
Computing Label-Constraint Reachability in Graph
Databases

Ruoming Jin1 Hui Hong1 Haixun Wang2 Ning Ruan1 Yang Xiang1

1Kent State University, Kent, OH 44242
{jin, hhong, nruan, yxiang}@cs.kent.edu

2Microsoft Research Asia
haixunw@microsoft.com

ABSTRACT
A huge amount of graph data (biological networks, semantic
web, ontologies, social networks) is being generated. Many
of these real-world graphs are edge-labeled graphs, i.e., each
edge is associated with a label that denotes the relationship
between the two vertices connected by the edge. Given this,
a fundamental research problem on the labeled graphs is
how to handle the label-constraint reachability query: Can
vertex u reach vertex v through a path whose edge labels are
constrained by a set of labels? In this work, we formally
introduce the labeled reachability query problem, and pro-
vide two initial algorithms that categorize its computational
complexity. We then generalize the transitive closure for the
labeled graph, and introduce a new index framework which
utilizes a directed spanning tree to compress the generalized
transitive closure. We optimize the index for minimal mem-
ory cost and we propose methods which utilize the directed
maximal weighted spanning tree algorithm and sampling
techniques to maximally compress the generalized transi-
tive closure. After establishing an interesting link between
the reachability problem and the geometric search problem,
we utilize the geometric search structures, such as multidi-
mensional kd-trees or the range-search trees, to enable fast
query processing. In our extensive experimental evaluation
on both real and synthetic datasets, we find our tree-based
index can significantly reduce the memory cost of the gener-
alized transitive closure while still being able to answer the
query very efficiently.

Categories and Subject Descriptors
H.2.8 [Database management]: Database Applications—
graph indexing and querying

General Terms
Performance

Keywords
Graph indexing, Reachability queries, Transitive closure,
Maximal directed spanning tree, Sampling

1. INTRODUCTION
A huge amount of graph data (biological networks, se-

mantic webs, social networks) is being generated. How to
manage these large graphs in a database system has become
an important research issue in the database research com-
munity. One of the most fundamental research problems is

the reachability query, which asks if one vertex can reach
another or not. This is a seemingly simple but very difficult
problem due to the sheer size of these large graphs. In re-
cent years, a number of algorithms have been proposed to
handle graph reachability queries [16, 2, 27, 7, 26, 17, 8].

However, many real-world graphs are edge-labeled graphs,
i.e., edges are associated with labels to denote different types
of relationships between vertices. The reachability query for
labeled graphs often involves constraints on the path con-
necting two vertices. Here, we list several such applications:

Social Networks:. In a social network, each person is rep-
resented as a vertex and two persons are linked by an edge if
they are related. The relationships between two persons are
represented through different types of labels. For instance,
such relationships may include parent-of, student-of, brother-
of, sister-of, friend-of, employee-of, consultant-of, follower-
of, etc. Many queries in social networks seek to discover how
one person A relates to another person B. These queries in
general can be written as if there is a path from A to B
where the labels of all edges in the path are either a specific
type or belong to a specified set of labels. For instance, if
we want to know whether A is a remote relative of B, then
we ask if there is a path from A to B where each edge la-
bel along the path is one of parent-of, child-of, brother-of,
sister-of.

Bioinformatics:. Understanding how metabolic chain re-
actions take place in cellular systems is one of the most fun-
damental questions in system biology. To answer these ques-
tions, biologists utilize so-called metabolic networks, where
each vertex represents a compound, and a directed edge be-
tween two compounds indicates that one compound can be
transformed into another one through a certain chemical re-
action. The edge label records the enzymes which control
the reaction. One of the basic questions is whether there
is a certain pathway between two compounds which can be
active or not under certain conditions. The condition can
be described as the availability of a set of enzymes. Here,
again, our problem can be described as a reachability query
with certain constraints on the labels of the edges along the
path.

To summarize, these queries ask the following question:
Can vertex u reach vertex v through a path whose edge labels
must satisfy certain constraints? Typically, the constraint
is membership: the path’s edge labels must be in the set of
constraint labels. Alternatively, we can ask for a path which
avoids any of these labels. These two forms are equivalent.

We note that this type of query can also find applications in
recommendation search in viral marketing [20] and reacha-
bility computation in RDF graphs, such as Wikipedia and
YAGO [25].

The constraint reachability problem is much more com-
plicated than the traditional reachability query which does
not consider any constraints. Existing work on graph reach-
ability typically constructs a compact index of the graph’s
transitive closure matrix. The transitive closure can be used
to answer the Yes/No question of reachability, but it cannot
tell how the connection is made between any two vertices.
Since the index does not include the labeling information,
it cannot be expanded easily to answer our aforementioned
label-constraint reachability query.

The constraint reachability problem is closely related to
the simple path query and the regular expression path query
for XML documents and graphs. Typically, these queries
describe the desired path as a regular expression and then
search the graph to see if such a path exists or not. An
XPath query is a simple iteration of alternating axes (/ and
//) and tags (or labels), and it can be generalized by us-
ing regular expressions to describe the paths between two
or a sequence of vertices [1]. We can look at our constraint
reachability query as a special case of the regular simple path
query. However, the general problem of finding regular sim-
ple paths has proven to be NP-complete [21]. The existing
methods to handle such queries are based on equivalence
classes and refinement to build compact indices and then
match the path expression over such indices [22, 12]. On
the other hand, a linear algorithm exists for the constraint
reachability problem. Thus, the existing work on quering
XML and graphs cannot provide an efficient solution to our
constraint reachability query.

1.1 Our Contributions
In this work, we provide a detailed study of the constraint

reachability problem and offer an efficient solution. We be-
gin by investigating two simple solutions, representing two
extremes in the spectrum of solutions. First, we present
an online search (DFS/BFS) algorithm. This method has
very low cost for index construction and minimal index size.
However, online search can be expensive for very large graphs.
Second, we consider precomputing the necessary path infor-
mation (of labels) between any two vertices. This is similar
to building the transitive closure for answering the tradi-
tional reachability query. This approach can answer the con-
straint reachability query much faster than the first method
since we can use the precomputed table to answer queries
without traversing the graph. However, the size of the pre-
computed path-label sets is much larger than that of the
traditional transitive closure for reachability query. In sum-
mary, the first approach uses the least amount of memory
but has high computational cost for query answering, while
the second approach answers the query efficiently, but uses
a large amount of memory.

The major research problem here is how to find a (good)
compromise between these two approaches. Specifically, we
would like to significantly reduce the memory cost of the
fully precomputed table and still be able to answer the reach-
ability query efficiently. In this work, we propose a novel
tree-based index framework for this purpose. Conceptually,
we decompose any path into three fragments: beginning,
end, and middle fragments. Its beginning and end parts al-

ways come from a spanning tree structure, and its middle
fragment will be precomputed by a partial transitive clo-
sure. We will not fully materialize the transitive closure,
but only record a small portion of it, which we refer to as
the partial transitive closure. Interestingly, we find that the
problem of minimizing the size of the partial transitive clo-
sure can be effectively transformed into a maximal directed
spanning tree problem. We also devise a query processing
scheme which will effectively utilize multi-dimensional ge-
ometric search structures, such as kd-tree or range search
tree, to enable fast query processing.

Our main contributions are as follows:

1. We introduce the label-constraint reachability (LCR)
problem, provide two algorithms to categorize its com-
putational complexity and generalize the transitive clo-
sure (Section 2).

2. We introduce a new index framework which utilizes
a directed spanning tree to compress the generalized
transitive closure (Section 3).

3. We study the problem of constructing the index with
minimal memory cost and propose methods which uti-
lize the directed maximal weighted spanning tree algo-
rithm and sampling techniques to maximally compress
the generalized transitive closure (Section 4).

4. We present a fast query processing approach for LCR
queries. Our approach is built upon an interesting link
between the reachability search problem and geomet-
ric search problem, permitting us to utilize geometric
search structures, such as multidimensional kd-trees or
range search tree for LCR queries (Section 5).

5. We conducted a detailed experimental evaluation on
both real and synthetic datasets. We found our tree-
based index can significantly reduce the memory cost
of the generalized transitive closure while still being
able to answer the query very efficiently (Section 6).

2. PROBLEM STATEMENT
A database graph (db-graph) is a labeled directed graph

G = (V, E, Σ, λ), where V is the set of vertices, E is the set
of edges, Σ is the set of edge labels, and λ is the function that
assigns each edge e ∈ E a label λ(e) ∈ Σ. A path p from ver-
tex u to v in a db-graph G can be described as a vertex-edge
alternating sequence, i.e., p = (u, e1, v1, · · · , vi−1, ei, vi, · · · , en, v).
When no confusion will arise, we use only the vertex se-
quence to describe the path p for simplicity, i.e., p = (v0, v1, · · · , vn).
We use path-label L(p) to denote the set of all edge labels in
the path p, i.e., L(p) = {λ(e1)} ∪ {λ(e2)} ∪ · · · ∪ {λ(en)}.

Definition 1. (Label-Constraint Reachability) Given
two vertices, u and v in db-graph G, and a label set A, where
u, v ∈ V and A ⊆ Σ, if there is a path p from vertex u to
v whose path-label L(p) is a subset of A, i.e., L(p) ⊆ A,
then we say u can reach v with label-constraint A, denoted

as (u
A−→ v), or simply v is A-reachable from u. We also

refer to path p as an A-path from u to v. Given two vertices
u and v, and a label set A, the label-constraint reacha-
bility (LCR) query asks if v is A-reachable from u.

Figure 1: Running Example

Figure 2: (0, 9) Path-Label

Throughout this paper, we will use Figure 1 as a running
example, using integers to represent vertices and letters to
represent edge labels. In this example, we can see that ver-
tex 0 can reach vertex 9 with the label-constraint {a, b, c}.
In other words vertex 9 is {a, b, c}-reachable from vertex 0.
Furthermore, the path (0, 3, 6, 9) is a {a, b, c}-path from ver-
tex 0 to 9.

In the following, we will discuss two basic approaches for
answering the label-constraint reachability (LCR) queries.

