
Eurographics/ IEEE-VGTC Symposium on Visualization 2008
A. Vilanova, A. Telea, G. Scheuermann, and T. Möller
(Guest Editors)

Volume 27 (2008), Number 3

Computing Local Signed Distance Fields
for Large Polygonal Models

B. Chang and D. Cha and I. Ihm
Department of Computer Science, Sogang University, Korea

Abstract
The signed distance field for a polygonal model is a useful representation that facilitates efficient computation in
many visualization and geometric processing tasks. Often it is more effective to build a local distance field only
within a narrow band around the surface that holds local geometric information for the model. In this paper, we
present a novel technique to construct a volumetric local signed distance field of a polygonal model. To com-
pute the local field efficiently, exactly those cells that cross the polygonal surface are found first through a new
voxelization method, building a list of intersecting triangles for each boundary cell. After their neighboring cells
are classified, the triangle lists are exploited to compute the local signed distance field with minimized voxel-to-
triangle distance computations. While several efficient methods for computing the distance field, particularly those
harnessing the graphics processing unit’s (GPU’s) processing power, have recently been proposed, we focus on
a CPU-based technique, intended to deal flexibly with large polygonal models and high-resolution grids that are
often too bulky for GPU computation.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geome-
try and Object Modeling–Boundary representations; I.3.6 [Computer Graphics]: Methodology and Techniques–
Graphics data structures and data types

1. Introduction

1.1. Problem Specification

A distance field is a volumetric dataset that represents the
closest distance information. Given a geometric object in
n-dimensional space, the distance field defines the shortest
distance d(x) from a point x ∈ Rn to a point on the object.
The distance field has been explored as an important tool
in developing efficient algorithms in various fields, such as
computer graphics, scientific visualization, image process-
ing, robotics, and computer vision.

When an object is closed and orientable, the distance field
may be assigned a proper sign that indicates whether a voxel
point is inside or outside the object. The signed distance is
very useful because it enhances the efficiency and flexibil-
ity in solving many applications. Because a brute-force dis-
tance computation is very expensive for even moderate-size
geometric models and grids, considerable efforts have been
made to design an efficient algorithm to construct the dis-
tance, or signed distance, field.

Most earlier studies have been concerned with construct-
ing a global (signed) distance field where the shortest dis-
tance is calculated for all voxels in the computational do-
main. However in many applications, it is often sufficient to
build the distance field only close to the surface. For exam-
ple, when an object is represented in level sets, its geometric

properties, such as its normal, curvature, and surface area,
may be determined using the signed distance values at vox-
els within a narrow band close to its surface. Furthermore,
once the local signed distance field is created, it may be
used as an initial condition for such propagation algorithms
as the fast marching method [Set96] and the fast sweeping
method [Zha04], which easily compute the signed distances
of voxels within a desired band region (or in the entire do-
main) by solving the Eikonal equation |∇d| = 1.

1.2. Our Contribution

In this paper, we present a novel approach that efficiently
builds a local signed distance field within a narrow band
around a three-dimensional triangular mesh. Our method
consists of two stages. First, those boundary cells that cross
the polygonal surface are located robustly using a new vox-
elization technique, for which lists of overlapping triangles
are built. Then after their neighboring cells are classified ac-
cording to their proximity to the surface, the triangle lists
are explored to compute the local signed distance field with
minimum voxel-to-triangle distance computations. In devel-
oping our technique, we assume that complicated polygo-
nal models are discretized on high-resolution grids, requir-
ing nontrivial computational time and memory space. Al-
though several efficient methods for constructing the global
distance field, particularly those exploring the graphics pro-

submitted to Eurographics/ IEEE-VGTC Symposium on Visualization (2008)

2 B. Chang & D. Cha & I. Ihm / Computing Local Signed Distance Fields

cessing unit’s (GPU’s) processing power, have recently been
proposed, this work concentrates on the development of a
CPU-based technique that allows a flexible method for a de-
tailed volumetric representation of large polygonal models
on high-resolution grids, which are often too heavy a com-
putational load for the GPU computation.

