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Abstract

We present the first algorithms for computing all placements of (frictionless) point fingers
that put a polygonal part in form closure and all placements of point fingers that achieve 2nd-
order immobility of a polygonal part. Our algorithms run in O(n*T¢+K) and O(n? log? n+K)
time in the case of form closure and 2nd-order immobility respectively, where n is the number
of vertices of the polygon, K is the description size of the resulting set of finger placements, and
€ is an arbitrarily small constant. The basis of our algorithm is a translation of the problem
into geometric searching problems, which are solved using efficient data structures. Our results
can be extended to the problem of computing all placements of a line and two points that
put a polygonal part in form closure. The resulting algorithm runs in O(n?log® n + K) time,
where K is again the description size of the output.

1 Introduction

Many manufacturing operations, such as machining, assembly, and inspection, require objects to
be fixtured, that is, to be held in such a way that they can resist all external wrenches. The
concept of form closure, formulated by Reuleaux [13] in 1876, provides a sufficient condition for
constraining, despite the application of an external wrench, all finite and infinitesimal motions of
a rigid object by a set of contacts along its boundary. Any motion of an object in form closure
has to violate the rigidity of the contacts. Markenscoff et al. [4] (and Mishra et al. [7]) showed
that—in the absence of friction—four points are necessary and sufficient to put almost any planar
object in form closure. We refer to a specific placement of the contacts as a grasp. A grasp that
puts a part in form closure is referred to as a form-closure grasp.

Results by Rimon and Burdick [14, 15] show that form closure is not a necessary condition for
constraining all motions of an object. Three points turn out to be sufficient to achieve what they
call 2nd-order immobility of an object; the corresponding analysis of a placement of three points
takes the curvature of the object boundary into account. We refer to a grasp that achieves 2nd-
order immoblity as a 2nd-order-immobility grasp. Unlike with form closure (which is a 1st-order
notion of immobility in the terminology of [14]), a small arbitrary shift along the object boundary
of one or more of the three points is unlikely to keep an object 2nd-order immobilized. As a result,
the three points have to be placed with infinite precision.

We consider the computation of all form-closure grasps of a polygonal part P with (at most)
four frictionless point fingers and of all 2nd-order-immobility grasps of P with (at most) three
frictionless point fingers. The availability of all form-closure or 2nd-order-immobility grasps allows
a user—usually a machinist—to select the grasps that best meet specific additional requirements
(e.g. with respect to accessability), which may vary from one operation to another. We shall use
the common assumption that the placement of the frictionless point fingers is restricted to interiors
of edges or endpoints of edges that are concave vertices of P. The continuous nature of the sets
of form-closure or 2nd-order-immobility grasps makes their computation difficult. Our algorithms
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are the first to solve the problem of computing these sets efficiently. The running times of our
algorithms depend to a large extent on the size of their outputs; they run in O(n2*¢ 4+ K) time in
the case of form closure and in O(n? log® n + K) time in the case of 2nd-order immoblity, where €
is an arbitrarily small positive constant and K is the description size—or complexity for short—of
the set all grasps. The value of K is trivially bounded by O(n*) and O(n?®) respectively, but is
smaller in most practical cases.

Ponce et al. [10, 11, 12] studied the computation of form-closure grasps of two-dimensional and
three-dimensional polyhedral objects in the context of point fingers with friction. The essential
difference with our work lies in the number of fingers involved in the grasps. Whereas they
computed three-finger grasps of two-dimensional objects and four-finger grasps of polyhedra we
must compute all form-closure and 2nd-order-immobility grasps of polygons with at most four
and three fingers respectively, simply because these numbers of fingers may be necessary to obtain
form closure or 2nd-order immobility in the absence of friction. Moreover, the running times of our
algorithms are largely determined by the size of their outputs. Other papers study the problem
of computing the single optimal grasp according to some quality criterion [3, 5, 6].

A related piece of work is a paper by Nguyen [8]. The algorithm outlined in that paper
computes a subset of the set of all form-closure grasps. This subset consists of all quadruples
of parts of edges—to which we will refer as Nguyen regions—such that any placement of a point
on each of these four parts will put P in form closure. Nguyen’s algorithm runs in O(n*). We
point out later how a minor modification of our algorithm makes it suitable for the computation of
Nguyen regions. The resulting computation also takes O(n?T¢ + K), where K is now the number
of Nguyen regions. The difference in running times between Nguyen’s algorithm and our output-
sensitive algorithm becomes evident when we realize that in most cases the complexity of the set
of all form-closure grasps and the set of Nguyen regions remains well below the obvious upper
bound of O(n?). When the set of solutions is small, our algorithm runs in almost-quadratic time
while Nguyen’s algorithm still takes O(n?) time.

A related topic that received considerable attention is the computation of all modular form-
closure and 2nd-order-immobility grasps. In the modular setting, the placement of the fingers is
restricted to a regular orthogonal grid of holes. Brost and Goldberg [2] gave an algorithm for
computing all form-closure grasps with three point fingers that are placed at grid holes and a
fourth finger that is placed on a horizontal or vertical line through these holes. Their algorithm
for this modular setting runs in O(n*d®) time, where d is the diameter of the part in grid units.
Other results on the computation of modular grasps are reported in [9, 17, 18, 19, 20, 21, 22].

The key feature of our approach to solving the problem of computing all 2nd-order-immobility
and form-closure grasps is that we first identify all triples or quadruples of edges that induce at
least one 2nd-order-immobility or form-closure grasp. (Note that trying all triples and quadruples
would inevitably lead to Q(n?) and Q(n?*) algorithms.) We transform the problem of identifying
all such triples and quadruples into a number of geometric searching problems. These problems
are then solved efficiently by applying data structures [1] from the field of computational geometry.
For each of the reported triples or quadruples we can compute the (non-empty) set of induced
2nd-order-immobility grasps and form-closure grasps in constant time.

