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Computing Irreducible Representations of Groups

By John D. Dixon*

Abstract. How can you find a complete set of inequivalent irreducible (ordinary) repre-

sentations of a finite group? The theory is classical but, except when the group was very small

or had a rather special structure, the actual computations were prohibitive before the advent

of high-speed computers ; and there remain practical difficulties even for groups of relatively

small orders ( á 100). The present paper describes three techniques to help solve this problem.

These are: the reduction of a reducible unitary representation into its irreducible com-

ponents ; the construction of a complete set of irreducible unitary representations from a

single faithful representation; and the calculation of the precise values of a group character

from values which have only been computed approximately.

1. Introduction. The object of this paper is to describe three techniques which

should be useful in constructing irreducible representations and the characters of

finite groups. Unlike some proposed solutions, none of these techniques depends on

any special structure for the group considered, and combined these techniques

should produce an efficient means of computing a complete set of irreducible repre"

sentations. These techniques are: (a) an efficient method of reducing a reducible

unitary representation (Section 2); (b) a method for constructing a complete set of

irreducible unitary representations of a group from a single faithful unitary represen-

tation (Section 3); and (c) a method of obtaining the precise values of a character from

values calculated only approximately (Section 4). Although we always refer to finite

groups, it should be noted that many of the results are also valid for unitary represen-

tations of finitely generated infinite groups.

Notation. The term representation will always mean a matrix representation over

the field Q of complex numbers. It is well known that every representation of a finite

group is equivalent to a representation in unitary matrices (for example, see [6,

Theorem (3.1)]). Thus there is no loss in generality when we deal exclusively with

unitary representations. By M.(d) we denote the vector space of dimension d2 over e

consisting of all d X d matrices over e, and \J(d) will denote the group of all d X d

unitary matrices. We also write / for the unit matrix and X* for the complex con-

jugate transpose of X.

2. The Reduction of a Unitary Representation. The theory on which our method

is based may be found in [6, Theorem (1.6)]. Briefly it is as follows. If G is a finite

subgroup of order g in U(úT), then G is irreducible unless for at least one element
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ET¡ of the standard basis for M(tf) the matrix

E = - £   X*Er,X
g .veo

is not scalar. Indeed EX = XE for all X G G and when E is not scalar the eigen-

spaces of E reduce G (compare with our Theorem 2).

If we tried to apply this theory directly, then we would need to store or compute

all the elements of the group G. This would be very clumsy unless G is small. However,

it turns out that E may be computed by an iteration process using only a set of gen-

erators for G. This is what we now prove in Theorems 1 and 2.

Theorem 1. Let S be a finite set consisting of h elements of\S(d) and suppose that

the unit matrix I G S. We define a linear mapping a: M(d) —> M(d) by

c(B) = T £   U*BU.
h ¿is

Then for each A0 G M(d) we can define a sequence (An) in M(d) by putting A„ = a"(Aa)

for n = 1, 2, • • • . Then (An) is always convergent in M(d) and its limit, say A, has the

property AU = UA for all U G S.
Proof. We shall use the norm ||-1| on M(d) defined by ||£||2 = trace B*B. Our

first step is to prove

(1) \W(B)\\ =  ||£||     implies that UB = BU    for all  U G S.

Indeed, for any B G M(t/) the properties of the norm show that

h'1 £   U*BU ^ «-' £ \\u*bu\\HB)\\ =
(2)

= h'1 £   ||*|| =  ||£||
ues

because the U are unitary. Moreover, the equality sign holds in (2) exactly when al'

the matrices U*BU (for U G S) lie on the same ray through 0 in M(d). Now J£S

and so ||<r(ß)|| = ||JB|| implies that there exist real numbers X^ ^ 0 such that

U*BU= X„B for all Í/G S. But ||5|| = \\U*BU\\ and so ||B|| = \\XvBW = \v \\B\\.
Thus, either B = 0 or else X^ = 1 for all U G S. In either case we conclude that

UB = BU for all U G S, and so (1) is proved.

