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Abstract. Every K-trivial set is computable from an incomplete Martin-Löf
random set, i.e., a Martin-Löf random set that does not compute H1.

A major objective in algorithmic randomness is to understand how random sets
and computably enumerable (c.e.) sets interact within the Turing degrees. At some
level of randomness all interesting interactions cease. Computably enumerable sets
are each definable and, in a sense, they are as effective as any noncomputable set
can be. As a consequence, the lower and upper cones of noncomputable c.e. sets
are definable null sets, and thus if a set is “sufficiently” random, it cannot compute,
nor be computed by, a noncomputable c.e. set. However, the most studied notion of
algorithmic randomness, Martin-Löf randomness, is not strong enough to support
this argument, and in fact, significant interactions between Martin-Löf random
sets and c.e. sets occur. The study of these interactions has lead to a number of
surprising results that show a remarkably robust relationship between Martin-Löf
random sets and the class of K-trivial sets. Interestingly, the significant interaction
occurs “at the boundaries”: the Martin-Löf random sets in question are close to
being non-random (in that they fail fairly simple statistical tests), and K-trivial
c.e. sets are close to being computable.

The following theorem resolves one of the main open questions in algorithmic
randomness, and further strengthens the relationship between the Martin-Löf ran-
dom sets and the K-trivial sets.

Theorem 1. There is an incomplete Martin-Löf random set that computes every
K-trivial set.

This theorem is essentially a corollary of two recent results, both proved in 2012:
the first by Bienvenu, Greenberg, Kučera, Nies and Turetsky [3]; and the second
by Day and Miller [10]. In the remainder of this announcement, we will explain the
background to the problem behind this theorem, and indicate the main ideas used
in the proof.

In this announcement, by “random” we will henceforth mean Martin-Löf random.
We will give the full definition shortly, but essentially, an element X of Cantor
space is Martin-Löf random if it is not an element of a particular kind of effectively
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presented, null Gδ class.1 Any random set computes a diagonally noncomputable
function. This implies, by Arslanov’s completeness criterion [1], that the only c.e.
sets that can compute random sets are the complete ones. Two questions of interest
are thus:

(1) classifying those random sets that can compute incomputable c.e. sets, and
(2) classifying those c.e. sets that can be computed by random sets.

In 1986, Kučera [23] showed that every ∆0
2 random set is Turing above a noncom-

putable c.e. set, demonstrating that these questions may have interesting answers.
The first question was settled by Hirschfeldt and Miller (see [31, Th. 5.3.16]).

To explain their answer we need to provide some definitions. We denote Cantor
space by 2ω. An effectively presented Gδ set is the intersection

Ş

n Un of a nested,
computable sequence of effectively open (Σ0

1) subsets of 2ω (i.e., it is a Π0
2 class).

A Gδ set E is null if λpEq “ 0, where λ denotes the fair-coin measure on Cantor
space, which is mapped to Lebesgue measure under the standard near-isomorphism
between Cantor space and the unit interval r0, 1s. Those elements of Cantor space
that are not contained in any null, effectively presented Gδ sets are, in the parlance
of the field, known as weakly 2-random. A set X P 2ω is Martin-Löf random if
it is not a member of any effectively presented Gδ set

Ş

n Un with λpUnq ď 2´n.
This additional condition specifies that not only is

Ş

n Un null, but this fact is
witnessed in a strong manner. Such a null set is known as a test for Martin-Löf
randomness. Martin-Löf randomness can be defined by other means, for example
using effective betting strategies or compressibility of initial segments.2 Hirschfeldt
and Miller showed that a Martin-Löf random set X computes a noncomputable c.e.
set if and only if it is not weakly 2-random. This gives a pleasing characterization of
those “special” random sets that compute noncomputable c.e. sets using the tools
of effective measure theory (or very low level effective descriptive set theory).

For the second question, we are faced with a simple example: all c.e. sets are
computable from some random set; indeed a single random set, Chaitin’s “halting
probability” Ω, computes all c.e. sets. In fact, the Kučera–Gács theorem [22, 17]
states that every set is computable from a random set. However, this is only a par-
tial answer to the question. A theorem of Stephan’s [34] establishes a dichotomy
between two kinds of random sets. On the one hand, those randoms that com-
pute H1, the complete ones, pass all the relevant statistical tests (the effective null
classes) not because they are in some way typical, but because their strong informa-
tion content allows them mimic typical sets. On the other hand, incomplete random
sets, those that do not compute H1, are “more random” in that they lack signif-
icant computational power; Stephan showed that they cannot compute complete
extensions of Peano arithmetic. In this announcement, we characterize the c.e. sets
covered by, which means Turing computable from, incomplete random sets. We
will see that the only c.e. sets that can be computed by incomplete random sets are
very weak, i.e., close to being computable and very far from the halting problem.
We begin by giving some background on the appropriate instance of computational
weakness, K-triviality.

