
 Open access Journal Article DOI:10.1016/S0169-023X(02)00057-5

Computing iceberg concept lattices with TITANIC — Source link

Gerd Stumme, Rafik Taouil, Yves Bastide, Nicolas Pasquier ...+1 more authors

Institutions: Karlsruhe Institute of Technology, French Institute for Research in Computer Science and Automation,
Blaise Pascal University, University of Nice Sophia Antipolis ...+1 more institutions

Published on: 01 Aug 2002 - Data and Knowledge Engineering

Topics: Conceptual clustering, Knowledge extraction, Formal concept analysis, Association rule learning and
Closure (topology)

Related papers:

 Formal Concept Analysis: Mathematical Foundations

 Restructuring lattice theory: an approach based on hierarchies of concepts

 Formal Concept Analysis

 Efficient mining of association rules using closed itemset lattices

 Comparing performance of algorithms for generating concept lattices

Share this paper:

View more about this paper here: https://typeset.io/papers/computing-iceberg-concept-lattices-with-titanic-
4bc80qesnv

https://typeset.io/
https://www.doi.org/10.1016/S0169-023X(02)00057-5
https://typeset.io/papers/computing-iceberg-concept-lattices-with-titanic-4bc80qesnv
https://typeset.io/authors/gerd-stumme-49na5soafh
https://typeset.io/authors/rafik-taouil-3nip6djpcp
https://typeset.io/authors/yves-bastide-48np2k5kfd
https://typeset.io/authors/nicolas-pasquier-4vc7xoegd3
https://typeset.io/institutions/karlsruhe-institute-of-technology-qoyshx5q
https://typeset.io/institutions/french-institute-for-research-in-computer-science-and-3k6jpcfg
https://typeset.io/institutions/blaise-pascal-university-2jm0xl0k
https://typeset.io/institutions/university-of-nice-sophia-antipolis-1vadneyw
https://typeset.io/conferences/data-and-knowledge-engineering-2h9cpbe4
https://typeset.io/topics/conceptual-clustering-2myzuzwv
https://typeset.io/topics/knowledge-extraction-1m8ilcxd
https://typeset.io/topics/formal-concept-analysis-1zrtr5yv
https://typeset.io/topics/association-rule-learning-ycffk7bp
https://typeset.io/topics/closure-topology-3k81jl7o
https://typeset.io/papers/formal-concept-analysis-mathematical-foundations-1rothzo8wd
https://typeset.io/papers/restructuring-lattice-theory-an-approach-based-on-2v5dlb6vj0
https://typeset.io/papers/formal-concept-analysis-bpjvbc50ht
https://typeset.io/papers/efficient-mining-of-association-rules-using-closed-itemset-idrnh1o7fn
https://typeset.io/papers/comparing-performance-of-algorithms-for-generating-concept-1ybmrj3kxe
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/computing-iceberg-concept-lattices-with-titanic-4bc80qesnv
https://twitter.com/intent/tweet?text=Computing%20iceberg%20concept%20lattices%20with%20TITANIC&url=https://typeset.io/papers/computing-iceberg-concept-lattices-with-titanic-4bc80qesnv
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/computing-iceberg-concept-lattices-with-titanic-4bc80qesnv
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/computing-iceberg-concept-lattices-with-titanic-4bc80qesnv
https://typeset.io/papers/computing-iceberg-concept-lattices-with-titanic-4bc80qesnv

HAL Id: hal-00578830
https://hal.archives-ouvertes.fr/hal-00578830

Submitted on 22 Mar 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Computing iceberg concept lattices with Titanic
Gerd Stumme, Rafik Taouil, Yves Bastide, Nicolas Pasquier, Lotfi Lakhal

To cite this version:
Gerd Stumme, Rafik Taouil, Yves Bastide, Nicolas Pasquier, Lotfi Lakhal. Computing iceberg con-
cept lattices with Titanic. Data and Knowledge Engineering, Elsevier, 2002, 42 (2), pp.189-222.
10.1016/S0169-023X(02)00057-5. hal-00578830

https://hal.archives-ouvertes.fr/hal-00578830
https://hal.archives-ouvertes.fr

Computing iceberg concept lattices with TITANIC

Gerd Stumme a,*, Rafik Taouil b, Yves Bastide c, Nicolas Pasquier d,
Lotfi Lakhal e

a Institut f€uur Angewandte Informatik und Formale Beschreibungsverfahren (AIFB), Universit€aat Karlsruhe (TH),

D-76128 Karlsruhe, Germany
b INRIA Lorraine, LORIA, BP 239, F-54506 Vandæuvre-l�ees-Nancy, France

c Laboratoire d’Informatique (LIMOS), Universit�ee Blaise Pascal, Complexe Scientifique des C�eezeaux,

24 Avenue des Landais, F-63177 Aubi�eere Cedex, France
d Universit�ee de Nice, I3S––CNRS UPRESA 6070-UNSA, Les Algorithmes––Euclide B, 2000 route des Lucioles,

BP 121, F-06903 Sophia Antipolis, France
e LIM, CNRS FRE-2246, Universit�ee de la M�eediterran�eee, Case 90, 163 Avenue de Luminy,

F-13288 Marseille Cedex 9, France

Abstract

We introduce the notion of iceberg concept lattices and show their use in knowledge discovery in da-

tabases. Iceberg lattices are a conceptual clustering method, which is well suited for analyzing very large

databases. They also serve as a condensed representation of frequent itemsets, as starting point for com-

puting bases of association rules, and as a visualization method for association rules. Iceberg concept

lattices are based on the theory of Formal Concept Analysis, a mathematical theory with applications in

data analysis, information retrieval, and knowledge discovery. We present a new algorithm called TITANIC

for computing (iceberg) concept lattices. It is based on data mining techniques with a level-wise approach.

In fact, TITANIC can be used for a more general problem: Computing arbitrary closure systems when the

closure operator comes along with a so-called weight function. The use of weight functions for computing

closure systems has not been discussed in the literature up to now. Applications providing such a weight

function include association rule mining, functional dependencies in databases, conceptual clustering, and

ontology engineering. The algorithm is experimentally evaluated and compared with Ganter’s Next-Clo-

sure algorithm. The evaluation shows an important gain in efficiency, especially for weakly correlated

data. � 2002 Elsevier Science B.V. All rights reserved.

Keywords: Knowledge discovery; Database analysis; Formal concept analysis; Closure systems; Lattices; Algorithms

www.elsevier.com/locate/datak

Data & Knowledge Engineering 42 (2002) 189–222

*Corresponding author.

E-mail addresses: stumme@aifb.uni-karlsruhe.de (G. Stumme), rafik.taouil@loria.fr (R. Taouil), bastide@libd2.

univ-bpclermont.fr (Y. Bastide), pasquier@mezzo.unice.fr (N. Pasquier), lotfi.lakhal@lim.univ-mrs.fr (L. Lakhal).

0169-023X/02/$ - see front matter � 2002 Elsevier Science B.V. All rights reserved.
PII: S0169-023X(02)00057-5

1. Introduction

Concept Lattices are used to represent conceptual hierarchies which are inherent in data. They

are the core of the mathematical theory of Formal Concept Analysis (FCA). Introduced in the

early 1980s as a formalization of the concept of ‘concept’ [46], FCA has over the years grown to a

powerful theory for data analysis, information retrieval, and knowledge discovery [43]. In arti-

ficial intelligence (AI), FCA is used as a knowledge representation mechanism [48] and as con-

ceptual clustering method [8,27,37]. In database theory, FCA has been extensively used for class

hierarchy design and management [10,13,28,35,45,50]. Its usefulness for the analysis of data

stored in relational databases has been demonstrated with the commercially used management

system TOSCANA for Conceptual Information Systems [44].

A current research domain common to both the AI and the database community is knowledge

discovery in databases (KDD). Here FCA has been used as a formal framework for implication

and association rules discovery and reduction [31,41] and for improving the response times of

algorithms for mining association rules [31,32]. The interaction of FCA and KDD in general has

been discussed in [42] and [16].

In this paper we show that, vice versa, FCA can also benefit from ideas used for mining as-

sociation rules: Computing concept lattices is an important issue, investigated for long years

[11,14,28,29,50]. We address the problem of computing concept lattices from a data mining

viewpoint by using a level-wise approach [2,25]; and provide a new, efficient algorithm called

TITANIC. In fact, TITANIC can be used for a more general problem: Computing arbitrary closure

systems when the closure operator comes along with a so-called weight function. The use of

weight functions for computing closure systems has not been discussed in the literature up to now.

Weight functions appear naturally in a variety of applications, include association rule mining,

functional dependencies in databases, conceptual clustering, ontology learning, transformation of

class hierarchies in object-oriented languages, and configuration space analysis in software re-

engineering.

We also introduce the notion of iceberg concept lattices. Iceberg concept lattices show only the

top-most part of a concept lattice. Iceberg concept lattices have different uses in KDD: as con-

ceptual clustering tool, as a visualization method, especially for very large databases, as a con-

densed representation of frequent itemsets, as a base of association rules, and as a visualization

tool for association rules.

In Section 2, we recall the basics of FCA. In Section 3, we introduce iceberg concept lattices

and explain their use as conceptual clustering method by an example. Section 4 provides the

theoretical foundation and gives a formal statement of the generalized problem of computing

closure systems using a weight function. The problem is split in several subtasks in Section 5, and

turned into pseudo-code in Section 6. In Section 7, we apply the algorithm to concept lattices and

iceberg concept lattices, and provide examples. Section 8 lists some typical applications. In

Section 9, we provide a complexity discussion and an experimental evaluation. Section 10 con-

cludes the article.

This article consolidates research presented in the workshop papers [39,40].

190 G. Stumme et al. / Data & Knowledge Engineering 42 (2002) 189–222

2. Formal concept analysis

Since concepts are necessary for expressing human knowledge, any knowledge management

process benefits from a comprehensive formalization of concepts. FCA offers such a formalization

by mathematizing the concept of ‘concept’ as a unit of thought constituted of two parts: its ex-

tension and its intension [12,46]. This understanding of ‘concept’ is first mentioned explicitly in the

Logic of Port Royal [3] and has been established in the international standard ISO 704.

We recall the basics of FCA as far as they are needed for this paper. The definitions and

theorems in this subsection are quoted from [46]. A more extensive overview is given in [12].

