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Abstract zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Description logics are a popular formalism for knowl- 

edge representation and reasoning. This paper intro- 

duces a new operation for description logics: comput- 

ing the “ least common subsumer”  of a pair of de- 

scriptions. This operation computes the largest set 

of commonalities between two descriptions. After ar- 

guing for the usefulness of this operation, we analyze 
it by relating computation of the least common sub- 

sumer to the well-understood problem of testing sub- 

sumption; a close connection is shown in the restricted 

case of “ structural subsumption” . We also present a 

method for computing the least common subsumer of 

“ attribute chain equalities” , and analyze the tractabil- 
ity of computing the least common subsumer of a set 

of descriptions -an important operation in inductive 

learning. 

Introduction and Motivation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Description logics (DLs) or terminological logics are 

a family of knowledge representation and reasoning 

systems that have found applications in several di- 

verse areas, ranging from database interfaces [Beck et 

al., 19891, to software information bases [Devanbu zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet 

al., 19911 to financial management [Mays et al., 19871. 

They have also received considerable attention from 

the research community (e.g., [Woods and Schmolze, 

1.9921.) 

DLs are to used to reason about descriptions, which 
describe sets of atomic elements called individuals. 

Individuals can be organized into primitive classes, 

which denote sets of individuals, and are related 
through binary relations called roles (or attributes 

when the relation is functional). For example, the in- 

dividuals Springsteen and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBABorntoRun might be re- 
lated by the sings role, and Springsteen might be 

an instance of the primitive class PERSON. Descrip- 

tions are composite terms that denote sets of indi- 
viduals, and are built from primitive classes (such 

a.s PERSON), and restrictions on the properties an in- 

dividual may have, such as the kinds or number 

*On sabbatical leave. 

of role fillers (e.g., “ persons that sing at least 5 

things” ). For example, the statement “ all songs 

sung by Springsteen (and there are at least 

6) are set in New Jersey”  could be expressed by 

attaching to the individual Springsteen the descrip- 

tion (AND (AT-LEAST 5 sings) (ALL sings (FILLS 
setting NJ))). 

Knowledge base management systems (KBMS) 

based on DLs perform a number of basic operations on 
descriptions: for example, checking if a description is 

incoherent, or determining if two descriptions are dis- 

joint. An especially important operation on descrip- 

tions is testing subsumption: DI subsumes D2 iff it 

is more general than D2. Efficient implementation of 

such operations allows a KBMS to organize knowledge, 

maintain its consistency, answer queries, and recognize 

conditions that trigger rule firings. 

This paper introduces a new operation for descrip- 

tion logics: computing the least common subsumer 

(LCS) of a pair of concept (i.e., finding the most spe- 
cific description in the infinite space of possible de- 

scriptions that subsumes a pair of concepts.‘) This 

operation can also be thought of as constructing a 

concept that describes the largest set of commonali- 

ties between two other concepts. In logic program- 

ming, similar operations called “ least general gener- 

alization”  and “ relative least 

i! 

eneral generalization”  

have been extensively studied Frisch and Page, 1990; 

Plotkin, 1969; Buntine, 19SS]; in the context of DLs, 
there are a number of circumstances in which the LCS 

operation is useful. 

Learning from examples. Finding the least gen- 

eral concept that generalizes a set of examples is a 
common operation in inductive learning. For exam- 

ple, [Valiant, 19841 proved that L-CNF (a class of 

Boolean functions) can be probabilistically learned by 

computing the LCS of a set of positive examples; 

also, many experimental learning systems make use 

‘This should n ot be confused with the “ most specific 

subsume?’ operation, which searches the (finite) space of 

raarraed concepts to find the most specific named concept(s) 
that subsumes a single concept [Woods and Schmolze, 
19921. 
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of LCS-like operations [Flann and Dietterich, 1989; 
Hirsh, 19921. A companion paper explores the learn- 

ability of DLs via LCS operations [Cohen and Hirsh, 

19921; DLs are useful for inductive learning because 

they are more expressive than propositional logic, but 

still (in some cases) tractably learnable. 