1Elements of Cantor space are called reals, sequences or simply sets by computability theorists,
the latter since they are identified with subsets of ω. Subsets of Cantor space are referred to as
either sets or classes.

2For more on algorithmic randomness, the reader can consult the books [31, 12], which are the
most up-to-date surveys of the field.
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The K-trivial sets were introduced by Chaitin [8] and first studied by Solovay in
an unpublished manuscript [33]. One motivation for their definition was Chaitin’s
characterization [7] of the computable sets by the compressibility of their initial
segments. Namely, letting C denote plain Kolmogorov complexity, the sets A that
satisfy CpA ænq ď

` Cpnq are the computable ones.3 The condition means that
every initial segment of A contains no more information than its length, and so it
is as compressible as it can be.

The use of prefix-free Kolmogorov complexity K, rather than its plain variant C,
is motivated by Schnorr’s theorem ([32], see [6]), which characterizes the random
sets as those that have K-incompressible initial segments: a set A is random if and
only if KpAænq ě

` n. The measure of an open set is determined by any prefix-free
set of finite strings generating it, and so the study of prefix-free complexity, unlike
the plain variety, is closely linked with measure-theoretic arguments. This explains
why K is the most useful Kolmogorov complexity when considering the random-
ness content of sets. The K-trivial sets—those sets A whose initial segments are
as K-compressible as possible, in that KpA ænq ď

` Kpnq—are the very opposite
of random sets, and for that reason have sometimes been called “anti-random”.
Surprisingly, Solovay showed that in contrast with plain complexity, there are non-
computable K-trivial sets.

Chaitin [8] showed that all K-trivial sets are ∆0
2, that is, computable from the

halting problem H1. In the 2000’s, a series of results greatly improved our under-
standing of the K-trivial sets. These results showed that the K-trivial sets are all
computationally very weak, that the class of K-trivial sets is robust, and that the
notion is inherently computably enumerable.

The computational weakness of the K-trivial sets was first indicated by Downey,
Hirschfeldt, Nies and Stephan [13], who showed that K-trivial sets are incomplete;
that is, they do not compute H1. This result was then strengthened by Nies [30],
who showed that in fact every K-trivial set is jump-traceable and superlow, roughly
saying that in terms of the Turing jump operator, these sets are indistinguishable
from the computable ones. Other ways to express their computational weakness
in fact led [30] to equivalent definitions of the K-trivial sets. The K-trivial sets
coincide with the sets that are low for K—sets that have no compression power
as oracles, in that KA, the prefix-free complexity relative to A, is equal, up to an
additive constant, to the unrelativized K. Similarly, the K-trivial sets coincide with
the sets that are low for ML-randomness—sets A that cannot detect any regular
patterns in random sets, in that every random set is also random relative to A.
These equivalences witness the robustness of the class. This robustness is further
reflected in the structure of the Turing degrees of K-trivial sets: these degrees form
an ideal, and restricted to the c.e. sets, this ideal has a Σ0

3 index set. Barmpalias and
Nies showed that this ideal has a low2 c.e. upper bound. Kučera and Slaman [20]
provided a low upper bound that, however, cannot be c.e. by a result in [28] (also
see [31, 5.3.22]).

The relation between K-triviality and enumerability began with a construction,
by Zambella [35], of a noncomputable c.e. K-trivial set. Another such construction
was given by Downey, Hirschfeldt, Nies and Stephan [13], which came to be known
as the “cost-function” construction; this construction was inspired by an earlier

3By fpnq ď` gpnq we abbreviate fpnq ď gpnq ` Op1q. We also write fpnq ě` gpnq with the

same meaning.
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construction of a noncomputable c.e. set that is low for ML-randomness due to
Kučera and Terwijn [21]. Finally, Nies [30] showed that K-triviality is an inherently
enumerable notion: every K-trivial set is computable from a c.e. K-trivial set (so in
the Turing degrees, the ideal of K-trivial degrees is generated by its c.e. elements).
He also showed that the cost-function construction is universal, in that every K-
trivial set can be obtained as the result of an approximation that “obeys” the
standard cost function.