2. Previous Work

The current algorithms that construct the Euclidean distance
field for a given triangular mesh can be classified largely into
two approaches (for a survey of related works, refer to the re-
cent article [JBS06]). In the first one, a generalized Voronoi
diagram or its variant is built from which the distance field
is computed as the distance to the respective site. As con-
structing an exact generalized Voronoi diagram requires a
substantial amount of effort for a large, complex polygo-
nal model, several practical methods have been proposed.
In stead of the exact Voronoi diagram, Mauch computed a
polyhedral bounding volume for each Voronoi site that at
least contain all the closest voxel points [Mau03]. Then, the
characteristic polyhedra were scan-converted to produce the
distance field. This method, called the Characteristics/Scan-
Conversion (CSC), can be applied naturally for computing
the distance field in a narrow band around the surface.

The second approach is mostly based on the propaga-
tion method that numerically solves the Eikonal equation.
The fast marching method updates the distance field voxel
by voxel in the order of strictly increasing distance [Tsi95,
Set96]. The time complexity of the method is O(N logN)
for N voxel points because a heap data structure must be
used to implement a priority queue (for an improved imple-
mentation of the propagation method, refer to the thesis of
Mauch [Mau03]). In discretizing a Constructive Solid Ge-
ometry (CSG) model consisting of superellipsoid primitives,
the idea of the fast marching method was modified to em-
ploy a heuristic rule for propagating the closest-point infor-
mation [BMW00]. In this method, the local zero set within
a narrow band was computed so that it can be used as an
initial condition for their iteration scheme. While not solv-
ing the Eikonal equation, a contour by contour propagation
was also performed in the technique called a complete dis-
tance field representation [HLC∗01]. Recently, a fast sweep-
ing method was presented by Zhao that uses a nonlinear up-
wind difference scheme and Gauss-Seidel iterations with al-
ternating sweeping ordering [Zha04]. This sweeping method
is optimal in the sense that the Eikonal equation is solved in
O(N)-time.

In addition to these solutions, a method to compute a
piecewise linear approximation of the signed distance field
was presented by Wu and Kobbelt, that is based on an adap-
tive hierarchical space partition [WK03]. The processing
power of graphics hardware has also been harnessed to ac-
celerate the distance computation. Interpolation-based poly-
gon rasterization hardware was utilized to compute general-
ized 3D Voronoi diagrams that naturally lead to the distance
computation [HICK∗99]. The CSC technique was modified
by Sigg et al. [SPG03] to offer an efficient GPU implemen-
tation. To speed up the hardware-assisted distance field com-
putation, Sud et al. proposed to explore a culling algorithm,
based on the property of the Voronoi diagram, along with
a clamping algorithm [SOM04, SGGM06]. Sud et al. pre-

sented a GPU-based algorithm to efficiently compute the
surface distance map for a triangular mesh using an affine
mapping [SGG∗07].

Finally, representing local or global distance fields at very
high resolutions is a challenging problem. For quick pointers
on this topic, refer to the recent works [HNB∗06,NNSM07].

3. Generation of Triangle Lists

Consider a volume space of resolution nx×ny×nz in a three-
dimensional Euclidean real space Σ that encloses, possibly
partially, a given triangular mesh M. In our framework, the
unit cubes that partition the rectangular grid space are called
cells and their respective centers are voxels. Furthermore,
those cells that cross the polygonal surface are called bound-
ary cells.

The first task in building a local signed distance field for
M is to locate its boundary cells and build triangle lists such
that each list holds triangles that overlap, at least partially,
the respective boundary cell region. Then, these lists are used
to construct the signed distance field within a local band
close to the polygonal surface. To construct such triangle
lists, some form of voxelization process must be performed
in a robust manner so that those boundary cells are found ex-
actly and efficiently. In this section, we describe the list cre-
ation for a given triangular mesh, and then describe the use
of the triangle lists to build a local signed distance field while
minimizing the expensive voxel-to-triangle distance compu-
tations, described in the following section.

