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1. Introduction. By a famous theorem of Siegel [S], the number of
integral points on an elliptic curve E over an algebraic number field K
is finite. A conjecture of Lang and Demyanenko (see [L3], p. 140) states
that, for a quasiminimal model of E over K, this number is bounded by
a constant depending only on the rank of E over K and on K (see also
[HSi], [Zi4]). This conjecture was proved by Silverman [Si1] for elliptic curves
with integral modular invariant j over K and by Hindry and Silverman
[HSi] for algebraic function fields K. On the other hand, beginning with
Baker [B], effective bounds for the size of the coefficients of integral points
on E have been found by various authors (see [L4]). The most recent bound
was established by W. Schmidt [Sch, Th. 2]. However, the bounds are rather
large and therefore can be used only for solving some particular equations
(see [TdW1], [St]) or for treating a special model of elliptic curves, namely
Thue curves of degree 3 (see [GSch]). The Siegel–Baker method (see [L3]) for
the calculation of integer points on elliptic curves over K = Q requires some
detailed information about certain quartic number fields. Computing these
fields often represents a hard problem and, moreover, this approach does
not seem to be appropriate. That is why in general all the results mentioned
above cannot be used for the actual calculation of all integral points on an
elliptic curve E over Q.

However, there is another method suggested by Lang [L1], [L3] and fur-
ther developed by Zagier [Za]. We shall work out the Lang–Zagier method
and turn it into an algorithm for determining all integral points on elliptic
curves E over Q using elliptic logarithms. The algorithm requires the know-
ledge of a basis of the Mordell–Weil group E(Q) and of an explicit lower
bound for linear forms in elliptic logarithms. Compared to the Siegel–Baker
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method, it thus appears to be more natural and suitable for the problem un-
der consideration. The examples given at the end of the paper show that our
algorithm is also very efficient: we were able to compute all integer points
on certain elliptic curves over Q of ranks up to at least six.

As mentioned above, our method requires the knowledge of a basis of
the Mordell–Weil group E(Q). Actually, this is the only disadvantage of the
Lang–Zagier method. However, an algorithm providing such a basis was re-
cently developed by the first and the last author [GZ]. It is based on ideas
of Manin [M] and depends on the validity of the conjecture of Birch and
Swinnerton-Dyer (see [F], [Zi3], for example). We are planning to make it
independent of this conjecture. The second component is an explicit lower
bound for linear forms in elliptic logarithms of algebraic numbers. Again
it was only recently that S. David [D] established such an explicit bound,
thus proving another conjecture of Lang. This meant a breakthrough in our
endeavor concerning integral points. Analogous estimates for linear forms
in complex and p-adic logarithms had been successfully used for the com-
plete resolution of Thue, Thue–Mahler and index form equations (see [PS],
[TdW1], [TdW2], [GPP]). The reduction procedure, based on numerical dio-
phantine approximation techniques, is the third important component of our
method. We shall use here a variant given by de Weger [dW].

2. Heights. The elliptic curve E over Q is assumed to be given in short
Weierstrass normal form

(1) E : y2 = x3 + ax+ b =: p(x) (a, b ∈ Z).

The discriminant of E over Q is

∆ = 4a3 + 27b2 6= 0

and the modular invariant

j = 123 4a3

∆
.

By the Mordell–Weil Theorem, the group E(Q) is finitely generated, hence
is the product

E(Q) ∼= Etors(Q)× Zr
of the finite torsion group Etors(Q) and an infinite part isomorphic to r
copies of the rational integers Z, where r denotes the rank of E over Q.

Let us recall the notion of height on E(Q). For a rational point

P = (ξ/ζ2, η/ζ3) ∈ E(Q),

where ξ, η, ζ ∈ Z and gcd(ξ, ζ) = gcd(η, ζ) = 1, the ordinary height or Weil
height is

h(P ) =
{

1
2 log max{ζ2, |ξ|} if P 6= O,
0 if P = O,
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where O is the point at infinity. The canonical height or Néron–Tate height
of P is then the limit

ĥ(P ) := lim
n→∞

h(2nP )/22n.

Note that ĥ is a positive semidefinite quadratic form on E(Q) and that the
null space of ĥ is simply the torsion group Etors(Q). Therefore, ĥ is a positive
definite quadratic form on the factor group

E(Q) := E(Q)/Etors(Q).

By embedding E(Q) in the r-dimensional real space E(R) := E(Q)⊗Z R, it
is clear that ĥ extends to a positive definite quadratic form ĥ on E(R) ∼= Rr
and thus gives rise to a Euclidean norm on E(R). In the Euclidean space
E(R) with respect to this norm, a basis of the Mordell–Weil group E(Q) can
be found by methods taken from geometry of numbers (see [M], [GZ]).

Let P1, . . . , Pr ∈ E(Q) denote such a basis (of the infinite part) of E(Q).
Then each rational point P ∈ E(Q) has a unique representation of the form

(2) P =
r∑

i=1

niPi + Pr+1 (ni ∈ Z),

where Pr+1 ∈ Etors(Q) is a torsion point.
We want to get rid of Pr+1 in (2). To this end, we multiply both sides

of (2) by the order g ∈ N of Pr+1. This yields for the multiple P ′ = gP of
P the representation

(2′) P ′ =
r∑

i=1

n′iPi (n′i = gni ∈ Z).

Note that, by a famous theorem of Mazur [Mz], we have

(3) g ≤ 12.

