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 Systematic disagreement 

 Sampling errors 

Computing Krippendorff’s Alpha-Reliability 
 

Klaus Krippendorff 

kkrippendorff@asc.upenn.edu 

2011.1.25 

 

Krippendorff’s alpha () is a reliability coefficient developed to measure the agreement among 

observers, coders, judges, raters, or measuring instruments drawing distinctions among typically 

unstructured phenomena or assign computable values to them.   emerged in content analysis but 

is widely applicable wherever two or more methods of generating data are applied to the same 

set of objects, units of analysis, or items and the question is how much the resulting data can be 

trusted to represent something real.  

 

’s general form is: 

e

o1
D

D
  

where Do is the observed disagreement among values assigned to units of analysis: 
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ckmetriccko o
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and De is the disagreement one would expect when the coding of units is attributable to chance 

rather than to the properties of these units: 
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The arguments in the two disagreement measures, ock, nc, nk and n, refer to the frequencies of 

values in coincidence matrices, to be defined below. 
 

Algebraically, when observers agree perfectly, observed disagreement Do=0 and =1, which 

indicates perfect reliability.  When observers agree as if chance had produced the results, Do=De 

and =0, which indicates the absence of reliability.  =0 occurs when observers are unable to 

distinguish among units or assign values to them drawn randomly from a collective estimate of 

the population of data. To rely on data generated by any method,  needs to be far from these 

two extreme conditions, ideally =1. For reliability considerations, ’s range is: 
 

                                                          1        0     
 

Unlike other specialized coefficients,  is a generalization of several known reliability indices.  

It enables researchers to judge a variety of data with the same reliability standard.   applies to: 

 Any number of observers, not just two 

 Any number of categories, scale values, or measures 

 Any metric or level of measurement (nominal, ordinal, interval, ratio, and more) 

 Incomplete or missing data 

 Large and small sample sizes alike, not requiring a minimum 

 

 evaluates reliability one variable at a time.  It offers other analytical possibilities not presented 

here. 

mailto:kkrippendorff@asc.upenn.edu
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Reliability data duplicate the process of generating data whose reliability is in question.  Given 

such data, -reliability can be computed in four computational steps, graphed below.  

 
        Reliability Data            Reliability Data Matrix        Observed         Difference      -Agreement 
                                                      One Variable            Coincidences       Function 
 

 
 
 

 

 

These four computational steps will be defined and illustrated with four kinds of data of 

increasing complexity:  

A. Binary or dichotomous data, two observers, no missing data                Page 2 

B. Nominal data, two observers, no missing data                  Page 3 

C. Nominal data, any number of observers, missing data                 Page 4 

D. All metrics, any number of observers, missing data                 Page 5 

Finally,  

E. A general computational form is presented, bypassing coincidence matrices Page 9  

A.  Binary or dichotomous data, two observers, no missing data 
 

 Construct a reliability data matrix; here, a 2 observers-by-N units matrix, containing 2N 

values, c and k: 

       Units:     1     2      …         u                 …           N 

  Observers:        i:   ci1   ci2    …          ciu                …           ciN     

                           j:   cj1   cj2    …          cju                …           cjN  

For example, when two observers judge N=10 units, the 2-by-10 data matrix contains 20 values: 

      Items judged:      1     2     3     4     5     6     7     8     9    10   

       Meg:      0     1     0     0     0     0     0     0     1     0    

     Owen:      1     1     1     0     0     1     0     0     0     0    

 Tabulate coincidences within units.  Coincidence matrices account for all values contained in 

a reliability data matrix.  They differ from the familiar contingency matrices, which account for 

units in two dimensions, not values.  The importance of this difference becomes apparent in C.   

Into a 2-by-2 coincidence matrix, units are entered twice, once as c-k pairs and once as k-c pairs.  

In the example, unit 1 is entered as a 0-1 pair of values and as a 1-0 pair of values.  Unit 2 is 

entered as two 1-1 pairs of values, etc.: 

                                               Values:        0    1                              0    1 

                                                             0   o00 o01  n0                  0  10    4   14 

                                                             1   o10 o11  n1                  1    4    2     6 

                            Number of Values:        n0   n1   n=2N                14   6   20 

   ciu                                ock                     2
ck 

u 
 

  

 

 kju 

mu 


e

o

D

D
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Accordingly, o00 represents the ten 0-0 pairs within units 4, 5, 7, 8, and 10.  o01 represents the 

four 0-1 pairs in units 1, 3, 6, and 9, and o10 represents the four 1-0 pairs in the four same units.   

o11 represents the two 1-1 pairs found only in unit 2.  n0=14 is the number of 0s in the reliability 

data matrix, n1=6 is the number of 1s, and n=2N=20 is the total number of values paired.   
 