2.1 Online DFS/BFS Search
The most straight-forward method for answering an LCR

query is online search. We can apply either DFS (depth-
first search) or BFS (breadth-first search), together with the
label-constraint, to reduce the search space. Let us consider
the DFS for the A-reachable query from vertex u to v. For
simplicity, we say that a vertex x is A-adjacent to vertex u, if
there is an edge e linking u to x, i.e., e = (u, x) and the edge
label of e is contained in A, λ(e) ∈ A. Starting from vertex
u, we recursively visit all A-adjacent vertices until we either
reach vertex v or have searched all the reachable vertices
from u without reaching v. Clearly, in O(|V |+ |E|), we can
conclude v is A-reachable from u or not. Thus, answering
the label-constraint reachability query can be done in poly-
nomial time. However, since the size of the db-graph is very
large (it can easily contain millions of vertices), such simple

online search is not acceptable for fast query answering in a
graph database.

We may speedup such online search by a more “focused”
search procedure. The speedup is based on the observation
that in the above procedure, we may visit a lot of vertices
from vertex u which cannot reach vertex v no matter what
path we take. To avoid this, we can utilize the existing work
on the reachability query [16, 2, 27, 7, 26, 17, 8], which tells
whether one vertex can reach another vertex very quickly.
Thus, when we try to visit a new vertex from the current
vertex, denoted as u′, we require this vertex is not only A-
adjacent to u′, but also can reach the destination vertex v
(utilizing the traditional reachability index). Note that the
BFS procedure can be extended in a similar manner.

2.2 Generalized Transitive Closure
An alternative approach is to precompute the path-label

set, i.e., all path-labels between any two vertices. Note that
this corresponds to the transitive closure for the reachabil-
ity query. The major difficulty for the path-label sets is the
space cost. The upper bound for the number of all path-
labels between any two vertices is 2|Σ|. Thus, the total stor-
age complexity is O(|V |22|Σ|), which is too expensive.

However, to answer the label-constraint reachability (LCR)
query, we typically only need to record a small set of path-
labels. The intuition is that if vertex u can reach vertex
v with label constraint A, then u can reach v with any la-
bel constraint A′ ⊇ A. In other words, we can always drop
the path-labels from u to v which are supersets of another
path-label from u to v without affecting the correctness of
the LCR query result. For instance, in our running example
from vertex 0 to 9, we have one path (0, 2, 9), which has the
path-label {b, d}, and another path (0, 2, 5, 8, 9), which has
the path-label {b, d, e, a}. Then, for any label-constraint A,
we will not need to check the second path to answer the
query.

To formally introduce such a reduction, we need to con-
sider what set of path-labels are sufficient for answering LCR
query.

Definition 2. (Sufficient Path-Label Set) Let S be
a set of path-labels from vertex u to v. Then, we say S
is a sufficient path-label set if for any label-constraint A,

u
A−→ v, the LCR query returns true if and only if there is

a path-label s ∈ S, such that s ⊆ A.

Clearly the set of ALL path-labels from vertex u to v,
denoted as S0, is sufficient. Our problem is how to find the
minimal sufficient path-label set, which contains the smallest
number of path-labels. This set can be precisely described
in Theorem 1.

Theorem 1. Let S0 be the set of all path-labels from ver-
tex u to v. The minimal sufficient path-label set from u to v,
referred to as Smin is unique and includes only those path-
labels which do not have any (strict) subsets in S0, i.e.,

Smin = {L(p)|L(p) ∈ S0 ∧ ∄L(p′) ∈ S0, such that, L(p′) ⊂ L(p)}
In other words, for any two path-labels, s1 and s2 in Smin,
we have s1 6⊂ s2 and s2 6⊂ s1.

This theorem clearly suggests that we can remove all path-
label sets in S which contain another path-label set in S
without affecting the correctness of LCR queries. Its proof

is omitted for simplicity. In addition, we can also utilize
the partially order set (poset) to describe the minimal suffi-
cient path-label set. Let the subset (⊆) relationship be the
binary relationship “≤” over S0, i.e., L1 ≤ L2 iff L1 ⊆ L2

(L1, L2 ∈ S0). Then, the minimal sufficient path-label set
is the lower bound of S0 and consists all and only mini-
mal elements [3]. Figure 2 shows the set of all path-labels
from vertex 0 to 9 using a Hasse Diagram. We see that its
minimal sufficient path-label set contains only two elements:
{b, e} and {a, b, c}. The upper bound for the cardinality of

any minimal sufficient path-label set is
` |Σ|
⌊|Σ|/2⌋

´

. This is

also equivalent to the maximal number of non-comparable
elements in the power set of Σ. The bound can be easily ob-
served and in combinatorics is often referred to as Sperner’s
Theorem [3].
Algorithm Description: We present an efficient algo-
rithm to construct the minimal sufficient path-label set for
all pairs of vertices in a given graph using a dynamic pro-
gramming approach corresponding to a generalization of Floyd-
Warshall algorithm for shortest path and transitive closure [10]).

Let Mk(u, v) denote the minimal sufficient path-label set
of those paths from u to v whose intermediate vertices are in
{v1, · · · , vk}. Now we consider how to compute the minimal
sufficient path-label sets of the paths from each vertex u to v
with intermediate vertices up to vk+1, i.e., Mk+1(u, v). Note
that Mk+1(u, v) describe two types of paths, the first type
is those paths using only intermediate vertices (v1, · · · , vk)
and the second type is those paths going through the inter-
mediate vertices up to vk+1. In other words, the second type
of paths can be described as a path composed of two frag-
ments, first from u to k +1 and then from k + 1 to j. Given
this, we can compute the minimal sufficient path-label sets
using these two types of paths recursively by the following
formula:

Mk+1(u, v) = Prune(Mk(u, v) ∪ (Mk(u, k)⊙Mk(k, v)));

M0(u, v) =



λ((u, v)) if (u, v) ∈ E
∅ if (u, v) /∈ E

Here, Prune is the function which simply drops all the path-
labels which are the supersets of other path-labels in the input
set. In other words, Prune will produce the lower bound of
the input path-label set. The ⊙ operator joins two sets of
sets, such as {s1, s2}⊙{s′1, s′2, s′3} = {s1∪s′1, s1∪s′2, · · · , s2∪
s′3}, where si and s′j are sets of labels. Besides, we can easily
observe that

Prune(S1 ∪ S2) = Prune(Prune(S1) ∪ Prune(S2))

Prune(S1 ⊙ S2) = Prune(Prune(S1)⊙ Prune(S2))

where S1 and S2 are two path-label sets. The correctness
of the recursive formula for the Mk+1(u, v) naturally follows
these two equations.

Algorithm 1 sketches the dynamic programming proce-
dure which constructs the minimal sufficient path-label sets
for all pairs of vertices in a graph G. The worst case com-
putational complexity is O(|V |32|Σ|) for this dynamic pro-

cedure and its memory complexity is O(|V |2
` |Σ|
⌊|Σ|/2⌋

´

).

3. A TREE-BASED INDEX FRAMEWORK
The two methods we described in Section 1, online search

and generalized transitive closure computation, represent
two extremes for label-constraint reachability (LCR) query
processing: the first method has the least memory cost for

Algorithm 1 LabeledTransitiveClosure(G(V, E, Σ, λ))

Parameter: G(V, E,Σ, λ) is a Database Graph
1: for each (u, v) ∈ V × V do
2: if (u, v) ∈ E then
3: M [u, v]← {λ((u, v))}
4: else
5: M [u, v]← ∅
6: end if
7: end for
8: for k = 1 to |V | do
9: for each (u, v) ∈ V × V do
10: M [u, v]← Prune(M [u, v] ∪ (M [u, k]⊙M [k, v]))
11: end for
12: end for

indexing but very high computational cost for answering the
query, while the second method has very high memory cost
for indexing but has low computational cost to answer the
query. Thus, the major research question we address in the
present work is how to devise an indexing mechanism which
has a low memory cost but still can process LCR queries
efficiently.

The basic idea of our approach is to utilize a spanning
tree to compress the generalized transitive closure which
records the minimal sufficient path-label sets between any
pair of vertices in the db-graph. Though spanning trees
have been applied to directed acyclic graphs (DAG) for com-
pressing the traditional transitive closure [2], our problem is
very different and much more challenging. First, both db-
graphs and LCR queries include edge labels which cannot be
handled by traditional reachability index. Second, the db-
graph in our problem is a directed graph, not a DAG. We
cannot transform a directed graph into a DAG by coalesc-
ing the strongly connected components into a single vertex
since much more path-label information is expressed in these
components. Finally, the complexity arising from the label
combination, i.e, the path-label sets, is orders of magnitude
higher than the basic reachability between any two vertices.
Coping with such complexity is very challenging.

To deal with these issues, our index framework includes
two important parts: a spanning tree (or forest) of the db-
graph, denoted as T , and a partial transitive closure, de-
noted as NT , for answering the LCR query. At the high
level, the combination of these two parts contains enough
information to recover the complete generalized transitive
closure. However, the total index size required by these two
parts is much smaller than the complete generalized transi-
tive closure. Furthermore, LCR query processing, which in-
volves a traversal of the spanning tree structure and search-
ing over the partial transitive closure, can be carried out
very efficiently.

Let G(V, E, Σ, λ) be a db-graph. Let T (V, ET , Σ, λ) be
a directed spanning tree (forest) of the db-graph, where
ET ⊆ E. Note that we may not be able to find a span-
ning tree, instead, we may find a spanning forest. In this
case, we can always construct a spanning tree by creating a
virtual root to connect the roots of the trees in the spanning
forest. Therefore, we will not distinguish spanning tree and
spanning forests. For simplicity, we always assume there is
a virtual root. For convenience, we say an edge e ∈ ET is
a tree edge and an edge in E but not in ET is a non-tree
edge. There are many possible spanning trees for G. Fig-
ure 3 shows one spanning tree for our running example graph

Figure 3: Spanning Tree and Non-Tree Edges

Figure 4: Partial Transitive Closure (NT) (S. for Source

and T. for Target)

(Figure 1), where the bold lines highlight the edges in the
spanning tree, and the dotted lines are the non-tree edges
in the graph.

To utilize the spanning tree structure T of the db-graph
G for compressing the generalized transitive closure, we for-
mally introduce a classification of paths between any two
nodes.