Knowledge-base “vivification” (e.g. [Borgida 

and Etherington, 1989; Levesque, 19861). Reasoning 

with a knowledge base that contains disjunctive facts 

is often intractable. Vivification is a way of logically 

weakening a knowledge base to avoid disjunction: for 

example, rather than encoding in the knowledge base 

the fact that PIANIST( Jill) V ORGANIST( Jill), one 

might elect to encode some conjunctive approximation 

to this disjunction, such as KEYBOARD-PLAYER( Jill). 

In DLs that reason tractably with non-disjunctive de- 

scriptions, replacing a disjunction D1 V . . . V D, with 

theLCSofDl,... , Dn is a vivification operation, as it 

leads to an approximation that can be reasoned with 

effectively. 

Other reasoning tasks. Frish and Page [ 19901 ar- 

gue that certain types of abduction and analogy can 

also be performed using LCS operations. Also, many 

specific applications of LCS operations have been de- 

scribed. For example, Schewe [1989] proposes an ap- 

proach to the important problem of developing of vari- 

ants of existing software using the Meson DL; a key 

notion in his approach is the use of the LCS of pairs 

of descriptions, denoting the desired and existing por- 

tions of code respectively. 
In the remainder of this paper, we first precisely de- 

fine the LCS of two descriptions. We then develop 

an understanding of the LCS operation by analyz- 

ing the relation of LCS to the well-studied and well- 

understood problem of subsumption. A close connec- 

t’ion is shown for the special case of “ structural sub- 

sumption” : for example, given a recursive structural 

subsumption algorithm and definitions of LCS for the 

base cases one can mechanically construct a recursive 

LCS algorithm. Finally, we analyze the complexity of 

computing the LCS of attribute chain equalities, an 

important construct for DLs that normally requires a 

non-structural subsumption algorithm. 

Our results are not specific to any particular DL; 

however, we will present our examples in a specific DL, 
namely CLASSIC [Borgida et al., 19891, the syntax of 

which is summarized in an appendix. 

The lcs Operator 

Let ,$ be a description logic and let q be its subsump- 

tion relationship-i.e., if description Dl subsumes D2 

then we will write D2==.+Dl. By definition, - must 

be a partial order on (denotations of) descriptions. It 

is possible that Dl=+D2 and D2eDl without Dl 

and D2 being syntactically identical; in this case, we 

will say that Dl and D2 are semantically equivalent, 

and write DlzD2. C E L is a least common subsumer 

@C’S) of Dl and D2 iff a) C subsumes both Dl and 

D2, and b) no other common subsumer of Dl and D2 
is strictly subsumed by C. 

Notice that in general, a least common subsumer 

may not exist, or there may be many semantically dif- 

ferent least common subsumers. We define the Zcs op- 

erator to return a set containing exactly one represen- 

tative of the equivalence class (under G-) of every least 

common subsumer of Dl and D2. More precisely: 

nition 1 If Dl and 02 are concepts in a descrip- 

language f, then lcs(Dl,DZ) is a set of concepts 

{Cl,. . . , ci, . . .} such that a) each Ci is a least com- 

mon subsumer of Dl and 02, b) for every C that is a 

least common subsumer of Dl and 02, there is some 

Ci in lcs(Dl,DZ) such that Ci z C, and c) for i # j, 

Ci $ Cj. 

However, all extant DLs provide some description 

constructor (usually called AND) which builds a de- 

scription whose denotation is the intersection of the 

denotation of its arguments. If such a constructor ex- 

ists, then it can be shown that if any least common 

subsumer exists, it is unique up to equivalence under 

3. We have the following proposition. 

roposition 1 For any DL with the description in- 

tersection constructor (AND), if lcs(Dl,DZ) is not 

empty, then it is a singleton set. 