Overmars et al. [9] (see also [21]) proposed to extend the set of contacts for holding parts with
line contacts (or walls), and studied the computation of form-closure grasps involving one line and
two points in a modular setting. We extend our results for four point contacts to the case of one
line and two points, obtaining an O(n? log’n + K ) algorithm, where K is again the output size.
The value of K is trivially bounded by O(n?), but is smaller in most practical cases.

This paper is organized as follows. Section 2 discusses the notions of form closure and 2nd-
order immobility. In Section 3, we use the properties of form-closure grasps to compute all such
grasps with four, three, and two point fingers. In Section 4, we use the properties of 2nd-order-
immobility grasps and the results from Section 3 to tackle the problem of computing all 2nd-order-
immobility grasps with three and two point fingers. Section 5 extends the results from Section 3
to form-closure grasps with a line and to point fingers. Section 6 concludes the paper.



2 Analysis of grasps

We are given a polygonal part P and a set of points (and lines), and we want to determine
all placements of these points (and lines) in contact with the boundary of P such that these
frictionless contacts achieve form closure or 2nd-order immobility. Analysis of these placements—
or grasps—can be performed in several ways. An intuitive method for form-closure analysis [13]
considers grasps in the two-dimensional space of the part itself. Its graphical nature will allow
us to translate the problem of finding all form-closure grasps into a geometric searching problem.
A similar translation can also be made for 2nd-order-immobility grasps. Before we outline the
graphical method for point contacts and its extension to line contacts, we first introduce the
notation used throughout the paper.

2.1 Definitions

We define n to be the number of edges (or vertices) of the polygon P. Recall that the point
fingers must be placed at edge interiors or endpoints that are concave vertices of P. For the sake
of simplicity, we treat concave vertices as part of their incident edges. Convex vertices do not
belong to their incident edges. As a result, edges are closed at endpoints that are concave vertices
of P and open at endpoints that are convex vertices of P. Let a be a point on an edge e of P.
We denote by l(a) be the directed line through a, perpendicular to e, and directed towards the
interior of P. The half-line [*(a) is the part of [(a) extending towards the interior of P from (but
not including) a; [~ (a) is the other (closed) part of I(a). For an edge e, we define slab(e) to be
the slab directed towards the interior of P defined by the union of all lines I(a) with a on e. Note
that the boundaries of slab(e) may or may not belong to slab(e), depending on the types of the
endpoints of e. The half-slab slab*(e) is the part of slab(e) extending towards the interior of P
from (but not including) e, or in other words the union of all I*(a), with a on e.

A set of (direction) vectors vy, ..., v positively spans R? if any vector v € R? can be written
as v = X, a;v;, where all a; are non-negative scalars. (Note that k should be at least 3.)

We define T (P) to be the set of all triples (e1, ez, e3) of edges of P with the property that the
directions of slab(e;), slab(ez), and slab(es) positively span R?. The set 7 (P) consists of two
disjoint subsets To(P) and T1(P): To(P) = {(e1, ez, e3) € T(P)|slab(es) N slab(ez) N slab(es) = 0}
and 71 (P) = {(e1,e2,e3) € T(P)|slab(es) N slab(eg) N slab(es) # 0}. Finally, we let 7,7 (P) =
{(e1,e2,€3) € T(P)|slab* (e;) N slab(eg) N slab(es) # 0}.

2.2 Form closure and 2nd-order immobility

Our objective is to constrain all infinitesimal (and thus also finite) motions of the polygonal part
P by a collection of fingers. Form closure and 2nd-order immobility are different conditions that
both guarantee that no motion of the part is possible.

We examine what infinitesimal motions are ruled out by a point finger—or point contact—at
a point a on an edge e of P. Forces and torques applied to P will make it translate or rotate.
We confine ourselves to rotations, with the understanding that a translation can be regarded as a
rotation about a point at infinity. In this manner, an infinitesimal motion of P can be represented
by a point in the plane and a sign, being the center-of-rotation and the direction of the rotation
respectively. A negative (or clockwise) rotation about a point in the half-plane left of the directed
line I(a) causes the point finger at a to enter P. Hence, such a motion is impossible. A positive
(or counterclockwise) rotation about the same point is still possible as it will cause the part to
move away from the finger. Similarly, we can show that the finger at a excludes positive rotations
about points in the right half-plane, but still allows for negative rotations about these points. The
signs in Figure 1a indicate the types of rotations that are possible about points in both half-planes
despite the presence of a point contact at a. The constraint imposed in the particular case in
which a is a concave vertex is easily understood by realizing that a lies on both incident edges e
and ¢'. The resulting constraint combines the constraints imposed by a being on e and by a being
on €', leading to half-wedges of allowed rotation centers (see Figure 1b). In our case of a polygonal



Figure 1: Motions allowed by (a) a point finger at an interior point a of an edge e, (b) a point
finger at a concave vertex a with incident edges e and €, and (c) a line contact along a convex-hull
edge aad'.

part P and point contacts, the difference between form closure and 2nd-order immobility lies in
their treatment of the line I(a) itself.

Form-closure analysis conservatively assumes that negative as well as positive rotations are
possible about all points on the directed line [(a). In other words, the line I(a) belongs to both
half-planes of allowed rotation centers. Each contact induces a closed half-plane of assumed
possible centers of negative rotations and a closed half-plane of assumed possible centers of positive
rotations. A part is in form closure if all motions are excluded by the constraints imposed by the
contacts placed along the boundary of P. As a result, we must intersect the closed half-planes
of possible centers of positive rotations and the closed half-planes of possible centers of negative
rotations. If both intersections are empty then the part is in form closure: no motion is possible.
Four point contacts are necessary and in almost all cases—including polygons—also sufficient [4]
to put a part in form closure. We consider in Section 3 the computation of all form closure grasps
with four point fingers, with three point fingers, in which case one finger must be at a concave
vertex, and with two fingers, both at concave vertices.