To allow a mathematical description of extensions and intensions, FCA starts with a ðformalÞ
context. 1

Definition 1. A formal context is a triple K :¼ ðG;M ; IÞ where G andM are sets and I � G�M is

a binary relation. The elements of G are called objects and the elements of M attributes. The

inclusion ðg;mÞ 2 I is read ‘‘object g has attribute m’’. For A � G, we define

A0 :¼ fm 2 M j8g 2 A : ðg;mÞ 2 Ig;

and for B � M , we define dually

B0 :¼ fg 2 Gj8m 2 B : ðg;mÞ 2 Ig:

We assume, in this article, that all sets are finite, especially G and M.

Lemma 1. Let ðG;M ; IÞ be a context, A1, A2 � G sets of objects, and B1, B2 � M sets of attributes.

Then the following holds:

A1 � A2) A02 � A
0
1 ð1Þ

B1 � B2) B02 � B
0
1 ð1aÞ

A � A00 ð2Þ

B � B00 ð2aÞ

A0 ¼ A000 ð3Þ

B0 ¼ B000 ð3aÞ

A � B0 () B � A0 () A� B � I: ð4Þ

Definition 2. A formal concept is a pair ðA;BÞ with A � G, B � M , A0 ¼ B and B0 ¼ A. (This is

equivalent to A � G and B � M being maximal with A� B � I .) A is called extent and B is called

intent of the concept.

1 The notion of context has also been used in many other AI applications. See http://extractor.iit.nrc.ca/

bibliographies/context sensitive for references. In this paper, we always refer to the notion developed in FCA.

G. Stumme et al. / Data & Knowledge Engineering 42 (2002) 189–222 191

The set BðKÞ of all concepts of a formal context K together with the partial order

ðA1;B1Þ6 ðA2;B2Þ:() A1 � A2 (which is equivalent to B1 � B2) is called concept lattice of K.

The following lemma shows, together with Lemma 1 (3a), that a concept lattice can be derived

from the set of its concept intents.

Lemma 2. Let K :¼ ðG;M ; IÞ be a formal context. Then

BðKÞ ¼ fðB0;B00ÞjB � Mg:

The fundamental theorem of FCA [46] shows that each concept lattice is a complete lattice, and

that the set of its intents is a closure system (see Section 5):

Theorem 3 (Fundamental Theorem of FCA). Let K :¼ ðG;M ; IÞ be a formal context. Then BðKÞ
is a complete lattice in which infima and suprema can be described as follows:

^

j2J

ðAj;BjÞ ¼
\

j2J

Aj;
[

j2J

Bj

 !000
@

1
A;

_

j2J

ðAj;BjÞ ¼
[

j2J

Aj

 !00
;
\

j2J

Bj

0
@

1
A

Conversely, if L is a complete lattice then L ffi BðKÞ if and only if there are mappings c : G! L and

l : M ! L such that cðGÞ is supremum-dense in L, lðMÞ is infimum-dense in L, and ðg;mÞ 2 L is
equivalent to cðgÞ6 lðmÞ, for all g 2 G and m 2 M . In particular, L ffi BðL; L; 6 Þ.

Example. As running example, we use the MUSHROOM database from the UCI KDD Archive

(http://kdd.ics.uci.edu/). It consists of a database with 8416 objects (MUSHROOMS) and 22

(nominally valued) attributes. We obtain a formal context by creating one (Boolean) attribute for

each of the 80 possible values of the 22 database attributes. The resulting formal context has thus

8416 objects and 80 attributes. In order to explain FCA by a small example, we restrict ourselves

first to a very limited sub-context, namely the first 10 objects, and 13 attributes. This restricted

formal context is shown in Fig. 1. A line diagram of its concept lattice is shown in Fig. 2.

In the line diagram, the name of an object g is always attached to the circle representing the

smallest concept with g in its extent; dually, the name of an attribute m is always attached to the

circle representing the largest concept with m in its intent. This allows us to read the context

relation from the diagram because an object g has an attribute m if and only if there is an as-

cending path from the circle labeled by g to the circle labeled by m. The extent of a concept

consists of all objects whose labels are below in the hierarchy, and the intent consists of all at-

tributes attached to concepts above in the hierarchy. For example, the concept without label in the

middle of the diagram has {MUSHROOM 3, MUSHROOM 4} as extent, and {edible, cap surface:

fibrous, cap shape:flat} as intent.

For X, Y � M , we say that the implication X) Y holds in the context, if each object having all

attributes in X also has all attributes in Y (i.e., an implication is an association rule 2 with 100%

2 An association rule is a pair X ! Y with X, Y � M . Its support is defined by suppðX ! Y Þ :¼ ðjðX [Y Þ0jÞ=jGj, and
its confidence by confðX ! Y Þ :¼ ðjðX [Y Þ0jÞ=jX 0jÞ. See [1].

192 G. Stumme et al. / Data & Knowledge Engineering 42 (2002) 189–222

confidence). For instance, the implication {cap shape: flat, cap surface:smooth}) {cap color:

buff, poisonous} holds in the context. (Of course it may not hold any longer when we enlarge the

set of objects under consideration.)

Implications can be read directly in the line diagram: the largest concept having both ‘cap

shape: flat’ and ‘cap surface: smooth’ in its intent is just the concept labeled by ‘cap color:

buff’––which on its turn lies below the concept labeled by ‘poisonous’. In the next section is

discussed how also association rules with less than 100% confidence can by visualized in the line

diagram.

Beside association rule mining, FCA has been applied in a wide range of application domains,

including medicine, psychology, social sciences, linguistics, information sciences, machine and

Fig. 1. Formal context about MUSHROOMS.

Fig. 2. The concept lattice of the context of Fig. 1.

G. Stumme et al. / Data & Knowledge Engineering 42 (2002) 189–222 193

civil engineering etc. (cf. [43]). Over all, FCA has been used in more than 200 projects, both on

the scientific and the commercial level. For instance, FCA has been applied for analyzing data

of children with diabetes [34], for developing qualitative theories in music esthetics [23], for

managing emails [9], for database marketing [16], and for an IT security management sys-

tem [7].

3. Iceberg concept lattices

The previous example was unsatisfying insofar as it was restricted to a very small and––more

important––arbitrarily chosen set of objects. On the other hand, this restriction allowed us to

display the entire concept lattice. In the worst case, the size of a concept lattices is exponentially in

the size of the context. Hence for most applications one has to consider strategies (other than

arbitrarily reducing the context) for dealing with such large concept lattices.

In this paper, we present an approach based on frequent itemsets as known from data mining

[1]: Our iceberg concept lattices will consist only of the top-most concepts of the concept lattice.

These are the concepts which provide the most global structuring of the domain.

Definition 3. Let B � M , and let minsupp 2 ½0; 1�. The support count of the attribute set (also

called itemset) B in K is suppðBÞ :¼ jB0j=jGj. B is said to be a frequent attribute set if suppðBÞP
minsupp.

A concept is called frequent concept if its intent is frequent. The set of all frequent concepts of a

context K is called the iceberg concept lattice of the context K.

Because the support function is monotonously decreasing (i.e., B1 � B2) suppðB1ÞP
suppðB2Þ), the iceberg concept lattice is an order filter of the whole concept lattice, and thus in

general only a join-semi-lattice. But when we add a new bottom element, it becomes a lattice

again. This makes it possible to apply the same algorithm (which will be introduced in the fol-

lowing sections) for computing concept lattices and iceberg concept lattices. But before talking

about their computation, let us have a closer look to iceberg concept lattices:

Example. Now we consider the whole MUSHROOM database. Its concept lattice consists of 32,086

concepts, hence is by far too large to be displayed. But for a first glance, it is sufficient to see its

top-most part: Fig. 3 shows the MUSHROOM iceberg concept lattice for a minimum support of

85%.

In the diagram one can clearly see that all MUSHROOMS in the database have the attribute ‘veil

type: partial’. Furthermore the diagram tells us that the three next-most attributes are: ‘veil color:

white’ (with 97.62% support), ‘gill attachment: free’ (97.43%), and ‘ring number: one’ (92.30%).

There is no other attribute having a support higher than 85%. But even the combination of all

these four concepts is frequent (with respect to our threshold of 85%): 89.92% of all MUSHROOMS

in our database have one ring, a white partial veil, and free gills. This concept with a quite

complex description contains more objects than the concept described by the fifth-most attribute,

which has a support below our threshold of 85%, since it is not displayed in the diagram.

194 G. Stumme et al. / Data & Knowledge Engineering 42 (2002) 189–222

In the diagram, we can detect the implication

fring number: one; veil color: whiteg) fgill attachment: freeg:

It is indicated by the fact that there is no concept having ‘ring number: one’ and ‘veil color:

white’ (and ‘veil type: partial’) in its intent, but not ‘gill attachment: free’. This implication has a

support of 89.92% (and as it is an implication, a confidence of 100%). Unlike the implications in

Example 1 (which hold for the ten objects under consideration only), this implication is globally

valid, i.e., it does not change when we consider a different minimum support.

If we want to see more details, we have to decrease the minimum support. Fig. 4 shows the

MUSHROOM iceberg concept lattice for a minimum support of 70%. One observes that, of course,

its top-most part is just the iceberg lattice for minsupp¼ 85%. Additionally, we obtain five new

concepts, having the possible combinations of the next-most attribute ‘gill spacing: close’ (having

Fig. 3. Iceberg concept lattice of the MUSHROOM database with minsupp¼ 85%.

Fig. 4. Iceberg concept lattice of the MUSHROOM database with minsupp¼ 70%.

G. Stumme et al. / Data & Knowledge Engineering 42 (2002) 189–222 195

support 81.08%) with the previous four attributes. The fact that the combination {veil type:

partial, gill attachment: free, gill spacing: close} is not realized as a concept intent indicates an-

other implication:

fgill attachment: free; gill spacing: closeg) fveil color: whiteg ð�Þ

This implication has 78.52% support (the support of the most general concept having all three

attributes in its intent) and–– being an implication––100% confidence.

By further decreasing the minimum support, we discover more and more details. Fig. 5 shows

the MUSHROOMS iceberg concept lattice for a minimum support of 55%. It shows four more

partial copies of the 85% iceberg lattice, and three new, single concepts.

The MUSHROOMS example shows that iceberg concept lattices are suitable especially for

strongly correlated data. In Table 1, the size of the iceberg lattice (i.e., the number of all frequent

closed itemsets) is compared with the number of all frequent itemsets. It shows for instance, that,

for the minimum support of 55%, only 32 frequent closed itemsets are needed to provide all in-

formation about the support of all 116 frequent itemsets one obtains for the same threshold.

Fig. 5. Iceberg concept lattice of the MUSHROOM database with minsupp¼ 55%.