Definition 3. (Path Classification) Consider a db-graph
G and its spanning tree T . For a path p = (v0, e1, v1, · · · , en, vn)
in G, we classify it into three types based on its starting edge
(e1) and ending edge (en):
1. (Ps) contains all the paths whose starting edge is a tree-
edge, i.e., e1 ∈ ET ;
2. (Pe) contains all the paths whose last edge is a tree-edge,
i.e., en ∈ ET ;
3. (Pn) contains all the paths whose starting edge and end
edge are both non-tree edges, i.e., e1, en ∈ E\ET .

We also refer the third type path Pn as non-tree path.
In addition, if all the edges in path p are tree-edges, i.e.,
ei ∈ ET for 1 ≤ i ≤ n, then, we refer to it as an in-tree
path.

Note that a path (if it starts with a tree-edge and ends

with a tree-edge) can belong to both the first and the second
types of paths. Indeed, the in-tree path is such an example,
and it is a special case of both Ps and Pe paths. In our
running example (Figure 3), path (0, 2, 9, 12) is an in-tree
path from vertex 0 to 12, path (0, 2, 5, 8, 11, 14, 12) is an
example of Ps, path (0, 5, 8, 11, 14, 12) is a non-tree path
Pn, and path (0, 5, 8, 9, 12) is an example of the second path
type Pe.

Now, we further introduce the classification of path-label
sets and especially the partial transitive closure, which car-
ries the essential non-tree path labels.

Definition 4. (Partial Transitive Closure) Let M(u, v)
be the minimal sufficient path-label set from vertex u to v in
G. Let p be a path from vertex u to v. Then we define the
three subsets of M(u, v) based on the path types:
1. Ms(u, v) = {L(p)|p ∈ Ps} ∩ M(u, v);
2. Me(u, v) = {L(p)|p ∈ Pe} ∩ M(u, v);
3. NT (u, v) = {L(p)|p ∈ Pn}∩M(u, v)−Ms(u, v)−Me(u, v);

The partial transitive closure NT records all the NT (u, v),
(u, v) ∈ V × V , where NT (u, v) 6= ∅.

Clearly, the union of these three subsets is the minimal
sufficient path-label set from u to v, i.e., M(u, v) = Ms(u, v)∪
Me(u, v) ∪ NT (u, v). Further, Ms(u, v) ∩ Me(u, v) may not
be empty, but (Ms(u, v) ∪ Me(u, v)) ∩ NT (u, v) = ∅. Theo-
rem 2 below states that we only need to record the partial
transitive closure (NT) in combination with the spanning
tree T in order to recover the complete transitive closure
M . Thus, it lays the theoretical foundation of our indexing
framework: T and NT together record sufficient informa-
tion for LCR query processing. Figure 4 shows the NT for
the spanning tree (Figure 3) in our running example. Here,
the NT has only a total of 26 entries, i.e., the number of
(u, v) which is not empty, NT (u, v) 6= ∅, and the cardinality
of each entry (the number of path-labels) is one. Among
these non-empty entries, 12 of them are simply the edges in
the original graph. Thus, only extra 14 entries are needed
to record in NT to recover the full transitive closure M .
Note that our running example graph has a total of 16 ver-
tices and 29 edges, and the size of M is 210,

P

(u,v)∈V ×V

|M(u, v)| = 210.

Theorem 2. (Reconstruction Theorem: T+NT →
M(u,v)) Given a db-graph G and a spanning tree T of G, let
NT be the partial transitive closure defined in Definition 4.
Let Succ(u) be all the successors of u in the tree T . Let
Pred(v) be all the predecessors of v in tree T . In addition,
u′ ∈ Succ(u) and v′ ∈ Pred(v). Then, we can construct
M ′(u, v) of path-label sets from u to v using T and NT as
follows:

M ′(u, v) = {{L(PT (u, u′))} ⊙ NT (u′, v′) ⊙ {L(PT (v′, v))}|
u′ ∈ Succ(u) and v′ ∈ Pred(v)}

where, for any vertex x, L(PT (x, x)) = L(PN (x, x)) = ∅ and
NT (x, x) = {∅}. Then we have, for any vertices u and v,
M(u, v) ⊆ M ′(u, v), and M(u, v) = Prune(M ′(u, v)).

Proof Sketch:
To prove this theorem, we will establish the following

three-segment path decomposition scheme for any path p
from a vertex u to another vertex v, i.e., p = (v0, e1, v1, · · · , en, vn),
where u = v0 and v = vn. Let ei be the first non-tree edge
and ej be the last non-tree edge in path p (i ≤ j). Let u′ be

the beginning vertex of the first non-tree edge ei, u′ = vi−1

and v′ be the end vertex of the last non-tree edge ej , v′ = vj .
Now, we can decompose path p into three segments: 1)
the starting in-tree path from u to u′, denoted as PT (u, u′);
2) the intermediate non-tree path from u′ to v′, denoted as
PN (u′, v′); 3) the ending in-tree path from v′ to v denoted
as PT (v′, v). Note that certain segments can be empty and
we define the empty segment as PN (x, x) = PT (x, x) for any
vertex x.

Given this, let us consider such decomposition for each
type of path from u to v.
Case 1: If there is an in-tree path p from u to v, then we
can directly represent it as

L(p) = L(PT (u, v)) = L(PT (u, u′)) ∪ ∅ ∪ L(PT (u′, v))

where u′ ∈ {v1, · · · , vn} and u′ ∈ Succ(u) and u′ ∈ Pred(v)
since p is an in-tree path.
Case 2: If p ∈ (Ps ∪Pe)\PT (u, v) (path p is a Ps or Pe path
but not an in-tree path), then, there is at least one non-tree
edge in p. Thus, we can find u′ and v′ in path p, such that
u′ ∈ Succ(u), v′ ∈ Pred(v) and the subpath of p from u′ to
v′ is a non-tree path. Then, if L(p) ∈ M(u, v), we have

L(p) ∈ {L(PT (u, u′))} ⊙ NT (u′, v′) ⊙ {L(PT (v′, u))}
Case 3: If p ∈ Pn (a non-tree path), then, similar analysis
as Case 2 holds.

Putting these together, we have

M(u, v) = Prune({{L(PT (u, u′))} ⊙NT (u′, v′) ⊙ {L(PT (v′, v))}|

u′ ∈ Succ(u) and v′ ∈ Pred(v)})

2

To apply this theorem for index construction and LCR
query processing, we need to address the following two key
research questions: 1) Different spanning trees T can have
very differently sized partially transitive closures NT . How
can we find an optimal spanning tree T to minimize the
total index size, and specifically, the cost of partial transi-
tive closure NT ? 2) How can we utilize the spanning tree
T and partial transitive closure NT to efficiently answer
the LCR query? This is not a trivial question and a good
query processing scheme can be as fast as we directly query
the complete generalized transitive closure but with a much
smaller memory cost. We will study the first question (opti-
mal index construction) in Section 4 and the second question
(efficient LCR query processing) in Section 5.

4. OPTIMAL INDEX CONSTRUCTION
In this section, we study how to construct an optimal

spanning tree T to minimize the cost of partial transitive
closure NT , which is the dominant cost of our entire index
framework. In Subsection 4.1, we will introduce an inter-
esting approach based on the maximally directed spanning
tree algorithm [9, 11] to tackle this problem. However,
this solution relies on the fully materialization of general-
ized transitive closure M . Though this can be done using the
LabeledTransitiveClosure algorithm (Algorithm 1 in Subsec-
tion 2.2), it becomes very expensive (for both computation
and storage) when the size of the graph becomes large. In
Subsection 4.2, we present a novel approximate algorithm
which can find with high probability a spanning tree with
bounded cost difference compared with the exact maximal
spanning tree.

4.1 Directed Maximal Spanning Tree for Gen-
eralized Transitive Closure Compression

Let M be the generalized transitive closure which contains
the minimal sufficient path-label set between any two ver-
tices u and v. Recall that for a spanning tree T , NT (u, v) =
M(u, v) − Ms(u, v) − Me(u, v) records the “essential” path-
labels of non-tree paths which cannot be replaced by either
an type Ps path (beginning with a tree-edge) or Pe path
(ending with a tree-edge). Given this, the size of the partial
transitive closure NT can be formally defined as

cost(NT) =
X

(u,v)∈V ×V

|NT (u, v)|.

However, the direct minimization of cost(NT) is hard and
the complexity of this optimization problem remains open.

To address this problem, we consider a related partial
transitive closure MT whose cost f(T) serves as the upper-
bound of cost(NT):

Definition 5. Given db-graph G and its spanning tree
T , for any vertices u and v in G, we define MT (u, v) to be
a subset of M(u, v) which includes those path-labels of the
paths from u to v which ends with a non-tree edge. For-
mally,

MT (u, v) = M(u, v) −Me(u, v)

Now we introduce several fundamental equations between
MT , NT , and other subsets (Ms and Me) of the general-
ized transitive closure M . These expressions not only help
us compute them effectively, but also help us discover the
optimal spanning tree.

Lemma 1. Given db-graph G and its spanning tree T , for
any two vertices u and v in G, we have the following equiv-
alence:

Ms(u, v) = (
[

(u,u′)∈ET

{λ(u, u′)} ⊙M(u′, v)) ∩M(u, v),(1)

where u′ is a child of u;

Me(u, v) = (M(u, v′)⊙ {λ(v, v′)}) ∩M(u, v), (2)

where (v, v′) ∈ ET (v′ is the parent of v);

NT (u, v) = MT (u, v) −Ms(u, v)

= M(u, v) −Me(u, v) −Ms(u, v) (3)

Proof Sketch:Simply note that 1)
S

(u,u′)∈ET
{λ(u, u′)} ⊙

M(u′, v) includes all sufficient path-labels for the paths from
u to v starting with a tree-edge (u, u′); and 2) M(u, v′) ⊙
{λ(v′, v)}) include the sufficient path-labels for the paths
from u to v ends with the tree-edge (v′, v). 2

Clearly, the size of this new partial transitive closure MT

is no less than the size of our targeted partial transitive
closure NT (MT (u, v) ⊇ NT (u, v)). Now, we focus on the
following optimization problem.

