
COMPUTING IGUSA CLASS POLYNOMIALS

MARCO STRENG

Abstract. We give an algorithm that computes the genus-two class polynomials of a primitive

quartic CM-field K, and we give a running time bound and a proof of correctness of this
algorithm. This is the first proof of correctness and the first running time bound of any

algorithm that computes these polynomials. Our algorithm is based on the complex analytic

method of Spallek and van Wamelen and runs in time Õ(∆7/2), where ∆ is the discriminant

of K.

1. Introduction

The Hilbert class polynomial HK ∈ Z[X] of an imaginary quadratic number field K has as
roots the j-invariants of complex elliptic curves having complex multiplication (CM) by the ring
of integers of K. These roots generate the Hilbert class field of K, and Weber [41] computed HK

for many small K. The CM method uses the reduction of HK modulo large primes to construct
elliptic curves over Fp with a prescribed number of points, for example for cryptography. The
bit size of HK grows exponentially with the bit size of K: it grows like the discriminant ∆ of K,
and, conditionally, so does the running time of the algorithms that compute it ([14, 1]).

If we go from elliptic curves (genus 1) to genus-2 curves, we get the Igusa class polynomials
HK,n ∈ Q[X] (n = 1, 2, 3) of a quartic CM-field K. Their roots are the Igusa invariants of all
complex genus-2 curves having CM by the ring of integers of K. As in the case of genus 1, these
roots generate class fields and the reduction of Igusa class polynomials modulo large primes
p yields cryptographically interesting curves of genus 2. Computing Igusa class polynomials
is considerably more complicated than computing Hilbert class polynomials, in part because
of their denominators. Recently, various algorithms have been developed: a complex analytic
method by Spallek [35] and van Wamelen [38], a p-adic method [17, 7, 8] and a Chinese remainder
method [13], but no running time or precision bounds were available.

This paper describes a complete and correct algorithm that computes Igusa class polynomials

HK,n ∈ Q[X] of quartic CM-fields K = Q(
√

∆0,
√
−a+ b

√
∆0), where ∆0 is a real quadratic

fundamental discriminant and a, b ∈ Z are such that−a+b
√

∆0 is totally negative. Our algorithm
is based on the complex analytic method of Spallek and van Wamelen. The discriminant ∆ of
K is of the form ∆ = ∆1∆2

0 for a positive integer ∆1. We may and will assume 0 < a < ∆, as
Lemma 10.9 below shows that each quartic CM-field has such a representation. We disregard
the degenerate case of non-primitive quartic CM-fields, i.e., those that can be given with b = 0,
as abelian varieties with CM by non-primitive quartic CM-fields are isogenous to products of
CM elliptic curves, which can be obtained already using Hilbert class polynomials. We prove the
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following unconditional running time bound for our algorithm. We use Õ(g) to mean “at most
g times a polynomial in log g”.

Main Theorem. Algorithm 12.1 computes HK,n (n = 1, 2, 3) for any primitive quartic CM-

field K. It has a running time of Õ(∆
7/2
1 ∆

11/2
0 ) and the bit size of the output is Õ(∆2

1∆3
0).

An essential part of the proof is the denominator bound, as provided by Goren and Lauter
[19, 20]. We do not claim that the bound on our running time is optimal, but an exponential
running time is unavoidable, because the degree of the Igusa class polynomials (as with Hilbert
class polynomials) is already bounded from below by a power of the discriminant.

Overview. Section 2 provides a precise definition of the Igusa class polynomials that we will
work with, and mentions other definitions occurring in the literature. Our main theorem is valid
for all types of Igusa class polynomials.

Instead of enumerating curves, it is easier to enumerate their Jacobians, which are principally
polarized abelian varieties (see Section 3). Van Wamelen [38] gave a method for enumerating all
isomorphism classes of principally polarized abelian varieties with CM by a given order. We give
an improvement of his results in Section 4.

Section 5 shows how principally polarized abelian varieties give rise to points in the Siegel
upper half space H2. These points are matrices known as period matrices. Two period matrices
correspond to isomorphic principally polarized abelian varieties if and only if they are in the
same orbit under the action of the symplectic group Sp4(Z). In Section 6, we analyze a reduction
algorithm that replaces period matrices by Sp4(Z)-equivalent ones in a fundamental domain
F2 ⊂ H2.

In Section 7, we give an upper bound on the entries of the reduced period matrices computed
in Section 6.

Absolute Igusa invariants can be computed from period matrices by means of modular forms
known as (Riemann) theta constants. Section 8 introduces theta constants and gives formulas
that express Igusa invariants in terms of theta constants. The formulas that we give are much
simpler than those that appear in [35, 43] or the textbook [16], reducing the formulas from more
than a full page to only a few lines. We then give bounds on the absolute values of theta constants
and Igusa invariants in terms of the entries of the reduced period matrices.

Section 9 bounds the degree of Igusa class polynomials and Section 10 gives the bounds of
Goren and Lauter [19, 20] on the denominators. Section 11 explains how to reconstruct a rational
polynomial from its complex roots.

Finally, Section 12 puts all the results together into a single algorithm and a proof of the main
theorem.

Remark 1.1. Our methods can also be applied to the case of elliptic curves, though most steps
are then overly complicated or unnecessary. In fact, Theorem 11.1 below, together with the
main results of Dupont [10], forms exactly the missing rounding error analysis of Enge [14]. This
shows that the main result of [14], which bounds the running time of computing Hilbert class
polynomials, is valid also without its heuristic assumption. This is the first unconditional bound
on the running time of the computation of Hilbert class polynomials.

2. Igusa class polynomials

The Hilbert class polynomial of an imaginary quadratic number field K is the polynomial of
which the roots in C are the j-invariants of the elliptic curves over C with complex multiplication
by the ring of integers OK of K. For a genus-2 curve, one needs three absolute Igusa invariants
i1, i2, i3, instead of only one j-invariant, to fix its isomorphism class.
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2.1. Igusa invariants. Let k be a field of characteristic different from 2. Any curve of genus 2
over k, i.e., a projective, smooth, geometrically irreducible, algebraic curve over k of which the
genus is 2, has an affine model of the form y2 = f(x), where f ∈ k[x] is a separable polynomial of
degree 6. Let α1, . . . , α6 be the six distinct roots of f in k, and let a6 be the leading coefficient.
For any permutation σ ∈ S6, let (ij) denote the difference (ασ(i) − ασ(j)). We can then define
the homogeneous Igusa-Clebsch invariants in compact notation that we explain below, as

I2 = a2
6

∑
15

(12)2(34)2(56)2,

I4 = a4
6

∑
10

(12)2(23)2(31)2(45)2(56)2(64)2,

I6 = a6
6

∑
60

(12)2(23)2(31)2(45)2(56)2(64)2(14)2(25)2(36)2,

I10 = a10
6

∏
i<j

(αi − αj)2,

The sum is taken over all distinct expressions (in the roots of f) that are obtained when σ ranges
over S6. The subscript indicates the number of expressions encountered. For example, for I4
there are 10 ways of partitioning the six roots of f into two subsets of three, and each yields a
summand that is the product of two cubic discriminants. For each of the 10 ways of partitioning
the six roots of f into two subsets of three, there are 6 ways of giving a bijection between those
two subsets, and each gives a summand for I6.

The invariant I10 is simply the discriminant of f , which is non-zero as f is separable. The
invariants I2, I4, I6, I10 were introduced by Igusa [23], who denoted them by A, B, C, D and
based them on invariants of Clebsch.

By the symmetry in the definition, each of the homogeneous invariants is actually a polynomial
in the coefficients of f , hence an element of k. Actually, we will use another homogeneous
invariant, given by I ′6 = 1

2 (I2I4 − 3I6), which is “smaller” than I6 as we will see in Section 8.
We define the absolute Igusa invariants by

i1 =
I4I
′
6

I10

, i2 =
I2I

2
4

I10

, i3 =
I5
4

I2
10

.

The values of the absolute Igusa invariants of a curve C depend only on the k-isomorphism class
of the curve C. For any triple (i01, i

0
2, i

0
3), if 3 and i03 are non-zero in k, then there exists a curve

C of genus 2 (unique up to isomorphism) over k with in(C) = i0n (n = 1, 2, 3), and this curve can
be constructed using an algorithm of Mestre [31]. The case i03 = 0 can be dealt with by using
additional or modified absolute Igusa invariants. See also Section III.5 of the author’s thesis [36]
(especially equation (5.3)).

2.2. Igusa class polynomials.

Definition 2.1. Let K be a primitive quartic CM-field. The Igusa class polynomials of K are
the three polynomials

HK,n =
∏
C

(X − in(C)) ∈ Q[X] (n ∈ {1, 2, 3}),

where the product ranges over the isomorphism classes of algebraic genus-2 curves over C of
which the Jacobian has complex multiplication by OK .

For the definitions of the Jacobian and complex multiplication, see Section 3. We will see in
Section 4 that the product in the definition is indeed finite. The polynomial is rational, because
any conjugate of a CM curve has CM by the same ring.
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2.3. Alternative invariants. In the literature, one finds various sets of absolute Igusa invari-
ants. For example, [6], [28], [23], and [35] all make different choices. The invariants of Igusa [23]
have good reduction behaviour at all primes, including 2 and 3. The triple of invariants that
seems most standard in computations is Spallek’s j1 = 2−3I5

2I
−1
10 , j2 = 2I3

2I4I
−1
10 , j3 = 23I2

2I6I
−1
10

(occurring up to powers of 2 in [16, 19, 35, 38, 43, 44]). However, our choice of absolute invari-
ants i1, i2, i3 yields Igusa class polynomials of much smaller height, both experimentally (see
Appendix 3 of [36]) and in terms of proven bounds (see Remarks 8.5 and 10.3 below).

If the base field k has characteristic 0, then Igusa’s and Spallek’s absolute invariants, as well
as most of the other invariants in the literature, lie in the Q-algebra A of homogeneous elements
of degree 0 of Q[I2, I4, I6, I

−1
10 ]. Our main theorem remains true if (i1, i2, i3) in the definition of

the Igusa class polynomials is replaced by any finite list of elements of A.

2.4. Interpolation formulas. If we take one root of each of the Igusa class polynomials, then
we get a triple of invariants and thus (if i3 6= 0) an isomorphism class of curve of genus 2. That
way, the three Igusa class polynomials describe d3 triples of invariants, where d is the degree of
the polynomials. The d triples corresponding to curves with CM by OK are among them, but
the Igusa class polynomials give no means of telling which they are.

To solve this problem, (and thus greatly reduce the number of curves to be checked during
explicit CM constructions), we use the following modified Lagrange interpolation:

ĤK,n =
∑
C

in(C)
∏
C′ 6=C

(X − i1(C ′))

 ∈ Q[X], (n ∈ {2, 3}).

If HK,1 has no roots of multiplicity greater than 1, then the triples of invariants corresponding
to curves with CM by OK are exactly the triples (i1, i2, i3) such that

HK,1(i1) = 0, in =
ĤK,n(i1)

H ′K,1(i1)
(n ∈ {2, 3}).

Our main theorem is also valid if we replace HK,2 and HK,3 by ĤK,2 and ĤK,3.
This way of representing algebraic numbers (like our i2, i3) in terms of others (our i1) appears

in Hecke [22, Hilfssatz a in §36], and is sometimes called Hecke representation (e.g. [15]). The idea
to use this modified Lagrange interpolation in the definition of Igusa class polynomials is due to
Gaudry, Houtmann, Kohel, Ritzenthaler, and Weng [17], who give a heuristic argument that the
height of the polynomials ĤK,n is smaller than the height of the usual Lagrange interpolation.

If HK,1 has only double roots, then these interpolation formulas are useless. In practice, this
never happens, but for the theoretical possibility that it does happen, see Section III.5 of [36].
There it is proven that our main result applies also to computing the CM-by-K locus inside the
coarse moduli space Spec(A) of genus-2 curves.