3.1. Voxelization of Triangular Mesh

Several voxelization or three-dimensional scan-conversion
techniques have been proposed by the computer graphics
community to build volumetric representations of polygonal
models (for example, refer to [CK90]). In developing our
algorithm, we have designed yet another three-dimensional
voxelization method specifically for our purpose. Our tech-
nique is different from most previous methods in that it is an
object-space algorithm, where triangles of the mesh are sub-
divided into sufficiently small subtriangles to quickly deter-
mine which cell, or cells, they overlap in the volume space.

Note that the voxelization method used in this paper
finds exactly those cells that intersect the given polygonal
model (finding such cells can be also done easily if we
have a max-norm distance field as described by Varadhan et
al [VKK∗03]). In terms of the classification formulated by
Huang et al. [HYVK98], the voxelization from our method
may not satisfy the minimality condition. However, this cri-
terion is not critical in our method because the purpose of
voxelization in our algorithm is to locate exactly the bound-
ary cells from which a local signed distance field propagates,
and build the triangle lists for them.

3.1.1. Generation of Microtriangle(s) from a Triangle

Given a triangle T = T (p0,p1,p2) of M, defined in the vol-
ume space Σ, consider its three edge vectors v0 = p1 −p0,
v1 = p2−p1, and v2 = p0−p2. The largest value of the max-
imum norms dT = maxi ||vi||∞ of these three vectors repre-
sents the length of the longest edge of the tight axis-aligned
bounding box (AABB) surrounding T .

submitted to Eurographics/ IEEE-VGTC Symposium on Visualization (2008)

B. Chang & D. Cha & I. Ihm / Computing Local Signed Distance Fields 3

The value of this metric indicates how large a triangle is
with respect to the cells in Σ. Note that, if dT is less than
or equal to one, the triangle T can fit into a unit-bounding
box in Σ. Our voxelization algorithm first checks whether
dT is greater than one and, if it is, subdivides T into a set
of smaller microtriangles such that each of these may be
bounded by a unit box. In this case, the three edges of T
are subdivided respectively into ceil(dT) segments that, in
turn, are meshed as shown in Figure 1. Once generated from
T , the microtriangles are investigated one at a time to find
the intersecting cells quickly.

Before describing the

Figure 1: Generation of mi-
crotriangles. Each triangle of
a given triangular mesh is
subdivided into microtriangles
that can fit into a unit cube.

next step, we note that
the timing performance of
our algorithm for finding
the boundary cells is in-
fluenced by the total num-
ber of processed micro-
triangles, which greatly
depends on the relative
size of triangles with re-
spect to the unit cell in
Σ. In case a minification
situation occurs, in other
words, when the trian-
gles from M are mostly
smaller than a unit cell in

size, most are not subdivided. On the other hand, when a
magnification situation takes place where triangles usually
span more than one cell, possibly several microtriangles are
generated per triangle, increasing the processing cost. In the
boundary situation that we usually target, at most only a
few microtriangles are generated per original triangle. Con-
sequently, the boundary cells are usually found quite quickly
by our method unless a severe minification situation occurs.

3.1.2. Intersection Test of Microtriangles with
Neighboring Cells

The major challenge at this stage of finding the boundary
cells is to determine efficiently which neighboring cell or
cells overlap a given microtriangle. It is clear that a triangle
T intersects with all the cells in which the vertices of the mi-
crotriangle mesh exist. Therefore, a quick scan is first made
over these vertices, adding T to the triangle lists of the corre-
sponding cells. Most boundary cells crossing T are checked
through this simple process because the microtriangles are
bounded by an AABB smaller than a unit cube. However, it
is possible for a microtriangle to pass a cell or cells to which
its three vertices do not belong; this requires an additional
checking process.