For these binary data, mismatching coincidences occur in two cells o01, o10 of equal frequency, 4. 
 

 skip  

 Compute -reliability (most simple form):    
10

01
binary 111
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o
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In the example:   095.0
614

4
)120(1binary 


  

 

B.  Nominal data, two observers, no missing data 
 

 Construct a reliability data matrix – just as in A above.  For a 2-by-12 example: 

                 Items judged:       1     2     3     4     5     6     7     8     9    10   11   12 

        Ben:       a     a     b     b     d     c     c     c     e     d     d     a 

    Gerry:       b     a     b     b     b     c     c     c     e     d     d     d 

 Tabulate coincidences within units.  The general form of a coincidence matrix and one with 

frequencies from the above example entered are: 

                  Values:        1   .    k   .    .                                            a   b   c   d   e   

                                 1   o11 .  o1k  .    .    n1                               a    2   1   .    1    .    4     

                                  .     .        .              .                                 b    1   4   .    1    .    6             

                                  .     .        .              .                                 c     .    .   6    .    .    6             
                                 c   oc1  .  ock   .    .    nc = k ock                 d    1   1   .    4    .    6 
                                  .     .        .              .                                 e     .    .   .    .   2    2   

                                      n1  .   nk  .     .    n =ck ock                     4   6   6   6   2  24 

Where ock = u Number of c-k pairs in unit u      specifically:     oab = 1 a-b pair in unit 1   

                                                                                                     oba = 1 b-a pair in unit 1   

                                                                                                     oaa = 2 a-a pairs in unit 2   

                                                                                                              obb = 4 = 2 b-b pairs in unit 3  

                                                                                                                 + 2 b-b pairs in unit 4 

                                                                                                          and so forth. 

                                                                                                       na=4 is the number of as  

                                                                                                       nb=6 is the number of bs 

                                                                                                          and so forth. 

                                                                                                       n =24 is the total number of values 

                                                                                                                 for two observers: n = 2N 

 skip  

 Compute -reliability (most simple form):  














c cc

c ccc cc

e

eo

e

o
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Wherein Ao is the percent of observed matches in units u and Ae is the percent of matches 

obtainable by chance. The computational form further simplifies the needed computations. 

In the example:  

 

 692.0
)]12(2)16(6)16(6)16(6)14(4[)124(24

)]12(2)16(6)16(6)16(6)14(4[)24642)(124(
nominal 




  

 

 

C.  Nominal data, any number of observers, missing data 
 

 Construct a reliability data matrix – just as in A and in B above, but for m observers: 

                                      Units u:        1     2     .      .      .      u      .      .      .      .      .    N 

                      Observers:  1   c11  c12   .      .      .      c1u     .      .      .       .      .  c1N              

                                         i    ci1   ci2    .      .      .     ciu      .      .      .      .      .   ciN         

                                         j    cj1   cj2    .      .      .     cju      .      .      .      .      .   cjN          

                                         .     .       .                          .                                         .         

                                        m  cm1 cm2   .      .      .     cmu     .      .      .      .      . cmN       

       Number of observers valuing u:   m1  m2    .      .      .     mu     .      .      .      .      .   mN  

When data are missing, this matrix contains less than mN entries and mu is variable. 

 

For example, a 4 observers-by-12 units reliability data matrix: 

                                           Units u:      1     2     3     4     5     6     7     8     9   10   11   12 

                        Observer A:      1     2     3     3     2     1     4     1     2      .      .      . 

                        Observer B:      1     2     3     3     2     2     4     1     2     5      .      3 

                        Observer C:       .      3     3     3     2     3     4     2     2     5     1     . 

                        Observer D:      1     2     3     3     2     4     4     1     2     5     1     . 
      Number mu of values in unit u:      3     4     4     4     4     4     4     4     4     3     2     1   41 

Note that 7 out of the 48 possible values in this matrix are missing.  mu varies from 1 to 4. 