3. Jacobians and complex multiplication

Instead of enumerating CM curves, we enumerate their Jacobians. We now quickly recall the
definition from [2]. Given a smooth projective irreducible algebraic curve C/C, let H0(ωC)∗ be
dual of the complex vector space of holomorphic 1-forms on C. Its dimension g is the genus of C
and our main result concerns the case g = 2. There is a canonical injection of the homology
group H1(C,Z) into H0(ωC)∗, and the image is a lattice of rank 2g. The quotient complex torus
J(C) = H0(ωC)∗/H1(C,Z) is the (unpolarized) Jacobian of C.

The endomorphism ring End(Cg/Λ) of a complex torus Cg/Λ is the ring of C-linear automor-
phisms of Cg that map Λ into itself. A CM-field is a totally imaginary quadratic extension of a
totally real number field. We say that a complex torus T of (complex) dimension g has complex
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multiplication (or CM ) by an order O ⊂ K if K has degree 2g and there exists an embedding
O → End(T ). We say that a curve C has CM if J(C) does.

It turns out that J(C) is not just any complex torus, but that it comes with a natural
principal polarization. A polarization of a complex torus Cg/Λ is an alternating R-bilinear form
E : Cg ×Cg → R such that E(Λ,Λ) ⊂ Z holds and (u, v) 7→ E(iu, v) is symmetric and positive
definite. The degree of a polarization is the determinant of the matrix M that expresses E
in terms of a Z-basis of Λ. We call a polarization principal if its degree is 1. If we denote
by · the anti-symmetric intersection pairing on H1(C,Z) extended R-linearly to H0(ωC)∗, then
E : (u, v) 7→ −u · v defines a principal polarization on J(C). By the (polarized) Jacobian of C,
we mean the torus together with this principal polarization.

A torus together with a (principal) polarization, such as the Jacobian of a curve, is called
a (principally) polarized abelian variety. An isomorphism f : (Cg/Λ, E) → (Cg/Λ′, E′) of
(principally) polarized abelian varieties is a C-linear isomorphism f : Cg → Cg such that
f(Λ) = Λ′ and f∗E′ = E, where f∗E′(u, v) = E(f(u), f(v)) for all u, v ∈ Cg.

Theorem 3.1 (Torelli [2, Thm. 11.1.7]). Two algebraic curves over C are isomorphic if and
only if their Jacobians are isomorphic (as polarized abelian varieties). �

The product of two polarized abelian varieties (T1, E1) and (T2, E2) has a natural polarization
(v, w) 7→ E1(v1, w1) + E2(v2, w2) called the product polarization.

Theorem 3.2 (Weil). Any principally polarized abelian surface over C is either a product of
elliptic curves with the product polarization or the Jacobian of a smooth projective curve of
genus 2.

Proof. This is [42, Satz 2] or [2, Corollary 11.8.2]. See also Remark 8.11 below. �

4. Abelian varieties with CM

In this section, we give an algorithm that computes a complete set of representatives of the
isomorphism classes CM abelian varieties needed for our main result.

First, Section 4.1 shows how a CM abelian variety is represented as a quotient of Cg by an
ideal of K. Section 4.2 makes this into an algorithm, which works for CM-fields of arbitrary
degree. In Section 4.3, we specialize to the case of quartic CM-fields. Finally, Section 4.4 gives
details needed for proving that this algorithm is fast enough, and that it gives sufficiently small
output.

4.1. CM abelian varieties as quotients by ideals. Let K be any CM-field of degree 2g. A
CM-type of K with values in C is a set Φ = {φ1, . . . , φg} consisting of one embedding φi : K → C
for each complex conjugate pair of embeddings. We identify Φ with the ring homomorphism
K → Cg given by Φ(α) = (φ1(α), . . . , φg(α)). Let ρΦ : K → EndC(Cg) : α 7→ diag Φ(α).

We say that Φ is induced from K1 ⊂ K if {φ|K1
: φ ∈ Φ} is a CM-type of K1. We say that Φ

is primitive if it is not induced from a CM-subfield K1 6= K.
Let A = Cg/Λ be an abelian variety with CM by an order in a CM-field K, and let ι be an

embedding K → End(A) ⊗ Q. It is known ([34, §5.2 in Chapter II]) that the composite map
ρ : K → End(A) ⊗ Q → EndC(Cg) equals ρΦ for some CM-type Φ and some choice of basis
of Cg. We say that A is of type Φ with respect to ι.

Let DK/Q be the different of K, let a be a fractional OK-ideal, and suppose that there exists

ξ ∈ K such that ξOK equals (aaDK/Q)−1 and φ(ξ) lies on the positive imaginary axis for every
φ ∈ Φ. Then the map E = EΦ,ξ : Φ(K)× Φ(K)→ Q given by

(4.1) E(Φ(x),Φ(y)) = TrK/Q(ξxy) for x, y ∈ K
5
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is integer valued on Φ(a)×Φ(a), and can be extended uniquely R-linearly to an R-bilinear form
E = EΦ,ξ : Cg ×Cg → R.

Theorem 4.2. Suppose Φ is a CM-type of a CM-field K of degree 2g. Then the following holds.

(1) For any triple (Φ, a, ξ) as above, the pair (Cg/Φ(a), E) defines a principally polarized
abelian variety A(Φ, a, ξ) with CM by OK of type Φ.

(2) Every principally polarized abelian variety over C with CM by OK of type Φ is isomorphic
to A(Φ, a, ξ) for some triple (Φ, a, ξ) as in part 1.

(3) The abelian variety A(Φ, a, ξ) is simple if and only if Φ is primitive. If this is the case,
then the embedding ι : K → End(A)⊗Q is an isomorphism.

(4) Let (Φ, a, ξ) and (Φ, a′, ξ′) be triples as above with the same CM-type Φ. If there exists
γ ∈ K∗ such that
(a) a′ = γa and
(b) ξ′ = (γγ)−1ξ,

then the principally polarized abelian varieties A(Φ, a, ξ) and A(Φ, a′, ξ′) are isomorphic.
If Φ is primitive, then the converse holds.

Proof. This result can be derived from Shimura-Taniyama [34], and first appeared in a form
similar to the above in Spallek [35, Sätze 3.13, 3.14, 3.19]. See van Wamelen [38, Thms. 1, 3, 5]
for a detailed published proof. �

We call two triples (Φ, a, ξ) with the same type Φ equivalent if they satisfy the conditions 4a
and 4b of Theorem 4.2.

Let K be any CM-field with maximal totally real subfield K0. Let h (resp. h0) be the class
number of K (resp. K0) and let h1 = h/h0.

Proposition 4.3. The number of pairs (Φ, A), where Φ is a CM-type and A is an isomorphism
class of abelian varieties over C with CM by OK of type Φ, is

h1 ·#O∗K0
/NK/K0

(O∗K).

Proof. Let I be the group of invertible OK-ideals and S the set of pairs (a, ξ) with a ∈ I and
ξ ∈ K∗ such that ξ2 is totally negative and ξOK = (aaDK/Q)−1. The group K∗ acts on S via

x(a, ξ) = (xa, x−1x−1ξ) for x ∈ K∗. By Theorem 4.2, the set that we need to count is in bijection
with the set K∗\S of orbits.

The fact that S is non-empty is [38, Thm. 4]. We give a shorter proof here. Let z ∈ K∗ be
such that z2 is a totally negative element of K0. Note that zDK/K0

= (z(α − α) : α ∈ OK) is
generated by elements of K0, hence is of the form hOK for some fractional OK0

-ideal h. The
norm map NK/K0

: Cl(K) → Cl(K0) is surjective because infinite primes ramify in K/K0 (see
[40, Thm. 10.1]). In particular, there exist an element y ∈ K∗0 and a fractional OK-ideal a0 such
that ya0a0 = h−1D−1

K0/Q
= z−1D−1

K/Q holds, so (a0, yz) is an element of S.

Let S′ be the group of pairs (b, u), consisting of a fractional OK-ideal b and a totally positive
generator u ∈ K∗0 of bb. The group K∗ acts on S′ via x(b, u) = (xb, xxu) for x ∈ K∗, and we
denote the group of orbits by C = K∗\S′. The map C → K∗\S : (b, u) 7→ (ba0, u

−1yz) is a
bijection and the sequence

0 −→ O∗K0
/NK/K0

(O∗K) −→
u 7→(OK ,u)

C −→
(b,u)7→b

Cl(K)−→
N

Cl(K0) −→ 0

is exact, so K∗\S has the correct order. �

Remark 4.4. The existence statement of Proposition 4.3 contradicts the first remark below
Proposition 1 of [9]. It turns out that that remark is false, and it follows that the example given
in order to prove that remark does not exist. That is, if F is real quadratic with class number 1
and a fundamental unit of norm 1, then there is no cyclic quartic CM-field containing F .
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The following two lemmas show what happens with distinct CM-types and thus answer a
question of van Wamelen [38].

Lemma 4.5. For any triple (Φ, a, ξ) as above and σ ∈ Aut(K), we have

A(Φ, a, ξ) ∼= A(Φ ◦ σ, σ−1(a), σ−1(ξ)).

Proof. We find twice the same complex torus Cg/Φ(a). The first has polarization

(4.6) E : (Φ(α),Φ(β)) 7→ TrK/Q(ξαβ)

for α, β ∈ a while the polarization of the second maps (Φ(α),Φ(β)) to TrK/Q(σ−1(ξαβ)), which
equals the right hand side of (4.6). �

Definition 4.7. We call two CM-types Φ and Φ′ of K equivalent if there exists σ ∈ Aut(K)
with Φ′ = Φ ◦ σ.

Lemma 4.8. Suppose A and B are abelian varieties over C with CM by K of types Φ and Φ′.
If Φ is primitive and not equivalent to Φ′, then A and B are not isogenous. In particular, they
are not isomorphic.

Proof. Suppose f : A→ B are isogenous. The isogeny induces an isomorphism ϕ : End(A)⊗Q→
End(B)⊗Q given by g 7→ fgf−1. Let ιA : K → End(A)⊗Q and ιB : K → End(B)⊗Q be the
embeddings of types Φ and Φ′. Let σ = ι−1

B ϕιA (where ιB is an isomorphism by Theorem 4.2.3
because Φ′ is primitive). Then (A, ιA) and (B, ιB ◦ σ) have types Φ and Φ′σ. As f induces
an isomorphism of the tangent spaces, we also see that these types are equal, so Φ and Φ′ are
equivalent. �

Definition 4.9. We call two triples (Φ, a, ξ) and (Φ′, a′, ξ′) equivalent if there is an automorphism
σ ∈ Aut(K) such that Φ ◦ σ = Φ′ holds and (Φ, σ(a′), σ(ξ′)) is equivalent to (Φ, a, ξ) as in our
definition below Theorem 4.2.

If Φ is primitive, then it follows from Theorem 4.2.4 and Lemmas 4.5 and 4.8 that A(Φ, a, ξ)
and A(Φ′, a′, ξ′) are isomorphic if and only if (Φ, a, ξ) and (Φ′, a′, ξ′) are equivalent.

4.2. The algorithm.

Algorithm 4.10.
Input: A CM-field K with maximal totally real subfield K0 such that K does not contain a
strict CM-subfield.
Output: A complete set of representatives for the equivalence classes of principally polarized
abelian varieties over C with CM by OK , each given by a triple (Φ, a, ξ) as in Theorem 4.2.

(1) Let T be a complete set of representatives of the equivalence classes of CM-types of K
with values in C.

(2) Let W be a complete set of representatives of the quotient

O∗K/NK/K0
(O∗K).

