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Wait-free Algorithms and Solo Executions

◮ Wait-free models in both meanings:
◮ as a progress condition: each process makes progress in a finite

number of steps, whatever the level of concurrence;
◮ as a resiliency condition: the computation has to be valid even

if all processes but one crash.

◮ These wait-free criteria and the fact that slow and crashed
processes are undistinguishable entail that some processes

◮ may have to behave as if they were alone;
◮ do not have access to other processes inputs.
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Shared Memory, Message passing and Solo Executions

◮ If processes share a memory, then at most one of them can be
in that situation for a given execution.

◮ If processes exchange asynchronous messages, then all of
them may have to behave as if they were alone.

What could be computed in intermediate models in which up to d

processes may run solo?
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d -Solo Models

◮ An iterated model generalizing the iterated immediate
snapshot model.

◮ A one-shot communication object for each round.

◮ The accesses to a round object are set-linearizable but the
first set of concurrent accesses can miss each other.

◮ If they do, then this set contains at most d processes.

A spectrum of models that spans from message-passing (d = n) to
shared memory (d = 1).

Computing in the Presence of Concurrent Solo Executions 5 / 22



From the Immediate Snapshot Object. . .

◮ Each process p provides a value vp to the object and retrieves
a set of values (a view).

◮ As with the immediate snapshot object, any ordered partition
(π1, . . . , πx) of the set of the processes accessing the object
describe a valid behavior for the object:

◮ the view of any process belonging to πi is
⋃

j≤i{(p, vp), p ∈ πj}.

Computing in the Presence of Concurrent Solo Executions 6 / 22



From the Immediate Snapshot Object. . .

◮ Each process p provides a value vp to the object and retrieves
a set of values (a view).

◮ As with the immediate snapshot object, any ordered partition
(π1, . . . , πx) of the set of the processes accessing the object
describe a valid behavior for the object:

◮ the view of any process belonging to πi is
⋃

j≤i{(p, vp), p ∈ πj}.

Computing in the Presence of Concurrent Solo Executions 6 / 22



. . . to the COd Communication Object

◮ Additionally, any ordered partition (ρ1, . . . , ρx) of the set of
processes accessing the object describe another authorized
behavior for the object if |ρ1| ≤ d :

◮ if i > 1, then the view of any process belonging to πi is
⋃

j≤i{(p, vp), p ∈ πj};
◮ the view of a process p of ρ1 is {vp}.
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The Colorless Algorithm in the d -solo model

◮ We consider the case of a colorless algorithm:
◮ processes do not use their identities during the computation;
◮ they use the object as a set: during each round a process writes

the last view it retrieved (initially its input value) ignoring
writers identities and multiple occurences of the same view;

◮ they compute their output from their view after R rounds.

◮ It allows us to describe all the possible states of the system
after the execution of R rounds by a subdivided complex
without coloring vertices with process identities.
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The Complex of d -solo executions

◮ The usual behavior of the immediate snapshot object being
still allowed, the usual barycentric subdivision of the (colorless)
input complex represent a part of the possible executions.

◮ At each step of subdivision, we have to consider the additional
behaviors where more than one process retrieves only its own
value.

◮ We have to add the simplices built by inserting a barycenter
and building the cone over the boundary only in simplices of
dimension larger than d ′ ≤ d .
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Task Solvability in the d -Solo Model

◮ A Colorless Task is specified by:
◮ the (colorless) complex of all possible input configurations;
◮ the (colorless) complex of output configurations;
◮ a monotonic carrier map associating each input configuration

to a set of allowed output configurations.

Theorem
A colorless task is solvable by a colorless algorithm in the d-solo
model with n processes if and only if there is a number of rounds
R ≥ 0 and a simplicial map from the R-iterated d-subdivision of
the n− 1 skeleton of the (colorless) input complex to the (colorless)
output complex that is carried by the colorless task carrier map.
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The (d , ǫ)-Approximate Agreement Problem

◮ Generalizing the ǫ-Approximate Agreement that is universal
for the Shared Memory Model

◮ Each process proposes a value from an Euclidian space.

◮ Termination: all correct processes decide in a finite number of
steps.

◮ Validity: all the decided values belong to the convex hull of
the set of proposed values.

