
Computing Least Common Subsumers

in Description Logics

William W. Cohen Alex Borgida* Haym Hirsh zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

AT&T Bell Laboratories Dept. of Computer Science Dept. of Computer Science

600 Mountain Avenue Rutgers University Rutgers University

Murray Hill, NJ 07974 New Brunswick, NJ 08903 New Brunswick, NJ 08903

wcohen@research.att.com borgida@cs.rutgers.edu hirshQcs.rutgers.edu

Abstract zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Description logics are a popular formalism for knowl-

edge representation and reasoning. This paper intro-

duces a new operation for description logics: comput-

ing the “ least common subsumer” of a pair of de-

scriptions. This operation computes the largest set

of commonalities between two descriptions. After ar-

guing for the usefulness of this operation, we analyze
it by relating computation of the least common sub-

sumer to the well-understood problem of testing sub-

sumption; a close connection is shown in the restricted

case of “ structural subsumption” . We also present a

method for computing the least common subsumer of

“ attribute chain equalities” , and analyze the tractabil-
ity of computing the least common subsumer of a set

of descriptions -an important operation in inductive

learning.

Introduction and Motivation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Description logics (DLs) or terminological logics are

a family of knowledge representation and reasoning

systems that have found applications in several di-

verse areas, ranging from database interfaces [Beck et

al., 19891, to software information bases [Devanbu zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet

al., 19911 to financial management [Mays et al., 19871.

They have also received considerable attention from

the research community (e.g., [Woods and Schmolze,

1.9921.)

DLs are to used to reason about descriptions, which
describe sets of atomic elements called individuals.

Individuals can be organized into primitive classes,

which denote sets of individuals, and are related
through binary relations called roles (or attributes

when the relation is functional). For example, the in-

dividuals Springsteen and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBABorntoRun might be re-
lated by the sings role, and Springsteen might be

an instance of the primitive class PERSON. Descrip-

tions are composite terms that denote sets of indi-
viduals, and are built from primitive classes (such

a.s PERSON), and restrictions on the properties an in-

dividual may have, such as the kinds or number

*On sabbatical leave.

of role fillers (e.g., “ persons that sing at least 5

things”). For example, the statement “ all songs

sung by Springsteen (and there are at least

6) are set in New Jersey” could be expressed by

attaching to the individual Springsteen the descrip-

tion (AND (AT-LEAST 5 sings) (ALL sings (FILLS
setting NJ))).

Knowledge base management systems (KBMS)

based on DLs perform a number of basic operations on
descriptions: for example, checking if a description is

incoherent, or determining if two descriptions are dis-

joint. An especially important operation on descrip-

tions is testing subsumption: DI subsumes D2 iff it

is more general than D2. Efficient implementation of

such operations allows a KBMS to organize knowledge,

maintain its consistency, answer queries, and recognize

conditions that trigger rule firings.

This paper introduces a new operation for descrip-

tion logics: computing the least common subsumer

(LCS) of a pair of concept (i.e., finding the most spe-
cific description in the infinite space of possible de-

scriptions that subsumes a pair of concepts.‘) This

operation can also be thought of as constructing a

concept that describes the largest set of commonali-

ties between two other concepts. In logic program-

ming, similar operations called “ least general gener-

alization” and “ relative least

i!

eneral generalization”

have been extensively studied Frisch and Page, 1990;

Plotkin, 1969; Buntine, 19SS]; in the context of DLs,
there are a number of circumstances in which the LCS

operation is useful.

Learning from examples. Finding the least gen-

eral concept that generalizes a set of examples is a
common operation in inductive learning. For exam-

ple, [Valiant, 19841 proved that L-CNF (a class of

Boolean functions) can be probabilistically learned by

computing the LCS of a set of positive examples;

also, many experimental learning systems make use

‘This should n ot be confused with the “ most specific

subsume?’ operation, which searches the (finite) space of

raarraed concepts to find the most specific named concept(s)
that subsumes a single concept [Woods and Schmolze,
19921.