(Proof by contradiction: if two incomparable LCS 

exist, their intersection is a more specific common sub- 

sumer, which could not be equivalent to them.) In 
the remainder of the paper, we will consider only DLs 

equipped with a constructor AND. 

elating ICS and Subsumption 

The choice of constructors available for building de- 

scriptions clearly affects the expressive power of the 

DL and the complexity of reasoning with it, as well as 

affecting the computation of the ICS operator. Since 

much research has been devoted to determining sub- 

sumption in various DLs (especially its tractablility), 

it would useful to find a correlation between computing 

subsumption and computing Its. The following two 

theorems show that this is not likely to be straightfor- 

ward in the general case: 

Theorem 1 There exists a DL such that the subsump- 

tion problem is podynomiaGtime decidable but comput- 

ing the ICS operator cannot be done in polynomial 

time. 

Proof: Consider the DL Bit, where descriptions have 

the form (AND (PRIM (vet)>*>, where (vet) is a bit 

vector y oflength n, where y = lO...O,y = O...Ol or 

y has $ 1’s. (The following would then be a description 

in Bita: (AND (PRIM 1100) (PRIM 0101) (PRIM 

iooo)).) Th e semantics of the PRIM constructor are 

that it represents a primitive concept (i.e., membership 

in its extension is explicitly asserted) but with the con- 

straint that (PRIM vl) must be a superset of (PRIM v2) 
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if vlAv2 = vl. A simple polynomial-time algorithm for 

determining whether some Cl subsumes C2 is to check, 

for every primitive (PRIM v) appearing in Cl, whether 

C2 has a primitive (PRIM w) such that v A w = v. On 

the other hand, the computation of lcs( (AND (PRIM 

10.. .O)) , (AND (PRIM 0.. .Ol)) requires exponen- 

tial time since the answer (the conjunction of all the 

other bit-vector primitives in the language) is of expo- 

nential size.2 

Theorem 2 There exists a DL for which the lcs oper- 

ator can be computed in linear time, while subsumption 

is co-NP-hard. 

Proof: Consider the DL containing the constructors 

PRIM, AND, and OR (where OR denotes disjunction). 

For this language lcs(c, D) = {(OR CD)} is a correct 

implementation. However subsumption is co-NP-hard; 

see, for example, [Borgida and Etherington, 19891 for 

a proof. (We note, however, that for this DL testing 

semantic equivalence is also intractable, and thus the 

lcs as we compute it is perhaps less useful for reason- 

ing.) 

However, although lcs and subsumption appear to 

be unrelated in the general case, they are closely re- 

lated in the restricted setting described below. 

Relating lcs and Structural 

Subsumption 

In a typical DL, description constructors interact 

in various ways; for example, (AND (AT-LEAST 2 

sings) (AT-MOST i sings)) is equivalent to the in- 

consistent concept and is hence subsumed by any other 

description. Many, though not all, DLs reason by first 

reducing descriptions to some normal form, where im- 

plicit facts are explicated, inconsistencies (such as the 

one above) are detected, and so on. Subsumption tests 

and other operations are then performed on normal- 

form representations of the description via relatively 

simple algorithms-algorithms which need not con- 

sider the possible interactions among various construc- 

tors. In particular, subsumption testing can be done 

on normal-form descriptions by independently consid- 

ering the parts of descriptions built with the same con- 

structor. 

We will write normalized descriptions (as opposed to 

CLASSIC descriptions) as first-order terms without vari- 

ables, where the various concept constructors appear 
as functors, with integers, tuples, lists, other terms, 

etc, as arguments (e.g., a.nd( [atleast (5, sings) s 

all(sings,fills(setting,NJ))]). In such anormal 

2Note that the problem of actually computing lcs can 

be made less trivial by having Bit, contain only some suf- 
ficiently large random subset of the bit vectors with p l’s, 

so that the subclass hierarchy must be traversed to find the 
common (primitive) ancestors. 

form, the subsumption algorithm3 Subsumes? would 
return false on the invo- 

cation Subsumes?(atmost(foo) , atleast(bar)) be- 
cause the constructors involved are different. We will 

call such a subsumption relationship structural sub- 

sumption4: 

Defiaition 2 Subsumes? is a structural subsumption 

relationship i$ Subsumes?(kl (a), k@)) is false when- 

ever ICI # k2. 