Of course, in practice we can precompute g and use it instead of the upper
bound 12. In particular, if E over Q has no torsion, we take g = 1.

In order to compute all integral points

P = (ξ, η) ∈ E(Q), where ζ = 1,

we must find an upper bound for the coefficients ni in the representation
(2) of P by the basis points Pi (i = 1, . . . , r). Put

(4) N := max
1≤i≤r

{|ni|}.

Let us look at the representation (2) modulo torsion, viz.

P =
r∑

i=1

niP i,
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and consider the embedding E(Q) ↪→ E(R) ∼= Rr. Since ĥ is a positive
definite quadratic form on the Euclidean space E(R), we obtain the lower
estimate (cf. [G], Th. 10, p. 319)

(5) ĥ(P ) ≥ λ1N
2

on non-torsion points P ∈ E(Q), where 0 < λ1 ∈ R is the smallest eigenvalue
of the matrix associated with ĥ and the given basis P1, . . . , Pr of E(Q).

Next we are going to replace in (5) the canonical height ĥ by a modified
ordinary height d to be used in place of h. This is accomplished by means
of an estimate between ĥ and d on E(Q). The modified ordinary height of a
point P = (ξ/ζ2, η/ζ3) ∈ E(Q) is defined as (cf. [Zi1]–[Zi3], [Zi5])

d(P ) :=

{
1
2 max{µ∞ + 2 log ζ, log |ξ|} if P 6= O,
1
2µ∞ if P = O,

with the “height” of E

(6) µ∞ := log max{|a|1/2, |b|1/3}
given in terms of the coefficients a, b ∈ Z of the elliptic curve E. The following
estimate for the difference d − ĥ on E(Q) was established in [Zi2], [Zi3]
(cf. also [Zi1], [Si2]):

(7) − 2
3 log 2 ≤ d(P )− ĥ(P ) ≤ 3

2µ∞ + 5
3 log 2.

In fact, on combining the height estimates obtained in [Zi2] and [Zi3]
with those from [Zi5], one ends up with the slightly stronger estimate

(7′) − 7
12 log 2 ≤ d(P )− ĥ(P ) ≤ 3

2µ∞ + 19
12 log 2.

For the sake of simplicity, however, we shall use (7) rather than (7′). (Note
that the height d in [Zi1]–[Zi3] differs from the d defined above by a factor
of 3.)

From (7) we derive

d(P ) ≥ ĥ(P )− 2
3 log 2.

Hence, for sufficiently large integral points P = (ξ, η) ∈ E(Q), more pre-
cisely, for points P such that ζ = 1 and log |ξ| > µ∞, we have

(8) 1
2 log |ξ| ≥ ĥ(P )− 2

3 log 2.

Combining (5) and (8) yields

(9) 1
2 log |ξ| ≥ λ1N

2 − 2
3 log 2.

We remark that if µ∞ is large, e.g. exp(µ∞) > 106, and if 0 ≤ log |ξ| ≤ µ∞,
we must refine the estimates (7)–(9) as follows. It is easy to see that, for
integral points P ∈ E(Q), we have 0 ≤ d(P ) − h(P ) ≤ 1

2µ∞. Combining
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these inequalities with (7) yields

(7′′) − 2
3 log 2− 1

2µ∞ ≤ h(P )− ĥ(P ) ≤ 3
2µ∞ + 5

3 log 2.

From (7′′) we get the lower estimate h(P ) ≥ ĥ(P )− 2
3 log 2− 1

2µ∞ and hence

(8′) 1
2 log |ξ| ≥ ĥ(P )− 2

3 log 2− 1
2µ∞.

Therefore, in the case of 0 ≤ log |ξ| ≤ µ∞, (9) is to be replaced by the
weaker inequality

(9′) 1
2 log |ξ| ≥ λ1N

2 − 2
3 log 2− 1

2µ∞.

This case requires an extra search.
We confine ourselves to explaining the search procedure for large integral

points P = (ξ, η) ∈ E(Q) for which the stronger bound in (9) can be used.

3. Elliptic logarithms. The next step consists of inserting in (9) the
elliptic logarithm of P by using the Weierstrass parametrization of our ellip-
tic curve E (see [L2], for example). There exists a lattice Ω ⊆ C such that
the group of complex points is

E(C) ∼= C/Ω,

where Ω = 〈ω1, ω2〉 is generated by two fundamental periods ω1 and ω2 of
which ω1 is real and ω2 complex. We put τ = ω2/ω1 and assume, without
loss of generality, that Im(τ) > 0. The above isomorphism is defined by
Weierstrass’ ℘-function with respect to Ω and its derivative ℘′ according to
the assignment

P = (℘(u), ℘′(u))← u mod Ω,

so that the coordinates of an integral point P = (ξ, η) ∈ E(Q) are given by

ξ = ℘(u), η = ℘′(u).

Let α ∈ R be the largest real root of the right hand side of the Weierstrass
equation, i.e. of the polynomial p(x) in (1). Then the real period ω1 of E is
(cf. [Za])

(10) ω1 = 2
∞∫
α

dx√
x3 + ax+ b

.

The elliptic logarithm of P = (ξ, η) ∈ E(Q) is (cf. [Za])

(11) u ≡ 1
ω1

∞∫
ξ

dx√
x3 + ax+ b

(mod Z).
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Let β, γ ∈ C be the other roots of p(x). Put

(12) M :=





0 if α ≥ 0,
exp(µ∞)

3
√

2− 1
if α < 0

and choose a real number

(13) ξ0 :=
{

2α+M if β, γ ∈ R,
2 max{α, (β + γ)/2}+M if β, γ ∈ C\R.