Definition 6. (Upper Bound of NT Size and its
Optimization Problem) Given db-graph G and its span-
ning tree T , let the new objective function f(T) be the cost
of MT , i.e.,

f(T) = cost(MT) =
X

(u,v)∈V ×V

|MT (u, v)|

Given the db-graph G, the optimization problem is how to
find an optimal spanning tree To of G, such that the f(T) =
cost(MT) is minimized:

To = arg min
T

f(T)

Since, cost(NT) ≤ f(T), we also refer to f(T) as the up-
per bound of cost(NT). We will solve this problem by trans-
forming it to the maximal directed spanning tree problem in
three steps:
Step 1 (Weight Assignment): For each edge (v′, v) ∈
E(G) in db-graph G, we will associate it with a weight w(v′, v):

w(v′, v) =
X

u∈V

|(M(u, v′)⊙ {λ(v′, v)}) ∩M(u, v)| (4)

Note that this weight directly corresponds to the number
of path-labels in M(u, v), which can reach v via edge (v′, v).
Especially, if we choose this edge in the spanning tree, then,
we have

w(v′, v) =
X

u∈V

|Me(u, v)|.

Thus, this weight (v′, v) also reflects that if it is in the tree,
the number of path-labels we can remove from all the path-
label sets ending with vertex v to generate the new partial
transitive closure

w(v′, v) =
X

u∈V

|M(u, v) −MT (u, v)|

Figure 5 shows each edge in our running example associating
with the weight defined in Formula 4. For instance, edge
(1, 5) has a weight 13, which suggests that if we include this
edge in the spanning tree, then, we can save 13 path-labels
from those path-label sets reaching 5, i.e.,

P

u∈V |M(u, 5)−
MT (u, 5)| = 13.

Figure 5: Weighted Graph

Step 2 (Discovering Maximal Directed Spanning Tree):
Given this, the maximal directed spanning tree of G is de-
fined as a rooted directed spanning tree T = (V, ET) [9, 11],
where ET is a subset of E such that the sum of w(u,v) for
all (u,v) in ET is maximized:

T ′ = arg max
T

W (T) = arg max
T

X

(u,v)∈ET

w(u, v),

where W (T) is the total weight of the spanning tree. We
can invoke the Chu-Liu/Edmonds algorithm [9, 11] to find
the maximal directed spanning tree of G.

Theorem 3. The maximal directed spanning tree of G,
T ′, would minimize the new partial transitive closure MT ,
f(T), which is also the upper bound of NT size:

minT f(T) = f(T ′)

Proof Sketch:To prove this, we will show an important
equivalent relationship between the new partial transitive
closure size MT , f(T), and the overall weight of the directed
spanning tree

W (T) =
X

(v′,v)∈ET

w(v′, v).

Let the size of complete generalized transitive closure M be

cost(M) =
X

(u,v)∈V ×V

|M(u, v)|

Then, we have for any spanning tree T of G, the following
holds:

f(T) = cost(M) −W (T)

Since cost(M) is a constant for db-graph G, this equation
suggests the minimization of f(T) is equivalent to the max-
imization of W (T).

We prove this equation as follows: f(T) =

X

(u,v)∈V ×V

|MT (u, v)| =
X

(u,v)∈V ×V

|M(u, v) −Me(u, v)|

=
X

(u,v)∈V ×V

(|M(u, v)| − |(M(u, v′)⊙ {λ(v′, v)}) ∩M(u, v)|)

= cost(M) −
X

(u,v)∈V ×V

|(M(u, v′)⊙ {λ(v′, v)}) ∩M(u, v)|

= cost(M) −
X

(v′,v)∈E

X

u∈V

|(M(u, v′)⊙ {λ(v′, v)}) ∩M(u, v)|

= cost(M) −
X

(v′,v)∈E

w(v′, v) = cost(M)−W (T) 2

Finally, once the optimal spanning tree T is identified, we
can compute the partial transitive closure NT as follows.
Step 3 (Partial Transitive Closure NT): Calculating
NT from M and T according to Lemma 1.

The total computational complexity of our index construc-
tion procedure (Step 1-3) is O(|V |222|Σ|) since the first steps

takes O(|V |(2|Σ|)2), the second step takes O(|E|+|V |log|V |),
and the last step takes, O(|V |2(2|Σ|)2) time all in worst case.

4.2 Scalable Index Construction
The aforementioned index construction algorithm relies

on the pre-computation of the generalized transitive closure
M , which becomes too expensive for the large graphs. Espe-
cially, the storage cost of M can easily exceed the size of the
main memory and result in memory thrashing. To make our
index construction scalable to large graphs, we must avoid
the full materialization of M . Note that the goal of the max-
imal spanning tree algorithm is to optimize the total weight
of the tree

P

(u,v)∈T w(u, v), which corresponds to the lower
bound of the total saving for NT . The research question
here is how can we discover a spanning tree whose total
weight is close to the total weight of the maximal spanning
tree with guaranteed probabilistic bound. Specifically, we
formulate the approximate maximal spanning tree problem
as follows:

Definition 7. (Approximate Maximal Spanning Tree
Problem) Given a db-graph G, let To be the optimal span-
ning tree of G which has the maximal total weight W (To) =
P

(v′,v)∈ETo
w(u, v). The approximate maximal spanning tree

problem tries to find another spanning tree T of G, such that

with probability of at least 1 − δ, the relative difference be-
tween its total weight W (T) and the maximal tree weight
W (To) is no higher than θ:

Pr(
W (To)−W (T)

W (To)
≤ θ) ≥ 1− δ. (5)

In this problem, both ǫ and δ are user-defined parameters
to specify the goodness of the approximate maximal span-
ning tree. As an example, if ǫ = 1% and δ = 0.1%, then
with probability 99.9%, the desired tree T should have a to-
tal weight no less than 99% of the total weight of the exact
maximal spanning tree To, i.e., W (T) ≥ 99%W (To). Note
that the total weight of the approximate spanning tree can
not exceed W (To).

In the following, we present a novel algorithm which solves
this problem through sampling, thus avoiding the full mate-
rialization of the generalized transitive closure M for large
graphs. In a nutshell, our algorithm works as follows:
Step 1: We first sample a list of vertices in the db-graph
G.
Step 2: We then compute each of their generalized tran-
sitive closure in G, i.e., for a sample vertex u, we compute
M(u, v) for each vertex v in the graph. The latter is re-
ferred to as single-source transitive closure problem and can
be solved efficiently.
Step 3: We use the single-source M(u, v) from those sample
vertices to estimate the exact edge weight (w(v′, v), Formula
(4)) and the error bound (confidence interval) for such es-
timation. Specifically, we leverage the combined Hoeffding
and Bernstein bounds for the error bound estimation. Given
this, each edge is associated with two values, one for the es-
timated weight and another for the error bound.
Step 4: we discover two maximal spanning trees in the db-
graph G based on each of these two values as edge weight
assignment.
Step 5: we introduce a simple test condition using the total
weights of these two trees to determine if the criterion (5) is
satisfied. If the answer is no, we will repeat the above steps
until the test condition holds. We refer to this algorithm as
Hoeffding-Bernstein-Tree, as it utilizes Hoeffding and Bern-
stein Bounds [13, 23] to determine the stop condition of a
sampling process. In the reminder of this subsection, we will
detail the key steps in this algorithm.

Sampling Estimator with Hoeffding and Bernstein
Bounds. Recall the edge weight

w(v′, v) =
X

u∈V

|(M(u, v′)⊙ {λ(v′, v)}) ∩M(u, v)|

In our algorithm, an important ingredient is to utilize sam-
pling and statistical bounds (Hoeffding and Bernstein Bounds)
to provide an accurate estimation of each edge weight in
the graph. The key observation which enables a sampling
based estimator for w(v′, v) is that w(v′, v) is the sum of
|V | individual quantities, |(M(u, v′)⊙{λ(v′, v)})∩M(u, v)|.
This gives rise to this question: assuming we have n sam-
ples u1, u2,· · · , un, and for each sample vertex ui, can we
compute efficiently each individual term

Xe,i = |(M(ui, v
′)⊙ {λ(v′, v)}) ∩M(ui, v)| (6)

Here, we utilize sampling with replacement to simplify
the statistical inference. We also focus on approximating
this quantity for convenience:

Xe = w(v′, v)/|V |,where e = (v′, v) ∈ E(G). (7)

Note that since each edge weight (and error) is divided by
the same constant |V |, the bounds for relative difference on
the (total) edge weight remains the same. Indeed, we may
think of the original w(v′, v) as the population sum and the
new quantity Xe is the population mean, where the weight
of a quantity u in the population is |(M(u, v′)⊙{λ(v′, v)})∩
M(u, v)|.

Given this, we define the sampling estimator of Xe as

X̂e,n =
1

n

n
X

i=1

Xe,i (8)

Note that for each sample Xi, E(Xe,i) = Xe, and Xi is
a bounded random variable, i.e., Xi ∈ [0, R] where R =
` |Σ|
⌊|Σ|/2⌋

´

.