These results have had several applications. Following the example of Kučera
[23], in [13] it was shown how c.e. K-trivial sets provide an injury-free solution to
Post’s problem. A more surprising application was given by Kučera and Slaman
[25], who used K-trivial sets in their proof that no Scott set of Turing degrees is
“hourglass-like”. That is, for every noncomputable real in the Scott set there is a
Turing incomparable real.

We say that a set A is a base for randomness if A is computable from some
A-random set. This notion was first studied in [24]. A noncomputable base for
randomness is so computationally weak that the cone above it, while being null,
is not an effective A-null class. A first indication of the relationship between K-
triviality and incomplete random sets came from work of Hirschfeldt, Nies and
Stephan [19]. They showed that if A is a c.e. set that is computable from an
incomplete random set X, then X is in fact random relative to A, and so A is
a base for randomness. In turn, they showed that the sets that are a base for
randomness coincide with the K-trivial sets. Thus, every c.e. set that is computable
from an incomplete random set is K-trivial. In light of this result, in 2004, Stephan
asked whether the c.e. sets that are computable from incomplete random sets are
precisely the K-trivial sets. This problem, known as the random covering problem,
became one of the major open questions in the field of algorithmic randomness.
It is problem 4.6 in Miller and Nies’s survey [27] of open questions in the field.
In light of the enumerability of K-trivial sets, this is equivalent to asking whether
every K-trivial set is computable from an incomplete random set. As already
mentioned, Theorem 1 answers the question in the affirmative. This gives yet
another characterization of K-triviality, one which uses only very basic ingredients
from computability theory—namely computable enumerability, Turing reducibility,
and the halting problem—together with ML-randomness (but with no reference to
relativization).

In retrospect, the first step toward solving the covering problem was made by
Franklin and Ng who gave a characterization of the incomplete random sets [15].
This is analogous to the Hirschfeldt–Miller result in that it gives a measure-theoretic
characterization of a class of random sets defined by their interaction within the
Turing degrees. They formulated a notion of randomness—difference randomness—
and showed that it is equivalent to being random and Turing incomplete. In more
detail, they showed the equivalence, for a set Z, of the following properties:

(1) Z is random and incomplete.
(2) Z avoids all null sets of the form P X

Ş

n Un, where the Un are uniformly
effectively open, P is effectively closed, and λpP X Unq ď 2´n.

Franklin and Ng also showed that difference randomness could be characterized
using a concept similar to a test for Martin-Löf randomness. In his investigations
of differentiability of constructive functions on the reals, Demuth [11] introduced
notions of randomness stronger than Martin-Löf’s. Like ML-randomness, his tests
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are null sets that are the intersection of a sequence xUny of effectively open sets
with λpUnq ď 2´n. However, when defining the sets Un we are allowed to change
our mind sometimes about what Un is. In Martin-Löf tests, the function taking n
to an index for Un is computable; Demuth allowed effectively approximable func-
tions, with a computable bound on the number of mind-changes; this notion of
randomness is now known as weak Demuth randomness (see [26] for background on
Demuth’s work in randomness). Franklin and Ng showed that a particular class of
weak Demuth tests also captured difference randomness; in their tests, the different
“versions” for each component Un have to be disjoint.

The second step was made in 2011 by Bienvenu, Hölzl, Miller and Nies [5],
who gave an analytic characterization of incomplete randomness. Recall that the
Lebesgue density theorem says that if B is a measurable set, then for almost all
x P B, the limit of the conditional probability (or measure)

λpB|Iq “
λpB X Iq

λpIq

for intervals I that contain x of shrinking diameter, is 1. When working in Cantor
space, rather that using arbitrary intervals, it is more natural to use dyadic intervals.
The analog of Lebesgue’s theorem in this context says that for any measurable set
B Ď 2ω, for almost all X P B, the lower dyadic density of B at X,

ρpB|Xq “ lim inf
nÑ8

λpB|rX ænsq,

is 1; here rσs denotes the basic clopen subset of 2ω determined by the finite binary
string σ.

Computability theorists often try to find effective content in results of classical
mathematics. In analysis, the effective versions of almost-everywhere theorems
often translate to characterizations of notions of randomness in analytic terms.
Bienvenu, Hölzl, Miller and Nies [5] applied this to a restricted form of Lebesgue’s
theorem and showed that the following are equivalent for a random set X P 2ω:4

(1) X is difference random;
(2) ρpP|Xq ą 0 for all effectively closed sets P containing X.