In order to estimate the elliptic logarithm of the point P = (ξ, η) ∈ E(Q),
we need the following auxiliary result.

Lemma 1. Suppose that the first coordinate of the integral point P =
(ξ, η) ∈ E(Q) satisfies

ξ > max{0, ξ0}.
Then

(14)
∞∫
ξ

dx√
x3 + ax+ b

<

√
8√
ξ
.

R e m a r k. If ξ < 0, then it must be bounded in absolute value since
otherwise p(ξ) could not be a square. An extra search will take care of this
case, too.

We shall prove this lemma later and proceed instead in solving our task
of estimating elliptic logarithms. Normalizing the value of u in (11) to 0 <
|u| ≤ 1/2 and assuming ξ > max{0, ξ0}, we obtain from (11) and (14) the
estimate

(15) |u| <
√

8
ω1
· 1√
|ξ| .

On combining (9) and (15), we get

log |u| < log
√

8− logω1 − λ1N
2 + 2

3 log 2.

Exponentiating leads to

(16) |u| < c′1 exp{−λ1N
2}

for

(17) c′1 :=
2
√

2 · 3
√

4
ω1

.

Now we are going to apply the crucial Theorem 2.1 of David ([D]). Written
in terms of elliptic logarithms, equation (2) reads

u ≡
r∑

i=1

niui + ur+1 (mod Z),
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where ur+1 is the elliptic logarithm of the torsion point Pr+1 ∈ Etors(Q)
and, for 1 ≤ i ≤ r, the ui’s are the elliptic logarithms of the basis points
Pi ∈ E(Q). Rewritten as an equality, this congruence becomes

(18) u = n0 +
r∑

i=1

niui + ur+1

for some integer n0 ∈ Z. If we replace (2) by (2′), we obtain for the elliptic
logarithm u′ = gu of the point P ′ = gP ∈ E(Q) the representation

(18′) u′ = n′0 +
r∑

i=1

n′iui (n′i = gni ∈ Z)

which we shall use instead of (18). Of course, (16) is then to be replaced by

(16′) |u′| < gc′1 exp{−λ1N
2}.

Here again we assume the elliptic logarithms normalized to

(19) 0 < |ui| ≤ 1
2 (1 ≤ i ≤ r).

Since David works with the classical Weierstrass form

E : y2 = 4x3 − g2x− g3,

we must rearrange it to get

E : ( 1
2y)2 = x3 − 1

4g2x− 1
4g3

so that we have g2 = −4a, g3 = −4b. Hence, the height h in [D] becomes

h = h(1, g2, g3, j)

= h(1,−4a,−4b, j)

=
∑
p

log max{1, |4a|p, |4b|p, |j|p}+ log max{1, |4a|, |4b|, |j|},

where the summation is over all rational primes p of Q, and | |p denotes
the normalized multiplicative p-adic valuation and | | the ordinary absolute
value on Q. Writing the modular invariant in shortest terms j = j1/j2 for
j1, j2 ∈ Z and using the sum formula

∑
p

log |x|p + log |x| = 0 (0 6= x ∈ Q),

we obtain for h the expression

h = h(1,−4a,−4b, j1/j2)(20)

=
∑
p

max{0, log |4a|p, log |4b|p, log |j1|p − log |j2|p}

+ max{0, log |4a|, log |4b|, log |j1| − log |j2|}
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= −
∑
p

min{− log |j2|p,− log |4aj2|p,− log |4bj2|p,− log |j1|p}

+ max{log |j2|, log |4aj2|, log |4bj2|, log |j1|}
= log max{4|aj2|, 4|bj2|, |j1|, |j2|},

since a, b, j1, j2 are integers and j1, j2 are relatively prime. Therefore, we
take the expression (20) as the value h in David’s Theorem 2.1. Further-
more, we choose D := 1 and real numbers V1, . . . , Vr and B such that, in
accordance with (2) and (2′),

(21) log Vi ≥ max
{
ĥ(Pi), h,

3π|ui|2
ω2

1Im(τ)

}
for 1 ≤ i ≤ r

and, a fortiori,

(22) B ≥ V := max
1≤i≤r

{Vi}.

It turns out to be necessary to impose another condition on B. To this end,
note that by the definition (4) of N , we have for the coefficients n′i in (2′)
the estimates

(4′) |n′i| ≤ gN for 1 ≤ i ≤ r.
On the other hand, the integer n′0 in (18′) can be estimated as follows. On
inserting in (16′) the expression (18′) for u′ we get

∣∣∣n′0 +
r∑

i=1

n′iui
∣∣∣ < gc′1 exp{−λ1N

2},

and the right hand side can be made ≤ 1/2 for sufficiently large N , namely
for

(23) N ≥
√

log(2gc′1)
λ1

.

Hence, we obtain

|n′0| =
∣∣∣n′0 +

r∑

i=1

n′iui −
r∑

i=1

n′iui
∣∣∣ ≤

∣∣∣n′0 +
r∑

i=1

n′iui
∣∣∣+
∣∣∣
r∑

i=1

n′iui
∣∣∣

≤ 1
2

+
r∑

i=1

|n′i||ui| ≤
1
2

+
r

2
gN ≤ r + 1

2
gN

by the normalization (19) of the ui’s and by (4′), (23). Therefore, assuming
(23) and N > ee, we choose

(24) B :=
r + 1

2
gN,

keeping in mind that condition (22) must also be satisfied.
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Finally, we introduce the constant (see [D])

(25) C := 1.1 · 109 · 107r(2/e)2r2
(r + 1)4r2+10r.