As we mentioned earlier, during the sampling process,
each edge e is maintained with two values, one is the es-
timated edge weight X̂e,n, and the other is the error bound
ǫe,n. Using the classical Hoeffding inequality [14], the de-
viation (error bound) of the empirical mean from the true
expectation (Xe) is: with probability of at least 1 − δ′,

|X̂e,n − E(X̂e,n)| = |X̂e,n −E(Xe,i)| = |X̂e,n −Xe| ≤ R

s

ln 2
δ′

2n

However, this bound is rather loose as it decreases according
to

√
n. Recently, the Hoeffding bound has been improved by

incorporating the empirical Bernstein bound [13, 23], which
depends on only the empirical standard deviation:

σ̂2
e,n =

1

n

n
X

i=1

(Xe,i − X̂e,n)2 =
1

n
(

n
X

i=1

X2
e,i − X̂2

e,n) (9)

The combined Hoeffding and Bernstein bound is expressed
as:

Pr(|X̂e,n −Xe| ≤ ǫe,n) ≥ 1− δ′, ǫe,n = σ̂2
e,n

s

2 ln 3
δ′

n
+

3R ln 3
δ′

n
(10)

Here, the dependency of the range R in the error term ǫe,n

decreases linearly with respect to the sample size n. The er-

ror term also depends on
σ̂2

e,n√
n

. However, since the empirical

standard deviation σ̂2
e,n is typically much smaller than the

range R, this bound is tighter than the Hoeffding bound. In
our algorithm, we use the Hoeffding and Bernstein bound
(10) as our error bound. Note that both the estimated edge

weight X̂e,n and the error bound ǫe,n can be easily incremen-
tally maintained (without recording Xe,i for each sample ui

and edge e). We simply record the following two sample
statistics,

Pn
i=1 Xe,i and

Pn
i=1 X2

e,i. For the error bound
determination (10), we need choose δ′, which in our algo-
rithm is specified as δ′ = δ

|E| . By setting up this confidence

level, we can easily derive the following observation:

Lemma 2. Given n sample vertices and δ′ = δ
|E| , with

probability more than 1 − δ, the deviation of each estimated

edge weight X̂e,n in the graph from their exact edge weight
Xe is no greater than the error bound defined in (10):

Pr(
^

e∈E(G)

|X̂e,n −Xe| ≤ ǫe,n) ≥ 1− δ. (11)

This can be easily proven by the Bonferroni inequality. Lemma 2
also suggests a computation procedure we can use to esti-
mate each edge weight. Basically, assuming we have n sam-
ples, u1, u2,· · · , un, for each sample vertex ui, we will com-
pute the single-source generalized transitive closure, M(ui, v),
for any vertex v ∈ V . From there, we can calculate Xe,i for
each edge e in the graph.

Approximate Maximal Spanning Tree Construction.
Assuming we have n sample vertices, the above discussion
describes that each edge in the graph is associated with two
values, the estimated weight X̂e,n and its error bound ǫe,n.
Given this, our algorithm then will discover two maximal
spanning trees in the db-graph G, tree T for the estimated
edge weight X̂e,n assignment and tree T ′ for the error bound
ǫe,n assignment. Under what condition, can we tell that tree
T would be the desired tree which meet the criterion (5)?
Theorem 4 provides a positive answer to this question.

Theorem 4. Given n samples, let T be the maximal span-
ning tree of G where each edge e has weight X̂e,n, and let
T ′ be the maximal spanning tree of G where each edge has

weight ǫe,n. We denote Wn(T) =
P

e∈T X̂e,n and ∆n(T ′) =
P

e′∈T ′ ǫe′,n. Then, if T satisfies (12), then T is our ap-
proximate tree:

2∆n(T ′)

Wn(T) −∆n(T ′)
≤ θ, where Wn(T) ≥ ∆n(T ′), (12)

=⇒ Pr(
W (To)−W (T)

W (To)
≤ θ) ≥ 1− δ.

Proof Sketch: First, we have

Pr(|Wn(T)−W (T)| ≤ ∆n(T ′)) ≥ 1− δ

This is because with probability of at least 1 − δ,

|Wn(T) −E(Wn(T))| = |
X

e∈T

X̂e,n −
X

e∈T

E(X̂e,n)| =

|
X

e∈T

(X̂e,n −Xe)| = |Wn(T) −W (T)| ≤
X

e∈T

ǫe,n(Lemma 2)

≤ ∆n(T ′)(∆n(T ′) is the maximal total error of any tree in G)

Similarly, from Lemma 2, this also holds:

Pr(|Wn(To)−W (To)| ≤ ∆n(T ′)) ≥ 1− δ.

In addition, by definition, we have

Wn(To) ≤Wn(T) and W (To) ≥ W (T).

Putting them together, we have

Pr(Wn(T)−∆n(T ′) ≤W (T) ≤ W (To) ≤ Wn(T)+∆n(T ′)) ≥ 1−δ.

Thus, the following hold:

Pr(W (To)−W (T) ≤ 2∆n(T ′)) ≥ 1− δ (13)

Pr(Wn(T) −∆n(T ′) ≤ W (To)) ≥ 1− δ (14)

Finally, if
2∆n(T ′)

Wn(T)−∆n(T ′)
≤ θ(12), with (13) and (14) =⇒

with probability of at least 1 − δ,

W (To) −W (T)

W (To)
≤

2∆n(T ′)

Wn(T) −∆n(T ′)
≤ θ 2

Overall Algorithm. The sketch of the Hoeffding-Bernstein-
Tree algorithm is illustrated in Algorithm 2. This algorithm
performs in a batch fashion. In each batch, we sample n0

vertices. Lines 3 − 4 correspond to the sampling step (Step
1); Lines 5 − 11 describe the single-source transitive closure
computation for each sampled vertex (Step 2); Lines 12−15
compute the two values for each edge, the estimated edge
weight and its error bound (Step 3); Lines 16 and 17 find
the maximal spanning trees for edge value (step 4); and fi-
nally, Line 18 tests if these two trees satisfy the condition

Algorithm 2 Hoeffding-Bernstein-Tree(G(V,E, Σ, λ)

1: n← 0 {n0 is the initial sample size}
2: repeat
3: S ← SampleV ertices(V,n0) {sample n0 vertices in V }
4: n← n + n0 {n is the total number of samples}
5: for each ui ∈ S do
6: Mi ← SingleSourcePathLabel(G,u)
7: for each e ∈ E {e = (v′, v)} do
8: Xe,i ← |(Mi[v

′]⊙ {λ(v′, v)}) ∩Mi[v]| {Formula (6)}
9: Update

Pn
i=1 Xe,i and

Pn
i=1 X2

e,i

10: end for
11: end for
12: for each e ∈ E {e = (v′, v)} do

13: X̂e,n ←
1
n

Pn
i=1 Xe,i {edge weight estimator (8)}

14: ǫe,n ← σ̂2
e,n

r

2 ln 3

δ′

n
+

3R ln 3

δ′

n
{error bound (10)}

15: end for
16: T ←MST (G, [X̂e,n]) {Maximal Spanning Tree with X̂e,n

as edge weight}
17: T ′ ←MST (G, [ǫe,n]) {ǫe,n as edge weight}
18: until Condition (12)=true
Procedure SingleSourcePathLabel(G(V, E,Σ, λ), u)
19: M ← ∅; V1 ← {u};
20: while V1 6= ∅ do
21: V2 ← ∅;
22: for each v ∈ V1 do
23: for each v′ ∈ N(v){v′ ∈ N(v) : (v, v′) ∈ E} do
24: New← Prune(M [v′]

S

M [v]⊙ {λ(v, v′)});
25: if New 6= M [v′] then
26: M [v′]← New; V2 ← V2 ∪ {v′};
27: end if
28: end for
29: end for
30: V1 ← V2;
31: end while

described in Formula (12). The batch sampling reduces the
invocation of MST (directed maximal spanning tree algo-
rithm). The batch sample size n0 is adjustable and does
not affect the correctness of this algorithm. For very large
graph G, we typically set n0 = 100. As later we will show
in the experimental results, the choice of n0 does not signif-
icantly affect the running time due to the relatively cheap
computational cost of the maximal spanning tree algorithm.

The SingleSourcePathLabel procedure is for computing the
generalize transitive closure from a single vertex u. This
procedure is essentially a generalization of the well-known
Bellman-Ford algorithm for the shortest path computation [10].
The procedure works in an iterative fashion. In set V1,
we record all the vertices whose path-label sets have been
changed (Lines 25 − 26, and 30) in the current iteration.
Then in the next iteration, we visit all the direct neighbors
of vertices in V1 and modify their path-label sets accord-
ingly (Lines 22− 29). For the single source computation, V1

is initialized to contain only the single vertex u. The proce-
dure will continue until no change occurs for any path-label
sets (V1 = ∅). It is easy to see that the maximal number
of iteration is |V | by considering the longest path vertex u
can reach is |V | steps. Thus, the worst case computational

complexity of SingleSourcePathLabel is O(|V ||E|
` |Σ|
|Σ|/2

´

).

Given this, we can see that the total computational com-
plexity for Hoeffding-Bernstein-Tree is O(n|V ||E|

` |Σ|
|Σ|/2

´

+

n/n0(|E|+ |V | log |V |)). The first term comes from the sin-
gle source generalized transitive closure computation and
the second term comes from the maximal spanning tree al-

gorithms. Clearly, the first term is the dominant part. How-
ever, since the sample size is typically quite small (as we
will show in the experimental evaluation), the Hoeffding-
Bernstein-Tree algorithm is very fast. In addition, this al-
gorithm has very low memory requirement as we need tem-
porarily store the intermediate results of the SingleSour-
cePathLabel for only a single vertex. We note that this algo-
rithm would work well when the total label size |Σ| is small.

Since the sampling error bound is in the linear order of
`|Σ|

2

´

,
when the number of distinct labels is large, the sampling size
can easily exceed the total number of vertices in the graph.
In this case, instead of sampling, we can simply compute
the single source path label set for each vertex in the graph,
and then maintain

Pn
i=1 Xe,i. Therefore, in both cases, we

can completely eliminate the memory bottleneck due to the
fully materialization of the generalized transitive closure M
for generating the spanning tree.

Finally, we note that after the spanning tree T is derived,
we need to compute the partial transitive closure NT . In
Step 3 of the original index construction (Subsection 4.1),
we rely on Lemma 1 and still need the generalized transitive
closure M . In the following, we describe a simple proce-
dure which can compute the single source partial transitive
closure, i.e, NT (u, v) of vertex u for each v ∈ V . The idea
is similar to the aforementioned SingleSourcePathLabel algo-
rithm. However, instead of maintaining only one path-label
set for each vertex v from u, denoted as M [v] (corresponding
M(u, v)) in SingleSourcePathLabel, we will maintain three
path-label sets based on Definition 4: 1) Ms[v] corresponds
to Ms(u, v) which records all the path-labels from u to v
with first edge being a tree-edge; 2) Me[v], corresponds to
Me(u, v) − Ms(u, v), which records all the path-labels from
u to v with last edge being a tree-edge and first edge be-
ing a non-tree edge; and 3) NT [v], corresponds to NT (u, v),
which records the path-labels from u to v with both first
edge and last edge being non-tree edges. Note that since
each set is uniquely defined by either the first and/or last
edge type in a path, we can easily maintain them during
the computation of SingleSourcePathLabel algorithm. Basi-
cally, we can compute the NT for each vertex in turn, and it
has the same computational complexity as the SingleSour-
cePathLabel algorithm. Due to the space limitation, we omit
the details here.