(3) Let I be a complete set of representatives of the ideal class group of K.
(4) Take those a in I such that (aaDK/Q)−1 is principal. For each, take a generator ξ0.
(5) For every pair (a, ξ0) and every w ∈ W such that ξ = wξ0 is totally imaginary, take

the CM-type Φ consisting of those embeddings of K into C that map ξ to the positive
imaginary axis.

(6) Return those triples (Φ, a, ξ) of step 5 for which Φ is in T .
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Proof. By Theorem 4.2.1, the output consists only of principally polarized abelian varieties with
CM by OK . Conversely, by Theorem 4.2.2, every principally polarized abelian variety A with
CM by OK is isomorphic to A(Φ, a, ξ) for some triple (Φ, a, ξ), and we will show now that such
a triple is found by the algorithm.

By Lemmas 4.5 and 4.8, the CM-type Φ is unique exactly up to equivalence of CM-types.
This uniquely determines Φ in T .

By Theorem 4.2.4, the ideal class of a is then uniquely determined, hence we find a unique
a ∈ I. The class of ξ modulo NK/K0

(O∗K) is uniquely determined by Theorem 4.2.4, hence so is
ξ as found in the algorithm. �

Remark 4.11. Algorithm 4.10 is basically Algorithm 1 of van Wamelen [38] with the difference
that we do not have any duplicate abelian varieties.

4.3. Quartic CM-fields. We now describe, in the quartic case, the sets T and W of Algo-
rithm 4.10, and the number of isomorphism classes of principally polarized CM abelian surfaces.

Lemma 4.12 (Example 8.4(2) of [34]). Let K be a quartic CM-field with a CM-type Φ =
{φ1, φ2}. Exactly one of the following holds.

(1) K/Q is Galois with Galois group C2 × C2 and each CM-type of K is non-primitive and
induced from an imaginary quadratic subfield of K,

(2) K/Q is cyclic Galois, and all four CM-types are equivalent and primitive,
(3) K/Q is non-Galois, its normal closure has Galois group D4, each CM-type is primitive,

and the equivalence classes of CM-types are {Φ,Φ} and {Φ′,Φ′} with Φ′ = {φ1, φ2}. �

Note that in particular, either all CM-types are primitive or none of them are. This is why
we use the word (non-)primitive also for the quartic CM-fields themselves.

Lemma 4.12 shows that we can take the set T to consist of a single CM-type if K is cyclic
and we can take T = {Φ,Φ′} if K is non-Galois.

The following lemma gives the set W .

Lemma 4.13. If K is a primitive quartic CM-field, then

O∗K = µKO∗K0
and NK/K0

(O∗K) = (O∗K0
)2,

where µK ⊂ O∗K is the group of roots of unity, which has order 2 or 10.

Proof. As K has degree 4 and does not contain a primitive third or fourth root of unity, it is
either Q(ζ5) or does not contain a root of unity different from ±1. This proves that µK has
order 2 or 10. A direct computation shows that the lemma is true for K = Q(ζ5), so we assume
that we have µK = {±1}.

Note that the second identity follows from the first, so we only need to prove the first. Let ε
(resp. ε0) be a generator of O∗K (resp. O∗K0

) modulo 〈−1〉. Then without loss of generality, we

have ε0 = εk for some positive integer k. so either k = 1 and we are done, or k = 2.
Suppose that we have k = 2. As K = K0(

√
ε0) is a CM-field, we find that ε0 is totally

negative, and hence ε−1
0 is the conjugate of ε0. Let x = ε− ε−1 ∈ K. Then x2 = −2 + ε0 + ε−1

0 =
−2 + Tr(ε0) ∈ Z is negative, so Q(x) ⊂ K is imaginary quadratic, contradicting primitivity
of K. �

In particular, we can take W = µK ∪ εµK for a fundamental unit ε of O∗K0
.

Lemma 4.14. Let K be a quartic CM-field. If K is cyclic, then there are h1 isomorphism classes
of principally polarized abelian surfaces with CM by OK . If K is non-Galois, then there are 2h1

such isomorphism classes.

8
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Proof. Proposition 4.3 gives the number h1 ·#O∗K0
/NK/K0

(O∗K), but counts every abelian variety
twice if K is non-Galois and four times if K is cyclic Galois (see Lemma 4.12). Lemma 4.13
shows that we have #O∗K0

/NK/K0
(O∗K) = 4. �

4.4. Implementation details. In practice, Algorithm 4.10 takes up only a very small portion
of the time needed for Igusa class polynomial computation. The purpose of this section is to

show that, for primitive quartic CM-fields, indeed Algorithm 4.10 can be run in time Õ(∆) and
to show that the size of the output for each isomorphism class is small: only polynomial in log ∆.

It is well known that lists of representatives for the class groups of number fields K of fixed

degree can be computed in time Õ(|∆|
1
2 ), where ∆ is the discriminant of K. For details, see

Schoof [33]. The representatives of the ideal classes that are given in the output are integral

ideals of norm below the Minkowski bound, which is 3/(2π2) |∆|1/2 for a quartic CM-field.

The algorithms in [33] show that for each a, we can check in time Õ(|∆|
1
2 ) if aaDK/Q is

principal and, if so, write down a generator ξ. As O∗K = µKO∗K0
, it suffices to check, for each of

the roots of unity ζ in K, if ζξ is totally imaginary (note that Q(ζ5) is the only primitive quartic
CM-field with more than 2 roots of unity). Then the set T and the group O∗K0

/NK/K0
(O∗K)

are already given in Section 4.3, where the fundamental unit ε is a by-product of the class

group computations. In particular, it takes time at most Õ(|∆|) to perform all the steps of
Algorithm 4.10.

A priori, the bit size of ξ can be as large as the regulator of K, but we can easily make it
much smaller as follows. We identify K ⊗R with C2 via the embeddings φ1, φ2 in the CM-type
Φ, and we consider the standard Euclidean norm on C2. Then we find a short vector

b |ξ|−1/2
=
(
φ1(b) |φ1(ξ)|−1/2

, φ2(b) |φ2(ξ)|−1/2
)

in the lattice OK |ξ|−1/2 ⊂ C2 and replace a by ba and ξ by (bb)−1ξ. To find this short vector, we
use a version of the LLL-algorithm that is linear in the bit size of the input for fixed dimension,
as in [12].

By part 4 of Theorem 4.2, the change of (a, ξ) to (ba, (bb)−1ξ) does not change the corre-
sponding isomorphism class of principally polarized abelian varieties. This also doesn’t change
the fact that ξ−1 is in OK and that a is an integral ideal. Finally, we compute an LLL-reduced
basis of a ⊂ OK ⊗R = C2. We get the following result.

Lemma 4.15. If we run Algorithm 4.10 in the way we have just described, then on input of a
primitive quartic CM-field K, given as

K = Q(
√

∆0,

√
−a+ b

√
∆0)

for integers a, b,∆0 with 0 < a < ∆, it takes time Õ(∆). For each triple (Φ, a, ξ) in the output,
the ideal a is given by an LLL-reduced basis, and both ξ ∈ K and the basis of a have bit size
O(log ∆).

Proof. First, compute the ring of integers OK of K using the algorithm of Buchmann and
Lenstra [5]. This takes polynomial time plus the time needed to factor the discriminant of the
defining polynomial of K, which is small enough because of the assumption 0 < a < ∆. Then
do the class group computations as explained above.

For each triple (Φ, a, ξ), before we apply the LLL-reduction, we can assume that a is an integral
ideal of norm below the Minkowski bound, hence we have

NK/Q(ξ−1) = NK/Q(a)2NK/Q(DK/Q) ≤ C∆3

for some constant C.
9
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The covolume of the lattice

|ξ|−1/2OK ⊂ OK ⊗R = C2

is NK/Q(ξ−1)∆1/2, so we find a vector b |ξ|−1/2 ∈ |ξ|−1/2OK of length ≤ C ′(NK/Q(ξ−1)∆)1/8

for some constant C ′. In particular, bbξ−1 has all absolute values below C ′
2
NK/Q(ξ−1)1/4∆1/4.

Therefore, bbξ−1 has bit size O(log ∆) and norm at most C ′
8
NK/Q(ξ−1)∆, so b has norm at

most C ′
4
∆1/2.

This implies that ba has norm at most C ′′∆, so an LLL-reduced basis has a bit size that is
O(log(covol(ba))) = O(log ∆).

All elements x ∈ K that we encounter can be given (up to multiplication by units in O∗K0
)

with all absolute values below
√
NK/Q(a) |ε|. Therefore, the bit size of the numbers that are

input to the LLL-algorithm is Õ(RegK) = Õ(∆1/2), hence every execution of the LLL algorithm

takes time only Õ(∆1/2) for each ideal class. �

5. Symplectic bases

5.1. Symplectic bases, period matrices, and the action of the symplectic group. Let
(Cg/Λ, E) be a principally polarized abelian variety. For any basis b1, . . . , b2g of Λ, we associate
to the form E the matrix N = (nij)ij ∈ Mat2g(Z) given by nij = E(bi, bj). We say that E is
given with respect to the basis b1, . . . , b2g by the matrix N .

The lattice Λ has a basis that is symplectic with respect to E, i.e., a Z-basis e1, . . . , eg, v1, . . . , vg
with respect to which E is given by the matrix Ω, given in terms of (g × g)-blocks as

(5.1) Ω =

(
0 1g
−1g 0

)
.

The vectors vi form a C-basis of Cg and if we rewrite Cg and Λ in terms of this basis, then Λ
becomes ZZg + Zg, where Z is a period matrix, i.e., a symmetric matrix over C with positive
definite imaginary part. The set of all g × g period matrices is called the Siegel upper half space
and denoted by Hg. It is a subset of the Euclidean 2g2-dimensional real vector space Matg(C).

There is an action on this space by the symplectic group

Sp2g(Z) = {M ∈ GL2g(Z) : M tΩM = Ω} ⊂ GL2g(Z),

given in terms of (g × g)-blocks by(
A B
C D

)
(Z) = (AZ +B)(CZ +D)−1.

The association of Z to (Cg/ZZg+Zg, E) gives a bijection between the set Sp2g(Z)\Hg of orbits
and the set of principally polarized abelian varieties over C up to isomorphism.

5.2. Finding a symplectic basis for Φ(a). Now it is time to compute symplectic bases. In
Algorithm 4.10, we computed a set of abelian varieties over C, each given by a triple (Φ, a, ξ),
where a is an ideal in OK , given by a basis, ξ is in K∗ and Φ is a CM-type of K. We identify
a with the lattice Λ = Φ(a) ⊂ Cg and recall that the bilinear form E : a × a → Z is given by
E : (x, y) 7→ TrK/Q(ξxy). We can write down the matrix N ∈ Mat2g(Z) of E with respect to
the basis of a. Computing a symplectic basis of a then comes down to computing a change of
basis M ∈ GL2g(Z) of a such that M tNM = Ω, with Ω as in (5.1). This is done by the following
algorithm.

Algorithm 5.2.
Input: A matrix N ∈ Mat2g(Z) such that N t = −N and detN = 1.

10
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Output: M ∈ GL2g(Z) satisfying M tNM = Ω.
For i = 1, . . . , g, do the following.

(1) Let e′i ∈ Z2g be a vector linearly independent of

{e1, . . . , ei−1, v1, . . . , vi−1}.

(2) From e′i, compute the following vector ei, which is orthogonal to e1, . . . , ei−1, v1, . . . , vi−1:

ei = 1
k

(
e′i −

∑i−1
j=1(et

jNe
′
i)vj +

∑i−1
j=1(vt

jNe
′
i)ej

)
,

where k is the largest positive integer such that the resulting vector ei is in Z2g.
(3) Let v′i be such that et

iNv
′
i = 1. We will explain this step below.