196 G. Stumme et al. / Data & Knowledge Engineering 42 (2002) 189–222

The observation that the top-most part of the iceberg lattice appears partially again in com-

bination with other attributes can be used for an alternative visualization: Fig. 6 shows the iceberg

concept lattice as a nested line diagram. The diagram provides exactly the same information than

Fig. 5, but in a more structured way.

Each of the ‘satellites’ contains a partial copy of the top-most iceberg lattice. Only those

concepts are copied which are, together with the new attribute(s), still frequent. The lines of the

outer diagram have to be read as a bundle of parallel lines, linking corresponding concepts. For

instance, the concept on the right side of the diagram labeled by ‘78.80%’ is not only an immediate

subconcept of the one labeled by ‘81.08%, but also of the one labeled by ‘97.62%’.

The empty circles indicate unrealized concepts: They are still frequent, but all objects in an

unrealized concept share at least one more attribute. For instance, the unrealized concept on the

right side left of the concept labeled by ‘78.80%’ has as intent {gill spacing: close, gill attachment:

free, veil type: partial}. But implication (�) tells us that all objects having these attributes also have

the attribute ‘veil color: white’. Therefore, ‘veil color: white’ has to be in each realized concept

which contains the three other attributes. The largest of them is just the first realized concept

below: the one with 78.52% support. This way, each unrealized concept indicates an implication:

the attributes of its intent always imply all attributes in the intent of its largest realized subcon-

cept. For instance, the two unrealized concepts below the attribute ‘no bruises’ indicate the im-

plications

fno bruises; gill attachment: freeg) fveil color: whiteg

fno bruises; veil color: whiteg) fgill attachment: freeg

respectively, each having 57.22% support.

For attributes which are labeled at concepts having no subconcepts in the diagram, we cannot

decide whether they are part of interesting implications. For instance, the diagram does not show

whether there is an implication having ‘stalk color below ring: white’ in its premise or conclusion

(other than the trivial implication {stalk color below ring: white}) {veil type: partial}). If there

are any such rules, then their support is below the actual minimum support of 55%. In order to

study them, the threshold has to be decreased further.

In the way nested line diagrams are introduced in [47], the attributes are grouped manually

according to their semantics. Related attributes are grouped together. This usually involves a

human expert to decide which attributes are related. The support function, on the other hand,

allows an automatic grouping: In Fig. 6, the inner diagram contains the top-most attributes,

the outer diagram the next-most attributes. The resulting diagram shows the most important

Table 1

Number of frequent closed itemsets and frequent itemsets for the MUSHROOMS example

Minsupp (%) # Frequent closed itemsets # Frequent itemsets

85 7 8

70 12 32

55 32 116

0 32.086 280

G. Stumme et al. / Data & Knowledge Engineering 42 (2002) 189–222 197

attributes for structuring the domain. The knowledge engineer only has to fix the minimum

support thresholds for the different layers.

Observe that the iceberg concept lattices in this example are used for conceptual clustering, or

un-supervised learning. Our aim was to gain new insights about the MUSHROOMS in the database,

independent from a specific purpose. In particular, the aim was not to learn how to distinguish

between poisonous and edible MUSHROOMS. The question if and how iceberg concept lattices can

be used in such a supervised learning scenario is an interesting open problem.

Fig. 6. Nested line diagram of the iceberg concept lattice in Fig. 5.

198 G. Stumme et al. / Data & Knowledge Engineering 42 (2002) 189–222

In general, cluster analysis comprises a set of unsupervised machine learning techniques which

split sets of objects into clusters (subsets) such that objects within a cluster are as similar as

possible while objects from different clusters are as different as possible. Conceptual clustering

techniques additionally aim at determining not only clusters, i.e., concept extensions, but to

provide at the same time intensional descriptions of these extensions [26,49]. This aim fits well

with the understanding of concepts formalized in FCA. Therefore FCA was considered as a

framework for conceptual clustering from the early 1990s on [8,27,37].

Compared to ‘usual’ clustering, conceptual clustering techniques pay their added value (the

intensional description) with increased computation time. In FCA, there exist basically three ways

to overcome this problem: local focusing (e.g., [8]), vertical reduction by conceptual scaling [12],

and horizontal reduction. Iceberg concept lattices are a horizontal approach to reduce the amount

of information (and the computation time) of a concept lattice. In comparison to other conceptual

clustering approaches, iceberg concept lattices have structural properties which can be stated

explicitly: they do not depend on diverse parameters (except the minimum support threshold)

whose semantics are often difficult to interpret, nor on the order in which the input is presented to

the algorithm, nor on any particularities of the implementation. Another distinction to other

hierarchical clustering results is that they allow for multiple hierarchies (and not only for trees), so

that all potentially interesting specialization paths are contained in the resulting hierarchy.

Up to now, we have discussed the use of iceberg concept lattices as a conceptual clustering

technique, equipped with a visualization method, which is very well suited especially for analyzing

very large databases containing strongly correlated data. Now we briefly discuss some more uses

of iceberg concept lattices in KDD.

3.1. A condensed representation of frequent itemsets

The computation of frequent attribute sets (itemsets) is the first (and most expensive) step in the

computation of association rules. One reason is that one needs to count the support for each

itemset. By using the fact that suppðBÞ ¼ suppðB00Þ, for B � M , we can derive the supports of all

itemsets from the supports of the frequent concept intents only. In strongly correlated data, only

relatively few of the frequent itemsets are also concept intents. Hence only few support counts

have to be effected in the database. This is used for the PASCAL algorithm [5] which is related to

TITANIC, and which efficiently computes frequent itemsets.

3.2. A starting point for computing bases of association rules

One problem in mining association rules is the large number of rules which are usually re-

turned. In [4] and [41], different bases for association rules are introduced, which prune redundant

rules, but from which all valid rules can still be derived. The computation of the bases does not

require all frequent itemsets, but only frequent concept intents.

3.3. A visualizing technique for association rules

We have already discussed how implications (i.e., association rules with 100% confidence) can

be read from the line diagram. The Luxenburger basis for approximate association rules (i.e.,

G. Stumme et al. / Data & Knowledge Engineering 42 (2002) 189–222 199

association rules with less than 100% confidence), which is presented in [41], can also be visualized

directly in the line diagram of an iceberg concept lattice. The Luxenburger basis is derived from

[22]. It contains only those rules B1 ! B2 where B1 and B2 are frequent concept intents and where

the concept ðB01;B1Þ is an immediate subconcept of ðB02;B2Þ. Hence there corresponds to each

approximate rule in the Luxenburger base exactly one edge in the line diagram. Fig. 7 visualizes

all rules in the Luxenburger basis for minsupp¼ 70% and minconf¼ 95%. For instance, the

rightmost arrow stands for the association rule {veil color: white, gill spacing: close}!{gill

attachment: free}, which holds with a confidence of 99.6%. Its support is the support of the

concept the arrow is pointing to: 78.52%, as shown in Fig. 4. Edges without label indicate that

the confidence of the rule is below the minimum confidence threshold. The visualization technique

is described in more detail in [41]. In comparison with other visualization techniques for associ-

ation rules (as for instance implemented in the IBM Intelligent Miner), the visualization of the

Luxenburger basis within the iceberg concept lattice benefits of the smaller number of rules to be

represented (without loss of information!), and of the presence of a ‘reading direction’ provided by

the concept hierarchy.

4. Computing closure systems: the problem

Instead of giving an algorithm for computing (iceberg) concept lattices, we provide an algo-

rithm for a more general task: computing closure systems using a weight function. The reason is

that closure systems are important in a variety of applications. Some example applications are

given in Section 8. In this section, we formally state the problem, and in the next section, we

present our approach. Its efficiency is discussed in Section 9.

First, we recall the definition of closure systems:

Fig. 7. Visualization of the Luxenburger basis for minsupp¼ 70% and minconf¼ 95%.

200 G. Stumme et al. / Data & Knowledge Engineering 42 (2002) 189–222

Definition 4. A closure system on a set M is a subset H of the powerset PðMÞ of M which

contains the set M and which is closed under arbitrary intersections. A closure operator on a set

M is a function h : PðMÞ ! PðMÞ which is

• extensive: X � hðX Þ
• monotonous: X � Y) hðX Þ � hðY Þ
• and idempotent: hðhðX ÞÞ ¼ hðX Þ.

It is well-known that closure operators and closure systems are equivalent: For each closure

operator h, the setHh :¼ fX � M jhðX Þ ¼ Xg is a closure system onM; for each closure systemH

the function hH : PðMÞ ! PðMÞ with X 7!
T
H2H;H�X H is a closure operator; and the following

two equations hold: HhH ¼H and hHh
¼ h.

Lemma 1 and Theorem 3 show that the set of all intents of a context ðG;M ; IÞ is a closure

system on M, and that B 7!B00 is the corresponding closure operator. Thus computing concept

lattices is a special case of the following, more general task.

Let h be a closure operator on a finite set M. The task is to determine efficiently the closure

system Hh related to the closure operator h when there exists a weight function compatible with

the closure operator:

Definition 5. A weight function on PðMÞ is a function s : PðMÞ ! P from the powerset ofM to a

totally ordered set ðP ; 6 Þ having a largest element smax. For a set X � M , sðX Þ is called the weight

of X. The weight function is compatible with a closure operator h if

(i) X � Y) sðX ÞP sðY Þ,
(ii) hðX Þ ¼ hðY Þ) sðX Þ ¼ sðY Þ,
(iii) X � Y ^ sðX Þ ¼ sðY Þ) hðX Þ ¼ hðY Þ.

Remark. In the sequel, we will consider ðP ; 6 Þ to be the interval [0,1] in the real numbers, but the

theory presented in this paper can be applied to arbitrary totally ordered sets.

Remark. If X � Y) sðX Þ6 sðY Þ holds instead of (i) (as, e.g., for functional dependencies), then

all ‘min’ in the sequel have to be replaced by ‘max’.

Now we can formally state the problem:

Problem. Let h be a closure operator on a finite setM, and let s be a compatible weight function.

Determine the closure system Hh related to the closure operator h by using the weight function s.

5. Computing closure systems based on weights

We discuss the problem of computing the closure system by using a weight function in three

parts:

G. Stumme et al. / Data & Knowledge Engineering 42 (2002) 189–222 201

(1) How can we compute the closure of a given set using the weight function only, and not the

closure operator?

(2) How can we compute the closure system by computing as few closures as possible?

(3) Since the weight function is usually not stored explicitly, how can we derive the weights of as

many sets as possible from the weights already computed?