754 Representat ion and Reasoning: Terminological

From: AAAI-92 Proceedings. Copyright ©1992, AAAI (www.aaai.org). All rights reserved.

of LCS-like operations [Flann and Dietterich, 1989;
Hirsh, 19921. A companion paper explores the learn-

ability of DLs via LCS operations [Cohen and Hirsh,

19921; DLs are useful for inductive learning because

they are more expressive than propositional logic, but

still (in some cases) tractably learnable.

Knowledge-base “vivification” (e.g. [Borgida

and Etherington, 1989; Levesque, 19861). Reasoning

with a knowledge base that contains disjunctive facts

is often intractable. Vivification is a way of logically

weakening a knowledge base to avoid disjunction: for

example, rather than encoding in the knowledge base

the fact that PIANIST(Jill) V ORGANIST(Jill), one

might elect to encode some conjunctive approximation

to this disjunction, such as KEYBOARD-PLAYER(Jill).

In DLs that reason tractably with non-disjunctive de-

scriptions, replacing a disjunction D1 V . . . V D, with

theLCSofDl,... , Dn is a vivification operation, as it

leads to an approximation that can be reasoned with

effectively.

Other reasoning tasks. Frish and Page [19901 ar-

gue that certain types of abduction and analogy can

also be performed using LCS operations. Also, many

specific applications of LCS operations have been de-

scribed. For example, Schewe [1989] proposes an ap-

proach to the important problem of developing of vari-

ants of existing software using the Meson DL; a key

notion in his approach is the use of the LCS of pairs

of descriptions, denoting the desired and existing por-

tions of code respectively.
In the remainder of this paper, we first precisely de-

fine the LCS of two descriptions. We then develop

an understanding of the LCS operation by analyz-

ing the relation of LCS to the well-studied and well-

understood problem of subsumption. A close connec-

t’ion is shown for the special case of “ structural sub-

sumption” : for example, given a recursive structural

subsumption algorithm and definitions of LCS for the

base cases one can mechanically construct a recursive

LCS algorithm. Finally, we analyze the complexity of

computing the LCS of attribute chain equalities, an

important construct for DLs that normally requires a

non-structural subsumption algorithm.

Our results are not specific to any particular DL;

however, we will present our examples in a specific DL,
namely CLASSIC [Borgida et al., 19891, the syntax of

which is summarized in an appendix.

The lcs Operator

Let ,$ be a description logic and let q be its subsump-

tion relationship-i.e., if description Dl subsumes D2

then we will write D2==.+Dl. By definition, - must

be a partial order on (denotations of) descriptions. It

is possible that Dl=+D2 and D2eDl without Dl

and D2 being syntactically identical; in this case, we

will say that Dl and D2 are semantically equivalent,

and write DlzD2. C E L is a least common subsumer

@C’S) of Dl and D2 iff a) C subsumes both Dl and

D2, and b) no other common subsumer of Dl and D2
is strictly subsumed by C.

Notice that in general, a least common subsumer

may not exist, or there may be many semantically dif-

ferent least common subsumers. We define the Zcs op-

erator to return a set containing exactly one represen-

tative of the equivalence class (under G-) of every least

common subsumer of Dl and D2. More precisely:

nition 1 If Dl and 02 are concepts in a descrip-

language f, then lcs(Dl,DZ) is a set of concepts

{Cl,. . . , ci, . . .} such that a) each Ci is a least com-

mon subsumer of Dl and 02, b) for every C that is a

least common subsumer of Dl and 02, there is some

Ci in lcs(Dl,DZ) such that Ci z C, and c) for i # j,

Ci $ Cj.

However, all extant DLs provide some description

constructor (usually called AND) which builds a de-

scription whose denotation is the intersection of the

denotation of its arguments. If such a constructor ex-

ists, then it can be shown that if any least common

subsumer exists, it is unique up to equivalence under

3. We have the following proposition.

roposition 1 For any DL with the description in-

tersection constructor (AND), if lcs(Dl,DZ) is not

empty, then it is a singleton set.