(4) From v′i, compute the following vector vi, which is orthogonal to e1, . . . , ei−1, v1, . . . , vi−1

and satisfies et
iNvi = 1:

vi = v′i −
∑i−1
j=1(et

jNv
′
i)vj +

∑i−1
j=1(vt

jNv
′
i)ej .

Output the matrix M with columns e1, . . . , eg, v1, . . . , vg.

Existence of v′i as in step 3 follows from the facts that N is invertible and that ei ∈ Z2g is
not divisible by integers greater than 1. Actually finding v′i means finding a solution of a linear
equation over Z, which can be done using the LLL-algorithm as in [29, Section 14].

If we apply the Algorithm 5.2 to the matrix N mentioned above it, then the output matrix
M is a basis transformation that yields a symplectic basis of Λ with respect to E. For fixed g,
Algorithm 5.2 takes time polynomial in the size of the input, hence polynomial time in the bit
sizes of ξ ∈ K and the basis of a. Lemma 4.15 tells us that for g = 2, we can make sure that
both ξ ∈ K and the basis of a have a bit size that is polynomial in log ∆, so obtaining a period
matrix Z from a triple (Φ, a, ξ) takes time only polynomial in log ∆. This implies also that the
bit size of Z (as a matrix with entries in a number field) is polynomial in log ∆.

6. The fundamental domain of the Siegel upper half space

In the genus-1 case, to compute the j-invariant of a point z ∈ H = H1, one should first move z
to the fundamental domain for SL2(Z), or at least away from Im z = 0, to get good convergence.
We use the term fundamental domain loosely, meaning a connected subset F of Hg such that
every Sp2g(Z)-orbit has a representative in F , and that this representative is unique, except
possibly if it is on the boundary of F .

In genus 2, when computing θ-values at a point Z ∈ H2, as we will do in Section 8, we move
the point to the fundamental domain for Sp4(Z).

We will treat the genus-1 case first, not only because of the analogy, but also because the
reduction algorithm for the genus-1 case is part of the reduction algorithm for the genus-2 case.

6.1. The genus-1 case. For g = 1, the fundamental domain F ⊂ H is the set of z = x+ iy ∈ H
that satisfy

(F1) − 1
2 < x ≤ 1

2 and
(F2) |z| ≥ 1.

One usually adds a third condition x ≥ 0 if |z| = 1 in order to make the orbit representatives
unique, but we will omit that condition as we allow boundary points of F to be non-unique
in their orbit. To move z into this fundamental domain, we simply iterate the following until
z = x+ iy is in F :

(6.1)
1. z ← z + b−x+ 1

2c,
2. z ← −z−1 if |z| < 1.

11
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We now phrase this procedure in terms of positive definite (2 × 2)-matrices Y ∈ Mat2(R),
which will come in handy in the genus-2 case. We identify such a matrix

Y =

(
y1 y3

y3 y2

)
with the positive definite binary quadratic form f = y1X

2 + 2y3XY + y2Y
2 ∈ R[X,Y ]. Let φ

be the map that sends Y to the unique element z ∈ H satisfying f(z, 1) = 0.
Note that SL2(Z) acts on Y via (U, Y ) 7→ UY U t. The map φ induces an isomorphism of

SL2(Z)-sets to H from the set of positive definite (2 × 2)-matrices Y ∈ Mat2(R) up to scalar
multiplication.

Note that φ−1(F) is the set of matrices Y satisfying

(6.2) − y1 < 2y3 ≤ y1 ≤ y2,

where the first two inequalities correspond to (F1), and the third inequality to (F2). We say
that the matrix Y is SL2(Z)-reduced if it satisfies (6.2).

We phrase and analyze algorithm (6.1) in terms of the matrices Y . Even though we will give
some definitions in terms of Y , all inequalities and all steps in the algorithm will depend on Y
only up to scalar multiplication.

Algorithm 6.3.
Input: A positive definite symmetric (2× 2)-matrix Y0 over R.
Output: U ∈ SL2(Z) and Y = UY0U

t such that Y is SL2-reduced.
Start with Y = Y0 and U = 1 ∈ SL2(Z) and iterate the following two steps until Y is SL2-reduced.

(1) Let

U ←
(

1 0
r 1

)
U and Y ←

(
1 0
r 1

)
Y

(
1 r
0 1

)
for r = b−y3/y1 + 1

2c.
(2) If y1 > y2, then let

U ←
(

0 1
−1 0

)
U and Y ←

(
0 1
−1 0

)
Y

(
0 −1
1 0

)
.

Output U, Y .

We can bound the running time in terms of the minima of the matrix Y0. We define the
first and second minima m1(Y ) and m2(Y ) of a symmetric positive definite (2× 2)-matrix Y as
follows. Let m1(Y ) = ptY p be minimal among all column vectors p ∈ Z2 different from 0 and let
m2(Y ) = qtY q be minimal among all q ∈ Z2 linearly independent of p. Note that the definition
of m2(Y ) is independent of the choice of p. We call m1(Y ) also simply the minimum of Y . If Y
is SL2-reduced, then we have

m1(Y ) = y1, m2(Y ) = y2 and
3

4
y1y2 ≤ detY ≤ y1y2,

so for every positive definite symmetric matrix Y , we have

(6.4)
3

4
m1(Y )m2(Y ) ≤ detY ≤ m1(Y )m2(Y ).

As we have

Y −1 =
1

detY

(
0 1
−1 0

)
Y

(
0 −1
1 0

)
,

it also follows that

(6.5) mi(Y
−1) =

mi(Y )

detY
, (i ∈ {1, 2}).

12
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For any matrix A, let |A| be the maximum of the absolute values of its entries.

Lemma 6.6. Algorithm 6.3 is correct and takes O(log(|Y0| /m1(Y0))) additions, multiplications,
and divisions in R. The inequalities

|Y | ≤ |Y0| and |U | ≤ 2(detY0)−1/2 |Y0|
hold for the output, and also for the values of Y and U throughout the execution of the algorithm.

Proof. This result is well-known. For details, see [36, Lemma II.5.6]. �

6.2. The fundamental domain. For genus 2, the fundamental domain F2 is defined to be the
set of Z = X + iY ∈ H2 for which

(S1) the real part X =

(
x1 x3

x3 x2

)
is reduced, i.e., − 1

2 ≤ xi <
1
2 (i = 1, 2, 3),

(S2) the imaginary part Y is (GL2-)reduced, i.e., 0 ≤ 2y3 ≤ y1 ≤ y2, and
(S3) |detM∗(Z)| ≥ 1 for all M ∈ Sp4(Z), where M∗(Z) is defined by

M∗(Z) = CZ +D for M =

(
A B
C D

)
.

Every point in H2 is Sp4(Z)-equivalent to a point in F2, and we will compute such a point with
Algorithm 6.8 below. This point is unique up to identifications of the boundaries of F2. We call
points Sp4(Z)-reduced if they are in F2 .

Reduction of the real part is trivial and obtained by X 7→ X +B, for a unique B ∈ Mat2(Z).
Here X 7→ X +B corresponds to the action of(

1 B
0 1

)
∈ Sp4(Z)

on Z.
Reduction of the imaginary part is reduction of positive definite symmetric matrices as in

Algorithm 6.3, but with the extra condition y3 ≥ 0, which can be obtained by applying the
GL2(Z)-matrix (

1 0
0 −1

)
.

It follows that UY U t is reduced for some U ∈ GL2(Z), and to reduce the imaginary part of Z,
we replace Z by

(6.7) UZU t =

(
U 0
0 (U t)−1

)
(Z).

Condition (S3) has a finite formulation. Let G consist of the 38 matrices
0 0 −1 0
0 1 0 0
1 0 e1 0
0 0 0 1

 ,


1 0 0 0
0 0 0 −1
0 0 1 0
0 1 0 e1

 ,


0 0 −1 0
0 1 0 0
1 −1 d 0
0 0 1 1

 ,


0 0 −1 0
0 0 0 −1
1 0 e1 e3

0 1 e3 e2

 ,

in Sp4(Z), where d ranges over {0,±1,±2} and each ei over {0,±1}. Gottschling [21] proved
that, under conditions (S1) and (S2), condition (S3) is equivalent to the condition

(G) |detM∗(Z)| ≥ 1 for all M ∈ G.

Actually, Gottschling went even further and gave a subset of 19 elements of G of which he proved
that it is minimal such that (G) is equivalent to (S3), assuming (S1) and (S2).

For our purposes of bounding and computing the values of Igusa invariants, it suffices to
consider the set B ⊂ H2, given by (S1), (S2), and

13
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(B) y1 ≥
√

3/4.

Note that the set B contains F2. Indeed, condition (B) follows immediately from (S1) and
|z1| = |det(N∗0 (Z))| ≥ 1, where N0 is the first matrix in our defintion of G.

6.3. The reduction algorithm. The reduction algorithm that moves Z ∈ H2 into F2 is as
follows.

Algorithm 6.8.
Input: Z0 ∈ H2.
Output: Z in F2 and a matrix

M =

(
A B
C D

)
∈ Sp4(Z)

such that we have Z = M(Z0) = (AZ0 +B)(CZ0 +D)−1.
Start with Z = Z0 and iterate the following 3 steps until Z is in F2. During the course of the
algorithm, keep track of M ∈ Sp4(Z) such that Z = M(Z0), as we did with U in Algorithm 6.3.

(1) Reduce the imaginary part as explained in Section 6.2.
(2) Reduce the real part as explained in Section 6.2.
(3) Apply N to Z for N ∈ G with |detN∗(Z)| < 1 minimal, if such an N exists.

The algorithm that moves Z ∈ H2 into B is exactly the same, but with F2 replaced by B
everywhere and with G replaced by {N0}. We will give an analysis of the running time and
output of Algorithm 6.8 below. The only property of the subset G ⊂ Sp4(Z) that this analysis
uses is that it is finite and contains N0, hence the analysis is equally valid for the modification
that moves points into B.

6.4. The number of iterations. We will bound the number of iterations by showing that
detY is increasing and bounded in terms of Y0, that every step with |y1| < 1

2 leads to a doubling

of detY , and that we have an absolutely bounded number of steps with |y1| ≥ 1
2 .

Lemma 6.9. For any point Z ∈ H2 and any matrix M ∈ Sp4(Z), we have

det ImM(Z) =
det ImZ

|detM∗(Z)|2
.

Proof. In [27, Proof of Proposition 1.1] it is computed that

(6.10) ImM(Z) = (M∗(Z)−1)t(ImZ)M∗(Z)−1.

Taking determinants on both sides proves the result. �

Steps 1 and 2 of Algorithm 6.8 do not change detY , and Lemma 6.9 shows that step 3 increases
detY , so detY is increasing throughout the algorithm.

Lemma 6.11. At every iteration of step 3 of Algorithm 6.8 in which we have y1 <
1
2 , the value

of detY increases by a factor of at least 2.

Proof. If y1 <
1
2 , then for the element N0 ∈ G, we have |detN∗0 (Z)|2 = |z1|2 = |x1|2 + |y1|2 ≤ 1

2 ,
so by Lemma 6.9, the value of detY increases by a factor ≥ 2. �

Lemma 6.12. There is an absolute upper bound c, independent of the input Z0, on the number
of iterations of Algorithm 6.8 in which Z satisfies y1 ≥ 1

2 at the beginning of step 3.

14
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Proof. Let C be the set of points in H2 that satisfy (S1), (S2) and y1 ≥ 1
2 . At the beginning of

step 3, both (S1) and (S2) hold, so we need to bound the number of iterations for which Z is in
C at the beginning of step 3. Suppose that such an iteration exists, and denote the value of Z
at the beginning of step 3 of that iteration by Z ′. As detY increases during the algorithm, each
iteration has a different value of Z, so it suffices to bound the number of Z ∈ Sp4(Z)(Z ′) ∩ C.
By [27, Theorem 3.1], the set

C = {M ∈ Sp4(Z) : C ∩M(C) 6= ∅}

is finite. As C surjects onto Sp4(Z)(Z ′) ∩ C via M 7→ M(Z ′), we get the absolute upper bound
#C on the number of iterations with Z ∈ C. �

We can now bound the number of iterations. For any matrix Z = X + iY ∈ H2, let t(Z) =
log max{m1(Y )−1,m2(Y )}.