Consider the three vertices pi = (pix, piy, piz) (i =
0,1,2) of a microtriangle MT . The integer indices Pi =
(Pix,Piy,Piz), are obtained from pi by truncating the frac-
tional parts of the three coordinates and denote the cell
to which pi belongs. If we define three Boolean variables
Iα (α = x,y,z) as follows:

Iα =
{

1, if P0α = P1α = P2α ,
0, otherwise,

then the relationship between MT and its surrounding cells
may be classified into the four cases according to the value
of their sum I = Ix + Iy + Iz (see Figure 2).

(a) I = 3 (b) I = 2 (c) I = 1

(d) I = 0

Figure 2: Four possible cases. Depending upon the spa-
tial relationship between microtriangle and cells in vol-
ume space, four different situations may occur. No addi-
tional work has to be done for the first two cases (a) and
(b), whereas some relatively nontrivial computation must be
done in the fourth case (d) to test if the microtriangle over-
laps its neighboring cells. This costly case usually occurs,
however, with a low frequency, as shown experimentally in
Table 2.

• Case 1 (I = 3): This case occurs when all three vertices of
MT belong to the same cell. In other words, the microtri-
angle exists entirely within one cell. Because the triangle
T , from which MT comes, has been put into the triangle
list of this cell through the vertex scan process, nothing
more needs to be done in this case.

• Case 2 (I = 2): This is the case when MT spans two
adjacent cells along an axis. As in the first case, no ad-
ditional work is required as these two cells have been al-
ready checked through the vertex scanning process.

• Case 3 (I = 1): When I is one, four adjacent cells are nec-
essary to enclose MT , as shown in Figure 2(c). Because
the three vertices of MT belong to two or three differ-
ent cells, it is sufficient to check whether the remaining
cell(s) is crossed by MT . For efficient computation, we
project the vertices onto the two-dimensional base plane
and translate them so that the center of the projected cells
becomes the origin. Then the remaining cell is crossed by
MT if, and only if, the origin is inside the projected MT ,
which can be easily and efficiently determined by count-
ing how many edges intersect with the positive part of an
axis in the projection plane. The cell is intersected by MT
only when this is one.

• Case 4 (I = 0): This last case indicates the most in-
tractable situation in which MT happens to span eight
adjacent cells forming a cube, as shown in Figure 2(d).
Because two or three of these contain MT ’s vertices
and have been marked already, the remaining cells need
to be investigated to find if any of these cross MT .
Our experimental test with several algorithms implies
that the triangle-box intersection algorithm, proposed by
Akenine-Möller [AM01], performs best for this purpose.
Based on the separating axis theorem, this algorithm per-
forms three types of tests that check if an AABB, the cell
in our case, intersects (1) the triangle’s AABB, (2) the
plane containing the triangle, and (3) the triangle’s three

submitted to Eurographics/ IEEE-VGTC Symposium on Visualization (2008)

4 B. Chang & D. Cha & I. Ihm / Computing Local Signed Distance Fields

edges one at a time, terminating as soon as a separat-
ing axis is found. In our method, the first group of tests
are omitted because the cell is already known to over-
lap the microtriangle’s AABB. Note that some of the five
cells to be examined in this fourth case may have been
marked already while processing adjacent microtriangles.
Therefore, fewer than necessary unmarked cells are usu-
ally checked.

3.2. Construction of Triangle Lists
The goal of the first part of our algorithm is to build a tri-
angle list for each boundary cell. It is possible to construct
such lists as a given triangular mesh is voxelized. During
this process, because we do not know a priori how many
triangles are put in each list, the triangle list must be repre-
sented using a linked list. This is acceptable if the mesh size
and the grid resolution are moderate. However, when com-
plicated models are represented in high resolution, which is
the situation that this work targets, a more efficient mem-
ory management scheme must be used. In our current im-
plementation, we perform the voxelization step twice. In the
first pass, the number of triangles in the list is determined for
each local cell, that allows a representation of the triangle list
without pointers. Once the necessary memory space is allo-
cated using the information obtained in the first round, the
voxelization process is performed again to actually build the
lists. Because the voxelization time is trivial compared to the
second part of our method, this multipass method only has a
slight influence on the entire timing performance.