The more careful 2nd-order-immobility analysis takes into account the curvature of the part
boundary at the point contact. It shows that a negative or positive rotation about a point on
the upper part I*(a) of I(a) causes the point contact to penetrate P, whereas a similar rotation
about a point on the lower part I~ (a) causes the point to move away from or slide along P. In
conclusion, only the lower part [~ (a) belongs to both half-planes of allowed rotations. The subtle
difference with form-closure analysis has important implications. Consider three point contacts
a, o', and a” that are placed such that the lines I(a), I(a’), and I(a”) intersect in a single point
p and their directions positively span R?. The point fingers do not put P in form closure since
the corresponding analysis says that positive and negative rotations remain possible about p. The
2nd-order-immobility analysis learns that this motion becomes impossible if it is excluded by at
least one of the contacts a, a’, and @', or, in other words, if p lies on at least one of I (a), IT(a'),
and [*(a"). Hence, the three points achieve 2nd-order immobility. When the lines [(a), I(a"), and
1(a") do not intersect in a single point, the part P can never be 2nd-order immobilized. Lemma
1 summarizes the conclusion of this paragraph.

Lemma 1 Three points a, o', a" achieve 2nd-order immoblity of a part if (i) the directions of
I(a), I(a"), and I(a") positively span R?, and (ii) I*(a), I(a'), and I(a"), or l(a), I*(a'), and I(a"),
or l(a), I(a'), and I (a") intersect in a single point.

Observe that the set 7, (P) defined above consists of all triples of edges such that there exists
at least one placement of point fingers on these edges that achieves 2nd-order immobility. We
consider in Section 4 the computation of all 2nd-order-immobility grasps with three point fingers,
and with two points fingers of which one must be at a concave vertex.

Let us finally consider grasps with lines. Although a line A tangent to P can touch either a
vertex or an edge of the convex hull of P, we shall concentrate on the latter case only. (See [22]



for results on grasps involving a line touching a convex-hull vertex.) Let h be in contact with a
convex-hull edge e with endpoints a and a’, and I(a) and I(a’) be the directed lines perpendicular
to e and through a and a' respectively. The resulting constraint only allows for positive rotations
about points in the half-plane left of I(a) and for negative rotations about points in the half-plane
right of I(a’) (see Figure 1c).

Wentink [22] (see also [21]) showed that any polygonal part can be put in form closure with
one line and two point fingers. We will extend the results from Section 3 to the computation of
all form-closure grasps with one line and two points. The fact that the line is placed along an
edge of the convex hull of P allows us to simplify the form-closure condition for a grasp with one
line contact and two point contacts as given by Lemma 2 [22]. Note that since e is an edge of the
convex hull, both e and slab(e) are open.

Lemma 2 A part P is in form closure with point contacts at a and a' and a line contact along a
convex-hull edge e of P if and only if (i) the directions of l(a), l(a'), and slab(e) positively span
R?, and (ii) l(a) NI(a") C slab(e).

3 Form closure with point fingers

In this section we focus on the computation of all form-closure grasps with point fingers. Let ey,
e, €3, and e4 be edges of P. We define F(e1,es,€e3,e4) to be the set of all placements of point
contacts a; € e1, a € es, az € es, and a4 € e4 that put P in form closure. We denote by Q(P) the
set of all quadruples (e, e2, €3, e4) for which F(e1, ez, €3,e4) # . Our solution to the problem of
computing all form-closure grasps proceeds in two steps: we first compute the set Q(P), and then
we compute for each (e1,es,e3,e4) € Q(P) the set F(ey,ea,e3,e4). Section 3.1 shows that each
set F(e1, e2, €3, e4) has constant complexity and can be computed in constant time. We will also
see that the sets F(eq, ez, es,e4) implicitly give the form-closure grasps involving fewer than four
fingers. Section 3.2 deals with the output-sensitive computation of Q(P) in O(n?t¢ + K) time,
where K is the size of the solution and e is an arbitrarily small constant. Using the results from
Section 3.1, the bounds for the computation and size of Q(P) immediately carry over to the set
of all form-closure grasps with at most four fingers.

3.1 Grasps induced by one edge quadruple

Let us assume that we are given a quadruple of edges (e1, e2, €3, e4) such that F(e1, ez, e3,e4) # 0.
We can characterize the placement of one point contact along an edge e; by a value ¢; in the unit
interval, saying that the contact is at a distance «;-|e;| from a designated endpoint of e;. (Note that
the endpoints may or may not belong to the interval.) A placement of four point contacts along
e1,-...,eq4 can thus be described by quadruple (a1, as, @z, a4) in the four-dimensional unit cube.
We want to subdivide this cube of grasp representations into cells of form-closure grasps and cells
of non-form-closure grasps. The form-closure grasps are separated from non-form-closure grasps
by grasps that correspond to structural changes in the arrangement of the contact normals. We
refer to these as critical grasps. A grasp is critical if (i) the normals at three of the point contacts
intersect in a point or (ii) two normals at two of the points contacts have opposite directions and
share a single supporting line. See Figures 2 and 3 for examples of both critical grasps.

Consider three edges e, ez, and es and the representation by the unit cube of placements
of point contacts on these edges. For every placement of contacts on e; and e, there is at most
one placement on es such that the normals at these contacts intersect in a single point. The
representations (a1, as,asz) of all such placements of contacts on e, e2, and ez turn out to satisfy
a single linear equation. Hence, these representations define a two-dimensional planar face in
(0,1)%. Moreover, the representations of all placements of contacts on e, e, e3, and e4 with the
property that the normals at the contacts on ey, ey, and e3 intersect in a point define a three-
dimensional planar face in the four-dimensional unit cube of all placements on ey, e, e3, and e4.
Note that there are four triples of edges and thus four faces.
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Figure 2: A small shift of the point contact az on e3 transforms a form-closure grasp into a
non-form-closure grasp.
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Figure 3: A small shift of the point contact as on ey reverses the sign of the composite constraint
imposed by a; and a2, and may transform a form-closure grasp into a non-form-closure grasp.