 

 Tabulate coincidences within units.  The coincidence matrix appears as in B: 

                  Values:        1   .    k   .    .                                            1   2   3   4   5   

                                 1   o11 .  o1k  .    .    n1                               1    7  4/3  1/3  1/3   .     9     

                                  .     .        .              .                                 2   4/3 10  4/3  1/3   .    13             

                                  .     .        .              .                                 3   1/3  4/3   8  1/3   .    10             

                                 c   oc1  .  ock   .    .    nc= k ock                  4   1/3  1/3  1/3  4    .     5 
                                  .     .        .              .                                 5    .    .    .    .   3     3   

                                      n1  .   nk  .     .    n = ck nck                     9  13  10  5   3   40 

Unlike in the two-observer case in B:    



u u

ck
m

o
1

uunit in  pairsk -c ofNumber 
 

Note that each unit contains mu(mu–1) coincidences. A coincidence matrix accounts for all 

pairs of values found in u.  Unit 1 contains 3(3–1)=6 pairs of matching 1s.  It contributes 
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6/(3-1)=3 to the o11 cell, one for each value.  Unit 2 contains 4(4-1)=12 pairs, 6 matching 2-2 

pairs, 3 mismatching 2-3 pairs, and 3 mismatching 3-2 pairs.  It adds 6/(4-1)=2 to o22, 3/(4-

1)=1 to o23, 1 to o32, and 4 to the total n, thus fully accounting for its 4 values.  Unit 6 

contains 4(4-1)=12 pairs of mismatching values, each adds 1/(4-1)=1/3 to a different cell.  

The lone value 3 in unit 12 affords no comparisons, 1(1-1)=0 pairs and does not add to this 

account.  Thus, the margins of coincidence matrices do not represent all values that occur in a 

reliability data matrix, only those that can be paired within units, here n=40 pairable values 

over all units. 

 

 Skip  

 Compute -reliability – just as in B 




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In the example:  

743.0
)]13(3)15(5)110(10)113(13)19(9[)140(40

)]13(3)15(5)110(10)113(13)19(9[)348107)(140(
nominal 






 

 

D.  Any metric, any number of observers, missing data 
 

 Construct a reliability data matrix – just as in C 

 Tabulate coincidences within units – just as in C  

 Insert the difference function 
2

ckmetric  that is appropriate to the metric of the given data into 

the two disagreements Do and De defined in the beginning of this document. 

Note that  accounts for different metrics or levels of measurement by weighing the 

observed and expected coincidences by the squared difference between the coinciding values.  

Differences can be expressed as mathematical functions and in the form of a table.  The latter 

makes their relative magnitudes transparent.  Interval and ratio metric differences are 

functions of the values being paired.  Ordinal differences depend on their frequencies of 

using values.  And nominal differences are added here to generalize step .   

 

 Nominal metric differences – Two values either match, or they do not: 

                                      Nominal categories, names:        a     b     c      d     e      f       

 a    0      1      1      1      1      1 

 b    1      0      1      1      1      1 

 2

cknominal                                     c    1      1      0      1      1      1 

 d     1      1      1      0      1      1 

 e     1      1      1      1     0      1 

 f     1      1      1      1      1      0 
 

 

0  iff c = k 

1  iff c  k 
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 Ordinal metric differences – Values have the meaning of ranks and differences between 

ranks depend on how many ranks they are apart from each other.  For example, with 

frequencies from data in C (and one unused rank added to show that it does not matter): 

              Ranks:           1
st
   2

nd
   3

rd
   4

th
   5

th
   6

th
  

    1
st
       0    11

2
  22.5

2
  30

2
  32.5

2
  34

2
      n1st  =   9 

    2
nd

    121    0    11.5
2
  19

2
  21.5

2
  23

2
      n2nd = 13 

    3
rd

    506  132     0     7.5
2
   10

2
  11.5

2
     n3rd = 10 

    4
th

     900  361   56      0     2.5
2
    4

2
       n4th =   5 

    5
th

     992  462  100    6.3      0    1.5
2
      n5th =   0 

    6
th

    1156 529  132    16     2.3      0      n6th =   3 

 

Ordinal metric differences may be standardized: 0  ordinal
2

ck 1 by: 

 

        

 

 

where cmax is the largest and cmin the smallest rank among all ranks used.  

Standardization does not affect , however. 