(Proof by contradiction: if two incomparable LCS

exist, their intersection is a more specific common sub-

sumer, which could not be equivalent to them.) In
the remainder of the paper, we will consider only DLs

equipped with a constructor AND.

elating ICS and Subsumption

The choice of constructors available for building de-

scriptions clearly affects the expressive power of the

DL and the complexity of reasoning with it, as well as

affecting the computation of the ICS operator. Since

much research has been devoted to determining sub-

sumption in various DLs (especially its tractablility),

it would useful to find a correlation between computing

subsumption and computing Its. The following two

theorems show that this is not likely to be straightfor-

ward in the general case:

Theorem 1 There exists a DL such that the subsump-

tion problem is podynomiaGtime decidable but comput-

ing the ICS operator cannot be done in polynomial

time.

Proof: Consider the DL Bit, where descriptions have

the form (AND (PRIM (vet)>*>, where (vet) is a bit

vector y oflength n, where y = lO...O,y = O...Ol or

y has $ 1’s. (The following would then be a description

in Bita: (AND (PRIM 1100) (PRIM 0101) (PRIM

iooo)).) Th e semantics of the PRIM constructor are

that it represents a primitive concept (i.e., membership

in its extension is explicitly asserted) but with the con-

straint that (PRIM vl) must be a superset of (PRIM v2)

Cohen, Borgida, and Hirsh 755

if vlAv2 = vl. A simple polynomial-time algorithm for

determining whether some Cl subsumes C2 is to check,

for every primitive (PRIM v) appearing in Cl, whether

C2 has a primitive (PRIM w) such that v A w = v. On

the other hand, the computation of lcs((AND (PRIM

10.. .O)) , (AND (PRIM 0.. .Ol)) requires exponen-

tial time since the answer (the conjunction of all the

other bit-vector primitives in the language) is of expo-

nential size.2

Theorem 2 There exists a DL for which the lcs oper-

ator can be computed in linear time, while subsumption

is co-NP-hard.

Proof: Consider the DL containing the constructors

PRIM, AND, and OR (where OR denotes disjunction).

For this language lcs(c, D) = {(OR CD)} is a correct

implementation. However subsumption is co-NP-hard;

see, for example, [Borgida and Etherington, 19891 for

a proof. (We note, however, that for this DL testing

semantic equivalence is also intractable, and thus the

lcs as we compute it is perhaps less useful for reason-

ing.)

However, although lcs and subsumption appear to

be unrelated in the general case, they are closely re-

lated in the restricted setting described below.

Relating lcs and Structural

Subsumption

In a typical DL, description constructors interact

in various ways; for example, (AND (AT-LEAST 2

sings) (AT-MOST i sings)) is equivalent to the in-

consistent concept and is hence subsumed by any other

description. Many, though not all, DLs reason by first

reducing descriptions to some normal form, where im-

plicit facts are explicated, inconsistencies (such as the

one above) are detected, and so on. Subsumption tests

and other operations are then performed on normal-

form representations of the description via relatively

simple algorithms-algorithms which need not con-

sider the possible interactions among various construc-

tors. In particular, subsumption testing can be done

on normal-form descriptions by independently consid-

ering the parts of descriptions built with the same con-

structor.

We will write normalized descriptions (as opposed to

CLASSIC descriptions) as first-order terms without vari-

ables, where the various concept constructors appear
as functors, with integers, tuples, lists, other terms,

etc, as arguments (e.g., a.nd([atleast (5, sings) s

all(sings,fills(setting,NJ))]). In such anormal

2Note that the problem of actually computing lcs can

be made less trivial by having Bit, contain only some suf-
ficiently large random subset of the bit vectors with p l’s,

so that the subclass hierarchy must be traversed to find the
common (primitive) ancestors.

form, the subsumption algorithm3 Subsumes? would
return false on the invo-

cation Subsumes?(atmost(foo) , atleast(bar)) be-
cause the constructors involved are different. We will

call such a subsumption relationship structural sub-

sumption4:

Defiaition 2 Subsumes? is a structural subsumption

relationship i$ Subsumes?(kl (a), k@)) is false when-

ever ICI # k2.