Consider two parallel edges e; and ez with opposite normal directions and the representation
by the unit square of placements of point contacts on these edges. For every placement of a
contact on e; there is at most one placement on e, such that the normals at these contacts share
the same supporting line. The representations (a1, as) of all such placements of contacts on e;
and es define a line segment in the unit square. Again, we obtain a three-dimensional planar face
in the four-dimensional unit cube when we incorporate the contacts on ez, and e4. The number
of faces of this type is at most two, since three (of four) contacts on parallel edges will never yield
a form closure grasp.

The supporting planes of the (at most six) planar faces subdivide the four-dimensional unit
cube into a constant number of convex cells that entirely consist of either form-closure grasps or
non-form-closure grasps; each cell has constant complexity. As a result, the union of the form-
closure cells—and thus F(e1, €2, e3, e4)—has constant complexity. To report the form-closure cells,
we simply enumerate all cells and then select those that consist of form-closure grasps by checking
an arbitrary point in the cell. The entire computation clearly takes constant time and outputs a
representation of F(ey, e, e3,€4).

In certain cases, two of the edges in a quadruple (e, e2, e3,€4) meet at a single concave vertex
a. A two-dimensional facet of the four-dimensional unit cube representing F(eq,e2,€3,€e4) then
corresponds to the placement of two different fingers at the same vertex a. Since it is useless to
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Figure 4: Turning a grasp allowing for negative and positive rotations about a single point p only
into a grasp allowing for positive rotations about points in an arbitrarily small triangular region
and excluding all negative rotations.

place two fingers at exactly the same location, such a placement can be viewed as a grasp with
three fingers. Likewise, we can find the grasps involving two fingers at concave vertices at the
corners of specific four-dimensional unit cubes. It is easy to see that every grasp with two or three
fingers can be regarded as a particular grasp with four fingers. We conclude that the union of all
sets F(e1, ea,e3,eq4) does not only contain all four-finger grasps of P but also grasps with two and
three fingers.

3.2 Computing all form-closure grasps

We use the results from the previous section to obtain a O(n?*¢ 4+ K) bound for computing all
form-closure grasps for P, where K is the complexity of the solution. Besides all form closure
grasps we can also compute all Nguyen regions in time O(n?*¢ 4+ K), where K is the number of
such regions. The key observation is that an edge quadruple (e, ez, €3, e4) defines Nguyen regions
if and only if F(e1,e2,e3,e4) Z 0. As a consequence, we can first compute Q(P) and then apply
the ideas of Nguyen [8] (for finding the Nguyen regions defined by a single edge quadruple) to all
quadruples in Q(P). The latter computation takes constant time per quadruple, leading to the
quoted overall bound. This bound is a considerable improvement over the (n*) bound by Nguyen.

We turn our attention to the computation of Q(P). A necessary condition for a quadruple
(e1,e2,e3,€4) to satisfy F(eq,ea,e3,e4) # B—and thus be in Q(P)—is that the contact normals
(and slabs) to three of the edges must positively span R?. Without loss of generality we assume
that eq, e2, and e3 are these edges, so (e1,e2,€3) € T(P). We know that either (eq, es,e3) € To(P)
or (e1,ea,e3) € T1(P); we treat both cases separately, in reverse order.

Consider the case where (e1,es,e3) € Ti(P) and let R be the non-empty intersection of
slab(ey),slab(ez), and slab(eg). Every point p € R corresponds to a placement of point con-
tacts at a1 € e1, a2 € e2, and a3 € ez with [(a1) NIl(a2) Nl(a3) = p, excluding all motions except
positive and negative rotations about p. Now choose p such that it is in the interior of R (see
Figure 4a). We can now slightly shift each of the points a;, a2, and a3 in the appropriate direction
along the respective edges to create an arbitrarily small triangular region around p of centers of
positive rotations and exclude all negative rotations (see Figure 4b). Likewise, we can create an
arbitrarily small triangle of centers of negative rotations and exclude all positive rotations.

Now let e4 be an edge of P. Choose a point a4 on e4 such that I(as) does not contain p. If p
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Figure 5: Two parallelograms intersect inside a slab if and only if (a) their left edges overlap, or
(b) their right edges overlap, or (c) their top edges intersect.

lies in the interior of the half-plane left of I(a4), we move a1, a2, and a3 in the manner described
above to establish that the contacts at these points only allow for negative rotations about points
in a small triangle that lies entirely inside the interior of the half-plane left of I(a4). Incorporation
of the constraint imposed by a4, however, will rule out all these rotations: P is in form closure.
We can act similarly when p lies to the right of I(as). As a result, the quadruple (e1,e2,es,e4)
will be in Q(P) regardless of the choice of e;. Hence, our aim is simply to report all triples
(e1,e2,e3) € T1(P), as each such triple contributes n quadruples to Q(P).

We fix one edge e and solve the problem of finding all combinations of two edges e; and es
such that (e, e1,es) € T1(P). To simplify the discussion, we assume without loss of generality that
slab(e) is vertical and directed upward. We call a slab red if it crosses slab(e) from left to right and
blue if it crosses slab(e) from right to left. Notice that slab(e;) and slab(es) must have different
colors. We query with each red slab to find the appropriately-oriented blue slabs intersecting it
inside slab(e).

Query A Given a slab v with direction o, a set S of n slabs, and a query slab q with direction
B, report all s € S such that «, (3, and the direction of s positively span R2 and vNsNq# 0.