5. FAST QUERY PROCESSING
In this section, we study how to use the spanning tree T

and partial transitive closure NT to efficiently answer the
LCR queries. Using Theorem 2, we may easily derive the

following procedure to answer a LCR query (u
A−→ v): 1)

we perform a DFS traversal of the sub-tree rooted at u to
find u′ ∈ Succ(u), where L(PT (u, u′)) ⊆ A; 2) for a given
u′, we check each of its neighbors v′ in the partial transitive
closure, i.e., NT (u′, v′) 6= ∅ and v′ ∈ Pred(v), to see if
NT (u′, v′) contains a path-label which is a subset of A; and
3) for those v′, we check if L(PT (v′, v)) ⊆ A. In other words,
we try to identify a path-label which is a subset of A and is
represented by three parts, the beginning in-tree path-label
L(PT (u, u′)), the non-tree part NT (u′, v′), and the ending
in-tree part L(PT (v′, v)).

This procedure, however, is inefficient since the partial
transitive closure is very sparse, and many successors of u
do not link to any of v’s predecessor through NT . More-

over, the size of u’s successor set can be very large. This
leads to the following question: can we quickly identify all
the (u′, v′), where u′ ∈ Succ(u) and v′ ∈ Pred(v), such that
NT (u′, v′) 6= ∅? The second important question we need to
address is how to efficiently compute the in-tree path-labels,
L(PT (u, u′)) and L(PT (v′, v)). This is a key operation for
the query processing for a LCR query, and we apparently
do not want to traverse the in-tree path from the starting
vertex, such as u, to the end vertex, such as u′, to construct
the path-label. If we can answer these two questions posi-
tively, how can we utilize them to devise an efficient query
answering procedure for LCR queries? We investigate these
questions in the following subsections.

5.1 Searching Non-Empty Entry of NT
In this subsection, we will derive an efficient algorithm by

utilizing a multi-dimensional geometric search structure to
quickly identify non-empty entries of the partial transitive
closure: i.e., given two vertices u and v, quickly identify all
the vertex pairs (u′, v′), u′ ∈ Succ(u) and v′ ∈ Pred(v),
such that NT (u′, v′) 6= ∅.

The straightforward way to solve this problem is to first
find all u’s successors (Succ(u)) and v’s predecessors (Pred(v)),
and then test each pair of the Cartesian product Succ(u) ×
Pred(v), to see whether the corresponding entry in NT is
not empty. This method has O(|Succ(u)| × |Pred(v)|) com-
plexity, which is clearly too high.

Our new approach utilizes the interval-labeling scheme [12]
for the spanning tree T . We perform a preorder traver-
sal of the tree to determine a sequence number for each
vertex. Each vertex u in the tree is assigned an interval:
[pre(u), index(u)], where pre(u) is u’s preorder number and
index(u) is the highest preorder number of u’s successors.
Figure 6 shows the interval labeling for the spanning tree in
Figure 3. It is easy to see that vertex u is a predecessor of
vertex v iff [pre(v), index(v)] ⊆ [pre(u), index(u)] [12].

The key idea of our new approach is to utilize the span-
ning tree to transform this search problem into a geometric
range-search problem. Simply speaking, we map each non-
empty entry (u′, v′) of NT into a four-dimensional point and
convert the query vertices u and v into an axis-parallel range.
We describe our transformation and its correctness using the
following theorem.

Theorem 5. Let each pair (u′, v′), where NT (u′, v′) 6= ∅,
be mapped to a four-dimensional point (pre(u′), index(u′),
pre(v′), index(u′)). Then, for any two query vertices u and
v, the vertex pair (u′, v′), u′ ∈ Succ(u) and v′ ∈ Pred(v),
such that NT (u′, v′) 6= ∅, corresponds to a four-dimensional
point (pre(u′), index(u′), pre(v′), index(v′)) in the range:
[pre(u), index(u)], [pre(u), index(u)], [1, pre(v)], [index(v), |V |]
of a four-dimensional space.

Proof Sketch:We will show that for any NT (u′, v′) 6= ∅,
(pre(u′), index(u′), pre(v′), index(v′)) is in the range, pre(u′) ∈
[pre(u),
index(u)], index(u′) ∈ [pre(u), index(u)], pre(v′) ∈ [1, pre(v)],
index(v′) ∈ [index(v), |V |] iff u′ ∈ Succ(u) and v′ ∈ Pred(v).

Figure 6: Interval Labeling for Spanning Tree

Figure 7: Coordinates in 4-dimensions

pre(u) ≤ pre(u′) ≤ index(u) and

pre(u) ≤ index(u′) ≤ index(u) ⇐⇒
ˆ

pre(u′), index(u′)
˜

⊆ [pre(u), index(u)] ⇐⇒ u′ ∈ Succ(u)

1 ≤ pre(v′) ≤ pre(v) and

index(v) ≤ index(v′) ≤ |V | ⇐⇒
ˆ

pre(v′), index(v′)
˜

⊇ [pre(v), index(v)] ⇐⇒ v′ ∈ Pred(v)

2

Figure 7 give the 4-dimension coordinates (pre(u′), index(u′),
pre(v′), index(v′)) for each NT (u′, v′). For example, con-
sider a query (u, v) on graph G with spanning tree given as
in Figure 6, where u = 11 and v = 6. There is a vertex pair
(u′, v′) where NT (u′, v′) = {c} and u′ = 14 and v′ = 12
such that u′ ∈ Succ(u) and v′ ∈ Succ(v). It is easy to ver-
ify (pre(u′), index(u′), pre(v′), index(v′)), which is (14, 14,
4, 15) within the range [pre(u),
index(u)], [pre(u), index(u)], [1, pre(v)], [index(v), |V |].

This transformation allows us to apply the test conditions
for both the successors of u and the predecessors of v simul-
taneously, and those test conditions correspond to a multi-
dimensional range search. Using a kd-tree or range search
tree, we can efficiently index and search all the points in an

axis-parallel range [5]. Specifically, the construction of kd-
tree takes O(n log2 n), and querying an axis-parallel range

in a balanced kd-tree takes O(n3/4 +k) time (in four dimen-
sional space), where n is the total number of pairs with non-
empty entries in NT, and k is the number of the reported
points. The range-search tree provides faster search time.
It can be constructed in O(n log3 d) time and answers the
query with O(log4 n + k) time (for four dimensional space).

5.2 Computing In-Tree Path-Labels
In this subsection, we present a histogram-based technique

to quickly compute the path-label of an in-tree path. Let x
and y be two vertices in a tree T where x is y’s ancestor,
x ∈ Pred(y). Our goal is to compute the path-label set of
the in-tree path from x to y, L(PT (x, y)), very fast. We
build a histogram for each vertex in tree T . Let r be the
root vertex of T . Then, the histogram of vertex u, denoted
as H(u), records not only each unique label in the in-tree
path from the root vertex to u, i.e., L(PT (r, u)), but also
the number of edges in the path containing each label. For
instance, the histogram for vertex 14 in Figure 3 is H(14) =
{b : 1, d : 2, e : 2} and the histogram for vertex 6 is H(6) =
{a : 2, b : 2, c : 1, d : 1, e : 1}. Clearly, a simple DFS traversal
procedure can construct the histogram for each vertex of T
in O(|V ||Σ|).

We can compute the path-label sets from vertex u to v by
subtracting the corresponding counters in H(u) from H(v).
Specifically, for each edge label in H(v), we will subtract its
counter in H(v) by the counter of the same label in H(u),
if it exists. If the counter of the same label does not appear
in H(u), we treat the counter as 0. Given this, the path-
label set from u to v include all the labels whose resulting
counter is more than 0, i.e., we know that there is an edge
with this label on the in-tree path from u to v. Clearly, this
approach utilizes O(|V ||Σ|) storage and can compute an in-
tree path-label in O(|Σ|) time, where |Σ| is the number of
distinct labels in tree T . Since the number of possible labels,
|Σ|, is typically small, and can be treated as a constant, this
approach can compute the path-label for any in-tree path
very fast.

5.3 LCR Query Processing
Here, we present a new algorithm for fast LCR query

processing which utilizes the new technique for efficiently
searching non-empty entries in NT developed in last sub-
section. The sketch of the algorithm is in Algorithm 3.

For a LCR query (u
A→ v), in the first step (Line 1), we

search for all the vertex pairs (u′, v′), where u′ ∈ Succ(u)
and v′ ∈ Pred(v), such that NT (u′, v′) 6= ∅. We can achieve
this very efficiently by transforming this step into a geomet-
ric search problem and then utilizing a kd-tree or range-
search tree to retrieve all targeted pairs. We put all these
pairs in a list L. Then, we test each vertex pair (u′, v′) in
L to see if we can construct a path-label using these three
segments, PT (u, u′), NT (u′, v′) and PT (v′, v). Here, the in-
tree path-label is computed using the histogram-based ap-
proach. Thus, we first test if the in-tree path-label sets,
L(PT (u, u′)) and L(PT (v′, v)) are subsets of A, and then
check if NT (u′, v′) contains a path-label set which is a sub-
set of A.

We aggressively prune those (u′, v′) pairs which will not
be able to connect u to v with label constraint A. This
is done in Lines 10 and 13. Note that when L(PT (u, u′))

is not a subset of A, we know any vertex in Succ(u′) (i.e.
any successor of u′ in tree T) will not be A-reachable from
u using the in-tree path. Similarly, when L(PT (v′, v)) is
not a subset of A, we can infer any vertex in Pred(v′) (i.e.
any predecessor of v′ in tree T) will not reach v with label-
constraint A using the in-tree path. Thus, we can prune
those pairs from the list L.

Algorithm 3 QueryProcessing(u, A, v)

Parameter: Tree T and Partial Transitive Closure NT

Parameter: LCR query: u
A
→ v?