Questions 2 and 3 are not independent from each other. Hence we will not provide an optimal

answer for each of them, but one which improves the overall benefit.

5.1. Weight-based computation of closures

We use the constraints on the function s for determining the closure of a set by comparing its

weight with the weights of its immediate supersets.

Proposition 4. Let X � M . Then

hðX Þ ¼ X [fm 2 M n X jsðX Þ ¼ sðX [fmgÞg:

Proof. ‘‘�’’: Suppose that there exists m 2 hðX Þ n X with sðX Þ 6¼ sðX [fmgÞ. Then hðX Þ 6¼
hðX [fmgÞ by condition 2 of Definition 5. Hence m 62 hðX Þ. Contradiction.

‘‘�’’: Let m 2 M n X with sðX Þ ¼ sðX [fmgÞ. Then hðX Þ ¼ hðX [fmgÞ by condition 3 of

Definition 5. Hence m 2 hððX [fmgÞÞ ¼ hðX Þ. �

Hence if we know the weights of all sets, then we can compute the closure operator (! Al-

gorithm 3, steps 3–7). 3 In Section 5.2 we discuss for which sets it is necessary to compute the

closure in order to obtain all closed sets. In Section 6 we discuss how the weights needed for those

computations can be determined.

5.2. A level-wise approach for computing all closed sets

One can now compute the closure system H by applying Proposition 4 to all subsets X of M.

But this is not efficient, since many closed sets will be determined several times.

Definition 6. We define an equivalence relation h on the powerset PðMÞ of M by ðX ; Y Þ 2
h : () hðX Þ ¼ hðY Þ, for X, Y � M . The equivalence class of X is given by ½X � :¼ fY �
M jðX ; Y Þ 2 hg.

If we knew the equivalence relation h in advance, it would be sufficient to compute the closure

for one set of each equivalence class only. But since we have to determine the relation during the

computation, we have to consider more than one element of each class in general. As known from

algorithms for mining association rules, we will use a level-wise approach.

3 In this section, we give some references to the algorithms in the following section. These references can be skipped

at the first reading.

202 G. Stumme et al. / Data & Knowledge Engineering 42 (2002) 189–222

Definition 7. A k-set is a subset X of M with jX j ¼ k. it For X � PðMÞ, we define Xk :¼
fX 2 XjX is k-setg. For X ¼ PðMÞ, we also write PkðMÞ for Xk.

At the kth iteration, the weights of all k-sets which remained from the pruning strategy de-

scribed below are determined; and the closures of all (k � 1)-sets which passed the pruning in the

(k � 1)th iteration are computed.

The first sets of an equivalence class that we reach using such a level-wise approach are the

minimal sets in the class.

Definition 8. A set X � M is a key set (or minimal generator) if X is minimal (with respect to set

inclusion) in [X]. The set of all key sets is denoted by K.

We have H ¼ fhðX ÞjX 2Kg, because there is at least one key set in each equivalence class

of h. Hence it is sufficient to compute the closures of all key sets.

In a sense the key sets are the first sets one reaches when traversing the powerset PðMÞ level-
wise.

Proposition 5. The setK is an order ideal of ðPðMÞ;�Þ; i.e., Y 2K and X � Y implies X 2K, for

all X, Y � M .

Proof. Let X � Y and X be a non-key set. Then exists a minimal Z 2 ½X � with Z � X . 4 From

hðZÞ ¼ hðX Þ it follows hðY Þ ¼ hðY n ðX n ZÞÞ. Hence Y is not minimal in [Y] and thus by definition

not a key set. �

The definition of an order ideal is equivalent to X 62K, X � Y) Y 62K, for all X, Y � M .

This allows to use a pruning strategy for determining the key sets. Originally the strategy we are

going to apply was presented in [2], but only for a special case: as a heuristic for determining all

frequent sets (which are, in our terminology, all sets with weights above a user-defined threshold).

We recall this strategy, and show that it can be applied to arbitrary order ideals of the powerset

of M.

Definition 9. Let I be an order ideal of PðMÞ. A candidate set for I it is a subset ofM such that

all its proper subsets are in I.

The definition is justified by the fact that all combinations of the candidate sets can appear as

(k þ 1)th level of an order ideal for which the first k levels are known. This statement is the subject

of the first part of the following lemma. The second part states that non-candidate sets cannot

appear at the (k þ 1)th level.

Lemma 6. Let X � PkðMÞ, and let Y be the set of all candidate ðk þ 1Þ-sets for the order ideal
X :¼ fY 2 PðMÞj9X 2 X : Y � Xg (i.e., the order ideal generated by X).

4 We use X � Y to say that X � Y and X 6¼ Y .

G. Stumme et al. / Data & Knowledge Engineering 42 (2002) 189–222 203

(1) For each subset Z of Y, there exists an order ideal I of PðMÞ with Ik ¼ X and Ikþ1 ¼Z.

(2) For each order ideal I of PðMÞ with Ik ¼ X the inclusion Ikþ1 � Y holds.

Proof. 1. Let I :¼ ð# XÞ [Z. Let Y 2 I and X � Y . We have to show that X 2 I. If Y 2# X
then X 2# X � I because # X is an order ideal. If Y 2Z then X 2# X � I by Definition 9.

2. Suppose that there exists Y 2 Ikþ1 nY. As Y 62 Y, there exists X � Y with jX j ¼ k and

X 62 Ik. Hence Y 62 Ikþ1. Contradiction. �

The efficient generation of the set of all candidate sets for the next level is described in the

following proposition (! Algorithm 2). We assume that M is linearly ordered, e.g., M ¼
f1; . . . ; ng.

Proposition 7. Let X � Pk�1ðMÞ. Let

eCC :¼ x1ff < x2 < . . . < xkgjfx1; . . . ; xk�2; xk�1g; fx1; . . . ; xk�2; xkg 2 Xg;

and

C :¼ X 2 eCCj8x 2 X : X n fxg 2 X

n o
:

Then C ¼ X 2 PkðMÞjX is candidate set for # Xf g.

Proof. The definition of C is equivalent to C :¼ fx 2 eCC jX is candidate set for # Xg. Hence it

remains to show that all candidate sets are included in eCC . Let X be a candidate set, and let

X ¼ fx1; . . . ; xkg with x1 < � � � < xk. Since X is a candidate set, all its proper subsets are in # X,

especially the two sets fx1; . . . ; xk�2; xk�1g and fx1; . . . ; xk�2; xkg. Since they have cardinality k, they

are also in X. Hence X 2 I by definition of eCC . �

Unlike in the Apriori algorithm [2], in our application the pruning of a set cannot be deter-

mined by its properties alone, but properties of its subsets (i.e., their weights) have to be taken into

account as well. This causes an additional step in the generation function (! Algorithm 2, step 5)

compared to the version presented in [2]. Based on this additional step, at each iteration the non-

key sets among the candidate sets are pruned (! Algorithm 1, step 8) by using (2) of the following

proposition.

Proposition 8. Let X � M .

(1) Let m 2 X . Then X 2 ½X n fmg� if and only if sðX Þ ¼ sðX n fmgÞ.
(2) X is a key set if and only if sðX Þ 6¼ min sðX n fmgÞjm 2 Xf g.

Proof. 1. The ‘‘if’’ part follows from Definition 5 (iii), the ‘‘only if’’ part from Definition 5 (ii).

2. From 1 we deduce that X is a key set if and only if sðX Þ 6¼ sðX n fmgÞ, for all m 2 X . Since
s is a monotonous decreasing function, this is equivalent to 2. �

A candidate set X is hence pruned when sðX Þ ¼ minfsðX n fmgÞjm 2 Xg holds.

204 G. Stumme et al. / Data & Knowledge Engineering 42 (2002) 189–222

5.3. Deriving weights from already known weights

If we reach a k-set which is known not to be a key set, then we already passed along at least one

of the key sets in its equivalence class in an earlier iteration. Hence we already know its weight.

Using the following proposition, we determine this weight by using only weights already computed.

Proposition 9. If X is not a key set, then

sðX Þ ¼ minfsðKÞjK 2K;K � Xg:

Proof. ‘‘P ’’: Let K be a key set with KhX and K � X . Then sðX Þ ¼ sðKÞP minfsðKÞjK 2
K;K � Xg.

‘‘6 ’’: Suppose that there exists K 2K with K � X and sðKÞ < sðX Þ. Then K 6� X by Defini-

tion 5, (i). Contradiction. �

Hence it is sufficient to compute the weights of the candidate sets only (by calling a function

depending on the specific application ! Algorithm 1, step 7). All other weights can be derived

from those weights.

Now we are able to put all pieces together and to turn them into an algorithm.

6. The TITANIC algorithm

The pseudo-code is given in Algorithm 1. A list of notations is provided in Table 2.

Algorithm 1. [TITANIC]

1) WEIGHT ðf;gÞ;
2) K0 f;g;
3) k 1;

4) forall m 2 M do fmg:p s ;:s;
5) C ffmgjm 2 Mg;
6) loop begin

7) WEIGHðCÞ;
8) forall X 2Kk�1 do X :closure CLOSUREðX Þ;
9) Kk fX 2 CjX :s 6¼ X :p sg;
10) if Kk ¼ ; then exit loop;

11) k þþ;
12) C TITANIC-GENðKk�1Þ;
13) end loop;

14) return
Sk�1
i¼0 fX :closurejX 2Kig.

The algorithm starts with determining the weight of the empty set (step 1) and stating that it is

always a key set (step 2). Then all 1-sets are candidate sets by definition (steps 4 and 5).

In later iterations, the candidate k-sets are determined by the function TITANIC-GEN (step 12

, Algorithm 2) which is (except step 5) a straight-forward implementation of Proposition 7. The

G. Stumme et al. / Data & Knowledge Engineering 42 (2002) 189–222 205

result of step 5 of Algorithm 2 will be used in step 9 of Algorithm 1 for pruning the non-key sets

according to Proposition 8 (2).

Algorithm 2. (TITANIC-GEN)

Input: Kk�1, the set of key ðk � 1Þ-sets K with their weight K:s.
Output: C, the set of candidate k-sets C with the values C:p s :¼ minfsðC n fmgjm 2 Cg.
The variables p s assigned to the sets fm1; . . . ;mkg which are generated in step 1 are initialized by

fm1; . . . ;mkg:p s smax.

1) C ffm1 < m2 < � � � < mkgjfm1; . . . ;mk�2;mk�1g; fm1; . . . ;mk�2;mkg 2Kk�1g;
2) forall X 2 C do begin

3) forall ðk � 1Þ-subsets S of X do begin

4) if S 62Kk�1 then begin C C n fXg; exit forall; end;
5) X :p s minðX :p s; S:sÞ;
6) end;

7) end;

8) return C.