 

 Interval metric differences – Values differ algebraically: 

           Interval values:        -1    0     1     2     3     4 

                -1     0     1
2
     2

2
    3

2
    4

2
    5

2 

                 0     1     0     12    22   32
    4

2 

 22

ckinterval kc                1     4     1     0     12   22
    3

2 

                 2     9     4     1     0    12    22 

                 3   16     9     4     1     0    1
2
 

                 4    25   16    9     4     1    0 

 

Interval metric differences may be standardized as well: 0  interval
2

ck 1 by: 

 

 

where cmax is the largest and cmin is the smallest value occurring in the data. 

This standardization does not affect  either. 

 

 1st,3rd=22.5 2

2

ckordinal
2








 
 





kckg

cg g

nn
n  

 4th,6th=4 

2

2

ckordinal

2

2
































minmax cc

kckg

cg g

nn
n

nn
n

 

2

minmax

2

ckintervall
c  c 














kc
 



 7 

 Ratio metric differences – Algebraic differences between two values are expressed 

relative to an absolute zero point.  They are proportional to the magnitude of their values:  

   Ratio values:       0     1     2      3     4      5 

     0    0    ()
2
  ()

2
  ()

2
  ()

2
  ()

2
 

     1    1     0     ()
2
  ()

2
  ()

2
  ()

2 

     2    1   .11    0    ()
2
  ()

2
  ()

2 

     3    1   .25  .04     0   ()
2
  ()

2 

     4    1   .36  .11   .02    0   ()
2 

     5    1   .44  .18   .06  .01    0 

 

 Circular metric differences – Shortest differences between any two values on a circular 

scale with arbitrary endpoints but a fixed circumference U = the number of equal 

intervals on a circle.  

             Circular values:        0     1     2     3     4     5 

With the sine function expressed in degrees: 0      0   .25   .75    1    .75   .25 

     1    .25    0    .25   .75     1    .75  

     2    .75   .25    0    .25   .75     1 

With the sine function expressed in radiance: 3      1   .75   .25    0    .25   .75 

     4    .75    1    .75   .25    0    .25 

     5    .25   .75    1    .75   .25     0 

 

 

 Bipolar metric differences – Algebraic differences are expressed relative to the two 

endpoints, cmin and cmax, of the scale. Near the center, a bipolar metric behaves like an 

interval metric and near the poles it behaves like a ratio metric. 

            Bipolar values:           -2     -1       0      1       2  

                -2       0     —     —     —     — 

                -1    .143    0      —     —     — 

     0    .333   .067    0      —     — 

     1    .600  .250  .067    0      — 

     2    1.00  .600  .333  .143    0  

 

2

2

ckratio 













kc

kc
 

1           2            3            4           5 

1           2            3            4           5 

1            2           3           4 

3            4           5           6 

1            2           3 

5            6           7 

1            2 

7            8 

1 

9 

2

2

circular 180 














 


U

kc
sinck

  

)kcc)(ckc(

)kc(
ck






maxmin

2
2

polar
22

 

     1         2          3          4 

   17      26       35      44 

  1         2          3            

35      44       53       

  1         2   

53      62  

  1  

71 

   2                     2                      2                     2  

 

 

 

                         2                     2                      2 

 

 

 

                                                2                     2 

 

 

 

                                                                      2 

2

2

circular 














 


U

kc
sinck
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 Compute -reliability (the computationally most efficient form): 

 














c ck

ckkc

c ck

ckck

e

o

nn

o

n
D

D
2

metric

2

metric

metric 111  

Note that the sums in this form enumerate only one of the two symmetrical off-diagonal 

triangles of a coincidence matrix.  Its entries, ock as well as the products ncnk are weighted by 

an appropriately chosen difference function 
2
ckmetric . 

 

Computations are illustrated with the numerical data in C above, interpreted as ordinal, 

interval and ratio data respectively. Zero frequencies appear as 0 in the list of multiplications: 

With data in C as ordinal data:   














c ck

ckkc

c ck

ckck

ordinal
nn

o

n
2

ordinal

2

ordinal

11  

In the Example: 

   815.0
4355.113105.751023313195135.111013343930595.2210911139

005.7
3

1
019

3

1
5.11

3

4
030

3

1
5.22

3

1
11

3

4

1401
2222222222

222222

ordinal 






 

With data in C as interval data:   














c ck

ckkc

c ck

ckck

ervalint
nn

o

n
2

interval

2

interval

11  

In the example: 