Now consider the sequence (A„). It follows from (2) that the sequence (||/4„||) of

real numbers is monotonically decreasing, and so we have lim \\An\\ = p, say. The

monotonicity of (||/4„||) also shows that the sequence (A„) lies in the compact ball

J C G M(ûf) I | \C\ | ^ | \A0\ | \, and so there is some subsequence (Ant) which converges

to a limit, say A, in M(d). But ||j4|| = ß = lim^ ||Ai+i|| = hm ||<x(Ai)||, and so

the continuity of a shows that \\A\\ = ||o-(/4)||. Then (1) shows that AU = UA for

all U G S, and it remains to prove that (A„) converges to A.

Put B. = A, - A for n = 0, 1, 2, •• • . Since a(A) = A, (2) implies that (||5„||)

is monotonically decreasing. But lim ||J?Bt|| = 0 by the definition of A. Therefore

lim ||Z?„|| = 0 and so the sequence (A„) converges to A. This concludes the proof of

the theorem.

Before stating Theorem 2 we introduce a little notation. Let ET, (r, s = 1, ■ • • , d)
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be the standard basis for M(d); that is, Er, is the matrix whose (r, s)th entry is 1 and

whose other entries are all 0. We define a second basis Hr,(r,s = 1, • • ■ , d) for M(d) by

HT, = Err if   r = s,

= ET, + E,T if   r > s,

= i(Er, — E„)        if   r < s.

Now, in the notation of Theorem 1, all the limits lim„ .„ a'\Hr,) exist. Moreover,

because all the Hr, are hermitian matrices, it is easily verified that these limits will

also be hermitian.

Theorem 2. We keep the notation of Theorem 1. Suppose that S is a reducible set

of matrices (or equivalently S generates a reducible subgroup ofU(d)). Then for at least

one Hr, the limit lim <i"(Hr,) = H, say, is not scalar and we can reduce S into a number

of not (necessarily irreducible) components as follows. Since H is hermitian, we can find

an orthonormal basis vu ■ ■ ■ ,vd of the underlying d-dimensional unitary space such that

this basis is made up by listing successively orthonormal bases for the eigenspaces for H

for the different eigenvalues. Then, if C is the (unitary) matrix whose columns are

l\, • ■ • . Vj, we have

C*UC
u2

o
uk

for all U

Here the (r, s)th entry of the matrix on the right-hand side is v*Uv, and this is 0 when

vr and v, are eigenvectors for different eigenvalues of H.

Proof. S is completely reducible because it is a subset of U(d) and by hypothesis S

is not irreducible. It is easily proved (for example, see [4, Problem 10.3]) that this

implies that there exists a nonscalar B G M(d) such that UB = BU for all U G S,

and so a(B) = B. Since the HT, form a basis for M(d) there exist ßr, G 6 such that

B = £ ßr,Hr„ and so B = lim er"(ß) = £ ßr, lim a\HTS) because <r is linear. Since B

is not scalar, at least one lim a"(HT,) is not scalar. This proves the first part of the

theorem.

Now suppose that H = lim a\Hr,) is not scalar. Then HU = UH for all

U G S by Theorem 1, and this implies that for any eigenvalue a¡ of H the correspond-

ing eigenspace is mapped into itself by multiplication by any U G S; indeed, if

Hv = a¡v, then H(Uv) = U(Hv) = a£Uv). In particular this shows that v*Uv, is

zero whenever vr and v, are eigenvectors for H for different eigenvalues. This proves

the second part of the theorem.

Note. There should be no trouble in programming the process described in The-

orem 2. A crucial point in the computation will be the calculation of the eigenvalues

and eigenvectors of H, and this can be done using efficient iteration methods because

H is hermitian. It is not hard to prove that the eigenvalues of H always lie in the

interval [—1, 1].