The intersection of a slab with slab(e) is a parallelogram with two vertical edges. A parallel-
ogram inherits the color and direction of its defining slab. Certain parts of the boundary of the
parallelogram may not belong to the parallelogram. Regardless of this fact, we have that a red
parallelogram intersects a blue parallelogram if and only if (i) its left edge overlaps the left edge
of the blue parallelogram, (ii) its right edge overlaps the right edge of the blue parallelogram, or
(iii) the interior of its top edge intersects the interior of the top edge of the blue parallelogram.
(Observe that a pair of vertical edges must overlap if the top edges intersect at their endpoints.)
We first compute all pairs satisfying condition (i). Notice that all left edges are intervals on a single
line. Each interval inherits the associated direction from its defining parallelogram. We store the
blue intervals such that we can report for each query red interval all appropriately-oriented over-
lapping blue intervals. This can be accomplished by a two-level tree, of which the first-level range
tree selects the intervals with the appropriate associated orientations and the second-level interval
tree selects the intervals that overlap the query interval. (See [1] for details on all tree structures
used in this paper.) The tree can be constructed in O(nlog®n) time and offers a query time of
O(log® n + k), where k is the number of answers. Since we query with O(n) red intervals, we can
enumerate all pairs satisfying condition (i) (and the equivalent condition (ii)) in O(nlog®n + k')
time, where k' is the number of reported pairs.

To find all pairs of parallelograms satisfying condition (iii), we must report all pairs of inter-
secting differently-colored top edges. All (blue and red) left endpoints of the top edges lie on a
single line. We represent each top edge by a point in the plane: the z-coordinate and y-coordinate
being the height of its left and right endpoint respectively. A query red edge represented by (z,, y,)
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Figure 6: (a) Three slabs slab(e;), slab(eg), and slab(es) bounding a triangular region T and a
fourth slab slab(e; ) leaving slab(e; ) Nslab(eg) to its left; (b) two slabs with appropriate directions
leaving the query parallelogram defined by two slabs on opposite sides.

intersects a blue edge (zp,vp) if 2, > zp Ay, < yp Or T, < Tp AY, > yp. Thus our aim is to solve—
for a query point (z4,y,)—the orthogonal range queries for points (z,y) with © > 24 Ay < y, or
T <TgANY > yq-

We store the points representing the blue edges in a two-level tree, in which the first-level range
tree serves to select the edges originating from parallelograms with appropriate orientations and
the second-level two-dimensional range tree is used to perform the above orthogonal range queries
(and thus select the intersecting edges). This tree is constructed in time O(n log®n) and the O(n)
queries take O(n log®n + k) time, where k is the number of reported pairs.

To find all triples of 7;(P) we must solve Query A for all edges e of P. This amounts to a
total of O(n?log?n + K) time for finding all K triples.

We must still consider the case where (e1,e2,e3) € To(P). Now the slabs slab(e;), slab(ez),
and slab(es) bound a triangle T' (which may degenerate into a point) that is either to the left
or to the right of these slabs. Let us assume T lies to the right of the slabs so that T is defined
by the right slab boundaries. The only motions that remain possible when we place contacts at
some a; € e1, az € ey, and ag € e3 are negative rotations about points in the triangle bounded
by I(a1), l(az2), and I(a3). The size of this triangle, which is congruent with 7', is minimized when
a1, az, and as are placed as close as possible to the (right) endpoints of e1, e, and ez. In that
case the region of centers of negative rotations becomes 7. Notice that an edge e4 of P satisfies
(e1,e2,e3,e4) € Q(P) if and only if there exists a point a4 € e4 such that the contact at a4 excludes
the negative rotations about points in 7T'.

Let e4 be an edge of P such that (e1,e2,e3,e4) € Q(P). Since there is a point a4 € e4 with the
properties mentioned in the previous paragraph, no part of T lies to the right of slab(e; ). The slab
slab(e;) then either intersects one of the parallelograms slab(e;) N slab(eg), slab(e;) N slab(es),
and slab(ez) N slab(es), or has all these parallelograms to its left. It turns out that in the first
case slab(e,) positively spans R? together with the slabs defining the intersected parallelogram.
As a result, this intersecting triple—along with all the quadruples it contributes to Q(P)—was
already reported in the case handled earlier. Hence, we may assume that slab(e;) leaves all
three parallelograms to its left. This implies that slab(e;) either leaves slab(e;) N slab(eg) to
its left and positively spans R? with slab(e;) and slab(ez), or leaves slab(e;) N slab(es) to its
left and positively spans R? with slab(e;) and slab(es), or leaves slab(eg) N slab(es) to its left
and positively spans R? with slab(es) and slab(es). Each of these cases can be handled in a
similar way. Let us assume that slab(e;) leaves the parallelogram slab(e;) N slab(eg) to its left
and positively spans R? with slab(e;) and slab(ez) (see Figure 6a). From the assumption that



the right boundaries of slab(e; ), slab(ez), and slab(es) bound a triangle T' it follows that slab(eg)
leaves the parallelogram slab(e;) N slab(ez) to its right and positively spans R? with slab(e;)
and slab(ez). Hence, the slabs slab(es) and slab(e;) leave the parallelogram slab(e;) N slab(eg)
on opposite sides and both positively span R? with slab(e;) and slab(eg). Our approach is to
query with all O(n?) parallelograms—defined by the intersection of two slabs—for all pairs of
appropriately-oriented pairs of slabs that leave the parallelogram on opposite sides (see Figure
6b). If we associate with each parallelogram the directions of both defining slabs we obtain the
following query.

Query B Given a set S of n slabs and a query parallelogram q with associated directions a and
B, report all pairs (s,s') € S% such that a, 3, and the direction of s as well as a, 3, and the
direction of s' positively span R? and q lies to the left of s and to the right of s'.

We can use a four-level cutting tree to store the slabs for efficient reporting of all slabs that
leave a query parallelogram ¢ to a given side. Each level selects the slabs that leave one specific
vertex of ¢ to the given side. This data structure offers O(polylogn + k) query time and can be
computed in O(n?t€) time, for an arbitrarily small positive constant e. We add a range-tree level
to restrict the search to slabs within the appropriate range of orientations. The resulting five-level
tree has the same asymptotic query and preprocessing time as the original tree.