On combining the estimate (16′) with David’s Theorem 2.1 and observing
the relations (21)–(25), we arrive at the following important result.

Proposition. The elliptic logarithm

u = n0 +
r∑

i=1

niui + ur+1

of an integral point P = (ξ, η) = (℘(u), ℘′(u)) ∈ E(Q) such that

ξ > max{eµ∞ , ξ0}
with µ∞ from (6) and ξ0 as in (13) satisfies the estimate

exp
{
−Chr+1

(
log
(
r + 1

2
gN

)
+1
)(

log log
(
r + 1

2
gN

)
+1
)r+1 r∏

i=1

log Vi

}

≤ |gu| < exp{−λ1N
2 + log(gc′1)},

where N = max1≤i≤r{|ni|} as in (4), the constants λ1 and c′1 are given as
in (5) and (17), respectively , and g ∈ N is subject to (3).

Taking logarithms and omitting the middle term log |gu|, we conclude
that the following inequality holds.

Corollary. Under the hypothesis of the proposition,

(26) Chr+1
(

log
(
r + 1

2
gN

)
+ 1
)(

log log
(
r + 1

2
gN

)
+ 1
)r+1

×
r∏

i=1

log Vi + log(gc′1) > λ1N
2.

4. A bound for integral points. Of course, the inequality (26) can
hold only for a finite set of positive integersN . We wish to determine a bound
for those numbers N and hence for the coefficients ni in the representation
(2) of integral points P ∈ E(Q). For this purpose, we first state another
lemma.

Lemma 2. Let %, δ and σ be real numbers satisfying

% ≥ 1, δ ≥ 1 and σ > max{(e2/δ)δ, 1}.
Then the largest solution x0 ∈ R of the equation x = % + σ logδ x satisfies
the inequality

x0 < 22δ%σ logδ(σδδ).
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Again, we postpone the proof of Lemma 2 and instead apply it to our
situation. If

(27) N > max{ee, (6r + 6)2},
we have in (26) the inequality

(28)
(

log
(
r + 1

2
gN

)
+ 1
)(

log log
(
r + 1

2
gN

)
+ 1
)r+1

< 2 logr+2N = 2−(r+1) logr+2N2.

Observing (17) and (25), we put

(29) c1 := max
{

log(gc′1)
λ1

, 1
}
, c2 := max

{
C

λ1
, 109

}(
h

2

)r+1 r∏

i=1

log Vi.

On replacing in (26) the middle term by the right hand side of (28), we
derive from (26) the inequality

(30) N2 < c1 + c2 logr+2N2.

Now we apply Lemma 2 to (30). Let N0 ∈ R be the largest solution of the
equation obtained by equating both sides of (30). Then (30) cannot hold for
N > N0. Taking

% := c1, σ := c2 and δ := r + 2

and observing that the hypothesis of Lemma 2 is satisfied, we infer from
Lemma 2 for N0 the estimate

(31) N0 < N1 := 2r+2√c1c2 log(r+2)/2(c2(r + 2)r+2).

It is clear that the positive integers N satisfying (30) also satisfy (31) since,
as we noted, (30) implies N ≤ N0. Of course, by the conditions (23) and
(27) on N , we also have

(32) N1 > max
{
ee, (6r + 6)2,

√
log(2gc′1)

λ1

}
.

On combining the relations (3), (22), (24) and (31), we thus arrive at the
following fundamental theorem.

Theorem. Let

P =
r∑

i=1

niPi + Pr+1 ∈ E(Q)

be an integral point on the elliptic curve E over Q, where P1, . . . , Pr ∈ E(Q)
form a basis of the infinite part of E(Q) and Pr+1 ∈ Etors(Q) is a torsion
point. Then the maximum

N = max
1≤i≤r

{|ni|}



Integral points on elliptic curves 181

satisfies the inequality

N ≤ N2 := max
{
N1,

2V
r + 1

}
,

where N1 is defined by (31) and V is given by (22) with the Vi’s subject
to (21).

Based on this theorem, we have developed an algorithm which computes
all integral points on any elliptic curve E over Q of not too high rank. As
pointed out already, the algorithm works well for curves E of ranks up to
six over Q. However, any improvement of David’s bound in [D] would make
it possible to treat elliptic curves of still higher ranks.

It remains to prove the two lemmata, to explain how to calculate the
elliptic logarithms ui of the basis points Pi as well as the real and complex
period ω1 and ω2, respectively, so that the Vi’s can be determined in accor-
dance with (21), and to show how the bound in the Theorem can be reduced
to facilitate the computation of all integral points in E(Q).

5. Proofs

P r o o f o f L e m m a 1. We may assume without loss of generality that
the largest real root α ∈ R of the polynomial p(x) in (1) is non-negative. For
if α is negative, we translate p by a suitable positive number M as follows.
By the estimate given by Zassenhaus [Zs], we have

|α| ≤ |p|
3
√

2− 1
≤ eµ∞

3
√

2− 1
,

since, by (6),

|p| := max
{√|a|/3, 3

√
|b|} ≤ max

{√|a|, 3
√
|b|} = eµ∞ .