3. The Generation of a Full Set of Irreducible Representations. Let G be a

finite group and let R: G —> TJ(d) and S: G —>U(c?') be two representations of G.
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Then we define R ® S: G -> \5(dd') by putting (R ® S)(x) = R(x) ® S(x) where

the right-hand side denotes the usual tensor (or Kronecker or direct) product of two

matrices. It is readily verified that R ® 5 is also a representation of G. We shall

require the following theorem due to Burnside (see [2, Section 226] or [4, Problem

11.27]). If R is a faithful representation of G, then every irreducible representation

of G is equivalent to an irreducible component of one of the representations: R,

R0R,R<S)R®R, ■■ ■ -We also make the following observation from the elemen-

tary properties of the tensor product. If Ru • • ■ , Rr and Su ■•• ,S, are complete sets

of inequivalent irreducible components of R and S, respectively, then each irreducible

component of R ® S is equivalent to an irreducible component of one of the R{ ® S,■.

We now outline an algorithm for obtaining all irreducible unitary representations

of G from a single faithful unitary representation.

We begin with a faithful representation R: G —» 15(d) and a set S of generators

for G such that the identity 1 G S, and we read in the data R(u) for all u G S. Next,

using the method described in Section 2, we reduce R down to its irreducible com-

ponents and store the components of R(u) as R¡(u), ■ ■ ■ , Rt(u) (u G S). Then, by com-

paring the characters of these representations, we may choose out of the set Ru ■ ■ ■ ,R.

a set of reresentatives for the different classes of equivalent representations. If these

inequivalent irreducible representations are Slt • ■ ■ , Sm then we store Si(w), • ■ • , S„,(u)

(u G S). We now construct the tensor products Sx ® Su S1! ® S2, ■ ■ ■ and at each

step reduce the tensor product to its irreducible components and store the representa-

tives of new classes of irreducible representations as Sm+1(u), ■ ■ ■ (u G S). This pro-

cedure is continued until none of the tensor products St ® Ss yields any new classes of

representations. Then, by Burnside's Theorem quoted above, S¡, S2, • • • is a complete

set of irreducible representations for G.

Notes. 1. When comparing the characters of two representations R¿ and R, in

order to prove that they are equivalent it is not usually enough to check trace R{(u) =

trace R¡(u) for all u G S ; usually it is also necessary to check the traces of certain

products. However the simpler criterion is certainly sufficient if S contains at least

one representative from each conjugacy class of G. Perhaps it is worth noting that

if S is a set which contains at least one element from each conjugacy class of G then

we automatically have S as a set of generators for G. Indeed, the subgroup H gen-

erated by S has the property that each element of G is conjugate in G to some element

of H, and this implies that H = G when G is finite (see [4, Problem 1.10]).

2. Suppose that S consists of exactly one element from each conjugacy class of G

(see Note 1). In this case, if we store the sizes of the conjugacy classes of G, then much

of the computation required in the algorithm described above can be simplified by

the usual elementary character theoretic arguments. Such arguments will enable us

to tell whether any tensor product S¡ ® S¡ is irreducible and whether any of its

irreducible components correspond to new classes of irreducible representations;

and knowing that G has k conjugacy classes means we can stop as soon as we have
stored the kth representation Sk.

3. In many cases we may find it easiest to take R as a representation in permutation

matrices corresponding to a representation of G as a permutation group. In such

cases R is clearly unitary.

4. The most obvious limitation for the application of this algorithm is the diffi-

culty of reducing representations of large degree. If d is the largest degree of any
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irreducible representation for G, then we may have to reduce representations of

degree d2 but no larger.

4. Finding the Precise Values of a Character from Approximate Values. In a

previous paper [5] I have described a method of computing the character table of a

finite group using modular arithmetic. Here I want to point out that one of the tech-

niques of that paper can be used to obtain precise values of a character (in arithmetic

or algebraic form) from quite rough estimates of its values. What is involved is essen-

tially a finite Fourier analysis. The technique could be used to obtain the precise

character table for a group G from the representations obtained by the method of

Section 3.