Once the candidate k-sets are determined, the function WEIGH(X) is called to compute, for

each X 2 X, the weight of X and stores it in the variable X :s (step 7).

Remark. In the case of concept lattices, WEIGH determines the weights (i.e., the supports) of all

X 2 X with a single pass of the context (see Section 7.1). This is the reason why we call the

function WEIGH for a set of sets instead of calling it for each set separately. In general, computing

the weights of different sets simultaneously may or may not be more efficient than doing it sep-

arately, depending on the application.

Algorithm 3. (CLOSURE (X) for X 2Kk�1)

1) Y X ;

2) forall m 2 X do Y Y [ðX n fmgÞ :closure;
3) forall m 2 M n Y do begin

4) if X [fmg 2 C then s ðX [fmgÞ : s
5) else s minfK : sjK 2K;K � X [fmgg;
6) if s ¼ X : s then Y Y [fmg
7) end;

8) return Y.

Table 2

Notations used in TITANIC

k The counter which indicates the current iteration. In the kth iteration, all key k-sets are determined.

Kk Contains after the kth iteration all key k-sets K together with their weight K:s and their closure K.closure.

C Stores the candidate k-sets C together with a counter C:p s which stores the minimum of the weights of all

ðk � 1Þ-subsets of C. The counter is used in step 9 to prune all non-key sets.

206 G. Stumme et al. / Data & Knowledge Engineering 42 (2002) 189–222

For those sets which remained from the pruning (step 9) in the previous pass (and which are

now known to be key sets), their closures are computed (step 8 , Algorithm 3). The CLOSURE

function (Algorithm 3) is a straight-forward implementation of Proposition 4 (steps 3–7) and

Proposition 9 (step 5) plus an additional optimization (step 2).

In step 9 of Algorithm 1, all candidate k-sets which are not key sets are pruned according to

Proposition 8 (2). Algorithm 1 terminates, if there are no key k-sets left (step 10). Otherwise the

next iteration begins (step 11).

The correctness of the algorithm is proved by the theorems in the previous section. Examples

for the algorithm are given in Section 7.

7. Computing (Iceberg) concept lattices with TITANIC

In the sequel we will show that, for a given formal context, the support function fulfills the

conditions of Definition 5 for being compatible to the closure operator hðX Þ :¼ X 00. Hence

computing concept lattices is a typical application of the problem. We will also discuss how to

modify the closure operator such that the problem description applies to iceberg concept lattices

as well.

We demonstrate the TITANIC algorithm by two examples: computing a concept lattice,

and computing an iceberg concept lattice. For other applications (for instance those listed in

Section 8), only the WEIGH function has to be adapted.

7.1. Computation of concept lattices

In the following, we will use the composed function B 7!B00, for B � M . It is (by Theorem 3) a

closure operator on M. The related closure system (i.e., the set of all B � M with B00 ¼ B) is by
Lemma 2 exactly the set of the intents of all concepts of the context. The structure of the concept

lattice is hence already determined by this closure system. Therefore we restrict ourselves to the

computation of the closure system of all concept intents in the sequel. The computation makes

extensive use of the support function introduced in Definition 3. We show that the support

function fulfills the conditions of Definition 5.

Lemma 10. Let X ; Y � M .

(1) X � Y) suppðX ÞP suppðY Þ.
(2) X 00 ¼ Y 00) suppðX Þ ¼ suppðY Þ.
(3) X � Y ^ suppðX Þ ¼ suppðY Þ) X 00 ¼ Y 00.

Proof. 1. Let X � Y . Then Y 0 � X 0 by Lemma 1, which implies

suppðY Þ ¼
jY 0j

jGj
6
jX 0j

jGj
¼ suppðX Þ:

2. XhY () X 00 ¼ Y 00 () X 000 ¼ Y 000 () X 0 ¼ Y 0) sðX Þ ¼ jX
0j
jGj
¼ jY

0j
jGj
¼ sðY Þ.

G. Stumme et al. / Data & Knowledge Engineering 42 (2002) 189–222 207

Algorithm 4. (The WEIGH algorithm for concept lattics)

1) forall X 2 X do X : s 0;

2) forall g 2 G do

3) forall X 2 subsetsðg0;XÞ do X : sþþ;
4) forall X 2 X do X :s X : s

jGj
;

3. suppðX Þ ¼ suppðY Þ implies jX 0j ¼ jY 0j, and X � Y implies X 0 � Y 0. Hence X 0 ¼ Y 0, since X 0

and Y 0 are finite. It follows X 00 ¼ Y 00. �

Corollary 11. The support count is a weight function which is compatible with the closure operator

X 7!X 00.

Thus we can use TITANIC for computing concept lattices. In this special application, we can

benefit from two optimizations:

(1) In Algorithm 1, we can––in the case of (iceberg) concept lattices––replace step 1 by

10Þ ;:s 1

since we know that suppð;Þ ¼ 1. We avoid one call of the WEIGH function.

(2) For concept lattices, WEIGH determines the weights, that is, the supports, of all X 2 X with a

single pass over the context. This is (together with the fact that only maxfjX jjX �
M is candidate setg passes are needed) the reason for the efficiency of TITANIC. The WEIGH

algorithm for concept lattices is given in Algorithm 4. SUBSETSðY ;XÞ returns, for Y � M and

X � PðMÞ, all X 2 X with Y � X . It uses a tree structure with hash tables (as described in

[30]) to efficiently encode X.

Fig. 8. Example for the TITANIC algorithm.

208 G. Stumme et al. / Data & Knowledge Engineering 42 (2002) 189–222

Example. For explaining how TITANIC works, we will use the mushroom example in Fig. 1 again,

but will reduce it further to the first five attributes (see Fig. 8).

In the first pass, the algorithm deals with the empty set and all 1-sets. It returns the results for

k ¼ 0 and k ¼ 1:

k ¼ 0:

k ¼ 1:

Then the algorithm repeats the loop for k ¼ 2, 3, and 4:

k ¼ 2:

Step 1 Step 2

X X :s X 2Kk?

; 1 Yes

Steps 4þ 5 Step 7 Step 9

X X :p s X :s X 2Kk?

feg 1 6=10 Yes

fpg 1 4=10 Yes

fcg 1 4=10 Yes

flg 1 6=10 Yes

fig 1 7=10 Yes

Step 8 returns: ;:closure ;.

Step 12 Step 7 Step 9

X X :p s X :s X 2Kk?

fe; pg 4=10 0 Yes

fe; cg 4=10 4=10 No

fe; lg 6=10 2=10 Yes

fe; ig 6=10 4=10 Yes

fp; cg 4=10 0 Yes

fp; lg 4=10 4=10 No

fp; ig 4=10 3=10 Yes

fc; lg 4=10 0 Yes

fc; ig 4=10 2=10 Yes

fl; ig 6=10 5=10 Yes

Step 8 returns: feg:closure feg, fpg:closure fp; lg, fcg:closure fc; eg, flg:closure flg
fig:closure fig.

G. Stumme et al. / Data & Knowledge Engineering 42 (2002) 189–222 209

k ¼ 3:

k ¼ 4:

Finally the algorithm collects all concept intents (step 14):

;; feg; fp; lg; fc; eg; flg; fig; fe; p; c; l; ig; fe; l; ig; fe; ig; fp; l; ig; fe; c; ig; fl; ig

(which are exactly the intents of the concepts of the concept lattice in Fig. 8). The algorithm

determined the support of 5þ 10þ 3 ¼ 18 attribute sets in three passes of the database.

7.2. Equipping TITANIC for iceberg concept lattices

The structure of an iceberg concept lattice is determined by the semi-lattice of its frequent

intents. If we add the set M (which is not frequent in general) to the set of frequent intents, it

becomes a closure system. Lemma 12 presents its closure operator.

Lemma 12. Let K :¼ ðG;M ; IÞ be a context, and let min supp 2 ½0; 1�. The set F :¼ fB � M j
ðA;BÞ 2 BðKÞ; suppðBÞP min suppg [fMg is a closure system on M. Its closure operator is given
by hðX Þ :¼ X 00 if suppðX ÞP min supp and hðX Þ :¼ M else. The weight function sðX Þ :¼ suppðX Þ if
suppðX ÞP min supp and sðX Þ :¼ �1 else is compatible with the closure operator.

Proof. ~FF :¼ fB � M jsuppðBÞP min suppg [fMg is a closure system, since it is closed under

arbitrary intersections. IntðKÞ :¼ fB � M jðA;BÞ 2 BðKÞg is a closure system by Theorem 3.

Hence F is––as intersection of the two closure systems fFF and IntðKÞ––also a closure system.

Verifying that h is the related closure operator and that s is compatible is straightforward. �

The lemma shows that the TITANIC algorithm as presented in Section 6 can directly be applied

to iceberg concept lattices. However we can benefit from the fact that weight �1 indicates that the

closure of the set is the whole set M. In this case we can improve the algorithm. The improved

version is discussed now.

Step 12 returns the empty set. Hence there is nothing to WEIGH in step 7. Step 9 sets K4 equal

to the empty set; and in step 10, the loop is exited.

Step 8 returns: fp; c; ig:closure fe; p; c; l; ig, fc; l; ig:closure fe; p; c; l; ig.

Step 12 Step 7 Step 9

X X :p s X :s X 2Kk?

fe; l; ig 2=10 2=10 No

fp; c; ig 4=10 0 Yes

fc; l; ig 4=10 0 Yes

Step 8 returns: fe; pg:closure fe; p; c; l; ig, fe; lg:closure fe; l; ig, fe; ig:closure fe; ig, fp; cg:
closure fe; p; c; l; ig, fp; ig:closure fp; l; ig, fc; lg:closure fe; p; c; l; ig,
fc; ig:closure fe; c; ig, fl; ig:closure fl; ig.

210 G. Stumme et al. / Data & Knowledge Engineering 42 (2002) 189–222

Algorithm 5. (TITANIC improved for iceberg concept lattices)

1) ; : s 1;

2) K0 f;g;
3) k 1;

4) forall m 2 M do fmg :p s ; : s;
5) C ffmgjm 2 Mg;
6) loop begin

7) WEIGH ðCÞ;
8) forall X 2Kk�1 do X :closure closureðX Þ;
9) Kk fX 2 CjX : s 6¼ X :p sg;
10) if fX 2KkjX : s 6¼ �1g ¼ ; then exit loop;

11) k þþ;
12) C TITANIC-GENðKk�1Þ;
13) end loop;

14) return
Sk�1
i¼0 fX :closurejX 2Ki;X : s 6¼ �1g.