If X has property (2), we call it a positive density point. Together with Franklin
and Ng’s work, we see that a random set X is incomplete if and only if it is a
positive density point. The first indication that the analytic notion of density is
relevant to understanding the interaction of random and K-trivial sets was given by
Day and Miller [9]. They used density and the results from [5] to solve a problem
related to the covering problem, known as the ML-cupping problem; in particular,
they showed that a set A is K-trivial if and only if there is no incomplete random
set Z that joins A above H1.

The work in [5] left open the problem of characterizing those random sets X
for which the full effective version of Lebesgue’s density theorem holds. We say
that X P 2ω is a density-one point if ρpP|Xq “ 1 for all effectively closed sets
P containing X. The question that remained was whether every random positive
density point is a density-one point. Put differently, if X is random and not a
density-one point, must it compute H1? It was known by July 2011 (see Bienvenu,

4They actually showed the result for Lebesgue density in the context of the unit interval, and
then derived the weaker dyadic variant (for detail see the journal version [4, Remark 3.4]); we

restrict our attention to dyadic density.
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Hölzl, Miller and Nies [4]) that any such set is LR-hard : every X-random set is
actually H1-random. While this proves that X has much of the computational
strength of H1, it was also known ([31, 6.3.10], also Kučera (unpublished)) that
some incomplete random sets have this highness property.

During and after a research-in-pairs stay at the mathematical research institute
in Oberwolfach in February 2012, Bienvenu, Greenberg, Kučera, Nies and Turetsky
found the analogue of the Hirschfeldt–Miller and Franklin–Ng characterizations for
computing K-trivial sets. They defined a notion of randomness, called Oberwolfach
randomness. They were motivated by work by Figueira, Hirschfeldt, Miller, Ng
and Nies [14], who investigated the randomness strength of a ∆0

2 random set Z
by counting the number of changes required in any computable approximation of
Z. This was linked with Demuth’s idea, mentioned earlier, of accepting changes
in components of tests. Oberwolfach randomness is a weak form of weak Demuth
randomness, in which the changes of the components have to be coherent between
the levels (the changes of Un`1 are limited by the changes of Un). In fact, examining
the argument given by Franklin and Ng shows that a “version-disjoint” variant of
Oberwolfach randomness suffices in order to capture difference randomness. Thus,
Oberwolfach randomness lies between weak Demuth and difference randomness.
And indeed, this notion of randomness characterized the candidates for the solution
of the covering problem.

Theorem 2 (Bienvenu, Greenberg, Kučera, Nies and Turetsky [3]).

(1) Suppose a set X is random. Then X is not Oberwolfach random if and
only if X computes all K-trivial sets.

(2) There is a K-trivial set that is “smart” in that it is not computable from
any Oberwolfach random set.

The “smart” K-trivial showed that if the covering problem has a positive so-
lution, then it has a strong positive solution in that some incomplete random set
would compute all K-trivial sets.

For the solution of the random covering problem, one needs the implication from
left to right in (1). The authors show that X lies in a Π0

2 null class such that the
cost function derived from the Hirschfeldt–Miller argument (see [31, Th. 5.3.16]) is
additive in the sense of [29]. They then use the fact that every K-trivial A obeys
every additive cost function ([29]; also see [3]) in order to conclude that A ďT X.

The authors of [3] used the technique from [4] to show that every random that is
not Oberwolfach random is LR-hard, and therefore high. Thus, the construction of
the “smart” K-trivial set showed that no low random set can compute all K-trivial
sets (in contrast with the existence of a low PA degree above all K-trivial sets).
The question whether such a random set exists was a strong variant of the covering
problem, which was also posed by Stephan in 2004. Using work from [14], they
also concluded that the smart K-trivial set is not computable from both halves of
a random set, negatively solving another strong variant of the covering problem
(Problem 4.7 in [27]).

Further, the authors of [3] made a connection between Oberwolfach randomness
and Lebesgue’s density theorem, by showing that if X is Oberwolfach random then
it is a density-one point. This was a corollary of showing that if X is Oberwolfach
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random, then every interval-c.e.5 function is differentiable at X (identifying X with
the real that has binary expansion 0.X). As a by-product, they obtained:

Theorem 3 ([3]). If X is a random set that is not a density-one point, then X
computes all K-trivial sets.

An alternative proof of Theorem 3 is given in [4], using the same technique as
the proof that such an X is LR-hard. However, the alternative proof requires the
fact that K-trivial sets are low for ML-randomness, hence it is not useful in the
proof of Theorem 6 below.