The list of DLs for which structural subsumption is 

used include Kandor [Patel-Schneider, 19841, Krypton 

[Brachman et al., 19831, Meson [Edelman and Ows- 

nicki, 19861, ENTITY-SITUATION [Bergamaschi et 

al., 1988], CLASSIC (without the SAME-AS constructor) 

and the logic of [Patel-Schneider, 19891. Observe how- 
ever that a structural subsumption relationship need 

not be tractable: it may be that putting a description 

into normal form is difficult, or that for some specific 

constructor subsumption is difficult to compute. 

Given that Subsumes? is a structural subsumption 

relationship, Subsumes?(k(a), k(p)) can depend only 

on the specifics of cy and p. Thus a structural sub- 

sumption relationship can be fully defined by a table 

specifying Subsurnes?(k(a), k(p)) for the various term 

constructors k; this means that subsumption imposes 

a partial order (which we denote Sk) on the space Vk 

of possible arguments to constructor k. More precisely 

we define ask@ iff Subsumes?(k(a), k(p)). 

As an example, let n/  denote the natural numbers 

and Role the set of possible roles. For the construc- 
tor AT-MOST in CLASSIC, VAT-MOST is N x Role, and 

((%?l)<AT-MOST(n2, r2)) is true iff nl 5 722 and 

. The lcs function for this constructor can 
;;‘ , d=efi?ed as follows: 

lcs(atmost(ni, q), atmost(n2, r2)) = 

if r1 = r2 then atmost(max(ni, n2), r1) else THING 

This definition is based on the definition of the least 

upper bound (lub) operation in the space VAT-MOST: 

ignoring role-identity, we have 5 on integers as the 

partial order, and max as the lub.5 This of course is 

3Notice that we use _ to denote the partial order on 
descriptions, and Subsumes ? to denote the algorithm that 

implements this partial order. 

*Informally, this term was introduced in [Patel- 

Schneider, 19891. 

5To be precise, when we say that constructor k has par- 
tial order <k’ and lub LJ k “ ignoring role identity”  we mean 
that the domain is Vi x Role, the actual partial order is 

(XI, n)5k’ (22,7-2)) = (if n = 7-2 then ZI<~‘Z~ else false) 

and the actual lub is 

(a, n)Uk(~2, ~2) = (if ~1 = ~2 then 21Ll652 else THING) 

where THING denotes the set of all individuals. Most of the 

common constructors that deal with roles have relatively 
simple lubs and partial orders if role identity is ignored. 
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no accident: in general, if <k is being used to define 

the partial order used for subsumption ,, then the cor- 

responding lub operation (if it exists) will define the 

ICS. This observation provides a connection between 

structural subsumption and lcs computation. 

Theorem 3 Suppose Dl and D2 are terms in normal 

form, so that every constructor k has its arguments 

taken from a join/upper semi-lattice6 (Vk, Sk, Uk). If 

subsumption is computed structurally based on <k, 

then lcs (Dl, 02) is non-empty, unique, and is spec- 

ified by 

Further, if both Subsumes ? and the computation of 

each uk. takes polynomial time, then the computation 

of Ics(Dl,D2) also takes polynomial time. 

The power of this theorem is most apparent when 

one considers constructors that can be composed to- 

gether. For example, consider CLASSIC's ALL construc- 

tor, which has the associated partial order (ignoring 

role-identity) of *. From the theorem, this defini- 

tion, and the fact that lcs is the lub operator for the 

* partial order, we can derive a recursive definition 

of lcs for the ALL constructor (see Table l).’  In gen- 

eral, given a recursive structural Subsumes? algorithm 

and definitions of lcs for the base cases one can im- 

mediately construct a corresponding recursive lcs al- 

gorithm. 

Observe also that the theorem allows a concise 
specification of lcs for an arbitrary set of construc- 

tors; this is again illustrated by the table, which pro- 

vides such a specification for all of the constructors 

in the CLASSIC DL except for SAME-AS (which we 

will discuss in the next section.) The table can also 

be readily extended as new constructors are added. 

For example, if we introduce a concept constructor 

RANGE to represent Pascal-like integer intervals, then 

~~RANGEiSnrx~,(nl,n2)LRANGE(mlrm2)iff(ml 5 

??I) A (n2 5 ?732), and (?&?%2)i-tnANGE(mI,?n2) = 

(min(n1, ml), max(n2, m2)). 