Proposition 6.13. The number of iterations of Algorithm 6.8 is at most O(t(Z0)) for every
input Z0.

Proof. Let c be the constant of Lemma 6.12, let Z0 be the input of Algorithm 6.8 and let Z be
the value after k iterations. By Lemmas 6.11 and 6.14, we have

2k−c detY0 ≤ detY ≤ m2(Y )2 ≤ (
4

3
)2 max{m1(Y0)−2,m2(Y0)2},

hence (6.4) implies

2k−c ≤ (
4

3
)3 max{m1(Y0)−3m2(Y0)−1,m1(Y0)−1m2(Y0)}. �

To avoid a laborious error analysis, all computations are performed inside some number field
L ⊂ C of absolutely bounded degree. Indeed, for an abelian surface A with CM by OK , any
period matrix Z ∈ H2 that represents A is in Mat2(L), where L is the normal closure of K,
which has degree at most 8. For a running time analysis, we need to bound the height of the
numbers involved. Such height bounds are also used for lower bounds on the off-diagonal part
of the output Z, which we will need in Section 8.

The height h(x) of an element x ∈ L∗ is defined as follows. Let S be the set of absolute
values of L that extend either the standard archimedean absolute value of Q or one of the non-
archimedean absolute values |x| = p−ordp(x). For each v ∈ S, let deg(v) = [Lv : Qv] be the
degree of the completion Lv of L at v. Then

h(x) =
∑
v

deg(v) max{log |x|v , 1}.

We denote the maximum of the heights of all entries of a matrix Z ∈ H2 by h(Z).

6.5. The size of the numbers. Next, we give bounds on the value of |M | during the execution
of the algorithm. This will provide us with a bound on the height of the entries of Z. Indeed,
if we have Z = M(Z0), then it follows that h(Z) ≤ 16(log |M | + h(Z0) + log 4). The following
result allows us to bound m2(Y ) and detY from above during the algorithm, which we need to
do in order to bound the size of the numbers encountered.

Lemma 6.14. For any point Z = X + iY ∈ H2 and any matrix M ∈ Sp4(Z), we have

m2(ImM(Z)) ≤ 4

3
max{m1(Y )−1,m2(Y )}.
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Proof. We imitate part of the proof of [27, Lemma 3.1]. If we replace M by(
(U t)−1 0

0 U

)
M

for U ∈ GL2(Z), then the matrix (ImM(Z))−1 gets replaced by the matrix U(ImM(Z))−1U t,
so we can assume without loss of generality that (ImM(Z))−1 is reduced. By (6.10), we have

(ImM(Z))−1 = (CX − iCY +D)Y −1(CX + iCY +D)t

= (CX +D)Y −1(XCt +Dt) + CY Ct,(6.15)

where M =

(
A B
C D

)
.

As the left hand side of (6.15) is reduced, its minimum m1 is its upper left entry. Denote the
third row of M by (c1, c2, d1, d2) and let c = (c1, c2), d = (d1, d2) ∈ Z2. We compute that the
upper left entry of (6.15) is m1((ImM(Z))−1) = (cX + d)Y −1(Xct + dt) + cY ct.

The matrix M is invertible, so if c is zero, then d is non-zero. As both Y −1 and Y are positive
definite, this implies that

m1((ImM(Z))−1) ≥ min{m1(Y ),m1(Y −1)}.

By (6.4) and (6.5), we get

m2(ImM(Z)) ≤ 4 det ImM(Z)

3m1(ImM(Z))
=

4

3m1((ImM(Z))−1)

≤ 4

3
max{ 1

m1(Y )
,

detY

m1(Y )
}

≤ 4

3
max{m1(Y )−1,m2(Y )},

which proves the result. �

Lemma 6.16. There exists an absolute constant c > 0 such that the following holds. The value
of log |M | is at most cmax{log |Z0| , 1} during the first iteration of Algorithm 6.8 and, in each
iteration, increases by at most cmax{t(Z0), 1}, where t is as above Proposition 6.13.

Proof. For step 1, it follows from equation (6.7) and Lemma 6.6 that the value of log |M | increases
by at most log |Z|+t(Z)+log 8. In step 2, the value of log |M | increases by at most log(1+2 |Z|).
In step 3, the value of log |M | increases by at most log 4 by the definition of G.

Therefore, it suffices to bound log |Z| appropriately at the beginning of steps 1 and 2. Note
that log |Y | decreases during step 1, while log |X| increases by at most max{log |Z| , 0}+ log 16.
Therefore, it suffices to give a bound for log |Z| only at the beginning of step 1. Note that for
the first iteration, the bound log |Z| = log |Z0| suffices.

At the beginning of step 3, we have |xi| ≤ 1
2 , and Y is reduced. We can thus use Lemma 6.14

to bound the coefficients of Y , and get |Y | ≤ 4et(Z0)/3. This proves that we have log |Z| ≤
3 max{t(Z0), 1}. During step 3, the matrix Z gets replaced by

N(Z) = (AZ +B)(CZ +D)−1

= 1
det(CZ+D) (AZ +B)

(
0 1
−1 0

)
(CZ +D)

(
0 −1
1 0

)
,

where

N =

(
A B
C D

)
16
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is in the set G. We have |N(Z)| ≤ |det(CZ +D)|−1
(2 |Z|+ 1)2 |N |2. We have already bounded

|Z|, and we also have |N | ≤ 4, so we only need to bound |det(CZ +D)|−1
. Lemma 6.9 gives

|det(CZ +D)|−2
= (det ImN(Z))(det Im(Z))−1.

Let M ′ be such that we have Z = M ′(Z0) and let M = NM ′, then Lemma 6.14 tells us that the
numerator is at most

4 max{m1(Y0)−1,m2(Y0)}/3.
Applying the fact that the determinant of Im(Z) increases during the execution of the algorithm,
we thus find

|det(CZ +D)|−2
= 4 max{m1(Y0)−1,m2(Y0)}/(3 det Im(Z0)),

which is at most 16/9 max{m1(Y0),m2(Y0)}3 by (6.4). Therefore, for Z and N as in step 3, we
have log |N(Z)| = c′max{t(Z0), 1}, hence we find that c′max{t(Z0), 1} is an upper bound for
log |Z| at the beginning of step 1 for every iteration but the first. �

6.6. The running time.

Theorem 6.17. Let L ⊂ C be a number field. Algorithm 6.8, on input Z0 ∈ Mat2(L) ∩ H2,

returns an Sp4(Z)-equivalent matrix Z ∈ F2. The running time is Õ(h(Z0) log |Z0|)+ Õ(t(Z0)4).
Moreover, the output Z satisfies

h(Z) = c′max{h(Z0), t(Z0)2, 1},
for some absolute constant c′.

Proof. By Proposition 6.13 and Lemma 6.16, the value of log |M | is bounded by O(log |Z0|) +
O(t(Z0)2) throughout the algorithm, so the height of every entry of Z is bounded by O(t(Z0)2)+
O(h(Z0)). This implies that each basic arithmetic operation in the algorithm takes time at most

Õ(t(Z0)2) + Õ(h(Z0)). By Lemma 6.6, the first iteration takes O(log |Z0|) + O(t(Z0)) such
operations, and all other O(t(Z0)) iterations take O(t(Z0)) operations, so there are O(log |Z0|) +

O(t(Z0)2) arithmetic operations, yielding a total running time for the algorithm of Õ(t(Z0)4) +

Õ(h(Z0) log |Z0|) �

In Section 8, we bound the Igusa invariants in terms of the entries of the period matrix Z.
One of the bounds that we need in that section is a lower bound on the absolute value of the
off-diagonal entry z3 of Z. It is supplied by the following corollary.

Corollary 6.18. Let Z0 ∈ Mat2(L) ∩ H2 be the input of Algorithm 6.8 and let z3 be the off-
diagonal entry of the output. Then we have either z3 = 0 or − log |z3| ≤ c′max{h(Z0), t(Z0)2, 1}
for an absolute constant c′.

Proof. The field L is a subfield of C, which gives us a standard absolute value v. If z3 is non-zero,
then the product formula tells us that we have − log |z3| = − log |z3|v =

∑
w 6=v log |z3|w ≤ h(z3),

which is at most c′max{h(Z0), t(Z0)2, 1} by Theorem 6.17. �

7. Bounding the period matrices

In this section, we prove the following result. Here, the set B ⊂ H2 is as defined in Section 6.2,
and contains the fundamental domain F2.

Theorem 7.1. Let Z ∈ B be such that the principally polarized abelian variety corresponding

to it has complex multiplication by OK . Then we have m2(ImZ) ≤ 2
3
√

3
max{2∆0,∆

1/2
1 }, where

∆0 is the discriminant of the real quadratic subfield K0 ⊂ K, and ∆1 is the norm of the relative
discriminant of K/K0.
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Let a and Φ = {φ1, φ2} be an ideal and CM-type of K corresponding to Z as in Section 4.1.
Let e, f , v, w ∈ K be a symplectic basis of a giving rise to Z as in Section 5.2. By scaling, we
may assume v = 1. Write wk = φk(w) for k = 1, 2.

Lemma 7.2. We have

|det ImZ| = |w1 − w2|−2 covol(Φ(a)) and covol(Φ(a)) =
1

4
N(a)∆1/2 ≤ 1

4
∆1/2

Proof. Let ϕ : C2 → C2 be the C-linear map sending (1, 0) to (1, 1) = Φ(1) and (0, 1) to
(w1, w2) = Φ(w), so ϕ(ZZ2 + Z2) = Φ(a). As an R-linear map, it has determinant |w1 − w2|2.
We find

|det ImZ| = covol(ZZ2 + Z2) = |w1 − w2|−2 covol(Φ(a)).

Moreover, we have covol(Φ(a)) = N(a)−1 covol(Φ(OK)), where covol(Φ(OK)) = 1
4∆1/2. Finally,

our assumption v = 1 implies that a−1 is an integral ideal, so N(a) ≤ 1. �

Lemma 7.3. Suppose w 6∈ K0. Then we have |det ImZ| < 1
2∆0.

Proof. Write wk = xk+iyk and let ξ be as in Section 4.1. We have TrK/Q(ξw) = E(Φ(w),Φ(1)) =
0 as (e, f, 1, w) is a symplectic basis. Write φk(ξ) = iνk, so νk is a positive real number. We get
0 = 2(ν1y1 + ν2y2), so y2 = −ν1ν2 y1. In particular, we have |w1 − w2| ≥ |y1 − y2| = |y1|(1 + ν1

ν2
).

Analogously, we have |w1−w2| ≥ |y2− y1| = |y2|(1 + ν2
ν1

). Taking the product of these identities

yields |w1 − w2|2 ≥ |y1y2|(2 +
ν2
1+ν2

2

ν1ν2
) > 2|y1y2|.

On the other hand, a contains OK0
+wOK0

, which has covolume ∆0|y1y2|. We get our result
by inserting these values into the first equality of Lemma 7.2. �

Write Z =

(
z1 z3

z3 z2

)
and zk = xk + iyk.

Lemma 7.4. Suppose w ∈ K0 and write b = Z + wZ. Then we have

|det ImZ| = 1

4
NK/Q(a−1b)−1∆

1/2
1 ≤ 1

4
∆

1/2
1 ,

where NK/Q(a−1b) is an integer.

Proof. Note that b = (K0 ∩ a) is an OK0
-ideal and that we have a ⊃ OKb. We compute

NK/Q(a) = NK0/Q(b)2NK/Q(ab−1) = |w1 − w2|2∆−1
0 NK/Q(a−1b)−1.