3.3. An Implementation Issue
For efficient computation, the gener-

Figure 3: Black
and white mi-
crotriangles

ated microtriangles are partitioned into
two classes, as illustrated by the two col-
ors in Figure 3, that share vertices and
edges. Rather than traverse the microtri-
angles in scanline order altogether, we
first scan the white microtriangles for the
intersection test and then repeat the same
process for the black microtriangles. The
reason for this is that after processing the
white microtriangles, there is no need to
conduct the third test case (I = 1) for the
black microtriangles, as the shared edges

have been checked already. Therefore, when the black mi-
crotriangles are examined in the second round, only the last
case (I = 0) has to be investigated.

4. Computation of Local Signed Distance
In this work, we only compute the signed distance field at
the local cells, which are illustrated in Figure 4(a). Here, the
boundary cells that cross the polygonal surface are assigned
a region number of zero, while the other nonboundary cells,
which are the collection of the 6-neighbors of the boundary
cells, are allocated as region number one. Note that the re-
gion number can be assigned trivially from a simple scan
over the boundary cells.

4.1. Computation of the Shortest Distance
In finding the shortest distance of a given local cell, it is

critical to minimize the number of candidate triangles that

(a) Local cells (b) Cell layers

Figure 4: Definition of the local cells and layer level. (a) By
the local cells, we denote the boundary cells plus their non-
boundary 6-neighbors. (b) Starting at a cell containing a se-
lected voxel, the surrounding cells are piled upon each other
like the layers of an onion, approximating to circular bands
in voxel space. Refer to Figure 6 to see a three-dimensional
illustration of the level-1 and level-2 layers.

are examined for the distance computation. To locate effi-
ciently the triangles that may contain the shortest point, the
neighboring cells around a given local cell are classified as
layers, whose level number increases as they are piled upon
each other (see Figure 4(b)). These can be viewed as a dis-
crete approximation of circular bands that emanate from the
center. See Figure 6 for an illustration of these layers in
three-dimensional space.

It can be seen that given a

Figure 5: Cell scan order.
The shortest point from
a voxel of a boundary
cell may exist within the
sphere with radius

√
3

2 .
The 6-neighbor cells, de-
noted as a, are only ex-
amined when the short-
est distance obtained us-
ing the level-0 cell’s tri-
angle list is greater than
1
2 . The remaining level-1
layer cells, denoted as b,
don’t have to be examined
if the shortest distance ob-
tained is less than

√
2

2 .

boundary cell, C0 (with region
number 0), the triangle that in-
cludes the shortest point from
its voxel exists either in the
level-0 cell (C0 itself) or in
one of the boundary cells that
are in the level-1 layer with
respect to C0. Assuming that
d is the shortest distance cal-
culated using only the trian-
gles in C0’s triangle list, then
if d ≤ 1

2 , there is no need to
examine the triangle lists of
the remaining level-1 cells of
C0, because the shortest dis-
tance from the voxel to any tri-
angle in those lists is longer
than 1

2 .

If d > 1
2 , then each level-1

layer cell that is also a bound-
ary cell must be scanned
one at a time, calculating the
shortest distance using its tri-
angle list and updating the
value of d if a shorter distance
is found. For efficient compu-
tation, we first performed the
distance computation over the

triangle lists of cells that were the 6-neighbors to C0 (Fig-
ure 6(a)). If the shortest distance calculated from the six cells
was shorter than

√
2

2 , then there was no need to examine the
remaining 12 level-1 layer cells (Figure 6(b)) because the
minimum possible distance from the voxel to these 12 cells

submitted to Eurographics/ IEEE-VGTC Symposium on Visualization (2008)