Then the polynomial q(y) := p(y −M) in y := x + M with M as in (12)
has the largest real root α+M ≥ 0. Choose ξ0 ∈ R in accordance with (13)
and suppose that ξ ∈ R satisfies

(33) ξ > max{0, ξ0}.
Our integral becomes

∞∫
ξ

dx√
p(x)

=
∞∫

ξ+M

dy√
q(y)

.

Next we move the root α+M of q(y) to zero by introducing the polynomial
in z := y − (α+M),

r(z) := q(z + (α+M)) = z(z + β1)(z + γ1)
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for

β1 := α− β, γ1 := α− γ.
The integral becomes

∞∫
ξ

dx√
p(x)

=
∞∫

ξ−α

dz√
r(z)

=
∞∫

ξ−α

dz√
z(z + β1)(z + γ1)

.

We consider two cases:

1. Suppose that either β, γ ∈ R or β, γ ∈ C\R but β + γ = β + β < 2α.
Then β1 > 0 and γ1 > 0 under the first condition and β1 + γ1 = β1 + β1 =
2α − β − β > 0 under the second. Under both conditions we find that
r(z) > z3 for z > 0 (⇔ y > α+M ⇔ x > α), and hence conclude that

(34)
∞∫

ξ−α

dz√
r(z)

<
∞∫

ξ−α

dz

z3/2
=

2√
ξ − α.

Now if β, γ ∈ R, we derive from ξ/2 > α+M/2 by (13) and (33) that

2√
ξ − α <

√
8√

ξ +M
≤
√

8√
ξ

since M ≥ 0, which yields the assertion of Lemma 1. If β, γ ∈ C\R but
β + γ = β + β < 2α, the same conclusion holds since again ξ/2 > α+M/2
by (13) and (33).

2. Suppose now that β, γ ∈ C\R and β+γ = β+β ≥ 2α. Then β1 +β1 =
2α− β − β ≤ 0, hence z ≥ z + (β1 + β1)/2 and furthermore,

(z + β1)(z + β1) = z2 + (β1 + β1)z + β1β1

=
(
z +

β1 + β1

2

)2

−
(
β1 − β1

2

)2

>

(
z +

β1 + β1

2

)2

.

Altogether, for z > 0 (⇔ x > α), this leads to the inequality

r(z) = z(z + β1)(z + γ1) >
(
z +

β1 + β1

2

)3

.

The integral (34) can therefore be estimated as follows:
∞∫

ξ−α

dz√
r(z)

<
∞∫

ξ−α

dz

(z + (β1 + β1)/2)3/2
=

2√
ξ − α+ (β1 + β1)/2

.

But in this case, since by (13) and (33),

1
2
ξ >

β + β

2
+
M

2
= α− β1 + β1

2
+
M

2
,
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we infer that
2√

ξ − α+ (β1 + β1)/2
<

√
8√

ξ +M
≤
√

8√
ξ

as before, and this completes the proof of Lemma 1.

P r o o f o f L e m m a 2. By Lemma 2.2 of [PdW], the largest solution
x0 ∈ R of the equation x = %+ σ logδ x satisfies

x0 < 2δ(%1/δ + σ1/δ log(σδδ))δ.

Since % and σ are at least 1, we have

%1/δ + σ1/δ log(σδδ) ≤ 2%1/δσ1/δ log(σδδ),

and this implies the asserted inequality.

In the Proposition of Section 3, we need to determine the numbers Vi ∈ R
in accordance with the conditions (21). This requires the calculation of the
elliptic logarithms ui of the points Pi ∈ E(Q) and of the real and complex
period ω1 and ω2, respectively, thus giving τ = ω2/ω1. To calculate ω1 and
ω2, we choose for our elliptic curve the above equation

v2 = r(z) = z(z + β1)(z + γ1)

and apply the method of arithmetic-geometric mean of Gauss as described
by Grayson [Gr]. For the computation of the elliptic logarithms ui of the
points Pi (1 ≤ i ≤ r) we use the fast-converging series given by Zagier [Za],
formula (10). Of course, the Néron–Tate height of the basis points P1, . . . , Pr
of E(Q), also required in (21), is calculated by the well-known procedure
already used in [GZ].

6. Reduction of the initial bound. The upper bound for N obtained
in the Theorem is in general too large for computing all integral points on
our elliptic curve E over Q. However, by numerical diophantine approxi-
mation techniques the bound can be considerably reduced. In this way it
is eventually possible to solve the elliptic equation in rational integers. The
inequality

(35)
∣∣∣n′0 +

r∑

i=1

n′iui
∣∣∣ < gc′1 exp{−λ1N

2}

obtained in the Proposition for u′ = gu by virtue of (16′) and (18′), together
with the inequality

N ≤ N2

established in the Theorem may be regarded as a homogeneous diophan-
tine approximation problem. Analogous inequalities occur in the resolution
of exponential diophantine equations, and methods for solving them have
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been studied by de Weger [dW]. We remark that in the applications men-
tioned above inhomogeneous diophantine approximation problems had to
be solved. In the present situation, however, by Mazur’s theorem on the
torsion, it is more appropriate to utilize homogeneous diophantine approxi-
mation techniques. Actually, this is true only if the group of rational points
E(Q) is torsion-free or if the upper bound N2 for the coefficients of the basis
points is large.

In the sequel, we are going to give an outline of de Weger’s method [dW]
applied to the present situation. Let C0 be a suitable positive integer and Γ
be the lattice spanned by the rows of the (r + 1)× (r + 1) matrix




1 0 . . . 0 0
. . .