We find the result by inserting this into the second equality of Lemma 7.2. �

Proof of Theorem 7.1. Equations (6.4) and (B) of Section 6 give m2(ImZ) ≤ 4
√

4
3
√

3
det ImZ, hence

Lemmas 7.3 and 7.4 prove the result. �

Remark 7.5. The bound of Theorem 7.1 is not optimal. For example, Corollary II.6.2 of the

author’s thesis [36] improves it to max{ 2
√

2√
3π

∆0,
4
9∆

1/4
1 ∆

1/2
0 } using the Hilbert upper half space

and multiple pages of computations. However, we will be satisfied with Theorem 7.1, as it is
easier to prove and not the bottleneck of our running time analysis.
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8. Theta constants

To compute the absolute Igusa invariants corresponding to a point Z ∈ H2, we use theta
constants, also known as theta null values. For z ∈ C, let e(z) = e2πiz. We call an element
c ∈ {0, 1

2}
4 a theta characteristic and write c = (c1, c2, c3, c4), c′ = (c1, c2) and c′′ = (c3, c4). We

define the theta constant of characteristic c to be the function θ[c] : H2 → C given by

θ[c](Z) =
∑
n∈Z2

e(
1

2
(n+ c′)Z(n+ c′)t + (n+ c′)c′′

t
),

and following Dupont [11], we use the short-hand notation

θ16c2+8c1+4c4+2c3 = θ[c].

We call a theta characteristic — and the corresponding theta constant — even or odd depending
on whether 4c′c′′

t
is even or odd. The odd theta constants are zero by the anti-symmetry in the

definition, and there are exactly 10 even theta constants θ0, θ1, θ2, θ3, θ4, θ6, θ8, θ9, θ12 and θ15.

8.1. Igusa invariants in terms of theta constants. Let T be the set of even theta charac-
teristics and define

S = {C ⊂ T | #C = 4,
∑
c∈C

c ∈ Z4}.

Then S consists of 15 subsets of T called Göpel quadruples, each consisting of 4 even theta
characteristics. We call a set {b, c, d} ⊂ T of three distinct even theta characteristics syzygous if
it is a subset of a Göpel quadruple, so there are 60 syzygous triples. Define

h4 =
∑
c∈T

θ[c]8, h6 =
∑

b,c,d∈T
syzygous

±(θ[b]θ[c]θ[d])4(8.1)

h10 =
∏
c∈T

θ[c]2, h12 =
∑
C∈S

∏
c∈T\C

θ[c]4,

where we explain the signs in h6 below. Each hk is a sum of tk monomials of degree 2k in the 10
even theta constants, where t4 = 10, t6 = 60, t10 = 1, and t12 = 15. The signs in h6 are defined
uniquely by the facts that h6 is a modular form for Sp4(Z) and that the coefficient of θ4

0θ
4
1θ

4
2

is +1. More explicitly, we give h6 in Figure 1.

t0∗t1∗t2 + t0∗t1∗t3 + t0∗t2∗t3 + t1∗t2∗t3− t0∗t2∗t4 + t1∗t3∗t4− t0∗t2∗t6
+t1∗t3∗t6− t0∗t4∗t6− t1∗t4∗t6− t2∗t4∗t6− t3∗t4∗t6− t0∗t1∗t8 + t2∗t3∗t8
+t0∗t4∗t8 + t3∗t4∗t8− t1∗t6∗t8− t2∗t6∗t8− t0∗t1∗t9 + t2∗t3∗t9− t1∗t4∗t9
−t2∗t4∗t9 + t0∗t6∗t9 + t3∗t6∗t9− t0∗t8∗t9− t1∗t8∗t9− t2∗t8∗t9− t3∗t8∗t9
+t1∗t2∗t12− t0∗t3∗t12 + t0∗t4∗t12 + t1∗t4∗t12− t2∗t6∗t12− t3∗t6∗t12
+t0∗t8∗t12 + t2∗t8∗t12 + t4∗t8∗t12 + t6∗t8∗t12− t1∗t9∗t12− t3∗t9∗t12
+t4∗t9∗t12 + t6∗t9∗t12 + t1∗t2∗t15− t0∗t3∗t15− t2∗t4∗t15− t3∗t4∗t15
+t0∗t6∗t15 + t1∗t6∗t15− t1∗t8∗t15− t3∗t8∗t15 + t4∗t8∗t15 + t6∗t8∗t15
+t0∗t9∗t15 + t2∗t9∗t15 + t4∗t9∗t15 + t6∗t9∗t15− t0∗t12∗t15− t1∗t12∗t15
−t2∗t12∗t15− t3∗t12∗t15

Figure 1. An explicitly written out version of h6 (see (8.1)). We write tj
instead of θ4

j for ease of copying with a computer.
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Remark 8.2. Another way of defining hk is by letting ψk be the Eistenstein series of weight k
on H2 and setting h4 = 22ψ4, h6 = 22ψ6,

h10 = −214χ10 for χ10 = −43867(21235527 · 53)−1(ψ4ψ6 − ψ10), and

h12 = 2173χ12 for χ12 = 131 · 593(213375372337)−1(3272ψ3
4 + 2 · 53ψ2

6 − 691ψ12).

See also Igusa [24, p. 189] and [25, p. 848].

Lemma 8.3. Let Z be a point in H2. If h10(Z) is non-zero, then the principally polarized abelian
variety corresponding to Z is the Jacobian of a curve C/C of genus 2 with invariants

I2(C) = h12(Z)/h10(Z), I4(C) = h4(Z),

I ′6(C) = h6(Z), I10(C) = h10(Z).

Proof. This is the result on page 848 of Igusa [25]. �

Remark 8.4. Thomae’s formula ([32, Thm. IIIa.8.1], [37]) gives an equation for a curve C with
J(C) corresponding to Z in terms of the theta constants. Formulas of the form of Lemma 8.3 can
be derived by writing out the definition of Ik using Thomae’s formula and standard identities
between the theta constants. This was done by Bolza [3], and also by Spallek [35]. Spallek did
not give h6, but instead gave an explicitly written out version of h4, h10, h12, and

h16 =
∑
C∈S
d∈C

θ[d]8
∏

c∈T\C

θ[c]4,

filling a full page, together with the formulas for I2, I4, I10 of Lemma 8.3 and the formula

I6(C) = h16(Z)/h10(Z).

The same page-filling formulas later appeared in [43] and [16].

Remark 8.5. Our invariants i1, i2, and i3 are chosen to have the minimal number of factors
h10 in the denominator. The bounds in Corollaries 8.8 and 8.9 below are part of the motivation
for this choice. This choice is also good for the denominators, as we will see in Remark 10.3.

Corollary 8.6. Each element of the ring A = Q[I2, I4, I
′
6, I
−1
10 ] can be expressed as a polynomial

in the theta constants divided by a power of the product of all even theta constants. �

By Corollary 8.6, if we give upper and lower bounds on the absolute values of the theta
constants, then we get upper bounds on the absolute values of the absolute Igusa invariants.
Furthermore, we can bound the precision needed for the theta constants in terms of the precision
needed for the absolute invariants.

8.2. Bounds on the theta constants. For Z ∈ H2, denote the real part of Z by X and the
imaginary part by Y , write Z as

Z =

(
z1 z3

z3 z2

)
,

and let xj be the real part of zj and yj the imaginary part for j = 1, 2, 3. Recall that B ⊂ H2 is
given by

(S1) X is reduced, i.e., −1/2 ≤ xi < 1/2 for i = 1, 2, 3,
(S2) Y is reduced, i.e., 0 ≤ 2y3 ≤ y1 ≤ y2, and

(B) y1 ≥
√

3/4.
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Proposition 8.7. For every Z ∈ B, we have

|θj(Z)− 1| < 0.405 j ∈ {0, 1, 2, 3}∣∣∣∣ θj(Z)

2e( 1
8z1)

− 1

∣∣∣∣ < 0.348 j ∈ {4, 6}∣∣∣∣ θj(Z)

2e( 1
8z2)

− 1

∣∣∣∣ < 0.348 j ∈ {8, 9} and∣∣∣∣ θj(Z)

2((−1)j + e( 1
2z3))e( 1

8 (z1 + z2 − 2z3))
− 1

∣∣∣∣ < 0.438 j ∈ {12, 15}.

Proof. The proof of Proposition 9.2 of Klingen [27] gives infinite series as upper bounds for the
left hand sides. A numerical inspection shows that the limits of these series are less than 0.553,
0.623, 0.623 and 0.438. Klingen’s bounds can be improved by estimating more terms of the theta
constants individually and thus getting a smaller error term. This has been done in Propositions
6.1 through 6.3 of Dupont [11], improving the first three bounds to 0.405, 2 |e(z1/4)| ≤ 0.514
and 2 |e(z2/4)| ≤ 0.514. The proof of [11, Proposition 6.2] shows that for the second and third
bound, we can also take 0.348. �

Corollary 8.8. For every Z ∈ B, we have

|θj(Z)| < 1.41, (j ∈ {0, 1, 2, 3})
|θj(Z)| < 1.37, (j ∈ {4, 6, 8, 9})
|θj(Z)| < 1.56. (j ∈ {12, 15})

Proof. These upper bounds follow immediately from (S2), (B), and Proposition 8.7. �

Corollary 8.9. For every Z ∈ B, we have

0.59 < |θj(Z)| , (j ∈ {0, 1, 2, 3})
1.3 exp(−π4 y1) < |θj(Z)| , (j ∈ {4, 6})
1.3 exp(−π4 y2) < |θj(Z)| , (j ∈ {8, 9})

1.05 exp(−π4 (y1 + y2 − 2y3)) < |θ12(Z)| , and
1.12 exp(−π4 (y1 + y2 − 2y3))ν < |θ15(Z)| ,

where ν = min{ 1
4 , |z3|}.

Proof. This follows from Proposition 8.7 if we use |1− e(z3/2)| ≥ ν and the bounds

|1 + e(z3/2)| > 1, exp(−π
4
yi) ≥ 0.506 (i ∈ {1, 2}) and

exp
(
−π

4
(y1 + y2 − 2 |y3|)

)
> exp

(
−π

2
y2

)
≥ 0.256. �

Theorem 8.10. For every Z ∈ B and n ∈ {1, 2, 3}, we have

log2 |in(Z)| < 2π(y1 + y2 − y3) + 64 + 2 max{2,− log2 |z3|}.

Proof. Corollary 8.8 yields bounds log2 |h4(Z)| < 8, log2 |h6(Z)| < 13, log2 |h10(Z)| < 11 and
log2 |h12(Z)| < 17. On the other hand, Corollary 8.9 yields

− log2 |h10(Z)| < π(y1 + y2 − y3) + 3 + max{2,− log2 |z3|}.

The upper bounds on in follow from the formulas of Lemma 8.3 and the bounds on hk. �
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Remark 8.11. Lemma 8.3, together with Theorem 8.10, gives a constructive version of (Weil’s)
Theorem 3.2. Indeed, if z3 = 0, then the principally polarized abelian surface A(Z) corresponding
to Z is the product of the polarized elliptic curves C/(z1Z+Z) and C/(z2Z+Z), while if z3 6= 0,
then Theorem 8.10 shows that we have h10(Z) 6= 0, so A(Z) is the Jacobian of the curve of
genus 2 given by Lemma 8.3.