The list of DLs for which structural subsumption is

used include Kandor [Patel-Schneider, 19841, Krypton

[Brachman et al., 19831, Meson [Edelman and Ows-

nicki, 19861, ENTITY-SITUATION [Bergamaschi et

al., 1988], CLASSIC (without the SAME-AS constructor)

and the logic of [Patel-Schneider, 19891. Observe how-
ever that a structural subsumption relationship need

not be tractable: it may be that putting a description

into normal form is difficult, or that for some specific

constructor subsumption is difficult to compute.

Given that Subsumes? is a structural subsumption

relationship, Subsumes?(k(a), k(p)) can depend only

on the specifics of cy and p. Thus a structural sub-

sumption relationship can be fully defined by a table

specifying Subsurnes?(k(a), k(p)) for the various term

constructors k; this means that subsumption imposes

a partial order (which we denote Sk) on the space Vk

of possible arguments to constructor k. More precisely

we define ask@ iff Subsumes?(k(a), k(p)).

As an example, let n/ denote the natural numbers

and Role the set of possible roles. For the construc-
tor AT-MOST in CLASSIC, VAT-MOST is N x Role, and

((%?l)<AT-MOST(n2, r2)) is true iff nl 5 722 and

. The lcs function for this constructor can
;;‘ , d=efi?ed as follows:

lcs(atmost(ni, q), atmost(n2, r2)) =

if r1 = r2 then atmost(max(ni, n2), r1) else THING

This definition is based on the definition of the least

upper bound (lub) operation in the space VAT-MOST:

ignoring role-identity, we have 5 on integers as the

partial order, and max as the lub.5 This of course is

3Notice that we use _ to denote the partial order on
descriptions, and Subsumes ? to denote the algorithm that

implements this partial order.

*Informally, this term was introduced in [Patel-

Schneider, 19891.

5To be precise, when we say that constructor k has par-
tial order <k’ and lub LJ k “ ignoring role identity” we mean
that the domain is Vi x Role, the actual partial order is

(XI, n)5k’ (22,7-2)) = (if n = 7-2 then ZI<~‘Z~ else false)

and the actual lub is

(a, n)Uk(~2, ~2) = (if ~1 = ~2 then 21Ll652 else THING)

where THING denotes the set of all individuals. Most of the

common constructors that deal with roles have relatively
simple lubs and partial orders if role identity is ignored.

756 Representation and Reasoning: Terminological

no accident: in general, if <k is being used to define

the partial order used for subsumption ,, then the cor-

responding lub operation (if it exists) will define the

ICS. This observation provides a connection between

structural subsumption and lcs computation.

Theorem 3 Suppose Dl and D2 are terms in normal

form, so that every constructor k has its arguments

taken from a join/upper semi-lattice6 (Vk, Sk, Uk). If

subsumption is computed structurally based on <k,

then lcs (Dl, 02) is non-empty, unique, and is spec-

ified by

Further, if both Subsumes ? and the computation of

each uk. takes polynomial time, then the computation

of Ics(Dl,D2) also takes polynomial time.

The power of this theorem is most apparent when

one considers constructors that can be composed to-

gether. For example, consider CLASSIC's ALL construc-

tor, which has the associated partial order (ignoring

role-identity) of *. From the theorem, this defini-

tion, and the fact that lcs is the lub operator for the

* partial order, we can derive a recursive definition

of lcs for the ALL constructor (see Table l).’ In gen-

eral, given a recursive structural Subsumes? algorithm

and definitions of lcs for the base cases one can im-

mediately construct a corresponding recursive lcs al-

gorithm.

Observe also that the theorem allows a concise
specification of lcs for an arbitrary set of construc-

tors; this is again illustrated by the table, which pro-

vides such a specification for all of the constructors

in the CLASSIC DL except for SAME-AS (which we

will discuss in the next section.) The table can also

be readily extended as new constructors are added.

For example, if we introduce a concept constructor

RANGE to represent Pascal-like integer intervals, then

~~RANGEiSnrx~,(nl,n2)LRANGE(mlrm2)iff(ml 5

??I) A (n2 5 ?732), and (?&?%2)i-tnANGE(mI,?n2) =

(min(n1, ml), max(n2, m2)).

Computing lcs for Attribute Chain

Equalities

Some DLs support a constructor for testing the equal-

ity of attribute chains; an example is CLASSIC's

6A join/ upper semi-lattice is a poset (Vk, Sk) with an
associated operation CVU~P that returns a unique least up-
per bound for each pair of elements CY and / 3.