Computing lcs for Attribute Chain 

Equalities 

Some DLs support a constructor for testing the equal- 

ity of attribute chains; an example is CLASSIC's 

6A join/ upper semi-lattice is a poset (Vk, Sk) with an 
associated operation CVU~P that returns a unique least up- 
per bound for each pair of elements CY and / 3. 

7 Where Znd={individuals}, Ftioz={ host language 

functions}, dtom={atoms}, and ‘Desc={descriptions}; 2x 

denotes the power set (e.g., 2Znd is the set of all sets of indi- 
viduals) and X* denotes the set of sequences (of arbitrary 
length) of members of X. A single sequence is denoted 

x = (Xl,. . . ) 2n). Role identity is ignored for AT-MOST, 
AT-LEAST, and FILLS. 

SAME-AS COnStrUctOr. Attribute chain equalities are 

useful in representing relationships between parts and 

subparts of an object; to take an example from nat- 
ural language processing, one might define a sentence 

to be “ reflexive”  if its subject is the same as the direct 

object of the verb phrase, i.e. if (SAME-AS (subj > 

(vp direct-obj ) ). In this section, we will consider 

computing lcs for the SAME-AS constructor. 

The semantics of SAME-AS can be concisely stated 

by noting that it is an equality relationship (i.e., it 

is reflexive, symmetric, and transitive) such that the 

equality of A’ and g is preserved by appending iden- 

tical suffixes .s Consider the sublanguage DLSAME-AS, 

containing only conjunctions of SAME-AS terms. Each 

such description D will partition the space Attr* of all 

attribute sequences into equivalence classes; let us de- 

note the partition induced by these equivalence classes 

as n(D). A description Dl subsumes D2 iff X( Dl) is 

a refinement of n(D2) ( i.e., all equivalences in Dl also 

hold in D2). The lcs operator must therefore gen- 

erate a description of the coarsest partition that is a 

refinement of both n(D1) and 7r(D2). 

Unfortunately, such partitions cannot be represented 

directly, as there may be infinitely many equivalence 

classes, each of which may be infinitely large. Ait- 

Kaci [Ait-Kaci, 19841 has described a finite represen- 

tation for these partitions called a $-type. Following 

Ait-Kaci, we will represent a 4-type (and hence a par- 

tition) as a rooted directed graph (V, E, ~0) in which 

each edge is labeled with an attribute; such a graph will 

be called here an equality graph (E&G). A partition 
is represented by constructing an EQG such that at- 

tribute sequence 2 is the SAME-AS attribute sequence 

B’ iff there are two paths in the E&G with labels 2 and 

g that lead from the root to the same vertex, or if i 

and B’ are the result of adding identical suffixes to two 

shorter sequences 2 and @ where (SAME-AS 2 @). 

Ait-Kaci [1984] h s ows that $-types form a lattice, 

and presents efficient algorithms for constructing T,& 

types, testing the partial order (+) and construct- 

ing the glb (AND) of two $-types. In the remainder 

of this section, we present additional algorithms for 

COnStrUCtiUg a ?&type from a COnjUnCtiOn Of SAME-AS 

restrictions, and for computing the lub (1~s) of two 

$-types. 

To construct an E&G that encodes a description 

D, first add (to an initially empty graph) enough ver- 

tices and edges to create distinct paths labeled A’ and 

g for each restriction (SAME-AS A g) in D. Then, 

merge9 the final vertices of each of these pairs of 

paths. Finally, make the resulting graph “ determin- 

81.e., (SAME-AS A' 8) iff (SAME-AS ii3 BS). Of course, 
attribute sequences not mentioned in the SAME-AS condi- 
tion are in different equivalence classes. 