Theorem 3 set the stage for the last ingredient in the solution of the covering
problem, which was provided in August 2012 by Day and Miller [10]. Devising a
notion of forcing using a collection of effectively closed sets especially defined to
control density, they showed:

Theorem 4 ([10]). There is a random set X (in fact, a ∆0
2 one) that is a positive

density point but not a density-one point.

The Franklin–Ng, Bienvenu–Hölzl–Miller–Nies, Bienvenu–Greenberg–Kučera–Nies–
Turetsky and Day–Miller results now all combine to settle the covering problem in
the affirmative:

Corollary 5. There is an incomplete, ∆0
2 random set that computes all K-trivial

sets.

Further, Day and Miller incorporated non-K-trivial upper-cone avoidance with
their forcing and constructed an exact pair of random sets for the ideal of K-trivial
degrees.

Apart from the inherent interest in the covering problem, and the unexpected
path to its solution using analytic concepts, these results give alternative, modular
proofs of some of the results concerning K-trivial sets. Hitherto, the fact that
K-trivial sets are low for K (or low for ML-randomness), and the fact that the K-
trivial sets are downward closed under Turing reducibility, were proved using the
decanter argument and it stronger version, the golden run technique. Researchers
have found these highly combinatorial and complex techniques somewhat daunting.
We can now provide alternative arguments. We note that (2) below easily implies
(1).

Theorem 6 (Nies [30]).

(1) Let A be K-trivial. Then every set B ďT A is K-trivial.
(2) Let A be K-trivial. Then A is low for K (hence low for ML-randomness).

Proof. (1) A direct construction of Bienvenu’s (see a forthcoming journal paper
with Downey, Merkle and Nies related to [2]) shows that A is computable from
some c.e., K-trivial set C. In [3] it is proved directly that every c.e., K-trivial
set is computable from every random set that is not Oberwolfach random. Then,
by the argument above, C is computable from some incomplete random set Z.
Now the Hirschfeldt–Nies–Stephan argument first shows that Z is C-random, and

5A non-decreasing lower semicontinuous function f : r0, 1s Ñ R is interval-c.e. if fp0q “ 0

and fpyq ´ fpxq is a left-c.e. real, uniformly in rational numbers x, y. Equivalently, by work of
Freer, Kjos-Hansen, Nies and Stephan [16], an interval c.e. function is the variation function of a

computable real-valued function.



8 BIENVENU, DAY, GREENBERG, KUČERA, MILLER, NIES, AND TURETSKY

so certainly A-random and B-random. Thus, A and a fortiori B, is a base for
randomness. The “hungry sets” argument from [19] now shows that B is K-trivial.
(2) The set A is low for K by a slightly more elaborate “hungry sets” argument
due to [31, Section 5.1]. �

Diamond classes were investigated in [31], [18] and elsewhere. These are collec-
tions of c.e. sets of the form

C˛ “ tA c.e. : A ďT X for all random X P Cu ,

where C is any collection of sets; they are naturally ideals in the c.e. degrees. If C is
not null, then C˛ consists of the computable sets; the Hirschfeldt–Miller argument
shows that if C is a null Σ0

3 class then C˛ contains a noncomputable set. Greenberg
and Nies [18] showed, for example, that the strongly jump-traceable c.e. sets form a
diamond class. Results in [3], together with the smart K-trivial set, give a diamond
class (JTH˛) that lies strictly between the K-trivial and the strongly jump-traceable
degrees. The covering result answers a question by Nies, by letting C be the class
of sets that are not Oberwolfach random:

Corollary 7. The K-trivial c.e. sets form a diamond class.

Let X P 2ω be Martin-Löf random. The following diagram summarizes the
properties we have discussed:

X is not
LR-hard

X is Oberwolfach
random

X is a density-
one point

X is a positive
density point

X does not compute
every K-trivial

X is Turing
incomplete

ä

As mentioned above, there is a Turing incomplete random that is LR-hard. By [10],
there is a ML-random positive density point that is not a density-one point. The
rightmost vertical equivalence is due to [5] as discussed above. The other nontrivial
implications were obtained in [3].

Question 8. Determine which further implications hold for ML-random sets.

In particular, we ask the following.

Question 9. Is there an LR-hard Oberwolfach random set? Equivalently, does the
collection of K-trivial sets strictly contain the diamond class LRH˛?

Question 10. What is the effective measure-theoretic characterization of the ran-
dom sets for which Lebesgue’s density theorem hold? Is it Oberwolfach randomness,
or a weaker notion? How does it relate to LR-hardness?
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