7 Where Znd={individuals}, Ftioz={ host language

functions}, dtom={atoms}, and ‘Desc={descriptions}; 2x

denotes the power set (e.g., 2Znd is the set of all sets of indi-
viduals) and X* denotes the set of sequences (of arbitrary
length) of members of X. A single sequence is denoted

x = (Xl,. . .) 2n). Role identity is ignored for AT-MOST,
AT-LEAST, and FILLS.

SAME-AS COnStrUctOr. Attribute chain equalities are

useful in representing relationships between parts and

subparts of an object; to take an example from nat-
ural language processing, one might define a sentence

to be “ reflexive” if its subject is the same as the direct

object of the verb phrase, i.e. if (SAME-AS (subj >

(vp direct-obj)). In this section, we will consider

computing lcs for the SAME-AS constructor.

The semantics of SAME-AS can be concisely stated

by noting that it is an equality relationship (i.e., it

is reflexive, symmetric, and transitive) such that the

equality of A’ and g is preserved by appending iden-

tical suffixes .s Consider the sublanguage DLSAME-AS,

containing only conjunctions of SAME-AS terms. Each

such description D will partition the space Attr* of all

attribute sequences into equivalence classes; let us de-

note the partition induced by these equivalence classes

as n(D). A description Dl subsumes D2 iff X(Dl) is

a refinement of n(D2) (i.e., all equivalences in Dl also

hold in D2). The lcs operator must therefore gen-

erate a description of the coarsest partition that is a

refinement of both n(D1) and 7r(D2).

Unfortunately, such partitions cannot be represented

directly, as there may be infinitely many equivalence

classes, each of which may be infinitely large. Ait-

Kaci [Ait-Kaci, 19841 has described a finite represen-

tation for these partitions called a $-type. Following

Ait-Kaci, we will represent a 4-type (and hence a par-

tition) as a rooted directed graph (V, E, ~0) in which

each edge is labeled with an attribute; such a graph will

be called here an equality graph (E&G). A partition
is represented by constructing an EQG such that at-

tribute sequence 2 is the SAME-AS attribute sequence

B’ iff there are two paths in the E&G with labels 2 and

g that lead from the root to the same vertex, or if i

and B’ are the result of adding identical suffixes to two

shorter sequences 2 and @ where (SAME-AS 2 @).

Ait-Kaci [1984] h s ows that $-types form a lattice,

and presents efficient algorithms for constructing T,&

types, testing the partial order (+) and construct-

ing the glb (AND) of two $-types. In the remainder

of this section, we present additional algorithms for

COnStrUCtiUg a ?&type from a COnjUnCtiOn Of SAME-AS

restrictions, and for computing the lub (1~s) of two

$-types.

To construct an E&G that encodes a description

D, first add (to an initially empty graph) enough ver-

tices and edges to create distinct paths labeled A’ and

g for each restriction (SAME-AS A g) in D. Then,

merge9 the final vertices of each of these pairs of

paths. Finally, make the resulting graph “ determin-

81.e., (SAME-AS A' 8) iff (SAME-AS ii3 BS). Of course,
attribute sequences not mentioned in the SAME-AS condi-
tion are in different equivalence classes.

‘To merge two edg es, one replaces their destination ver-
tices with a single new vertex.

Cohen, Borgida, and Hirsh 757

Constructor k

ALL

AT-LEAST

AT-MOST

FILLS

ONE-OF

TEST

PRIM

AND

Domain vk Partial Order Sk Upper Bound Uk-

Role x Desc
X((n,&),(r2,~2)).

if (rl = r2) Dl=+D2 else false
J+-l, &),(~2,02)).

if (r-1 = r2) lcs(Dl,D2) else THING

N x Role 2 min

N x Role I max

21nd x Role 3 n

2Lna

2j un

Atom

2, esc*

U

f-l

)r(pl , ~2). if (~1 = ~2) pl else THING

X(C,D). ANDi,jlCS(Cj, Da)