1: Finding all (u′, v′), u′ ∈ Succ(u) ∧ v′ ∈ Pred(v), such that
NT (u′, v′) 6= ∅, and store them in a list L

2: while L 6= ∅ do
3: (u′, v′)← L.top()
4: if L(PT (u, u′)) ⊆ A then
5: if L(PT (v′, v)) ⊆ A then
6: if ∃l ∈ NT (u′, v′), l ⊆ A then
7: return true
8: end if
9: else
10: delete in L those (u′′, v′′) with v′′ ∈ Pred(v′)
11: end if
12: else
13: delete in L those (u′′, v′′) with u′′ ∈ Succ(u′)
14: end if
15: end while
16: return false

The computational complexity of this procedure is O(logn+
Pk

i=1 |NT (ui, vi)|), where n is the total number of non-
empty entries in NT , and k is the resulting non-empty pairs
of NT, which are from the first step, listed as (ui, vi). We
further assume the in-tree path label-set can be computed
in constant time since the number of possible labels is fixed
and typically small.

6. EXPERIMENTS
In this section, we perform a detailed experimental study

on both real and synthetic datasets. Specifically, we are in-
terested in understanding the trade-off between index size,
query time, and index construction time on the five ap-
proaches presented in this work: 1) online depth-first search
(DFS in Subsection 2.1); 2) Focused depth-first search (Fo-
cused DFS in Subsection 2.1); 3) the complete generalized
transitive closure which is constructed using generalized Floyd-
Warshall (algorithm 1 in Subsection 2.2), 4) Optimal Span-
ning Tree (Opt-Tree), constructed after generating the gen-
eralized transitive closure by Warshall (Subsection 4.1); and
5) the Hoeffding-Bernstein-Tree (Algorithm 2 in Subsection
4.2), referred to as Sampling-Tree in this section. In our
framework, we use the multi-dimensional geometric data
structure, kd-tree, for searching the non-empty entires of
NT . All these algorithms are implemented using C++, and
our experiments were performed on a 2.0GHz Dual Core
AMD Opteron(tm) with 6GB of memory.

6.1 Experimental Setup on Synthetic Datasets
We use a collection of synthetic datasets, in five groups of

experiments, to study several different aspects of the five ap-
proaches for answering LCR queries. The synthetic datasets
are generated in two steps. First, we generate two types
of random directed graphs, one is based on Erdös-Rényi
(ER) model [18] and the other is based on the scale-free

(SF) model [4]. Second, we assign a random label associ-
ated with each edge in these generated random graphs. The
distribution of labels is generated according to a power-law
distribution to simulate the phenomena that only a few la-
bels appear rather frequently, while the majority of labels
appear infrequently.

• Expr1.a (Varying Density on ER Graphs): In the first
group of experiments, we study how the index size,
query time, and index construction time vary accord-
ing to the edge density. We fix the number of vertices

|V | = 5000. Then we range density |E|
|V | from 1.5 to 5

according to ER model.

• Expr1.b (Varying Query Constraint Size on ER Graphs):

We fix |V | = 5000 and density |E|
|V | = 1.5, then change

query label constraints |A| from 15% to 85% of the
total edge labels according to ER model.

• Expr1.c (Scalability on ER Graphs): We perform ex-

periments on graphs with density |E|
|V | = 1.5, then vary

the graph size |V | from 20,000 to 100,000.

• Expr1.d (Varying Query Constraint Size on SF Graphs):
We fix |V | = 5000, and generate scale-free graphs
based on RMAT algorithm [6], then change query la-
bel constraints |A| from 15% to 85% of the total edge
labels.

• Expr1.e (Scalability on SF Graphs): We perform scala-
bility experiments on scale-free graphs based on RMAT
algorithm, by varying the graph size |V | from 20,000
to 100,000.

In addition, for each randomly generated graph, we set
the total number of possbile edge labels (|Σ|) to be 20. In
Expr1.a, and Expr1.c, we fix the query label set |A| to be
30% of the number of total edge labels |Σ|. Also, we set the
power-law distribution parameter α = 2 [24]. In addition,
for the Sampling-Tree, we set the relative error bound θ =
1% and user confidence level parameter δ = 1%.

6.2 Experimental Results on Synthetic Datasets
We report query time, construction time and index size

for the experiments on the synthetic datasets. Specifically,
the query time reported is the overall running time for each
method, DFS, Focused DFS, Warshall, Sampling-Tree and
Opt-Tree, to process a total of 10, 000 random LCR queries,
in milliseconds(ms), while the construction time is measured
in seconds(s). The construction time for Sampling-Tree is
the time to construct the approximate maximal spanning
tree and NT , while the Warshall construction time is the
time to get the full transitive closure; Index size is measured
in Kilobytes(KB). For Warshall, the index size is the size of
the generalized transitive closure; For Sampling-Tree, it is
the size of the spanning tree T plus NT . Further, the sam-
pling size is the number of sampled vertices for Sampling-
Tree (Hoeffding-Bernstein-Tree, Algorithm 2) and “-”means
the method does not work on the graph (mainly due to the
memory cost).
(Expr1.a) Varying Density on ER graphs: In this ex-

periment, we fix |V | = 5000 and range density |E|
|V | from

1.5 to 5, to study how the index size, query time, and in-
dex construction time vary according to the graph density.

(a) Expr1.a: Density D(|E|/|V |) from 1.5 to 5;

Opt-Tree Sampling-Tree Error
D O-W S-S S-W Error
1.5 5040719 800 5040196 0.01%
2 15904544 600 15904427 0.00%
2.5 18437857 500 18437795 0.00%
3 22010168 500 22010156 0.00%
3.5 22762424 500 22762417 0.00%
4 23936508 500 23931612 0.02%
4.5 24142458 500 24142457 0.00%
5 24690876 500 24690876 0.00%

(b) Expr1.a: Density (|E|/|V |) from 1.5 to 5;

Sampling-Tree Warshall
D I-S C-T I-S C-T
1.5 452 187 197053 2172
2 599 605 621623 62728
2.5 424 773 720412 109864
3 631 1088 860334 226615
3.5 820 1220 - -
4 480 1463 - -
4.5 393 1626 - -
5 834 1881 - -

(c) Expr1.b: |A|/|Σ| from 0.15 to 0.85

Sampling-Tree Warshall
C I-S C-T I-S C-T
0.15 375 221 219987 3930
0.25 394 197 195117 2749
0.35 594 225 207304 3025
0.45 478 214 201410 3500
0.55 412 224 218034 3987
0.65 414 198 176274 1963
0.75 530 194 197036 2693
0.85 471 207 209504 3586

Table 1: I-S(Index Size in KB), C-T(Construction Time in s), O-W(Optimal Weight), S-W(Sampling Weight),
S-S(Sampling-Size)

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 1.5 2 2.5 3 3.5 4 4.5 5

LO
G

10
(Q

ue
ry

 ti
m

e(
m

s)
)

Density |E|/|V|

Query-Time-Vary-Density

DepthFirst-Query
FocusedDepthFirst-Query

Sampling-Tree-Query
Warshall-Query

(a) Expr1.a: Density |E|/|V | from 1.5 to 5;

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

LO
G

10
(Q

ue
ry

 ti
m

e(
m

s)
)

|A|/LabelSize

Query-Time-Vary-Constraint-Size

DepthFirst-Query
FocusedDepthFirst-Query

Sampling-Tree-Query
Warshall-Query

(b) Expr1.b: |A|/|Σ| from 0.15 to 0.85, when |V | = 5000;

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 20000 30000 40000 50000 60000 70000 80000 90000 100000

LO
G

10
(

Q
ue

ry
 ti

m
e

(m
s)

)

Number of vertices |V|

Query-Time-Scalability

DepthFirst-Query
Sampling-Tree-Query

(c) Expr1.c: |V | from 20000 to 100000, when Density
|E|/|V | = 1.5;

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

LO
G

10
(Q

ue
ry

 ti
m

e(
m

s)
)

|A|/LabelSize

Query-Time-Vary-PowerLaw-Constraint-Size

DepthFirst-Query
FocusedDepthFirst-Query

Sampling-Tree-Query
Warshall-Query

(d) Expr1.d: |A|/|Σ| from 0.15 to 0.85, when |V | = 5000
for SF graphs;

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 7

 20000 30000 40000 50000 60000 70000 80000 90000 100000

LO
G

10
(Q

ue
ry

 ti
m

e(
m

s)
)

Number of Vertices |V|

Query-Time-PowerLaw-Scalability

DepthFirst-Query
Sampling-Tree-Query

(e) Expr1.e: |V | from 20000 to 100000 for SF graphs;

Figure 8: Experimental Results on Synthetic Datasets

Table 1(a) shows that Sampling Tree can be effectively con-
structed using at most 800 vertices, performing as well as
the exact optimal maximal spanning tree, since the weight
error is quite small. Table 1(b) shows that in Expr1.a, the
index size for Sampling-Tree is not only small but also in-
creases by only 1.5 when the density increases from 1.5 to
3.0. The index size for Warshall is not only 29 to 510 times
larger, but also much more sensitive to density. Although
the construction time for Sampling-Tree for |E|/|V | from 3.5
to 5 is about 10 times larger than for |E|/|V | = 1.5, Warshall
completely fails to work under high density. In addition, the
query time of Sampling Tree remains almost unchanged with
the increase of |E|/|V | as shown in Figure 8(a), although the
query time of DFS and Focused DFS increases significantly.
This shows that Sampling-Tree can handle relatively dense
graphs.
(Expr1.b) Varying Query Constraint Size on ER Graphs:

In this experiment, we fix |V | = 5000, density |E|
|V | = 1.5,

then change query label constraints |A| from 15% to 85% of
the total edge labels to compare how these approaches differ
from each other. Table 1(c) shows that in Expr1.b the War-
shall index size is about 400 times that of Sampling-Tree,
while the construction time is about 15 times Sampling-
Tree’s. In addition, the query time for DFS is 20 to 40 times
Sampling-Tree’s when |A| increases as shown in Figure 8(b).
To sum, this experiment shows that Sampling-Tree can per-
form well when increasing the query constraint size. Finally,
we note that the performance of Focused DFS is even worse
than the DFS without the reachability indexing. By further
analysis, we found that the search space being pruned due to
the reachability index is very small as the directed graph is
quite well-connected. In this case, querying the traditional
reachability index at each vertex during the search process
does not payoff and simply becomes the additional cost of
the Focused DFS.
(Expr1.c) Scalability on ER Graphs: In this experi-

ment, we fix density |E|
|V | = 1.5, then vary the graph size |V |

from 20, 000 to 100, 000. Due to the memory cost for the
reachability index, Focused DFS cannot handle very large
graphs. In addition, Warshall and Opt-Tree also fail due
to memory bottleneck when the number of vertices exceeds
20, 000 (Table 2). Therefore, we only report experimental
results on Sampling-Tree and DFS. Table 2 shows that only
a small number of sample vertices (S-S) is needed for con-
structing the optimal spanning tree. Figure 8(c) shows the
query time for DFS is 75 to 400 times that of Sampling-Tree.
To sum, the Sampling-Tree scales well when increasing the
graph size.