Algorithm 6. (TITANIC-GEN improved for iceberg concept lattices)

Input: Kk�1, the set of key ðk � 1Þ-sets K with their support K:s.
Output: C, the set of candidate k-sets C with the values C:p s :¼ minfsðC n fmgjm 2 Cg.
The variables p s assigned to the sets fm1; . . . ;mkg which are generated in step 1 are initialized by

fm1; . . . ;mkg:p s 1.

1) C ffm1 < m2 < . . . < mk�1 < mkgjfm1; . . . ;mk�2;mk�1g; fm1; . . . ;
mk�2;mkg 2 fK 2Kk�1jK:s 6¼ �1gg;

2) forall X 2 C do begin

3) forall ðk � 1Þ-subsets S of X do begin

4) if S 62Kk�1 or S:s ¼ �1 then begin C C n fXg; exit forall; end;
5) X :p s minðX :p s; S:sÞ;
6) end;

7) end;

8) return C.

Algorithm 7. (closure for iceberg conept lattices)

1) if X :s ¼ �1 then return M;

2) Y X ;

3) forall m 2 X do Y Y [ðX n fmgÞ.closure;
4) forall m 2 M n Y do begin

5) if X [fmg 2 C then s ðX [fmgÞ:s
6) else s minfK:sjK 2K;K � X [fmgg;
7) if s ¼ X :s then Y Y [fmg
8) end;

9) return Y.

G. Stumme et al. / Data & Knowledge Engineering 42 (2002) 189–222 211

Algorithm 5 differs from Algorithm 1 in steps 1, 10, and 14; Algorithm 6 differs from Algorithm

2 in steps 1 and 4; and Algorithm 7 is extending Algorithm 3 by step 1. We discuss these dif-

ferences step by step:

• Algorithm 5, step 1: See the remark about the first optimization in Section 7.1.

• Algorithm 5, step 10: The loop can be exited when no or only infrequent key sets remain, as they

are not used for generating candidate sets in the next iteration (see Algorithm 6, step 1).

• Algorithm 5, step 14: The algorithm returns only frequent intents, i.e. only closures of frequent

key sets.

• Algorithm 6, step 1: Only frequent key sets are used to construct new candidate sets. See next

item.

• Algorithm 6, step 4: S is a candidate set only if all ðk � 1Þ-subsets of S are frequent key sets,

because sets containing an infrequent key set are known not to be key sets.

• Algorithm 7, step 1: If the weight of a set is �1, its closure must be M by Lemma 12.

As before, the function weighðXÞ determines, in one pass of the context, for each X 2 X the

support of X and stores it in the variable X :s. If sðX Þ < minsupp, then WEIGH returns X :s �1.

Example. Although TITANIC only needs three passes of the database to compute the iceberg

lattice in Fig. 3 (and four passes for the one in Fig. 5), we decided not to use it as example for

explaining the mechanism of TITANIC for iceberg lattices. The reason is, that at the first pass the

algorithm has to handle 80 candidate itemsets of size one. Of course, this is no problem in praxis,

but is too large for demonstration purposes. Therefore we reuse the context in Fig. 8, and show

the computation of its iceberg concept lattice for minsupp¼ 30%.

In the first pass, the algorithm deals with the empty set and all 1-sets. It returns the results for

k ¼ 0 and k ¼ 1. As no infrequent sets are considered here, the results are exactly the same as in

Example 7.1:

k ¼ 0:

k ¼ 1:

Step 1 Step 2

X X :s X 2Kk?

; 1 Yes

Steps 4þ 5 Step 7 Step 9

X X :p s X :s X 2Kk?

feg 1 6=10 Yes

fpg 1 4=10 Yes

fcg 1 4=10 Yes

flg 1 6=10 Yes

fig 1 7=10 Yes

Step 8 returns: ;:closure ;.

212 G. Stumme et al. / Data & Knowledge Engineering 42 (2002) 189–222

Then the algorithm repeats the loop for k ¼ 2. Here, the first infrequent sets are reached:

k ¼ 2:

Remark. As the weight of the key sets fe; pg, fe; lg, fc; lg, and fc; ig is �1, we know that these sets

are infrequent (with respect to our minimum support threshold of 30%). In the corresponding

closure system, they will hence generate the whole setM. These infrequent key sets are important

if we want to provide a basis for association rules. See [41] for details. If our aim is conceptual

clustering, we can neglect these infrequent key sets and can improve the performance of the al-

gorithm by modifying step 9 in Algorithm 5 to

9a) Kk fX 2 CjX :s 6¼ X :p s and X :s 6¼ 1g.

This would yield ‘yes’ instead of ‘no’ in the last column for the five sets mentioned above.

k ¼ 3:

Finally the algorithm collects all frequent concept intents (step 14):

;; feg; fp; lg; fc; eg; flg; fig; fe; ig; fp; l; ig; fl; ig

The resulting concept iceberg lattice is shown in Fig. 9.

Step 12 Step 7 Step 9

X X :p s X :s X 2Kk?

fe; pg 4=10 �1 Yes

fe; cg 4=10 4=10 No

fe; lg 6=10 �1 Yes

fe; ig 6=10 4=10 Yes

fp; cg 4=10 �1 Yes

fp; lg 4=10 4=10 No

fp; ig 4=10 3=10 Yes

fc; lg 4=10 �1 Yes

fc; ig 4=10 �1 Yes

fl; ig 6=10 5=10 Yes

Step 8 returns: feg:closure feg, fpg:closure fp; lg, fcg:closure fc; eg, flg:closure flg,
fig:closure fig.

Step 12 returns the empty set (because of the condition K:s 6¼ �1 in step 1 of Algorithm 2).

Hence there is nothing to WEIGH in step 7. Step 9 setsK3 equal to the empty set; and in step 10,

the loop is exited.

Step 8 returns: fe; pg:closure M , fe; lg:closure M , fe; ig:closure fe; ig, fp; cg:closure
M , fp; ig:closure fp; l; ig, fc; lg:closure M , fc; ig:closure M , fl; ig:closure fl; ig.

G. Stumme et al. / Data & Knowledge Engineering 42 (2002) 189–222 213

8. Some typical applications

In Section 3, we have already discussed the use of (iceberg) concept lattices for knowledge

discovery and conceptual clustering. Here we present two examples, in which iceberg concept

lattices have been applied.

8.1. Database marketing

The purpose of database marketing is the study of customers and their buying behavior in

order to create and validate marketing strategies. In [16], the use of iceberg concept lattices for

database marketing in a Swiss department store is discussed in more detail. In that scenario, the

object set G consists of all customers of the warehouse paying by credit card, and the attribute set

M consists of attributes describing the customers (e.g., ‘lives in Western Switzerland’) and their

buying behavior (e.g., ‘has spent more than 1000 Swiss francs in the last year’). For a given set X

of attributes, the weight function returns the number of customers fulfilling all attributes in X. By

decreasing the minimum support, one can study the customer behavior in more and more detail.

In Fig. 10, for instance, the customers of the warehouse are clustered according to their year of

birth. The minimum support threshold is set to 0.3, i.e., all concepts whose extents do not

comprise at least 30% of all customers, are pruned.

Fig. 9. Iceberg concept lattice for the context in Fig. 8 for minsupp¼ 30%.

Fig. 10. Iceberg concept lattice for customers clustered by their year of birth.

214 G. Stumme et al. / Data & Knowledge Engineering 42 (2002) 189–222

8.2. Ontology learning

Ontologies are ‘‘explicit specification(s) of a conceptualization’’ [15]. They usually consist of a

set of concepts (not to be confused with formal concepts from FCA), a hierarchical is-a relation

and other (non-hierarchical) relations between the concepts, and eventually axioms describing

constraints on the relations and concepts. One task in learning ontologies from data is the con-

struction of the is-a hierarchy. Suppose that the concepts are already learned (e.g., by applying

linguistic and statistical methods [24]) and stored in the set M. The set G contains instances,

or documents annotated with the concepts. The relation I indicates if an instance belongs to a

concept, or if a document is annotated with a concept. In [38], this approach has been used in

FCA–MERGE, a technique for supporting the merging of ontologies. There, TITANIC uses the

weight function which assigns to a set X of ontology concepts the number of documents/instances

related to all concepts in X. The resulting iceberg concept lattice provides an is-a hierarchy on the

set of the ontology concepts. Additionally, it suggests new concepts which may simplify the

structure of the concept hierarchy.

The use of (iceberg) concept lattices is not only restricted to knowledge discovery. Here we give

some more examples of typical applications, in which FCA has been successfully applied in the

past (before the introduction of TITANIC). Their purpose is to show that the weight function

(whose existence is a necessary condition for the applicability of TITANIC) naturally appears in a

wide variety of domains.

8.3. Configuration space analysis

In software re-engineering, one task is to analyze the source code of a given program where no

(or relatively few) documentation is given. In [19], the use of FCA for analyzing the configuration

space of C++ programs is discussed. In the described scenario, iceberg concept lattices could be

introduced quite naturally. The set G of objects contains the lines of code, the set M consists

basically of the C++ preprocessor symbols which appear in the code, and the relation I indi-

cates which lines of code are governed by which preprocessor symbols. Instead of computing the

whole concept lattice, one can restrict the computation to the top-level groupings of code pieces

by using TITANIC. The weight function returns, for a set X of preprocessor symbols, the number

of lines of code which are governed by all preprocessor symbols in X.

8.4. Transformation of class hierarchies

In object-oriented languages, one aim is to simplify the class hierarchy according to a (number

of) given program(s). In [36], this problem has been attacked by using concept lattices. In the

scenario, the setM of attributes contains all data members and methods of a given class hierarchy,

and the set G of objects consists of all variables and pointers of the program(s). The relation I

basically indicates which variables and pointers are related to which data members and meth-

ods.The resulting concept lattice provides an improved hierarchy which can be used for re-

structuring the class hierarchy according to software engineering principles without the need to

modify the source code. The computation of the concept lattice can be done by using as weight

G. Stumme et al. / Data & Knowledge Engineering 42 (2002) 189–222 215

function the function which returns, for a given set X of data members and methods, the number

of variables and pointers related to all elements in X.

Another situation where a weight function arises naturally in the computation of a closure

system is the following. This scenario is more difficult to state in terms of a formal context.