Table 1: Structural subsumption and lcs rules for common constructors.

istic” by repeatedly merging edges that exit from the

same vertex and have the same label.” When this

process is finished, every vertex v in the constructed

E&G will represent an equivalence class of attribute

sequences -namely those sequences that label paths to

v from the root of the EQG. (See Figure 1 for exam-

ples.) LCS computation can be done by performing an

analog of the “ cross-product” construction for finite-

automaton intersection [Hopcroft and Ullman, 19791

- i.e., one forms a new graph with vertex set VI x V2,

root (VOI,VO~), and edge set {((vI,v~), (wl,w),a) :

(vl, wl,a) E El and (v2, w2,a) E E2); here a tuple
(v, w, a) denotes an edge from v to w with label a. This

construction can be performed in polynomial time, and

yields an E&G of size no greater than product of the
sizes of the two input EQG’s.

By the above comments, DLSAME-AS is a DL for

which subsumption and lcs are tractable. However,

although by Table 1 CLASSIC without SAME-AS is also

tractable in the same sense, the SAME-AS and ALL con-

structors interact in subtle ways, making a straightfor-

ward integration of the two DLs impossible (more pre-

cisely, the interaction makes it impossible to normalize

in a manner that preserves the semantics for ALL pre-
sented in Table 1.) The technique of this section can,

however, be extended to the full CLASSIC language, as

is detailed in [Cohen et al., 1992].11

Computing lcs for Sets of Descriptions

In some applications, notably inductive learning, it is

necessary to find the commonalities between relatively

large sets of objects. For this reason, we will now con-

sider the problem of computing the lcs of a set of

loMaking the graph deterministic makes it possible to

tractably test subsumption, as one can tractably check if

one deterministic graph is a subgraph of another.

‘lBriefly, one can distribute information about the other

constructors through an EQG, tagging the vertices of the

EQG with ONE-OF and PRIM constraints and the edges of

the EQG with role-related restrictions; efficient (but non-

structural) Subsumes ?, AND, and lcs algorithms can then

be defined on this data structure.

objects, rather than merely a pair. In the following
discussion, IDI denotes the size of a description D.

Observe that by definition lcs is commutative and

associative: thus it is always possible to compute

lcs(D1, . . . , Dra) by a series of pairwise lcs compu-
tations. However, problems may arise even if the lcs

of a pair of descriptions is tractably computable:

Theorem 4 There exists a a polynomial function p(n)

so thatforalln 3Dl,..., D, E DLSAME-AS such that

ID4 = O(n) for each Da, but Ilcs(D1, D,)I =

Pro& Consider the descriptions Dl, D2, D,, with
Da defined as

Da = (AND (ANDj+i (SAME-AS () (aj)))

(ANDj+i (SAME-AS (CQ) (Ui Uj)))

(SAME-AS () (ai ai)))

where the ai’s are all distinct attributes. The parti-

tion r(Di) has two equivalence classes: two attribute

sequences are equal iff they contain the same number

of occurrences (modulo 2) of attribute ai. Recall that

for Dlcs =lcs(D1,... , D,), n(Dies) will be the coars-
est partition that is a refinement of each r(Di); this

means that two attribute sequences will be considered

equal by Dlcs iff they are considered equal by all of
the Di’s, i.e., if they contain the same number of oc-

currences (modulo 2) of all n attributes. Thus ~(DI,,)

contains at least 2” equivalence classes, and hence its
equality graph must contain at least 2n nodes. Finally,

since converting a description D to an EQG requires

time only polynomial in IDI, no equivalent description

D can be more than polynomially smaller.

In the theorem, exponential growth occurs because

Ilcs(D1, D2)j is bounded only by 1011 - 1021; hence

Ics(D~, . . . , Dn) can be large. We note that exponen-

tial behavior cannot occur without this multiplicative

growth:

Proposition 2 Under the conditions of Theorem 3,

if jCYuk,f?I 5 ICYI + I/?], then lcs(D1,. . . , Dn) can be

computed in polynomial time.

