

= 1.921499008...

h(P) = 0.010492061...
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