Sampling-Tree Warshall Opt-Tree

|V | I-S C-T S-S C-T C-T

20000 2990 3606 800 - -

40000 7766 16754 800 - -

60000 18590 49756 800 - -

80000 32806 217473 800 - -

100000 53451 998711 200 - -

Table 2: Expr1.c: |V | from 20000 to 100000, when
Density |E|/|V | = 1.5; I-S(Index Size in KB), C-
T(Construction Time in s), S-S(Sampling-Size)

(Expr1.d) Varying Query Constraint Size on SF Graphs:
In this experiment, we fix |V | = 5000, for SF graphs based
on RMAT algorithm, then change query label constraints |A|

from 15% to 85% of the total edge labels to compare how
these approaches differ from each other. The query time
for DFS is 35 to 40 times Sampling-Tree’s when increasing
|A|, and the query time for Focused DFS is even 151 to 261
times Sampling-Tree’s, as shown in Figure 8(d). Expr1.d
shows that Sampling-Tree can perform well when increasing
the query constraint size for SF graphs.
(Expr1.e) Scalability on SF Graphs: In this experi-
ment, we generate SF graphs based on RMAT algorithm
and vary the graph size |V | from 20, 000 to 100, 000. Similar
to Expr1.c, Focused DFS, Warshall and Opt-Tree fail on our
machine when the number of vertices exceeds 20, 000. The
query time for DFS is 370 to 2365 times that of Sampling-
Tree as shown in Figure 8(e). This shows that Sampling-
Tree scales well when increasing the SF graph size.

To summarize, in our experimental results for query time,
Sampling-Tree is much faster than DFS, Focused DFS and
very close to Warshall, which has the expected fastest query
time. On average, the Sampling-Tree is within three times
the query time for Warshall and 20 to 400 times faster
than DFS, even 2365 times faster than Focused DFS. The
index size for Sampling-Tree is much smaller than War-
shall’s, ranging from 0.1% to 0.3% of the generalized tran-
sitive closure. These results show the Sampling-Tree algo-
rithm is quite successful in efficiently answering label con-
straint reachability queries with very compact index size for
both ER graphs and SF graphs.

6.3 Experimental Results on Real Datasets
In this experiment, we evaluate different approaches on

two real graph datasets: the first one is an integrated bio-
logical network for Yeast [19, 15], and the second one comes
from the semantic knowledge network, Yago [25]. The Yeast
graph contains 3063 vertices (genes) with density 2.4. It has
5 labels, which corresponds to different type of interactions,
such as protein-DNA and protein-protein interaction. Since
the protein-protein interaction is undirected, we transform
it into two directed edges. In the experimental study, we
use the Sampling-Tree to build the index and then we vary
the size of the label-constraint |A| from 2 to 5 to study the
query time. Compared to DFS, Sampling-Tree is on aver-
age 2 times faster on the yeast graph. The second Yago
graph contains 5000 vertices with 66 labels, and has den-
sity |E|/|V | = 5.7. Since the label size is large, we do
not perform sampling in Sampling-Tree. Instead, we sim-
ply compute single source path labels. We still refer to it
as Sampling-Tree as this process can be viewed as a special
case of the sampling algorithm. Here, we vary the label-
constraint |A| from 20 to 60. Figure 10 shows that our in-
dexing approach is 5 to 31 times faster on the yago graph.
To sum, we see that in real datasets, our approach is effective
and efficient for answering label-constraint queries.

7. CONCLUSION
In this paper, we introduced a new reachability problem

with label constraint. This problem has a lot of potential
applications in real world applications, ranging from social
network analysis, viral marketing, to bioinformatics, and
RDF graph management. On one side, this problem is more
complicated than the traditional reachability query which
does not involve any label constraint. On another side, this
problem can be looked as a special case of the simple regular
expression path query on a labeled graph. However, instead

 0

 5000

 10000

 15000

 20000

 25000

 30000

 2 2.5 3 3.5 4 4.5 5

Q
ue

ry
 ti

m
e

(m
s)

Constraints

Query-Time-Real-Datasets

DepthFirst-Query
Sampling-Tree-Query

Figure 9: Expr2.b: varying |A| in Yeast

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 200000

 220000

 30 35 40 45 50 55 60

Q
ue

ry
 ti

m
e

(m
s)

Constraints

Query-Time-Real-Datasets

DepthFirst-Query
Sampling-Tree-Query

Figure 10: Expr2.a: varying |A| in Yago

of being NP-hard, our new problem can be solved in poly-
nomial time. In this work, we develop a novel tree-based
framework to compress the generalized transitive closure for
labeled graph. We introduce a novel approach to optimize
the index size by utilizing the directed maximal weighted
spanning algorithms. We derive a fast query processing al-
gorithm based on the geometric search data structures. Our
experimental evaluation on both real and synthetic datasets
showed that our approach can compress the transitive clo-
sure on average by more than two orders of magnitude, while
it can deliver the query processing being very close to the
fully materialized transitive closure.

8. REFERENCES

[1] Serge Abiteboul and Victor Vianu. Regular path

queries with constraints. In PODS, pages 122–133,

1997.

[2] R. Agrawal, A. Borgida, and H. V. Jagadish. Efficient

management of transitive relationships in large data

and knowledge bases. In SIGMOD, pages 253–262,

1989.

[3] Ian Anderson. Combinatorics of Finite Sets.

Clarendon Press, Oxford, 1987.

[4] A. L. Barabasi and R. Albert. Emergence of scaling in

random networks. Science (New York, N.Y.), 286,

1999.

[5] M.de Berg, M.van Kreveld, M.Overmars, and

O.Schwarzkopf. Computational Geometry. Springer,

2000.

[6] Deepayan Chakrabarti, Yiping Zhan, and Christos

Faloutsos. R-mat: A recursive model for graph

mining. In Fourth SIAM International Conference on

Data Mining, 2004.

[7] Li Chen, Amarnath Gupta, and M. Erdem Kurul.

Stack-based algorithms for pattern matching on dags.

In VLDB ’05.

[8] Jiefeng Cheng, Jeffrey Xu Yu, Xuemin Lin, Haixun

Wang, and Philip S. Yu. Fast computation of

reachability labeling for large graphs. In EDBT, pages

961–979, 2006.

[9] Y. J. Chu and T. H. Liu. On the shortest arborescence

of a directed graph. Science Sinica, 14:1396–1400,

1965.

[10] Thomas H. Cormen, Charles E. Leiserson, and

Ronald L. Rivest. Introduction to Algorithms. McGraw

Hill, 1990.

[11] J. Edmonds. Optimum branchings. J. Research of the

National Bureau of Standards, 71B:233–240, 1967.

[12] Gang Gou and Rada Chirkova. Efficiently querying

large xml data repositories: A survey. IEEE Trans.

Knowl. Data Eng., 19(10):1381–1403, 2007.

[13] Verena Heidrich-Meisner and Christian Igel. Hoeffding

and bernstein races for selecting policies in

evolutionary direct policy search. In ICML ’09.

[14] W. Hoeffding. Probability inequalities for sums of

bounded random variables. Journal of the American

Statistical Association, 58(301):13–30, March 1963.

[15] Thorsson V Ranish JA Christmas R Buhler J Eng JK

Bumgarner R Goodlett DR Aebersold R Hood L.

Ideker, T. Integrated genomic and proteomic analyses

of a systematically perturbed metabolic network. In

Science, pages 929–934, 2001.

[16] H. V. Jagadish. A compression technique to

materialize transitive closure. ACM Trans. Database

Syst., 15(4):558–598, 1990.

[17] Ruoming Jin, Yang Xiang, Ning Ruan, and Haixun

Wang. Efficiently answering reachability queries on

very large directed graphs. In SIGMOD Conference,

pages 595–608, 2008.

[18] Richard Johnsonbaugh and Martin Kalin. A graph

generation software package. In SIGCSE, pages

151–154, 1991.

[19] Rinaldi N.J. Robert F. Odom D.T. Bar-Joseph Z.

Gerber G.K. Hannett N.M. Harbison C.R. Thompson

C.M. Simon I. Zeitlinger J. Jennings E.G. Murray

H.L. Gordon D.B. Ren B. Wyrick J.J. Tagne J.

Volkert T.L. Fraenkel E. Gifford D.K. Lee, T.I. and

R.A. Young. Transcriptional regulatory networks in

saccharomyces cerevisiae. In Science, pages 799–804,

2002.

[20] Jure Leskovec, Ajit Singh, and Jon M. Kleinberg.

Patterns of influence in a recommendation network. In

PAKDD ’06.

[21] Alberto O. Mendelzon and Peter T. Wood. Finding

regular simple paths in graph databases. SIAM J.

Comput., 24(6), 1995.

[22] Tova Milo and Dan Suciu. Index structures for path

expressions. In ICDT, pages 277–295, 1999.

[23] Volodymyr Mnih, Csaba Szepesvári, and Jean-Yves

Audibert. Empirical bernstein stopping. In ICML ’08.

[24] M. E. J. Newman. Power laws, pareto distributions

and zipf’s law. Contemporary Physics, 46:323, 2005.

[25] Fabian M. Suchanek, Gjergji Kasneci, and Gerhard

Weikum. Yago: a core of semantic knowledge. In

WWW, pages 697–706, 2007.

[26] Silke Trißl and Ulf Leser. Fast and practical indexing

and querying of very large graphs. In SIGMOD ’07.

[27] Haixun Wang, Hao He, Jun Yang, Philip S. Yu, and

Jeffrey Xu Yu. Dual labeling: Answering graph

reachability queries in constant time. In ICDE ’06.