758 Representation and Reasoning: Terrninological

@a
LoanApplicant

(AND (SAME-AS (LoanApplicant)
(Student))

(SAME-AS (Cosigner)

(Student Father)))

(zrJ;=>

LoanApplicant

(AND (SAME-AS (LoanApplicant) (AND

(HouseBuyer)) (SAME-AS

(SAME-AS (Cosigner) (Cosigner)

(HouseBuyer Fat her))) (LoanApplicant Father)))

Figure 1: Two E&G’s and their lcs

From Table 1, we see that for CLASSIC without

SAME-AS, lcs is tractable in this strong sense.

Conclusions

This paper has considered a new operation for descrip-

tion logics: computing the least common subsumer

@CS) of a pair of descriptions. This operation is a

way of computing the largest set of commonalities be-

tween two descriptions, and has applications in areas

including inductive learning and knowledge-based viv-

ification. We have analyzed the LCS operation, pri-

marily by analyzing its relationship to the well-studied

and well-understood problem of subsumption. First,

we showed that no close relationship holds in the gen-

eral case. We then defined the class of structural sub-

sumption relations (which apply to a large portion of

extant DLs) and showed that, in this restricted set-

ting, the relationship between LCS and subsumption
is quite close; making use of this relationship, we also

developed a very general and modular implementation

of LCS. Finally, we presented a method for computing

the LCS of attribute chain equalities, and presented

some additional results on the tractability of comput-

ing the LCS of a set of descriptions; the latter problem

is important in learning.

We have seen that constructors such as SAME-AS

whose subsumption is not easily described in a “ struc-

tural” manner can cause complications in the com-

putation of LCS. For this reason, we have postponed

consideration of generalizations of SAME-AS which are

known to make subsumption undecideable, such as
SUBSET-OF and SAME-AS applied to role (as opposed

to attribute) chains. We also leave as further work

a.nalysis of LCS for DLs allowing recursive concept def-

initions, role hierarchies, or role constructors such as

inversion and transitive closure.

Acknowledgements

The authors would like to thank Ron Brachman, Peter

Patel-Schneider, and Bart Selman for comments on a

draft of the paper; we are also grateful to Tony Bonner

and Michael Kifer for pointing out a technical error in

an earlier version of the paper. Other colleagues at Bell

Labs contributed through many helpful discussions.

Appendix: The CLASSIC 1.0 DL

The following are the description constructors for

CLASSIC, and their syntax.

(AT-LEAST n r) : the set of individuals with at least

n fillers of role r.

(AT-MOST n r) : the set of individuals with at most

n fillers of role r.

(ALL r D) : the set of individuals for which all of the

fillers of role r satisfy D.

(AND D1 . ..D.) : the set of individuals that satisfy

all of the descriptions D1, . . . , D,.

(FILLS T' 11 ..&) : the set of individuals for which
individuals II,. . . , In fill role V.

(ONE-OF I1 . . . Ita) :

. . .or {I,}.

denotes either the set (11) or

(TEST Tl . . .Tn) : tests (arbitrary host language

predicates) Tl , . . . ,T, are true of the instances of the

concept. This is essentially an escape-hatch to the

host language, which enables a user to encode pro-

cedural sufficiency conditions.

(PRIM i) : denotes primitive concept i. A primitive

concept is a name given to a “ natural kind” -a set

of objects for which no sufficient definition exists.

(SAME-AS (fl,l . ..PI.~) (~1 . ..q+)) : The set ofin-

dividuals for which the result of following the first

chain of attributes is the same as the result of fol-

lowing the second chain of attributes,

Cohen, Borgida, and Hirsh 759

References

(Ait-Kaci, 1984) Hassan Ait-Kaci. A lattice theoretic

approach to computation based on a calculus of par-

tially ordered type structures. PhD Thesis, Univer-

sity of Pennsylvania, 1984.

(Beck et al., 1989) H. Beck, H. Gala, and S. Navathe.

Classification as a query processing technique in the
CANDIDE semantic model. In Proceedings of the

Data Engineering Conference, pages 572-581, Los

Angeles, California, 1989.

(Bergamaschi et al., 1988)

S. Bergamaschi, F.Bonfatti, and C. Sartori. Entity-

situation: a model for the knowledge representation

module of a kbms. In Advances in Database Tech-

nology: EDBT’88. Springer-Verlag, 1988.