0 . . . 0 1 0
bC0u1c . . . bC0ur−1c bC0urc C0


 .

Denote by l(Γ ) the Euclidean length of the shortest non-zero vector of Γ .
By Lemma 3.7 of [dW], we conclude that, if Ñ is a positive integer such
that

l(Γ ) ≥
√
r2 + 5r + 4gÑ ,

then (35) cannot hold for an N within the range (cf. [dW], Lemma 3.7,
(3.22))

(36)

√
1
λ1

log

√
2 3
√

4C0

ω1Ñ
< N ≤ Ñ .

To find a suitable Ñ , one chooses C0 in the order of magnitude of Nr+1
2

and computes the LLL-reduced basis b1, . . . , br+1 of Γ (see [LLL]). By Propo-
sition (1.11) of [LLL], we have l(Γ ) ≥ 2−r/2‖b1‖, where ‖b1‖ is the Euclidean
length of the vector b1. Now we take

Ñ := 2−r/2‖b1‖
(√

r2 + 5r + 4g
)−1

.

If Ñ ≥ N , we obtain the estimate

N ≤
√

1
λ1

log

√
2 3
√

4C0

ω1Ñ
.

This bound for N is then taken as the new quantity Ñ and the whole process
is iterated until the upper bound cannot be reduced any further.

Let N ′1 be the result of the last iteration. In the range we are left with
after the reductions, i.e. for the vectors (n0, . . . , nr) ∈ Zr+1 such that N =
max1≤i≤r{|ni|} ≤ N ′1, we now test all points n1P1 + . . . + nrPr + Pr+1 in
(2) for integrality.
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All procedures used in our calculations are part of the computer algebra
system SIMATH (see [SM]). It is planned to incorporate in SIMATH the
whole algorithm for calculating integral points on elliptic curves over the
rationals (1).

7. Examples

Example 1: y2 = x3 − 1642032x+ 628747920.

We take the elliptic curve from Mestre [Me],

y2 + 351y = x3 − 63x2 + 56x+ 22

of rank r = 6 over Q and consider the quasiminimal model in short Weier-
strass form

E : y2 = x3 − 1642032x+ 628747920

with discriminant

∆ = 112571102923779428352 = 212 · 312 · 51714450757,

modular invariant

j =
j1
j2

=
224933197418496

51714450757
and “height” of E

µ∞ = log max{|a|1/2, |b|1/3} = 7.1557225286.

E has trivial torsion group Etors(Q) = {O}, so that we take g = 1.
The six points listed below form a basis of the Mordell–Weil group E(Q).

We also display their canonical height ĥ:

P1 = (432, 108), ĥ(P1) = 3.3637106425,

P2 = (396, 6372), ĥ(P2) = 3.3888408529,

P3 = (360, 9180), ĥ(P3) = 3.4129391620,

P4 = (1044, 7236), ĥ(P4) = 3.5302197591,

P5 = (108, 21276), ĥ(P5) = 3.5591324536,

P6 = (36, 23868), ĥ(P6) = 3.5952919707.

The symmetric matrix of the bilinear form associated with the quadratic

(1) After we had finished writing this paper, we learned that in a lecture, delivered in
October 1993 at Oberwolfach, Tzanakis had also reported on an algorithm for computing
integral points on elliptic curves by means of elliptic logarithms. After we had submitted
this manuscript, we received the preprint [ST] of Stroeker and Tzanakis.
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form ĥ on E(Q) with respect to the points P1, . . . , P6 is

A =




3.36371 −0.01723 −0.35870 1.41713 1.09316 −1.20380
−0.01723 3.38884 −0.87466 0.78051 0.71168 0.86176
−0.35870 −0.87466 3.41294 1.51057 −1.45781 0.67460

1.41713 0.78051 1.51057 3.53022 −0.87592 −0.21851
1.09316 0.71168 −1.45781 −0.87592 3.55913 −1.76537
−1.20380 0.86176 0.67460 −0.21851 −1.76537 3.59529


 .

The matrix A has the characteristic polynomial

χA(x) = x6 − 20.85013503x5 + 164.9142957x4 − 618.6663540x3

+ 1125.293711x2 − 906.8522386x+ 226.2807738.

The eigenvalues of A are

λ1 = 0.4323724011, λ4 = 4.3502898759,

λ2 = 1.5647578466, λ5 = 5.5014070699,

λ3 = 1.9944764779, λ6 = 7.0068311531,

of which λ1 is needed in (5).
The real period given by (10) is

ω1 = 1.0582679843

and the complex period is

ω2 = 0.4067231150i

so that

τ =
ω2

ω1
= 0.3843290367i.

Hence the constant in (17) becomes c′1 = 4.2426382163 thus yielding the
constant in (29)

c1 = max
{

log(1 · c′1)
λ1

, 1
}

= 1.4451852966.

In (21) we need the elliptic logarithms of the basis points P1, . . . , P6:

u1 = 0.0011316844, u4 = 0.4447562185,

u2 = 0.0649588423, u5 = 0.1867017663,

u3 = 0.0912606341, u6 = 0.2047900792,

and the quantity from (20),

h = log max{4|aj2|, 4|bj2|, |j1|, |j2|} = 46.3145384235,

whence

max
{
ĥ(Pi), h,

3πu2
i

ω2
1Im(τ)

}
= h for i = 1, . . . , 6.
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Therefore we may choose

V = Vi = eh = 130061413389624701760 (i = 1, . . . , 6)

in accordance with (21) and (22). It turns out that (22) is automatically
satisfied if we take B = 7

2N as required by (24). The constant C in (25) is
C ∼ 7 · 10213 and therefore, the constant c2 in (29) becomes

c2 = max
{
C

λ1
, 109

}(
h

2

)r+1 r∏

i=1

log Vi =
C

2r+1λ1
h2r+1 ∼ 2.5 · 10233.