Let x be the character of a representation R of a finite group G, and let x, and x,

denote, respectively, the precise value and some approximate value of the character x

on the conjugacy class C, of G. Let e è 1 be an integer such that x" = 1 for all

x G G. Let x G C¡. Then R(x)e = 1 and so all the eigenvalues of R(x) are eth roots

of unity. Put f = exp (2iei/e) and define mk ^ 0 as the multiplicity to which f*

occurs as an eigenvalue for R(x). Now to each eigenvalue f * for R(x) there corresponds

an eigenvalue f *" for R(x)". Thus for n = 0, 1, • • • we have

«-i
trace R(xn) = trace R(x)' =  £ i»»f*\

*-0

We now use the identity

e-l

£ f(*-I)" = e        if e divides k
n-0

=    (t-D—^~T = 0    otherwise.

This gives us

(3) m, = e'1 £ £ mktknrln = e~x £ trace R(x")r~x\
n-0    jfc-0 n-0

Now for each conjugacy class C¿ and each integer n we can define the conjugacy class

C,(„, as consisting of all z" with z G C¿. With this notation (3) gives

«-i

(4) m, = e'1 £ Xiwf'"-
n-0

Now suppose that we only know the approximate values x, of x- Then it follows from

(4) that we can recover w¡ as the integer closest to e'1 £„I0 x«n>f~'n provided the

errors in the values of x are all less than 1/2. Once the "Fourier coefficients" m, are

known, the value of x, can be computed precisely.

Note. The only new data needed for these computations are the values of the

indices i(n) defined above.
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to 50. They also mentioned work of C. J. Bradley and D. E. Wallis (Oxford, England)

on irreducible representations of finite solvable groups, work by B. S. Thomas

(Physics Department, University of Florida) and the thesis of C. Brott (Neue Uni-

versität, Kiel 1966). This last deals with groups of orders up to 100 and higher but

essentially only with monomial representations. Further references are given below.

Carleton University

Ottawa 1, Ontario, Canada

1. C. Brott & J. Neubüser, A Program for the Calculation of Characters and Rep-
resentations of Finite Groups, Proc. Conf. Comput. Algebra (Oxford 1967), Pergamon Press,
New York, 1969.

2. W. Burnside, Theory of Groups of Finite Order, 2nd ed., Dover, New York, 1955.
MR 16, 1086.

3. J. Cannon, "Computers in group theory: a survey," Comm. ACM, v. 12, 1969, pp.
3-25.

4. J. D. Dixon, Problems in Group Theory, Blaisdell, Waltham, Mass., 1967. MR 36
#1514.

5. J. D. Dixon, "High speed computation of group characters," Numer. Math., v. 10,
1967, pp. 446^150. MR 37 #325.

6. W. Feit, Characters of Finite Groups, Benjamin, New York, 1967. MR 36 #2715.
7. J. K. McKay, "A method for computing the simple character table of a finite group,"

in Computers in Mathematical Research, R. F. Churchhouse and J. C. Herz (Editors), North-
Holland, Amsterdam, 1968. MR 38 #1972.

8. J. K. McKay, The Construction of the Character Table of a Finite Group from Gen-
erators and Relations, Proc. Conf. Comput. Algebra (Oxford 1967), Pergamon Press, New
York, 1969.

9. J. Neubüser, Investigations of Finite Groups on Computers, Proc. Conf. Comput.
Algebra (Oxford 1967), Pergamon Press, New York, 1969.

10. P. G. Rudd & E. R. Keown, The Computation of Irreducible Representations of
Finite Groups of Order 2", n g 6, Proc. Conf. Comput. Algebra (Oxford 1967) Pergamon
Press, New York, 1969.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use