8.5. Discovery of functional dependencies

One important task of logical database tuning is the discovery of minimal functional depen-

dencies from database relations [17,21]. This is equivalent to computing a closure system on the

setM of all database attributes. The closed sets are just those which are closed under all functional

dependencies which hold in the database. TITANIC can be applied for this computation, using as

weight of a given attribute set X the minimal number of rows which have to be deleted from the

database such that X is closed under all functional dependencies which are valid for the re-

maining rows. This weight function is derived from the g3 measure introduced in [18]. For this

application, all ‘min’ in this paper have to be replaced by ‘max’ (refer to Remark 2).

9. Complexity and experimental evaluation

There are several algorithms known for computing concept lattices [11,14,28,29,31–33]. The

most efficient algorithm for practical applications at the best of our knowledge is Ganter’s Next-

Closure algorithm [11]; the algorithm with the best worst-case complexity is the one from Nourine

and Raynaud presented in [29]. The latter one substantiates in an efficient way an approach

proposed by Wille [46]. In this section, we will compare TITANIC with these two algorithms.

The problem of computing concept lattices has exponential worst-case complexity: The context

K :¼ ðf1; . . . ; ng; f1; . . . ; ng; 6¼Þ has n objects and n attributes, while its concept latticeBðKÞ has 2n

concepts. Therefore all three algorithms have an exponential complexity. However, for practical

purposes, it is interesting to examine the situation in more detail. In the sequel, we assume that

jM j6 jGj.
Ganter’s algorithm computes the concepts sequentially. In [11] is shown that the complexity for

computing one concept is in OðjGj � jM j2Þ, so that the overall complexity could be stated as

OðjBðKÞj � ðjGj � jM j2ÞÞ. For each concept, the context has to be accessed. If we consider addi-

tionally the access time db of the formal context (which can be significantly large when the context

is too large to be stored in main memory!), we obtain OðjBðKÞj � ðdbþ jGj � jM j2ÞÞ.
The algorithm of Nourine and Raynaud also computes the concepts sequentially. For each

concept, the algorithm needs time OððjM j þ jGjÞ � jGjÞ, thus improving Ganter’s worst-case

complexity. Both algorithms need to access the context for each concept to be computed: If we

add the access time db of the formal context to Nourine and Raynaud’s algorithm, it is in

OðjBðKÞj � ðdbþ ðjM j þ jGjÞ � jGjÞÞ. On the other hand, Nourine and Raynaud’s algorithm needs

exponential space, since the whole lattice must be stored during run-time; while Next-Closure

needs the context only, and has thus linear space complexity.

Both algorithms have different benefits. While Next-Closure needs only linear space, Nourine

and Raynaud’s algorithm provides the best worst-case complexity known so far. On the other

hand, Next-Closure can be easily adapted to efficiently compute iceberg lattices, while the

216 G. Stumme et al. / Data & Knowledge Engineering 42 (2002) 189–222

structure of Nourine and Raynaud’s algorithm prohibits this. Furthermore, for the latter algo-

rithm, the need to access the results computed so far makes it impractical for very large databases

(contexts). Therefore, we will compare TITANIC in the experimental evaluation with Ganter’s

Next-Closure algorithm only.

From a complexity point of view, TITANIC is in between those two algorithms. Its worst-case

space complexity is reached, when all bjM j
2
c-sets are candidate sets. Then all these

jM j
jM j
2

j k
 !

¼
jM j � . . . � jM j

2

j k
þ 1

� �

jM j
2

l m
� . . . � 1

sets have to be stored. This is the widest level of the powerset of jM j, and its width grows ex-

ponentially relatively to jM j.
TITANIC’s time complexity can be determined as follows: The algorithm accesses the context as

often as the size L of the largest candidate set is. This size is bounded by jM j, the height of the

powerset of M. At each access, the algorithm considers a number of candidate sets. Let N be the

maximal number of candidate sets considered at one of the accesses of the context. Then the time

complexity is OðL � ðdbþ N � jGj � jM jÞÞ. By using the upper limits for L and n, we obtain

O jM j � db

þ

jM j
jM j
2

j k
 !

� jGj � jM j

!!
:

We see that the number of accesses of the context is at most jM j (rather than 2jM j as for the

other two algorithms), which is especially important, when the context is so large that it doesn’t fit

into main memory. In that case, db can be a significant (or even the dominant) time factor.

The results show TITANIC’s worst-case complexity. In praxis the values for L and n are usually

much lower. Especially for n (which contributes the exponentiality), the upper limit is, in the

average case for computing iceberg concept lattices, the number of 2-itemsets, which is at most

jM j
2

� �
¼
jM j � jM j � 1ð Þ

2
:

We evaluated TITANIC experimentally also. For our evaluation, a version of the TITANIC

algorithm was implemented in C++ together with a rewriting of Lindig’s C version of Next-

Closure [20] The comparisons took place on a Pentium III running at 600 MHz, with 512 MB of

main memory, and were performed on the MUSHROOM (8416 objects, 80 attributes) and

INTERNET (10,000 objects, 141 attributes) databases, both available from the UCI KDD Archive

(http://kdd.ics.uci.edu/), with a varying number of objects.

The results are visualized in Figs. 11 and 12, and listed in detail in Table 3. They show that on

the weakly correlated INTERNET database, Next-Closure is faster for few attributes, but takes

three times the time of TITANIC for the whole dataset. On the strongly correlated MUSHROOMS

database, TITANIC is two to five times faster than Next-Closure.

In [5], we showed that a modified version of TITANIC for computing association rules called

PASCAL (which computes all frequent itemsets, and not only the closed ones) outperforms the

G. Stumme et al. / Data & Knowledge Engineering 42 (2002) 189–222 217

algorithms Apriori [2] and Max-Miner [6] on strongly correlated data sets (and is comparable with

those algorithms on weakly correlated data sets).

Fig. 12. Comparison of TITANIC and Next-Closure on the MUSHROOMS database.

Table 3

Database characteristics and evaluation results

Database # of objects # of attraction # of concepts Computation time (s)

Next-closure TITANIC

Internet 1000 141 15,107 16.49 31.29

2000 141 31,719 66.32 82.70

5000 141 73,026 381.95 253.00

7500 141 100,706 803.17 368.44

10,000 141 124,574 1431.86 480.34

MUSHROOMS 2500 79 5,394 31.13 14.87

5000 79 9064 108.38 20.14

8416 80 32,086 527.74 97.93

Fig. 11. Comparison of TITANIC and Next-Closure on the INTERNET database.

218 G. Stumme et al. / Data & Knowledge Engineering 42 (2002) 189–222

The problem of computing concept lattices has exponential complexity. This shows that one

cannot expect from any algorithm, however robust it is claimed to be, that it solves the problem in

reasonable time in the worst case. However our experimental results with TITANIC show that

under normal conditions (and if handled with care) a strong and waterproof algorithm may

improve the exploration of unknown regions of knowledge.

10. Conclusion

The paper provides two contributions: iceberg concept lattices and the TITANIC algorithm. It

shows the use of iceberg concept lattices as a conceptual clustering method, a condensed repre-

sentation of frequent itemsets, and an efficient visualization technique for conceptual hierarchies

derived from very large databases. TITANIC is presented as an algorithm for efficiently deter-

mining closure systems for a given weight function. Typical examples for its application are listed

in the paper. The mathematical foundations of the algorithm are introduced, and the algorithm is

experimentally evaluated.

References

[1] R. Agrawal, T. Imielinski, A. Swami, Mining association rules between sets of items in large databases, in:

Proceedings of SIGMOD Conference, 1993, pp. 207–216.

[2] R. Agrawal, R. Srikant, Fast algorithms for mining association rules, in: Proceedings of VLDB Conference, 1994,

pp. 478–499 (Expanded version in IBM Report RJ9839).

[3] A. Arnauld, P. Nicole, La logique ou l’art de penser––contenant, outre les r�eegles communes plusieurs, observations

nouvelles, propres�aa former le jugement, Ch Saveux, Paris, 1668.

[4] Y. Bastide, N. Pasquier, R. Taouil, G. Stumme, L. Lakhal, Mining minimal non-redundant association rules

using frequent closed itemsets, in: Proceedings of the 1st International Conference on CL (6th International

Conference on Database Systems), in: J. Lloyd, V. Dahl, U. Furbach, M. Kerber, K.-K. Lau, C. Palamidessi, L.M.

Pereira, Y. Sagiv, P.J. Stuckey (Eds.), Computational Logic––CL, LNAI 1861, Springer, Heidelberg, 2000,

pp. 972–986.

[5] Y. Bastide, R. Taouil, N. Pasquier, G. Stumme, L. Lakhal, Mining frequent patterns with counting inference,

SIGKDD Explorations, Special Issue on Scalable Algorithms 2 (2) (2000) 71–80.

[6] R.J. Bayardo, Efficiently mining long patterns from databases, in: Proceedings of SIGMOD’98, 1998, pp. 85–93.

[7] K. Becker, G. Stumme, R. Wille, U. Wille, M. Zickwolff, Conceptual information systems discussed through an

IT-security tool, in: Proceedings of EKAW’00, in: R. Dieng, in: O. Corby (Eds.), Knowledge Engineering

and Knowledge Management: Methods Models and Tools, LNAI 1937, Springer, Heidelberg, 2000, pp. 352–

365.

[8] C. Carpineto, G. Romano, GALOIS: an order-theoretic approach to conceptual clustering, in: Proceedings ICML,

Machine Learning, Morgan Kaufmann Prublishers, 1993, pp. 33–40.

[9] R. Cole, G. Stumme, CEM: a conceptual e-mail manager, in: Proceedings ICCS’00, in: B. Ganter, in: G.W. Mineau

(Eds.), Conceptual Structures: Logical, Linguistic, and Computational Issues, LNAI 1867, Springer, Heidelberg,

2000, pp. 438–452.

[10] H. Dicky, C. Dony, M. Huchard, T. Libourel, On automatic class insertion with overloading, OOPSLA (1996)

251–267.

[11] B. Ganter, K. Reuter, Finding all closed sets: A general approach, in: Order, Kluwer Academic Publishers,

Amsterdam, 1991, pp. 283–290.

[12] B. Ganter, R. Wille, Formal Concept Analysis: Mathematical Foundations, Springer, Heidelberg, 1999.

G. Stumme et al. / Data & Knowledge Engineering 42 (2002) 189–222 219

[13] R. Godin, H. Mili, G. Mineau, R. Missaoui, A. Arfi, T. Chau, Design of class hierarchies based on concept Galois

lattices, TAPOS 4 (2) (1998) 117–134.