8.3. Evaluating theta constants and Igusa invariants. We use the naive way of evaluating
theta constants. That is, we simply sum all terms in the definition of θ for with |ni| below a
certain bound R. The analysis of the terms that are left out, and of the rounding errors, is
straightforward and easy. Suppose we want an error ≤ 2−s. As the logarithm of the absolute
value of a term decreases quadratically with n, the bound R needs only to grow linearly with
the square root of s. We find that the number of terms, as well as the complexity of computing

and summing these terms via fast multiplication, is quasi-linear in s (i.e., Õ(s)).
Making this explicit (see [36] for details), we get the following result. For s a positive integer,

let
R = d(0.4s+ 2.2)1/2e and t = s+ 2 + b2 log2(2R+ 1)c,

so t/s→ 1 as s→∞.

Theorem 8.12. There exists an algorithm with the following input and output that has running

time Õ(s2). Input: j ∈ {0, . . . , 15}, a positive integer s, and a matrix Z̃ ∈ B with |Z̃ − Z| < 2−t

for some Z ∈ H2. Output: a complex number A with |A− θj(Z)| < 2−s. �

Remark 8.13. Note that this running time is quasi-quadratic, while Dupont’s (generalized
AGM-)method [11, Section 10.2] is heuristically quasi-linear. Proving correctness of Dupont’s
method, and analyising the required precision and the running time, is beyond the scope of this
article.

After computing approximations of the theta constants, approximating the absolute Igusa
invariants is straightforward: they are polynomials in the theta constants divided by the product
of the theta constants. The absolute values of the theta constants and the errors of their ap-
proximations can then be used to bound the precision loss and hence tell us how much precision
to use. For details and explicit bounds, see Section II.7.3 of the author’s thesis [36].

9. The degree of the class polynomials

Let K be a primitive quartic CM-field. In this section we give asymptotic upper and lower
bounds on the degree of Igusa class polynomials of K. These bounds are not used in the algorithm
itself, but are used in the analysis of the algorithm.

Denote the class numbers of K and K0 by h and h0 respectively, and let h1 = h/h0. The
degree of the Igusa class polynomials HK,n for n = 1, 2, 3 is the number h′ of isomorphism classes
of curves of genus 2 with CM by OK . By Lemma 4.14 we have h′ = h1 if K is cyclic and h′ = 2h1

otherwise. The degree of the polynomials ĤK,n is h′−1. The following result gives an asymptotic
bound on h1, and hence on the degree h′.

Lemma 9.1 (Louboutin [30]). There exist effective constants d > 0 and N such that for all
primitive quartic CM-fields K with ∆ > N , we have

∆
1/2
1 ∆

1/2
0 (log ∆)−d ≤ h1 ≤ ∆

1/2
1 ∆

1/2
0 (log ∆)d.

Proof. Louboutin [30, Theorem 14] gives bounds∣∣∣∣ log h1

log(∆1∆0)
− 1

2

∣∣∣∣ ≤ d log log ∆

log ∆

for ∆ > N . As we have ∆ > ∆0∆1, this proves the result. �
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10. Denominators

Let K be a primitive quartic CM-field. In this section we give upper bounds on the denomi-
nators of the Igusa class polynomials of K. By the denominator of a polynomial f ∈ Q[X], we
mean the smallest positive integer c such that cf is in Z[X].

10.1. Background. A prime p occurs in the denominator of H1 only if there is a curve C with
CM by OK such that C has bad reduction at a prime p over p. It is known that abelian varieties
with complex multiplication have potential good reduction at all primes, but this doesn’t imply
that Jacobians reduce as Jacobians: the reduction of the Jacobian of a smooth curve C of genus
two can be a polarized product of elliptic curves E1×E2. The reduction of C is then the union of
those elliptic curves intersecting transversely. For details, we refer to Goren and Lauter [19, 20],
who study this phenomenon and use the embedding

OK → End(E1 × E2)

to bound both p and the valuation of the denominator of H1 at p.
We use the bounds of Goren and Lauter which hold in general, but are expected to be far from

asymptotically optimal, in our running time analysis. The bounds of Bruinier and Yang [4, 44]
are better, but are proven only for very special quartic CM-fields.

10.2. Statement of the results. Goren and Lauter [19, 20] give their bounds in terms of
integers a, b, d such that K is given by K = Q(

√
−a+ b

√
d). For d, one can take the discriminant

d = ∆0 of the real quadratic subfield K0. We will prove in Lemma 10.9 below that one can take
a < 8π−1(∆1∆0)1/2, where ∆1 = NK0/Q(∆K/K0

) is the norm of the relative discriminant. The
denominator itself does not depend on the choice of a, so we can replace a by this bound on a
in all denominator bounds below.

The main result of this section is the following.

Theorem 10.1. Let K be a primitive quartic CM-field and write

K = Q
(√
−a+ b

√
d
)

with a, b, d ∈ Z.

The denominator of each of the Igusa class polynomials of K divides 214h′D2 for

D =

( ∏
p<4da2

p prime

pb4f(p)(1+log(2da2)/ log p)c

)h′
,

where f(p) is given by f(p) = 8 if p ramifies in K/Q and satisfies p ≤ 3, and given by f(p) = 1
otherwise.

Furthermore, the result above remains true if we replace d by ∆0 and a by b8π−1(∆1∆0)1/2c
in the definition of D. We then have logD = Õ(h′∆) = Õ(∆

3/2
1 ∆

5/2
0 ) as ∆ tends to infinity.

We will prove this result below.

Remark 10.2. Theorem 10.1 as stated holds for the absolute Igusa invariants i1, i2, i3 of
Section 2. For another choice of a set S of absolute Igusa invariants, take positive integers c3 and
k such that c3(2−12I10)kS consists of modular forms of degree k with integral Fourier expansion.

Then the denominator divides ch
′

3 D
k. See the proof of Theorem 10.1 below for details.

Using the formulas for the Igusa invariants of Lemma 8.3, one can verify that all elements
of Z[2−15I2I10, 2

−2I4, 2
−2I ′6, 2

−12I10] have an integral Fourier expansion (see [36, Appendix 1]).
For our invariants, we have c3 = 214 and k = 2.
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Remark 10.3. Our invariants i1, i2, and i3 are chosen to have the minimal value for k. Re-
mark 10.2 is part of the motivation for this choice. This choice is also good for getting small
absolute values of the coefficients, as we have seen in Remark 8.5. We have k = 1 for i1 and
k = 2 for i2 and i3.

We did not normalize our invariants with powers of 2 to get c3 = 1, because invariants without
these powers of 2 are easier to remember and yield smaller class polynomials in practice.

Remark 10.4. It follows from Goren [18, Thms. 1 and 2] that Theorem 10.1 remains true if
one restricts in the product defining D to primes p that divide 2 · 3 · c3∆ or factor as a product
of two prime ideals in OK . See also Goren and Lauter [20, Tables 3.3.1 and 3.5.1].

10.3. The bounds as stated by Goren and Lauter. The first part of the proof of Theo-
rem 10.1 is the following bound on the primes that occur in the denominator.

Lemma 10.5 (Goren and Lauter [19]). The coefficients of each of the polynomials HK,n(X) and

ĤK,n for K = Q(
√
−a+ b

√
d) a primitive quartic CM-field are S-integers, where S is the set of

primes smaller than 4da2.

Proof. Corollary 5.2.1 of [19] is this result with 4d2a2 instead of 4da2. We can however adapt
the proof as follows to remove a factor d. In [19, Corollary 2.1.2], it suffices to have only
N(k1)N(k2) < p/4 in order for two elements k1 and k2 of the quaternion order ramified in p and
infinity to commute. Then, in the proof of [19, Theorem 3.0.4], it suffices to take as hypothesis
only p > d(Tr(r))2. As we have d(Tr(r))2 ≥ dδ1δ2 ≥ N(x)N(by∨), this implies that x and by∨ are
in the same imaginary quadratic field K1. As in the original proof, this implies that ywy∨ is also
contained in K1 and hence ψ(

√
r) ∈ M2(K1), so there is a morphism K = Q(

√
r) 7→ M2(K1),

contradicting primitivity of K. �

Remark 10.6. Lemma 10.5 as phrased above is for class polynomials defined in terms of the
invariants i1, i2, i3 of Section 2. If other invariants are used, then the result is still valid if the
primes dividing c3 of Remark 10.2 are added to S.

Recent results of Eyal Goren bound the exponents to which primes may occur in the denom-
inator as follows.

Lemma 10.7 (Goren-Lauter [20]). Let K be a primitive quartic CM-field and C/C a curve of
genus 2 that has CM by OK . Let v be a non-archimedean valuation of L(in(C)), normalized
with respect to Q in the sense that v(Q∗) = Z holds, and let e be its ramification index (so ev is
normalized with respect to L(in(C)). Let k and c3 be as in Remark 10.2.

Then we have

−v(in(C)) ≤ 4k(log(2da2)/ log(p) + 1) + v(c3) if e ≤ p− 1, and

−v(in(C)) ≤ 4k(8 log(2da2)/ log(p) + 2) + v(c3) otherwise.(10.8)

Moreover, e ≤ p− 1 is automatic for p 6= 2, 3.

Proof. Theorem 7.0.4 of Goren and Lauter [20] gives the valuation bounds.
Next, we show e ≤ 4 for p > 2. Let L ⊂ C be isomorphic to the normal closure of K, let Φ

be the CM-type of C and Kr ⊂ L its reflex field. The extension Kr(in(C))/Kr is unramified
by the main theorem of complex multiplication [34, Main Theorem 1 in §15.3 in Chap. IV]. In
particular, the ramification index of any prime in L(in(C))/Q is at most its ramification index
in L/Q. By Lemma 4.12, the field L has degree 4 over Q or has degree 2 over a biquadratic
subfield, hence we have e ≤ 4 for p > 2. �
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10.4. The bounds in terms of discriminants. Lemmas 10.5 and 10.7 hold for any represen-
tation of K of the form K = Q(

√
−a+ b

√
d), hence in particular for such a representation with

da2 minimal. The following result gives a lower and an upper bound on the minimal da2.

Lemma 10.9. Let K be a quartic CM-field with discriminant ∆ and let ∆0 be the discriminant
of the real quadratic subfield K0.

For all a, b, d ∈ Z such that K = Q(
√
−a+ b

√
d) holds, we have a2 > ∆1 and d ≥ 1

4∆0.

Conversely, there exist such a, b, d ∈ Z with d = ∆0 and a2 < ( 8
π )2∆1∆0.

Proof. The lower bounds are trivial, because ∆0 divides 4d and ∆1 divides a2 − b2d ≤ a2. For
the upper bound, we show the existence of a suitable element −a + b

√
∆0 using a geometry of

numbers argument.
We identify K ⊗Q R with C2 via its pair of infinite primes. Then OK is a lattice in C2

of covolume 2−2
√

∆. Let ω1, ω2 be a Z-basis of OK0 , and consider the open parallelogram
ω1(−1, 1) + ω2(−1, 1) ⊂ OK0 ⊗R ∼= R2. We define the open convex symmetric region

VY = {x ∈ C2 : Re(x) ∈ ω1(−1, 1) + ω2(−1, 1), (Imx1)2 + (Imx2)2 < Y }.
Then vol(VY ) = 4π

√
∆0Y and by Minkowski’s convex body theorem, VY contains a non-zero

element α ∈ OK if we have

vol(VY ) > 24 covolOK = 4
√

∆.

We pick Y =
√

∆1∆0π
−1 + ε, so that α exists.

Let r = 4(α − α)2, which is of the form −a + b
√

∆0 with integers a and b. Now a =
1
2 |r1 + r2| = 2(2 Imx1)2 + 2(2 Imx2)2 < 8Y = 8

√
∆1∆0π

−1 + 8ε. As a is in the discrete set Z,

and we can take ε arbitrarily close to 0, we find that we can even get a ≤ 8
√

∆1∆0π
−1 and hence

a2 ≤ ( 8
π )2∆1∆0. �

Proof of Theorem 10.1. Lemma 10.5 proves that the denominator of the Igusa class polynomials
is divisible only by primes dividing D.