Finally, in (31) we get

N1 = 1.1 · 10126

and the Theorem shows that

N ≤ N2 = max{N1, 2eh/7} = N1.

Now we apply de Weger reduction to the 7× 7 matrix



1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0

bC0u1c bC0u2c bC0u3c bC0u4c bC0u5c bC0u6c C0




starting with the value C0 = 10890 ∼ N7
1 . After the first reduction, the

length of the shortest vector b1 of the lattice Γ is ‖b1‖ ≥ 1.16 · 10127 and we
obtain the new upper bound N ≤ 64.

In a second application of the de Weger reduction we choose the starting
value C0 = 2 · 1021 to ensure that (36) is satisfied. It reduces the length of
the shortest vector b1 of the lattice to ‖b1‖ ≥ 114.7 and yields the bound
N ≤ 10.

A third reduction leads to the same upper bound for N . By using LLL-
reduction on vectors of real numbers instead of integral numbers as in de
Weger’s method, the upper bound is improved to N ≤ 8. This improvement
is achieved since, by passing to the real case, one obtains a sharper estimate
for the shortest vector in the lattice Γ .

Our task is therefore to test for integrality all the points

P = n1P1 + n2P2 + n3P3 + n4P4 + n5P5 + n6P6

such that |ni| ≤ N ≤ 8 (1 ≤ i ≤ 6). It then remains to test the points
P = (ξ, η) ∈ E(Q) such that

ξ ∈ Z and 0 ≤ log |ξ| ≤ µ∞ = 7.1557225286
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in order to take care of the case in which (9′) rather than (9) is valid. In ad-
dition, we also have to search for integral points on the compact component
of E/Q, namely the points P such that

−1441.589746 ∼ β ≤ ξ ≤ γ ∼ 432.0107786

in accordance with the Remark following Lemma 1. By this extra search,
however, we did not find any new points.

Altogether we obtained the 70 integral points (and their additive in-
verses, of course) on E over Q displayed in Table 1. They constitute the
complete set of integral points in E(Q).

R e m a r k. Table 1 shows that the actual bound for N is 2 rather than 8.

Table 1

No. P n1 n2 n3 n4 n5 n6 ĥ(P )
1 (−1440, 2700) 0 −1 −1 1 0 1 4.0860684
2 (−1431, 6939) 0 0 1 0 1 1 5.4701995
3 (−1388, 15292) 1 0 1 −1 −1 0 6.2707058
4 (−1332, 21276) −1 0 0 1 0 0 4.0596804
5 (−1296, 24084) 1 1 0 −1 −1 0 4.0506693
6 (−1031, 35011) 0 2 1 −1 −1 −1 7.5641857
7 (−999, 35667) 0 −1 0 1 0 0 5.3580305
8 (−927, 36801) 0 0 0 −1 −1 0 5.3375206
9 (−828, 37692) 0 0 −1 1 0 0 3.9220270

10 (−648, 37692) 0 −1 0 0 1 1 3.8656383
11 (−612, 37476) 1 1 1 −1 −1 −1 3.8537954
12 (−396, 34884) −1 −1 −1 1 0 0 3.7781382
13 (−332, 33724) −1 0 1 0 1 0 5.9512406
14 (−72, 27324) 0 1 0 −1 −1 −1 3.6459771
15 (36, 23868) 0 0 0 0 0 1 3.5952920
16 (108, 21276) 0 0 0 0 1 0 3.5591325
17 (184, 18244) 1 0 0 −1 −1 −1 5.7158004
18 (297, 12933) −1 −1 −1 2 1 1 4.8391918
19 (360, 9180) 0 0 1 0 0 0 3.4129392
20 (396, 6372) 0 1 0 0 0 0 3.3888409
21 (412, 4708) 0 −1 −1 0 0 1 5.5750298
22 (432, 108) 1 0 0 0 0 0 3.3637106
23 (1017, 3267) −1 −1 −1 1 1 0 4.8913920
24 (1044, 7236) 0 0 0 1 0 0 3.5302198
25 (1048, 7676) 0 0 1 −1 0 −1 5.7311012
26 (1060, 8900) 0 1 0 −1 −1 0 5.7419748
27 (1152, 16308) 0 0 0 0 1 1 3.6236835
28 (1192, 19108) −1 −1 0 1 0 0 5.8530373
29 (1224, 21276) 1 0 0 −1 −1 0 3.6806690
30 (1296, 26028) −1 0 −1 1 0 0 3.7340954
31 (1441, 35423) −1 −1 0 0 1 1 7.4161825
32 (1476, 37692) 0 1 1 −1 −1 −1 3.8548934
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Table 1 (cont.)