[14] R. Godin, R. Missaoui, An incremental concept formation approach for learning from databases, TCS 133 (2)

(1994) 387–419.

[15] T. Gruber, Towards principles for the design of ontologies used for knowledge sharing, International Journal of

Human and Computer Studies 46 (2/3) (1997) 293–310.

[16] J. Hereth, G. Stumme, U. Wille, R. Wille, Conceptual knowledge discovery and data analysis, in: Proceedings

ICCS2000, in: B. Ganter, in: G. Mineau (Eds.), Conceptual Structures: Logical, Linguistic, and Computational

Structures, LNAI 1867, Springer, Heidelberg, 2000, pp. 421–437.

[17] Y. Huhtala, J. K€aarkk€aainen, P. Porkka, H. Toivonen, TANE: an efficient algorithm for discovering functional and

approximate dependencies, The Computer Journal 42 (2) (1999) 100–111.

[18] J. Kivinen, H. Mannila, Approximate inference of functional dependencies from relations, TCS 149 (1) (1995)

129–149.

[19] M. Krone, G. Snelting, On the inference of configuration structures from source code, in: Proceedings 16th

International Conference on Software Engineering, IEEE Computer Society Press, May 1994, pp. 49–57.

[20] Ch. Lindig, Concepts, ftp://ftp.ips.cs.tu-bs.de/pub/local/softech/misc/concepts-0.3d.tar.gz, 1997 (Open Source

implementation of concept analysis in C).

[21] S. Lopes, J.-M. Petit, L. Lakhal, Efficient discovery of functional dependencies and Amstrong relations, in:

Proceedings EDBT 2000, LNCS 1777, Springer, Heidelberg, 2000, pp. 350–364.

[22] M. Luxenburger, Implications partielles dans un contexte, Math�eematiques, Informatique et Sciences Humaines 29

(113) (1991) 35–55.

[23] K. Mackensen, U. Wille, Qualitative text analysis supported by conceptual data systems, Quality and Quantity:

International Journal of Methodology 2 (33) (1999) 135–156.

[24] A. M€aadche, S. Staab, Mining ontologies from text, in: Proceedings EKAW’00, in: R. Dieng, in: O. Corby (Eds.),

Knowledge Engineering and Knowledge Management: Methods, Models, and Tools, LNAI 1937, Springer,

Heidelberg, 2000, pp. 189–202.

[25] H. Mannila, H. Toivonen, Levelwise search and borders of theories in knowledge discovery, Data Mining and

Knowledge Discovery 1 (3) (1997) 241–258.

[26] R.S. Michalski, Knowledge acquisition through conceptual clustering: a theoretical framework and an

algorithm for partitioning data into conjunctive concepts, Policy Analysis and Information Systems 4 (3) (1980)

219–244.

[27] G. Mineau, R. Godin, Automatic structuring of knowledge bases by conceptual clustering, IEEE Transactions on

Knowledge and Data Engineering 7 (5) (1995) 824–829.

[28] M. Missikoff, M. Scholl, An algorithm for insertion into a lattice: application to type classification, in: Proceedings

rd International Conference FODO 1989, LNCS 367, Springer, Heidelberg, 1989, pp. 64–82.

[29] L. Nourine, O. Raynaud, A fast algorithm for building lattices, Information Processing Letters 71 (1999)

199–204.

[30] N. Pasquier, Y. Bastide, R. Taouil, L. Lakhal, Pruning closed itemset lattices for association rules, 14�eemes Journes

Bases de Donnes Avances (BDA’98), Hammamet, Tunisia, 26–30 October, 1998.

[31] N. Pasquier, Y. Bastide, R. Taouil, L. Lakhal, Efficient mining of association rules using closed itemset lattices,

Journal of Information Systems 24 (1) (1999) 25–46.

[32] N. Pasquier, Y. Bastide, R. Taouil, L. Lakhal, Discovering frequent closed itemsets for association rules, in:

Proceedings ICDT’98, LNCS 1540, Springer, Heidelberg, 1999, pp. 398–416.

[33] J. Pei, J. Han, R. Mao, CLOSET: An efficient algorithm for mining frequent closed itemsets, in: ACM SIGMOD

Workshop on Research Issues in Data Mining and Knowledge Discovery, 2000, pp. 21–30.

[34] P. Scheich, M. Skorsky, F. Vogt, C. Wachter, R. Wille, Conceptual data systems, in: O. Opitz, B. Lausen, R. Klar

(Eds.), Information and Classification, Springer, Berlin, Heidelberg, 1993, pp. 72–84.

[35] I. Schmitt, G. Saake, Merging inheritance hierarchies for database integration, in: Proceedings of the 3rd IFCIS

International Conference on Cooperative Information Systems, New York City, New York, USA, 20–22 August,

1998, pp. 122–131.

220 G. Stumme et al. / Data & Knowledge Engineering 42 (2002) 189–222

[36] G. Snelting, F. Tip, Reengineering class hierarchies using concept analysis, in: Proceedings ACM SIGSOFT

Symposium on the Foundations of Software Engineering, November 1998, pp. 99–110.

[37] S. Strahringer, R. Wille, Conceptual clustering via convex-ordinal structures, in: O. Opitz, B. Lausen, R. Klar

(Eds.), Information and Classification, Springer, Berlin, Heidelberg, 1993, pp. 85–98.

[38] G. Stumme, A. Mdche, FCA Merge: bottom-up merging of ontologies, in: Proceedings 17th International

Conference on Artificial Intelligence (IJCAI’01), Seattle, WA, USA, 2001, pp. 225–230.

[39] G. Stumme, R. Taouil, Y. Bastide, L. Lakhal, Conceptual clustering with iceberg concept lattices, in: Proceedings

of GI–Fachgruppentreffen Maschinelles Lernen’01, Universit€aat Dortmund, vol. 763, Oktober 2001.

[40] G. Stumme, R. Taouil, Y. Bastide, N. Pasquier, L. Lakhal, Fast computation of concept lattices using data mining

techniques, in: Proceedings 7th International Workshop on Knowledge Representation Meets Databases, Berlin,

21–22 August 2000, CEUR-Workshop Proceeding. http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-

WS/.

[41] G. Stumme, R. Taouil, Y. Bastide, N. Pasquier, L. Lakhal, Intelligent structuring and reducing of association rules

with formal concept analysis, in: Proceedings KI 2001 LNAI 2174, in: F. Baader, G. Brewker, T. Eiter (Eds.), KI

2001: Advances in Artificial Intelligence, Springer, Heidelberg, 2001, pp. 335–350.

[42] G. Stumme, R. Wille, U. Wille, Conceptual knowledge discovery in databases using formal concept analysis

methods, in: Proceedings 2nd European Symposium on PKDD’98, in: J.M. _ZZytkow, in: M. Quafofou (Eds.),

Principles of Data Mining and Knowledge Discovery, LNAI 1510, Springer, Heidelberg, 1998, pp. 450–458.

[43] G. Stumme, R. Wille (Eds.), Begriffliche Wissensverarbeitung––Methoden und Anwendungen, Springer,

Heidelberg, 2000.

[44] F. Vogt, R. Wille, TOSCANA––A graphical tool for analyzing and exploring data, LNCS 894, Springer,

Heidelberg, 1995, pp. 226–233.

[45] K. Waiyamai, R. Taouil, L. Lakhal, Towards an object database approach for managing concept lattices, in:

Proceedings 16th International Conference on Conceptual Modeling, LNCS 1331, Springer, Heidelberg, 1997, pp.

299–312.

[46] R. Wille, Restructuring lattice theory: an approach based on hierarchies of concepts, in: I. Rival (Ed.), Ordered

Sets, Reidel, Dordrecht, Boston, 1982, pp. 445–470.

[47] R. Wille, Line diagrams of hierarchical concept systems, Int. Classif. 11 (1984) 77–86.

[48] R. Wille, Concept lattices and conceptual knowledge systems, Computers and Mathematics with Applications 23

(1992) 493–515.

[49] S. Wrobel, K. Morik, T. Joachims, Maschinelles lernen und data mining, in: G. Grz, C.-R. Rollinger, J.

Schneeberger (Eds.), Handbuch der Knstlichen Intelligenz, vol. 3, Auflage, Oldenbourg, Munchen, Wien, 2000, pp.

517–597.

[50] A. Yahia, L. Lakhal, J.P. Bordat, R. Cicchetti, iO2: An algorithmic method for building inheritance graphs in

object database design, in: Proceedings 15th International Conference on Conceptual Modeling, LNCS 1157,

Springer, Heidelberg, 1996, pp. 422–437.

Gerd Stumme is Senior Researcher in the research group Knowledge Management at the Institute for Applied Informatics at the
University of Karlsruhe. In his PhD at Darmstadt University of Technology he developed knowledge acquisition techniques based on
Formal Concept Analysis. His recent research interests comprise knowledge discovery in databases, formal concept analysis, ontol-
ogies, semi-structured data, conceptual knowledge processing, and semantic web mining. Gerd Stumme is author of more than 40
publications and co-editor of a volume on Conceptual Knowledge Processing. In 2001, he was program co-chair of the Eighth
International Conference on Conceptual Structures.

Rafik Taouil is a post-doctorate at INRIA Lorraine. He is currently working on algorithms for closed-set lattices and their applications
for data mining and databases.

Yves Bastide has a PhD in Computer Science. He is studying algorithms and data structures for data mining, and applications on
complex data.

Nicolas Pasquier received his PhD in Computer Science from the University Blaise Pascal, Clermont-Ferrand, France, in January 2000.
He is now a faculty member, as Mâııtre de Conf�eerences, at the University of Nice-Sophia Antipolis and member of the Mecosi research
project in the CNRS Laboratory of Computer Science, Signals and Systems of Sophia Antipolis in France.

G. Stumme et al. / Data & Knowledge Engineering 42 (2002) 189–222 221

His current research interests include database theory, database systems, data mining and knowledge discovery in very large
databases. He received the Junior Researcher Award from the Inforsid association on information systems, databases and decision
systems in 2000 for his contribution to the design of efficient association rule extraction methods.

Lotfi Lakhal received his PhD (1986) and the Habilitation for Directing Research (1992) from the University of Nice-Sophia Antipolis,
France. He joined the Department of Mathematics and Computer Science of Blaise Pascal University, Clermont-Ferrand, France, and
became a full professor in 1993. In 2000, he joined the Mediterranean University, IUT d’Aix-en-Provence, France. His research
interests include statistical databases, database design, formal concept analysis, data mining, and data warehouses.

222 G. Stumme et al. / Data & Knowledge Engineering 42 (2002) 189–222