(Borgida and Etherington, 1989) A. Borgida

and D. Etherington. Hierarchical knowledge bases

and efficient disjunctive reasoning. In Proceedings of

the First International Conference on Principles of

Knowiedge Representation and Reasoning, Toronto,

Ontario, 1989.

(Borgida et al., 1989) A. Borgida, R. J. Brachman,

D. L. McGuinness, and L. Resnick. CLASSIC: A

structural data model for objects. In Proceedings of

SIGMOD-89, Portland, Oregon, 1989.

(Brachman et al., 1983) R. J. Brachman, R. E. Fikes,
and H. J. Levesque. Krypton: A functional ap-

proach to knowledge representation. IEEE Com-

puter, 16(10):67-73, 1983.

(Buntine, 1988) Wray Buntine. Generalized subsump-

tion and its application to induction and redun-

dancy. Artificial InteZZigence, 36(2):149-176, 1988.

(Cohen and Hirsh, 1992) W. Cohen and H. Hirsh.
Learnability of description logics. In preparation,

1992.

(Cohen et al., 1992) W. Cohen, H. Hirsh,

and A. Borgida. Learning in description logics using

least common subsumers. In preparation, 1992.

(Devanbu et al., 1991) P. Devanbu, R. J. Brachman,

P. Selfridge, and B. Ballard. LaSSIE: A knowledge-

based software information system. Communica-

tions of the ACM, 35(5), May 1991.

(Edelman and Owsnicki, 1986) J. Edelman

and B. Owsnicki. Data models in knowledge rep-

resentation systems. In Proceedings of GW AI-86.

Springer-Verlag, 1986.

(Flann and Dietterich, 1989) Nicholas Flann and

Thomas Dietterich. A study of explanation-based

methods for inductive learning. Machine Learning,

4(2), 1989.

(Frisch and Page, 1990) A. Frisch and C. D. Page.

Generalization with taxonomic information. In Pro-

ceedings of the Eighth NationaZ Conference on Artifi-

cial Intelligence, Boston, Massachusetts, 1990. MIT
Press.

(Hirsh, 1992) Haym Hirsh. Polynomial-time learning

with version spaces. In Proceedings of the Tenth

National Conference on Artificial Intelligence, San

Jose, California, 1992. MIT Press.

(Hopcroft and Ullman, 1979) John E. Hopcroft and

Jeffrey D. Ullman. Introduction to Automata The-

ory, Languages, and Computation. Addison-Wesley,

1979.

(Levesque, 1986) Hector Levesque. Making believers

out of computers. Artificial Intelligence, 30:81-108,

1986. (Originally given as the “ Computers and

Thought” lecture at IJCAI-85.).

(Mays et al., 1987) E. Mays, C. Apte, J. Griesmer,

and J. Kastner. Organizing knowledge in a com-

plex financial domain. IEEE Expert, pages 61-70,

Fall 1987.

(Patel-Schneider, 1984) P. F. Patel-Schneider. Small

can be beautiful in knowledge representation. In

Proceedings of the IEEE W orkshop on Principles

of Knowledge-Based Systems, pages 11-16, Denver,

Colorado, 1984.

(Patel-Schneider, 1989) P. F. Patel-Schneider. A four-

valued semantics for terminological logics. Artificial

Inteddigence, 38:319-351, 1989.

(Plotkin, 1969) G. D. Plotkin. A note on inductive

generalization. In Machine Inteldigence 5, pages

153-163. Edinburgh University Press, 1969.

(Schewe, 1989) Klaus Dieter Schewe. Variant con-

struction using constraint propagation techniques

over semantic networks. In Proceedings of the 5th

Austrian AI Conference, Insbruck, 1989.

(Valiant, 1984) L. G. Valiant. A theory of the learn-

able. Communications of the ACM, 27(11), Novem-

ber 1984.

(Woods and Schmolze, 1992) W. A. Woods and J. G.

Schmolze. The KL-ONE family. Computers And

Mathematics W ith Applications, 23(2-5), March

1992.

760 Representation and Reasoning: Terminological