It remains to show how we can use the five-level tree to report pairs of appropriately-oriented
slabs that leave ¢ on opposite sides. We first check for emptiness of the set of slabs that leave ¢
to the left and for emptiness of the set of slabs that leave g to the right. We can use the five-
level tree to perform this check (by equipping the nodes with cardinalities of the stored sets) in
O(polylogn) time. If one of the sets turns out to be empty then the number of pairs is zero and we
have detected so in O(polylogn) time. If both sets turn out to be non-empty, we enumerate the
sets in O(polylogn+k) and O(polylog n+ k') time, where k and k' are the numbers of slabs leaving
g to the left and right respectively. The k&' solution pairs are now easily reported in additional
O(kkK') time. Because k, k' # 0, the time for reporting the pairs dominates the time for the two
separate sets of slabs. As a result, we conclude that the pairs are reported in O(polylogn + k")
time, where k" is the number of pairs. Querying with all O(n?) parallelograms amounts to an
O(n**¢ + K) time bound for solving Query B, where K is the number of answers.

Combining the O(n?*¢ + K) and O(n?log® n + K) bounds for computing the subsets of Q(P)
with the results from Section 3.1, we obtain Theorem 3.

Theorem 3 The set of all form-closure grasps with at most four point contacts for a polygon can
be computed in time O(n?t¢ + K), where K is the complexity of the solution.

We recall that the bound of Theorem 3 also applies to the computation of Nguyen regions. The
straightforward bounds on K are (1) and O(n*). Figure 7 shows that the O(n*) upper bound is
tight. The polygonal part consists of four convex chains of approximately (n/4) — 1 edges each,
connected by two long horizontal edges and two vertical edges. Consider the line [ bisecting the
two long edges. The chains are constructed such the slabs of any two edges left/right of | intersect
strictly left/right of I. As a result, any placement of four contacts on different chains will provide
form closure. Since the number of quadruples consisting of one edge from each of the chains is
Q(n*), we find that the set of form-closure grasps for this polygon has complexity Q(n*), showing
that the upper bound of O(n*) on K is tight.

Theorem 4 reports two non-trivial bounds on the asymptotic complexity of the set of all form
closure grasps. The Q(n?) lower bound for rectilinear polygons shows that the algorithm outlined
in this section is almost optimal for rectilinear polygons.

Theorem 4 The complexity K of the set of all form-closure grasps with four point contacts for
a polygon P is

(i) Q(n) if P is convex and has no parallel edges,
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Figure 7: An n-gon with a set of form-closure grasps of complexity Q(n*).

I(as)

l(al) ay

\J

(P

\/ s

Figure 8: Point contacts at a and a' together with the point contacts at a; and ay put P in form
closure.

(i)

Q(n?) if P is rectilinear.

Proof. (i) The maximal inscribed circle of P touches OP in three points, lying on three edges

e1, ez, and e3; the slabs slab(e;), slab(ez), and slab(es) have a common intersection and
their directions positively span R2. By the considerations above, the edges e;, €2, and e3
contribute ©(n) quadruples to Q(P).

Assume that the n/2 horizontal and the n/2 vertical edges of P are parallel to the respective
coordinate axes. Moreover, we assume without loss of generality that the normals to at least
n/4 of the edges are directed to the right and that the normals to at least n/4 of the edges
are directed downward. We show that for any of the (n?) pairs consisting of an edge e;
with a normal directed to the right and an edge ez with a normal directed downward, there
exist edges e and e’ such that F(ej,es,e,e’) # 0. Let a; and as be arbitrary points on e;
and es. A horizontal line [ below /(a1 ) intersecting P must always intersect a vertical edge e
with a normal directed to the left. If this intersection occurs at an endpoint of e, we slightly
move [ such that it intersects the interior of e. Let a be the intersection of [ and e (see Figure
8). Similarly, we let e’ be the edge with a normal directed upward intersected by a vertical
line 1" right of l(az2). Let a' be the intersection of I’ and e’. It is easily verified that point

contacts at ai, as, a, and o’ put P in form closure, thus F(e1,es,e,¢e') # 0.
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4 2nd-order immobility with point fingers

In the spirit of the previous section, we define Z(e1,ea,e3) to be the set of all placements of
point contacts a1, az, az on the edges e, ez, e3 respectively that achieve 2nd-order immobility
of the part. We recall from Section 2 that 7, (P) is exactly the set of edge triples (e, es,e3) for
which Z(ey,es,e3) # 0. Section 4.1 deals with the computation of the constant-complexity sets
Z(eq, e2,e3), which implicitly also give all 2nd-order-immobility grasps involving only two fingers.
Section 4.2 shows that 7,7 (P) can be found by (repeatedly) solving a slightly modified version of
Query A from Subsection 3.2. This approach leads to an O(n?log®n + K) algorithm for finding
all 2nd-order-immobility grasps with at most three point fingers.

4.1 Grasps induced by one edge triple

At least one permutation of a triple (e1,e2,e3) with Z(eq,e2,e3) # 0 occurs in the set 7,7 (P).
Assume without loss of generality that (e1,e2,e3) € 7,7 (P). The definition of 7;(P) says that
slab™ (e;) N slab(ez) N slab(eg) # 0. This non-empty intersection, which is bounded by at most
seven line segments, consists of all intersections p of lines [7(a1), I(az), and I(a3) with a; € ey,
as € e, and az € ez and represents as such the set Z(ej, ez, e3). (The point p represents the
placement of point fingers obtained by projecting p perpendicularly onto e, e2, and es.) This
representation is clearly computable in constant time.