Next, let v be any normalized non-archimedean valuation of HKr and c any coefficient of HK,n

or ĤK,n. Then c is a sum of products, where each product consists of at most h′ factors in(C)
for certain n’s and C’s. This shows that −v(c) is at most h′ times the right hand side of (10.8),
hence v(Dc) ≥ 0. As this holds for all v, it follows that Dc is an integer. This concludes the

proof that DHK,n and DĤK,n are in Z[X].
The fact that we can replace a and d as in the theorem is Lemma 10.9. Next, we prove the

asymptotic bound on D. Note that the exponent of every prime in D1/h′ is linear in log ∆, as

is the bit size of every prime divisor of D. Therefore, logD is Õ(h′N), where N = O(∆) is the
number of prime divisors of D, which finishes the proof of Theorem 10.1. �

11. Recovering a polynomial from its roots

At this point, we know how to find approximations of the roots of the polynomial H1(X), and
we wish to combine these into approximations of the coefficients of H1(X). In other words, we
need to take the product of a set of linear polynomials.

11.1. Numerically multiplying many polynomials. We compute the product of a set of
linear polynomials by arranging them in a binary tree, and computing the products of pairs of
polynomials using fast multiplication. This method is well known, and a complete analysis of its
running time and rounding errors is given by Kirrinnis [26].

Define the norm of a polynomial p =
∑
akx

k ∈ C[x] to be |p| = |p|1 =
∑
|ak|. Let p1, . . . , pn

be linear polynomials such that |pi| ≤ 2ti holds with ti ≥ 1, and let t =
∑
ti. In particular, if

pi = (x− zi), take ti ≥ max{log2(|zi|+ 1), 1}.
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Theorem 11.1 (Kirrinnis [26]). There exists an explicit algorithm, independent of the data
mentioned above, with the following input, output and running time.
Input: Positive integers n, s and t1, . . . , tn, and linear polynomials p̃1, . . . , p̃n satisfying

|p̃i − pi| < 2−(s+t−ti+2dlog2 ne),

Output: A polynomial p̃ satisfying |p1 · · · pn − p̃| < 2−s,
Running time: O(ψ(n · log n · (s+ t))), where ψ(k) = O(k log k log log k) is the time needed for
multiplication of two k-bit integers.

Proof. We reduce to the case ti = 1 by the substitution ti 7→ 1, t 7→ n, s 7→ s+t−n, pi 7→ 2−ti+1pi,
p̃i 7→ 2−ti+1p̃i, p̃ 7→ 2−t+np̃. Note that it takes linear time to move the point ti − 1 places to the
left in p̃i and to move it back to its correct position in the output p̃.

For the case ti = 1, this result is a special case of Algorithm 5.1 of [26]. To see this in the
notation of loc. cit., note t = n, let l = n, and let n = (n1, . . . , nl) = (1, . . . , 1). The definitions of
H1(n) and di(n) can be found on page 407 of [26], and it follows that in our case di(n) ≤ dlog2 ne
and H1(n) ≤ ndlog2 ne hold. For ψ, see [26, p. 383], and for |p| and Πn, see [26, p. 381]. �

Remark 11.2. The restriction to linear input polynomials is only to make the bounds on the
running time and the required input precision easier to state. It is not present in [26].

Remark 11.3. For more details about the history of the algorithm, see [26, Section 3.2].

11.2. Recognizing rational coefficients. There are various ways of recognizing a polynomial

f ∈ Q[X] from an approximation f̃ . If one knows an integer D such that the denominator of f

divides D, and the error |f̃ − f | is less than (2D)−1, then Df is obtained from Df̃ by rounding
the coefficients to the nearest integers.

Other methods to compute f from f̃ are based on continued fractions, where the coefficients

of f are obtained via the continued fraction expansion of the coefficients of f̃ , or on the LLL-
algorithm, where the coefficients of an integral multiple of f arise as coordinates of a small
vector in a lattice [29, Section 7]. These methods have the advantage that only a bound B
on the denominator needs to be known, instead of an actual multiple D. This is very useful
in practical implementations, because one can guess a small value for B, which may be much
smaller than any easily computable proven D. In the case of Igusa class polynomials, there exist
a few good heuristic checks of the output when using a non-proven bound B, such as smoothness
of the denominators, and successfulness of CM constructions of abelian surfaces over finite fields.

For our purpose of giving a proven running time bound however, we prefer the first method

of rounding Df̃ , since it is easy to analyze and asymptotically fast.

It takes time Õ(logD) to compute D of Theorem 10.1 using sieving to find the primes and a

binary tree to multiply them together. We conclude that we can compute HK,n from H̃K,n in time

Õ(logD) plus time linear in the bit size of H̃K,n, provided that we have |H̃K,n−HK,n| < (2D)−1.

12. The algorithm

We now have all the required ingredients for our algorithm and a proof of the main theorem.

Algorithm 12.1.
Input: A positive quadratic fundamental discriminant ∆0 and positive integers a and b such

that the the field K = Q(
√
−a+ b

√
∆0) is a primitive quartic CM-field of discriminant greater

than a.
Output: The Igusa class polynomials HK,n for n = 1, 2, 3.

(1) Compute a Z-basis of OK using the algorithm of Buchmann and Lenstra [5] and use this
to compute the discriminant ∆ of K.
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(2) Compute a complete set {A1, . . . , Ah′} of representatives of the h′ isomorphism classes
of principally polarized abelian surfaces over C with CM by OK , using Algorithm 4.10.
Here each Aj is given by a triple (Φj , aj , ξj) as in Section 4.4.

(3) From ∆ and h′, compute D such that DHK,n is in Z[X] for n = 1, 2, 3, as in Section 11.2.
(4) For j = 1, . . . , h′, do the following.

(a) Compute a symplectic basis of aj using Algorithm 5.2. This provides us with a
period matrix Wj ∈ H2 ∩Mat2(L), where L ⊂ C is the normal closure of K.

(b) Replace the period matrix Wj by an Sp4(Z)-equivalent period matrix Zj ∈ F2 ∩
Mat2(L), using Algorithm 6.8.

(c) Let uj = d3 + (y1 + y2 − y3)π + max{2,− log2 |z3|}e, where

Zj =

(
z1 z3

z3 z2

)
and yk = Im zk (k = 1, 2, 3).

(5) Let p = dlog2D + 3 log2 h
′ + 4e+

∑h′

j=1(2uj + 40). This is the precision with which we
will approximate the Igusa invariants.

(6) For j = 1, . . . , h′, do the following.
(a) Evaluate the theta constants in Zj to precision rj = 101 + 7uj + p as explained

above Theorem 8.12.
(b) Use Lemma 8.3 to evaluate in(Aj) for (n = 1, 2, 3) to precision p.

(7) For n = 1, 2, 3, do the following.

(a) Use the algorithm of Theorem 11.1 to compute an approximation H̃K,n of HK,n for
n = 1, 2, 3 from the approximations of Igusa invariants of step 6b.

(b) Compute DHK,n by rounding the coefficients of DH̃K,n to nearest integers.
(c) Output HK,n.

The polynomials ĤK,n (n = 2, 3) of Section 2.4 can be computed from the approximations of
in(C) and i1(C) efficiently using Algorithm 10.9 of [39] (see also [15, Section 4]). However, instead
of doing a detailed rounding error analysis of that algorithm, we give a more naive and slower
algorithm that is still much faster than the running time in our Main Theorem. To compute the

polynomials ĤK,n, we simply modify step 7a as follows:

(1) Evaluate each summand in the definition of the polynomial ĤK,n using the algorithm of
Theorem 11.1.

(2) Approximate H̃K,n by arranging its summands in a binary tree and adding them.

We now recall and prove the main theorem.

Main Theorem. Algorithm 12.1 computes HK,n (n = 1, 2, 3) for any primitive quartic CM-

field K. It has a running time of Õ(∆
7/2
1 ∆

11/2
0 ) and the bit size of the output is Õ(∆2

1∆3
0).

Proof. We start by proving that the output is correct. Using Lemma 8.3 and Theorem 8.12, one
can show (see [36, Proposition II.7.14]) that the precision rj for the theta constants suffices to
get the absolute Igusa invariants with precision p. Theorem 8.10 tells us that we have |in(Zj)| ≤
26uj+77. These bounds and Theorem 11.1 show that it suffices to know the absolute Igusa
invariants to precision p in order to get a precision of 1 + log2D bits for the coefficients of HK,n.
By Theorem 10.1, the polynomials DHK,n have integer coefficients, so a precision of 1 + log2D
for the coefficients of HK,n suffices for recognizing these coefficients and getting a correct output.
This proves that the output of Algorithm 12.1 is correct.

Next, we bound the precisions p and rj . We start by bounding uj , for which we need an
upper bound on y1 + y2 − y3 and a lower bound on z3. We have y2 ≥ y1 and y3 ≥ 0, hence

y1 + y2 − y3 ≤ 2y2, and Theorem 7.1 gives the upper bound y2 ≤ 2
3
√

3
max{2∆0,∆

1/2
1 }.
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We claim that the off-diagonal entry z3 of Zj ∈ H2 is non-zero. Indeed, if z3 = 0, then Zj =
diag(z1, z2) with z1, z2 ∈ H = H1 and Aj is the product of the elliptic curves corresponding to z1

and z2, contradicting the fact that Aj is simple (Theorem 4.2.3). The claim and Corollary 6.18
together now give an upper bound on log(1/z3), which is polynomial in log ∆ by Lemma 4.15.

We now have
uj = O(max{∆0,∆

1/2
1 }), h′ = Õ(∆1/2

1 ∆1/2
0 ),

and by Theorem 10.1 also logD = Õ(∆3/2
1 ∆5/2

0 ). We find that p is dominated by our bounds on
logD, hence we have p = Õ(∆3/2

1 ∆5/2
0 ) and also rj = Õ(∆3/2

1 ∆5/2
0 ).

Finally, we can bound the running time. Under the assumption that K is given as K =

Q(
√
−a+ b

√
∆0), where ∆0 is a positive fundamental discriminant and a, b are positive integers

such that a < ∆0, we can factor (a2 − b2∆0)∆2
0 and hence find the ring of integers in step 1 in

time O(∆).

As shown in Section 4.4, step 2 takes time Õ(∆
1/2

). Step 3 takes time Õ(D) = Õ(∆3/2
1 ∆5/2

0 ).
For every j, step 4a takes time polynomial in log ∆ by Lemma 4.15 and Theorem 6.17. The

same holds for steps 4b and 4c and each summand of step 5. The number of iterations or
summands of these steps is 2h′ = Õ(∆1/2

1 ∆1/2
0 ) by Lemmas 9.1 and 4.14. In particular, steps 4

and 5 take time Õ(∆1/2
1 ∆1/2

0 ).
We now come to the most costly step. By Theorem 8.12, it takes time Õ(r2

j ) to do a single
iteration of step 6a. In particular, all iterations of this step together take time Õ(∆7/2

1 ∆11/2
0 ).

The j-th iteration of step 6b takes time Õ(r) and hence all iterations of this step together

take time Õ(∆2
1∆3

0). Finally, by Theorem 11.1, step 7a takes time Õ(h′) times Õ(p), which is
Õ(∆2

1∆3
0). The same amount of time is needed for the final two steps.

The output consists of h′+1 rational coefficients, each of which has a bit size of Õ(∆3/2
1 ∆5/2

0 ),
hence the size of the output is Õ(∆2

1∆3
0).

This proves the main theorem, except when using the polynomials ĤK,n (n = 2, 3) of Sec-

tion 2.4. With the naive method of evaluating ĤK,n that we described in Algorithm 12.1, it takes

Õ(h1) times as much time to evaluate H̃K,n from the Igusa invariants as it does to evaluate HK,n.
This Õ(∆5/2

1 ∆7/2
0 ) is still dominated by the running time of the rest of the algorithm. �
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