‘To merge two edg es, one replaces their destination ver- 
tices with a single new vertex. 
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Constructor k 

ALL 

AT-LEAST 

AT-MOST 

FILLS 

ONE-OF 

TEST 

PRIM 

AND 

Domain vk Partial Order Sk Upper Bound Uk- 

Role x Desc 
X((n,&),(r2,~2)). 

if (rl = r2) Dl=+D2 else false 
J+-l, &),(~2,02)). 

if (r-1 = r2) lcs( Dl,D2) else THING 

N x Role 2 min 

N x Role I max 

21nd x Role 3 n 

2Lna 

2j un 

Atom 

2, esc* 

U 

f-l 

)r(pl , ~2). if (~1 = ~2) pl else THING 

X(C,D). ANDi,jlCS(Cj, Da) 

Table 1: Structural subsumption and lcs rules for common constructors. 

istic”  by repeatedly merging edges that exit from the 

same vertex and have the same label.”  When this 

process is finished, every vertex v in the constructed 

E&G will represent an equivalence class of attribute 

sequences -namely those sequences that label paths to 

v from the root of the EQG. (See Figure 1 for exam- 

ples.) LCS computation can be done by performing an 

analog of the “ cross-product”  construction for finite- 

automaton intersection [Hopcroft and Ullman, 19791 

- i.e., one forms a new graph with vertex set VI x V2, 

root (VOI,VO~), and edge set {((vI,v~), (wl,w),a) : 

(vl, wl,a) E El and (v2, w2,a) E E2); here a tuple 
(v, w, a) denotes an edge from v to w with label a. This 

construction can be performed in polynomial time, and 

yields an E&G of size no greater than product of the 
sizes of the two input EQG’s. 

By the above comments, DLSAME-AS is a DL for 

which subsumption and lcs are tractable. However, 

although by Table 1 CLASSIC without SAME-AS is also 

tractable in the same sense, the SAME-AS and ALL con- 

structors interact in subtle ways, making a straightfor- 

ward integration of the two DLs impossible (more pre- 

cisely, the interaction makes it impossible to normalize 

in a manner that preserves the semantics for ALL pre- 
sented in Table 1.) The technique of this section can, 

however, be extended to the full CLASSIC language, as 

is detailed in [Cohen et al., 1992].11 

Computing lcs for Sets of Descriptions 

In some applications, notably inductive learning, it is 

necessary to find the commonalities between relatively 

large sets of objects. For this reason, we will now con- 

sider the problem of computing the lcs of a set of 

loMaking the graph deterministic makes it possible to 

tractably test subsumption, as one can tractably check if 

one deterministic graph is a subgraph of another. 

‘lBriefly, one can distribute information about the other 

constructors through an EQG, tagging the vertices of the 

EQG with ONE-OF and PRIM constraints and the edges of 

the EQG with role-related restrictions; efficient (but non- 

structural) Subsumes ?, AND, and lcs algorithms can then 

be defined on this data structure. 

objects, rather than merely a pair. In the following 
discussion, IDI denotes the size of a description D. 

Observe that by definition lcs is commutative and 

associative: thus it is always possible to compute 

lcs( D1, . . . , Dra) by a series of pairwise lcs compu- 
tations. However, problems may arise even if the lcs 

of a pair of descriptions is tractably computable: 

Theorem 4 There exists a a polynomial function p(n) 

so thatforalln 3Dl,..., D, E DLSAME-AS such that 

ID4 = O(n) for each Da, but Ilcs(D1, . . . . D,)I = 

Pro& Consider the descriptions Dl, D2, . . . . D,, with 
Da defined as 

Da = (AND (ANDj+i (SAME-AS () (aj))) 

(ANDj+i (SAME-AS (CQ) (Ui Uj))) 

(SAME-AS () (ai ai))) 

where the ai’s are all distinct attributes. The parti- 

tion r(Di) has two equivalence classes: two attribute 

sequences are equal iff they contain the same number 

of occurrences (modulo 2) of attribute ai. Recall that 

for Dlcs =lcs(D1,... , D,), n( Dies) will be the coars- 
est partition that is a refinement of each r(Di); this 

means that two attribute sequences will be considered 

equal by Dlcs iff they are considered equal by all of 
the Di’s, i.e., if they contain the same number of oc- 

currences (modulo 2) of all n attributes. Thus ~(DI,,) 

contains at least 2”  equivalence classes, and hence its 
equality graph must contain at least 2n nodes. Finally, 

since converting a description D to an EQG requires 

time only polynomial in IDI, no equivalent description 

D can be more than polynomially smaller. 