849.0
13523101510331325131101343935921091139

001
3

1
02

3

1
1

3

4
03

3

1
2

3

1
1

3

4

)140(1
2222222222

222222

interval 



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With data in C as ratio data:   
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In the example: 

   797.0

9

1
35

8

2
310

7

1
510

7

3
313

6

2
513

5

1
1013

6

4
39

5

3
59

4

2
109

3

1
139

00
7

1

3

1
0

6

2

3

1

5

1

3

4
0

5

3

3

1

4

2

3

1

3

1

3

4

1401

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

ratio 




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E. A general computational form, bypassing coincidence matrices: 

 
 Start from a reliability data matrix as in C above: 

                                      Units u:        1     2     .      .      .      u      .      .      .      .      .     N 

                     Observers:  1   c11  c12    .      .      .      c1u    .      .      .      .      .   c1N              

                                         i    ci1   ci2    .      .      .      ciu     .      .      .      .      .   ciN         

                                         j    cj1   cj2    .      .      .      cju     .      .      .      .      .   cjN          

                                         .     .      .                          .                                         .         

                                        m  cm1 cm2    .      .      .      cmu    .      .      .      .      .  cmN       

                   

When data are missing, this matrix will contain fewer than mN values. 

For the 4 observers-by-12 units example of reliability data used in C and D above: 

                                         Units u:     1     2     3     4     5     6     7     8     9   10   11   12 

                   Observers: A:     1     2     3     3     2     1     4     1     2      .      .      . 

                       B:     1     2     3     3     2     2     4     1     2     5      .     3 

                       C:      .     3     3     3     2     3     4     2     2     5     1      . 

                       D:     1     2     3     3     2     4     4     1     2     5     1      . 

   
Note that  

 Out of the mN=412=48 possible values in this matrix, 7 are missing.   

 The value 3, assigned by observer B to the 12
th

 unit cannot be paired with non existing 

values in that unit, cannot contribute to observed agreements or disagreements, drops out 

when constructing a coincidence matrix, and has to be ignored. 

Thus, this matrix contains a total of n..= 40 pairable values. 

 

 

Instead of  and ,  

enumerate the values found in units and create a values-by-units matrix: 

                                         Units:        1     2     .      .      .      u      .      .      .      .      .      . 

                           Values:  1   n11  n21    .      .      .     nu1     .      .      .      .      .      .   n.1 

                                         .     .     .                            .                                              . 

                                         c   n1c   n2c    .      .      .     nuc     .      .      .      .      .      .   n.c 

                                         k   n1k   n2k    .      .      .     nuk     .      .      .      .      .      .   n.k   

                                         .     .       .                          .                                              .  

                            Totals:      n1.   n2.     .      .      .     nu.    .      .      .      .      .     .   n..   

Where  nuc = the number of values c assigned to unit u. nuc  m observers. nuk by analogy 

             nu. =c nuc = the number of values assigned to unit u  

             n.c =u|nu.2 nuc = the number of pairable values c occurring in the reliability data 

(omitting all units with lone or no values: nu.1) 

             n.. = u|nu.2 nu. = the total number of all pairable values in the reliability data 

(omitting all units with lone or no values: nu.1);   n.. mN 
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For the above example                    

                                      Units u :       1     2     3     4     5     6     7     8     9    10   11   12 

                   Values c, k :  1    3     0     0     0     0     1     0     3     0     0     2     0      9 = n.1 

                                         2    0     3     0     0     4     1     0     1     4     0     0     0    13 = n.2 

                                         3    0     1     4     4     0     1     0     0     0     0     0     1    10 = n.3 

                                         4    0     0     0     0     0     1     4     0     0     0     0     0      5 = n.4 

                                         5    0     0     0     0     0     0     0     0     0     3     0     0      3 = n.5 

                       Totals nu. :      3     4     4     4     4     4     4     4     4     4     2     1    40 = n.. 

Note that the marginal sum n.3 of pairable values 3 omits the only lone value in unit 12, n12.=1. 

 Compute  with the appropriate metric difference function as defined in D above: 
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If the above example consists of nominal data (perfect agreement seen as 0 disagreement): 
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If the above example consists of interval data (perfect agreement seen as 0 disagreement): 
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

 

Most computations of  can be performed with SPSS or SAS macros written by Andrew Hayes. 

Available at http://www.afhayes.com: Go to ―SPSS and SAS Macros‖ then to ―KALPHA.‖ 
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