In the case that two of the three edges of a triple (e1,e2,e3) meet at a concave vertex, one
vertex of the representation of Z(eq,es, e3) may correspond to a placement in which two of the
fingers coincide at that concave part vertex. Since it is again useless to place two fingers at the
same location, we can simply omit one finger, obtaining a two-finger 2nd-order-immobility grasp.

4.2 Computing all 2nd-order-immobility grasps

The preceding subsection shows that the time required to compute all 2nd-order-immobility grasps
with at most three fingers equals (asymptotically) the time to compute the set 7,7 (P). We
fix an edge e and solve the problem of finding all combinations of edges e; and ey such that
(e,e1,e3) € T,H(P), or, in other words, such that slabt (e) N slab(e;) N slab(ez) # 0. We simplify
the discussion by assuming that the half-slab slab™ (e) is vertical and directed upward. A slab is
red if it crosses slab™ (e) from left to right and blue if it crosses slab™ (e) in the opposite direction.

The slabs e; and ex must have different colors. We obtain the following modified version of Query
A.

Query C Given a half-slab vt with direction a, a set S of n slabs, and a query slab q with
direction 3, report all s € S such that o, 3, and the direction of s positively span R? and
vFNsng#0.

The (red or blue) intersection of a (red or blue) slab with slab™ (e) is now (the upper part of) a
parallelogram with two vertical edges clipped by a horizontal line. It has one or two vertical edges,
at most one horizontal edge, and one or two non-vertical edges. A red shape intersects a blue shape
if (i) their left vertical edges overlap, (ii) their right vertical edges overlap, (iii) their horizontal
edges overlap, or (iv) the interiors of their top edges intersect. Cases (i)-(iii) are similar to cases
(i) and (ii) in Section 3.2, and the only difference between the present case (iv) and case (iii) in
Section 3.2 is that a top edge can now have one of its endpoints on the horizontal boundary of the
half-slab slab*(e). We distinguish (a) edges that connect the left and right vertical boundary, (b)
edges that connect the left vertical and the horizontal boundary, and (c) edges that connect the
horizontal and right vertical boundary of slab*(e). We store the blue edges in three separate data
structures according to their type, and query with the red edges. As an example, assume we are
given a red edge with its left endpoint at height z,. on the left boundary and its right endpoint at a
horizontal coordinate z, on the horizontal boundary of slab™ (e). We query for blue edges of type
(a) with left endpoints at heights x satisfying x < z,, blue edges of type (b) with left endpoints
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Figure 9: An n-gon for which the set of 2nd-order-immobility grasps with three fingers and the
set of form-closure grasps with one line and two points has complexity (n?3).

at heights = and right endpoints with coodinates z satisfying ¢ > z, Az < z, or x < T, A2 > 2z,
and blue edges of type (c) with left endpoints with coordinates z satisfying z < z,. All subqueries
are orthogonal range queries and can thus be solved efficiently by using the range-tree structure
from Section 3.2. Similar arguments apply if the red edge is of one of the other two types. This
leads to the following result.

Theorem 5 The set of all 2nd-order-immobility grasps with at most three point contacts for a
polygon can be computed in time O(n?log® n + K), where K is the complexity of the solution.

The almost regular n-gon P in Figure 9 shows that the upper bound of O(n?®) on K is tight. The
half-slabs slab™ (e) of all edges e contain the center-of-mass m. Assume that e is horizontal, as
in Figure 9. Now, each combination consisting of edges e; and e, from the chains ¢ and ¢’ (both
consisting of approximately n/4 edges) satisfies (e, er,e2) € T, (P). Repeating the argument for
all choices of e yields that the size of 7;"(P) can be Q(n?).

Figure 10 shows a polygon P for which the number of triples in 7;* (P) is constant. It consists
of two long edges e; and ez and a concave chain, which in turn consists of two subchains of
short edges connected by a long edge e.. Every triple in 7;"(P) must include both e; and e,
to meet the requirement that the directions of the slabs positively span R2. The concave chain
is constructed in such a way that the slab slab(e) induced by any of its short edges e does not
intersect slab(e;) N slab(ez). The only remaining triple that may belong to 7,7 (P) is therefore
(el €2, ec)'

5 Form closure with a line and two point fingers

We now return to form closure and consider the problem of computing all grasps with one line
and two point fingers. We shall obtain O(n?log®>n + K) and O((n + K)logn) time algorithms for
arbritrary and rectilinear polygons, where K is the complexity of the output. Let e be an edge of
the convex hull of the part P. We define F,.(e;, e2) to be the set of all placements of point contacts
a; € e; and as € ey that—together with a line along e—put P in form closure. We denote by
T'(P) the set of all triples (e, eq, e2) such that F.(e1,es) # 0. We will again follow the two-step
approach of first computing 7" (P) and then the sets Fe(e1,ez) for all (e,er,e2) € T'(P).

5.1 Grasps of arbitrary polygons

From Lemma 2 we deduce that the problem of computing all pairs of edges (e1,es) such that
(e,e1,ea) € T'(P) is exactly the problem formulated in Query A. We can therefore obtain 7' (P)
in O(n?log®n + K) time, where K = |T"(P)|.
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Figure 10: An n-gon for which the set of 2nd-order-immobility grasps with three fingers and the
set of form-closure grasps with one line and two points has complexity O(1).

Let us now assume that we are given a triple of edges (e, e1, e2) € T'(P). The non-empty region
slab(e) N slab(e;) N slab(eg) consists of all intersections p of lines I(a1) and l(a2) with a1 € e; and
ay € e, inside slab(e) and represents as such the set Fe(e1,e2). (The point p represents the pair
of points (a1, as) obtained by projecting p perpendicularly onto e; and e;.) This representation of
Fe(e1,ez) has constant complexity as it is bounded by at most six lines and is clearly computable
in constant time.

If we apply the ideas of the preceding paragraphs to all edges of the convex hull of P we obtain
Theorem 6.