No. P n1 n2 n3 n4 n5 n6 ĥ(P )
33 (1728, 54324) 0 −1 −1 1 0 0 4.0005237
34 (1836, 61668) 0 0 1 0 1 0 4.0564499
35 (2385, 101385) −1 0 0 1 0 −1 5.6843920
36 (2556, 114588) 1 1 0 −1 −1 −1 4.3622713
37 (3132, 161892) 1 0 0 0 0 1 4.5514029
38 (3816, 223452) −1 0 0 0 1 0 4.7365309
39 (4689, 309879) 0 0 −1 1 −1 0 6.3173694
40 (4860, 327780) 0 0 0 −1 −1 −1 4.9650524
41 (5328, 378324) 0 1 1 0 0 0 5.0524660
42 (6624, 529524) 0 −1 0 0 0 1 5.2606033
43 (8296, 746972) 0 −1 −1 2 1 1 7.6745398
44 (8712, 804708) 0 −1 0 0 1 0 5.5246168
45 (10008, 993276) 0 0 −1 0 0 1 5.6590325
46 (15084, 1846044) 1 0 1 0 0 0 6.0592576
47 (15849, 1988901) −1 0 1 0 0 0 7.4940421
48 (18856, 2583388) −1 −1 −1 1 0 −1 8.4755779
49 (19548, 2727324) 1 1 1 −2 −1 0 6.3138077
50 (29448, 5048676) 1 1 0 0 0 0 6.7180976
51 (31572, 5605308) −1 1 0 0 0 0 6.7870054
52 (32356, 5815612) 1 1 1 −2 0 −1 9.0085106
53 (37332, 7208892) −1 −2 −1 2 1 1 6.9530002
54 (45328, 9646676) 0 0 0 1 −1 −1 9.3427541
55 (52056, 11873412) 1 −1 −1 0 0 1 7.2829869
56 (72864, 19665396) 0 1 0 −1 −2 −1 7.6174453
57 (83988, 24337476) 1 0 1 −1 1 1 7.7589192
58 (113233, 38100599) 2 2 2 −2 −1 −1 11.6401838
59 (122544, 42895764) −1 −1 −2 2 1 1 8.1354623
60 (149260, 57663260) −1 −1 −1 0 1 0 10.5294159
61 (185868, 80130276) 0 −1 1 0 0 0 8.5510941
62 (224712, 106520292) 0 1 0 −1 −1 −2 8.7405633
63 (270108, 140378724) −1 0 0 1 2 1 8.9243130
64 (392985, 246355155) 0 0 0 0 −1 1 10.6851654
65 (429129, 281112309) 2 0 1 −2 −1 0 10.7730789
66 (1149912, 1233095292) 0 −1 −2 1 −1 0 10.3719724
67 (1590228, 2005344324) −2 −1 0 2 1 0 10.6960827
68 (4361004, 9107091684) −1 −2 −1 1 2 2 11.7047719
69 (13895892, 51799986108) 0 0 −1 2 0 1 12.8636093
70 (25099236, 125745007932) 2 0 0 0 0 0 13.4548426

Example 2: y2 = x3 − 203472x+ 18487440.

We take the curve

y2 + 67y = x3 − 21x2 − 10x+ 30

from Mestre [Me] of rank r = 5 over Q and consider the model in short
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Weierstrass form

E : y2 = x3 − 203472x+ 18487440.

The points

(72, 2052), (36, 3348), (−36, 5076), (−72, 5724), (396, 108)

form a basis of the Mordell–Weil group E(Q).
Starting with N1 = 1.3 · 1096 and C0 = 10600, we obtain, after the first

reduction, N ≤ 37, and after the second, N ≤ 6. A third reduction yields the
same upper bound N ≤ 6. Again, real LLL-reduction improves the upper
bound to N ≤ 5.

We list the first coordinates ξ of the (2×) 48 integral points on the short
Weierstrass model of E over Q which constitute the set of all integral points
in E(Q).

Table 2

−488, −468, −432, −423, −351, −279, −216, −180, −72,

−36, 4, 36, 72, 81, 88, 396, 432, 433, 468, 496, 520, 576,

720, 748, 1188, 1404, 1944, 2448, 2916, 3204, 3897, 4320,

7092, 7272, 8388, 13689, 14176, 17452, 22392, 53856, 55656,

90108, 157212, 163872, 1348776, 1526904, 45548136, 372941316

R e m a r k. Mestre [Me] computes only the (2×) 31 integral points (ξ, η)
with ξ < 106 on the model in long Weierstrass form

y2 + 67y = x3 − 21x2 − 10x+ 30.

In addition to all the points he found our algorithm turned up two more
points on his model, namely

(1265233,−1423154899) and (10359488,−33343178529).

Example 3: y2 = x3 − 879984x+ 319138704.

We take the curve

E : y2 = x3 − 879984x+ 319138704

of rank r = 5 over Q. The points

(540, 1188), (576, 1836), (468, 3132), (612, 3132), (432, 4428)

form a basis of the Mordell–Weil group E(Q).
Starting with N1 = 2 · 1096 and C0 = 10600, we obtain, after the first

reduction, N ≤ 40, and after the second, N ≤ 7. A third reduction yields
no improvement. As above, by using real LLL-reduction, the upper bound
can be improved to N ≤ 6.
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We list the first coordinates ξ of the (2×) 54 integral points on E over
Q which constitute the set of all integral points in E(Q).

Table 3

−1080, −900, −864, −792, −764, −684, −620, −423, −279, −72,

36, 108, 172, 376, 396, 432, 468, 513, 520, 540, 576, 585, 612, 673,

720, 792, 972, 1072, 1368, 1732, 2113, 2385, 2448, 2592, 3060, 3537,

4680, 5940, 8668, 9972, 14265, 17856, 36828, 43200, 65052, 78696,

114280, 155356, 193320, 196992, 368892, 1260648, 2717460, 2204663452
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