◮ Agreement: there is a set S of up to d processes that can
decide any valid value while other processes have to decide
within a distance of ǫ from the convex hull of the values
decided by processes of S .
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Why not a stronger agreement property?

◮ Proposition 1: there is a set S of up to d processes that can
decide any valid value while other processes have to decide
within a distance of ǫ from the barycenter of the values
decided by processes of S

◮ Proposition 2: there is a set S of up to d processes that can
decide any valid value while other processes have to decide
within a distance of ǫ from the barycenter of a (non empty)
subset of the values decided by processes of S
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◮ Proposition 2: there is a set S of up to d processes that can
decide any valid value while other processes have to decide
within a distance of ǫ from the barycenter of a (non empty)
subset of the values decided by processes of S

◮ None of these conditions is verified in all runs after a finite
number of rounds by the colorless algorithm
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(d , ǫ)-Approximate Agreement in the d -Solo Models

◮ For any ǫ, any d and any n, if the volume of the d-faces of
the input complex is bounded, there is a number of round R

such that the colorless algorithm solves the (d , ǫ)-approximate
agreement problem in the d-solo model.

◮ For any ǫ, any d and any n, n > d , if the input complex
contains a large enough regular d-simplex, then the (d ,
ǫ)-approximate agreement problem is impossible to solve in
the (d + 1)-solo model.

Since these conditions are compatible, the hierarchy of the d-solo
models is strict.
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(d , ǫ)-Approximate Agreement is solvable in the d -Solo
Model

◮ Starting from an input complex such that the volume of the
d-faces is upper bounded by V

◮ During each subdivision step, in any d-face, a cone is built
with apex at the barycenter

◮ The volume of the d-faces after the subdivision is then divided
by d + 1

◮ Taking R >
log(V )+log(d!)−d log(ǫ)

log(d+1) , we have V · ( 1
d+1)

R <
ǫ
d

d!

◮ After R subdivisions, the volume of any d-face is then strictly
less than ǫ

d

d!
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(d , ǫ)-Approximate Agreement is solvable in the d -Solo
Model

◮ Considering a d-face σ after R subdivisions, let us consider its
smallest height hdmin

◮ It is the distance between a vertex vd of σ and the
(d − 1)-face of σ with the largest volume V d−1

max

◮ The volume of σ is 1
d
· hdmin · V

d−1
max <

ǫ
d

d!

◮ We then have hdmin < ǫ or V d−1
max <

ǫ
d−1

(d−1)!

◮ In the first case we are done, in the second case we can iterate
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(d , ǫ)-Approximate Agreement is not solvable in the
d + 1-Solo Model

◮ Suppose that the input complex contains a regular simplex of
dimension d whose edge length is strictly larger than

α = 2ǫd
√

2d
d+1

◮ Consider a run in which d + 1 processes start with the vertices
of that simplex as inputs

◮ Suppose that the other processes crash from the beginning
and that our d + 1 run solo forever

◮ These d + 1 processes have no choice but outputing their own
input values

◮ The contradiction comes from the impossibility to find a space
of dimension d − 1 distant of less than ǫ from any vertex of
our simplex
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Relating (d , ǫ)-Approximate Agreement and k-Set
Agreement

◮ A solution to the d-set agreement problem is directly a
solution to the (d , ǫ)-approximate agreement.

◮ It is in general impossible to solve the (d − 1)-approximate
agreement in the d-model enriched with a solution to the
d-set agreement.

The weakened memory provided by the d-solo models may give
insights on the “weakest memory requirements” needed to solve
the k-set agreement.
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◮ We initially thought that a stronger agreement property was
possible to fulfill with the colorless algorithm. Considering
colored algorithms and/or different termination predicates
may be interesting to see what becomes possible.

◮ The simplicial approximation theorem from which several
results are derived in the shared memory model does not apply
to the general d-solo model (the diameter of simplices does
not tend to zero).

◮ We would like to have results on decidability, since tasks
solvable in message-passing are decidable while those solvable
in shared memory are not. Where is the boundary?
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◮ The allowed behaviors for the COd object could be changed
to authorize partitioning (groups running in isolation) or to
evolve during the execution (eventual properties).

◮ We could investigate further how to enrich the d-solo model
with a form of eventual leader allowing d-set agreement to be
solved.

Computing in the Presence of Concurrent Solo Executions 21 / 22



Thank you for your attention!
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