In the theorem, exponential growth occurs because 

Ilcs(D1, D2)j is bounded only by 1011 - 1021; hence 

Ics(D~, . . . , Dn) can be large. We note that exponen- 

tial behavior cannot occur without this multiplicative 

growth: 

Proposition 2 Under the conditions of Theorem 3, 

if jCYuk,f?I 5 ICYI + I/?], then lcs(D1,. . . , Dn) can be 

computed in polynomial time. 
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@a 
LoanApplicant 

(AND (SAME-AS (LoanApplicant) 
(Student)) 

(SAME-AS (Cosigner) 

(Student Father))) 

(zrJ;=> 

LoanApplicant 

(AND (SAME-AS (LoanApplicant) (AND 

(HouseBuyer)) (SAME-AS 

(SAME-AS (Cosigner) (Cosigner) 

(HouseBuyer Fat her))) (LoanApplicant Father))) 

Figure 1: Two E&G’s and their lcs 

From Table 1, we see that for CLASSIC without 

SAME-AS, lcs is tractable in this strong sense. 

Conclusions 

This paper has considered a new operation for descrip- 

tion logics: computing the least common subsumer 

@CS) of a pair of descriptions. This operation is a 

way of computing the largest set of commonalities be- 

tween two descriptions, and has applications in areas 

including inductive learning and knowledge-based viv- 

ification. We have analyzed the LCS operation, pri- 

marily by analyzing its relationship to the well-studied 

and well-understood problem of subsumption. First, 

we showed that no close relationship holds in the gen- 

eral case. We then defined the class of structural sub- 

sumption relations (which apply to a large portion of 

extant DLs) and showed that, in this restricted set- 

ting, the relationship between LCS and subsumption 
is quite close; making use of this relationship, we also 

developed a very general and modular implementation 

of LCS. Finally, we presented a method for computing 

the LCS of attribute chain equalities, and presented 

some additional results on the tractability of comput- 

ing the LCS of a set of descriptions; the latter problem 

is important in learning. 

We have seen that constructors such as SAME-AS 

whose subsumption is not easily described in a “ struc- 

tural”  manner can cause complications in the com- 

putation of LCS. For this reason, we have postponed 

consideration of generalizations of SAME-AS which are 

known to make subsumption undecideable, such as 
SUBSET-OF and SAME-AS applied to role (as opposed 

to attribute) chains. We also leave as further work 

a.nalysis of LCS for DLs allowing recursive concept def- 

initions, role hierarchies, or role constructors such as 

inversion and transitive closure. 
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Appendix: The CLASSIC 1.0 DL 

The following are the description constructors for 

CLASSIC, and their syntax. 

(AT-LEAST n r) : the set of individuals with at least 

n fillers of role r. 

(AT-MOST n r) : the set of individuals with at most 

n fillers of role r. 

(ALL r D) : the set of individuals for which all of the 

fillers of role r satisfy D. 

(AND D1 . ..D.) : the set of individuals that satisfy 

all of the descriptions D1, . . . , D,. 

(FILLS T' 11 ..&) : the set of individuals for which 
individuals II,. . . , In fill role V. 

(ONE-OF I1 . . . Ita) : 

. . .or {I,}. 

denotes either the set (11) or 

(TEST Tl . . .Tn) : tests (arbitrary host language 

predicates) Tl , . . . ,T, are true of the instances of the 

concept. This is essentially an escape-hatch to the 

host language, which enables a user to encode pro- 

cedural sufficiency conditions. 

(PRIM i) : denotes primitive concept i. A primitive 

concept is a name given to a “ natural kind” -a set 

of objects for which no sufficient definition exists. 

(SAME-AS (fl,l . ..PI.~) (~1 . ..q+)) : The set ofin- 

dividuals for which the result of following the first 

chain of attributes is the same as the result of fol- 

lowing the second chain of attributes, 
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