Theorem 6 The set of all form-closure grasps with one line and at most two point contacts for
a polygon can be computed in time O(n? log?n+ K ), where K is the complexity of the solution.

Figures 9 and 10 show that the trivial upper and lower bounds of O(n?) and Q(1) on K are tight.
In the first case, we now use the edge e for the line contact. In the second case, the edge contact
can only be placed along the three convex hull edges e, e, and es. The placement of the line
contact along e; (es) dictates that form closure may only be obtained by placing the two points
along e, and e (e1). Form closure with the line contact along es can only be achieved when the
point contacts are placed along e; and es. In conclusion, we find that |7'(P)| = O(1) for the
polygon in Figure 10.

5.2 Grasps of rectilinear polygons

The computation of 7'(P) can be accomplished in O((n + K)logn) time if the polygon P is
rectilinear. We consider placements of the line contact along convex-hull edges that are not parallel
to any of the polygon edges, with the understanding that the placements along the remaining edges
will never yield form closure with two additional points.

Let e be a convex-hull edge with an appropriate orientation and assume that the slab slab(e)
is vertical and directed upward. Our aim is again to report all pairs of edges e; and e such that
slab(e), slab(e;), and slab(ez) positively span R? and such that slab(e) N slab(e;) N slab(ez) # 0.
As our polygon P is rectilinear, we now face four sets of equally-directed slabs. It turns out that
the union of all slabs in each set is again a single slab. A slab is red if it is directed downward and
crossing slab(e) from left to right and blue if it is directed downward and crossing slab(e) from
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Figure 11: (a) Selection of the red slabs that intersect at least one blue slab, and (b) a query with
one of those red slabs to determine all blue slabs that intersect it.

right to left. Notice that all red slabs and all blue slabs are equally-directed. We observe that one
of slab(e;) and slab(ez) must be red and the other one blue in order for slab(e), slab(e;), and
slab(ez) to positively span R2. We solve the following query.

Query D Given a slab v and two sets Sy and S; of O(n) parallel slabs whose unions are again
single slabs, report all pairs (sq, s1) € So X S1 such that v N se N sy # 0.

Querying with all red slabs in a data structure storing the blue slabs would cost at least linear
time in the number of red slabs—and thus result in an algorithm with at least quadratic overall
running time. Instead we choose to query only with the red slabs that intersect at least one blue
slab inside slab(e). Clearly, this approach only pays off if this subset of slabs can be determined
efficiently.

Let [, and [} be lines perpendicular to the red and blue slabs respectively. We store the intervals
defined by the intersections of the red slabs and [, in an interval tree. Note that the union of these
red intervals is again a single interval. The interval tree allows us to report all red intervals that
intersect a query interval in O(logn + k) time, where k is the number of reported answers. The
intersections of the blue slabs and [, are stored in a similar structure. The two data structures
(as well as the similar structures for the remaining two sets of parallel slabs) can be constructed
in O(nlogn) time.

Let o be the union of all blue slabs. Furthermore, denote by ¢ the projection onto I, of
oNslab(e). Querying with 4 in the tree storing the red intervals yields exactly those intervals that
are defined by red slabs intersecting o N slab(e). Because o contains no holes, each reported red
slab must intersect at least one of the blue slabs (see Figure 11a). We find this subset of the red
slabs in O(log n + k) time, where k is the size of the subset. Next, we take each of the selected red
slabs s and query the blue structure with the projection ' into I of s N slab(e) (see Figure 11b).
The reported intervals are exactly those that are defined by blue slabs s’ intersecting s N slab(e).
The queries with all red slabs take O(k logn+k&') time, where k' is now the number of pairs of slabs
intersecting inside slab(e). Using the fact that &' can in the worst case be as small as k, we obtain
that the running time is O(k'logn). Applying the same ideas to all O(n) convex-hull edges leads
to an overall query time of O(nlogn + K logn), where K is the total number of reported answers.
The four necessary data structures can be built in O(nlogn) time. Theorem 7 summarizes the
result.

15



Theorem 7 The set of all form-closure grasps with one line and at most two point contacts for a
rectilinear polygon can be computed in time O((n + K)logn), where K is the complexity of the
solution.

6 Conclusion

We have shown how the problems of computing all form-closure and 2nd-order-immobility grasps
with at most four and three points respectively and the problem of computing all form-closure
grasps with one line and two points can be transformed into efficiently solvable geometric search-
ing problems. The resulting algorithms are the first output-sensitive algorithms to solve these
problems. The running time of the algorithm for form-closure grasps with at most four points is
O(n**¢ + K), where K is the description size of the solution and € is an arbitrarily small constant.
This algorithm is also capable of solving—within the same time bound—Nguyen’s problem of
finding quadruples of parts of edges that allow for independent placement of point contacts [8].
Our result marks a significant improvement of Nguyen’s O(n*) algorithm. In addition, we have
reported an O(n? log® n + K) algorithm for computing the 2nd-order-immobility grasps involving
three or two fingers. Finally, we have extended the form-closure result to grasps with one line and
two point contacts, resulting in O(n?log”n + K) and O((n + K)logn) algorithms for arbitrary
and rectilinear polygons respectively, where K is the size of the output.

In the process of reformulating the problems of computing all grasps into efficiently-solvable
geometric searching problems we seem to rely quite heavily on the fact that the part under con-
sideration is polygonal. An obvious question that arises is whether it is possible to obtain output-
sensitive algorithms for non-polygonal parts as well.

Another open question concerns the extension of our results to three-dimensional (polyhedral)
parts. Intuitively, it seems much harder to obtain output-sensitive algorithms for computing form-
closure grasps, which require up to seven fingers [4], than for computing 2nd-order-immobility
grasps, which may take up to four fingers [14, 15]. In order to translate the problem of computing
three-dimensional form-closure grasps into a geometric searching problem, it would be extremely
useful to have a three-dimensional version of Reuleaux’ graphical method.
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