B. Chang & D. Cha & I. Ihm / Computing Local Signed Distance Fields 5

(a) 1
2 (b)

√
2

2 (c)
√

3
2 (d) 3

2 (e)
√

10
2 (f)

√
11
2 (g) 3

√
2

2

Figure 6: The minimum distances of layer cells. Figures (a) and (b) illustrate the level-1 layer cells, while the remaining figures
display the level-2 layer cells. These layer cells are classified according to their minimum distance to the center cell’s voxel.
They are used to cull unnecessary voxel-to-triangle computations during the distance computation stage.

was
√

2
2 . Only when the shortest distance found was longer

than
√

2
2 , which is a relatively rare case, did the distance

computation proceed for the remaining cells to search for
a possible shorter distance (refer to Figure 5).

For a nonboundary local cell, C1 (with region number 1),
the distance computation was similar, except that the bound-
ary cells that were in the level-1 and level-2 layers with re-
spect to C1 were examined in the order illustrated in Fig-
ure 6. Again, each group of cells was associated with a min-
imum possible distance, where the triangle list of a cell was
tested only if the shortest distance calculated before its group
was longer than its minimum distance.

Conceptually, our algorithm consists of two stages: the
shortest distance is computed for the boundary cells in the
first round and then for the nonboundary local cells in the
second round. However, in terms of implementation, it was
more efficient to interleave the two stages, computing the
shortest distances in parallel, which is summarized as fol-
lows.

• [Initialization] Set each local voxel’s distance to the max-
imum value.

• [First pass] Traverse each boundary cell, Cb, performing
the following actions. Find each local cell Cl whose region
number, i (i = 0 or 1), matches its layer level with respect
to Cb. If Cl ’s current distance is longer than the minimum
distance from Cl ’s voxel to Cb, then calculate the shortest
distance using Cb’s triangle list. If Cl ’s current distance
is longer than the calculated distance, then replace it with
the new distance value.

• [Second pass] Traverse each boundary cell, Cb, again,
performing the following actions. Find each local cell Cl ,
whose region number i (i = 0 or 1) is one less than the
layer level with respect to Cb. If Cl’s current distance is
longer than the minimum distance from Cl’s voxel to Cb,
then calculate the shortest distance using Cb’s triangle list.
If Cl’s current distance is longer than the calculated dis-
tance, then replace it with the new distance value.

4.2. Assignment of a Sign to Local Voxels

After the local distance field was constructed, the local vox-
els were classified as being inside or outside the object and
were assigned the appropriate sign. To determine the sign of
the voxels, we employed the angle-weighted pseudonormal
technique, which is known to offer robust and numerically
stable decisions [BA05].

5. Experimental Results

To verify the effectiveness of our ideas, we implemented our
algorithm on a 3.2 GHz Intel Xeon CPU and tested the im-
plementation using several polygonal models with different
complexities from The Stanford 3D Scanning Repository. To
obtain the experimental results presented in Table 1 to 4, we
applied three levels of grid resolution to each model, as fol-
lows: A: 107×250×107 (1x), B: 210×500×210 (2x), C:
312 × 750 × 313 (3x) for Happy Buddha, D: 169 × 250 ×
12 (1x), E: 337 × 500 × 18 (2x), F: 504 × 750 × 23 (3x)
for Vellum Manuscript, G: 250× 142× 168 (1x), H: 500×
281× 335 (2x), I: 750× 420× 501 (3x) for Asian Dragon,
and J: 151 × 250 × 132 (1x), K: 300 × 500 × 260 (2x), L:
448×750×388 (3x) for Thai Statue.

5.1. Analysis of the Voxelization Method

Table 1 presents the experimental results of our voxelization
technique, where the timing (in milliseconds) of our method
was only the time taken when determining the boundary
cells, excluding the time required for building the trian-
gle lists. Our object space voxelization algorithm repeatedly
called for the expensive float-to-int type casting operation
to determine which cell contained a given vertex. During
the experiments, we set up the option “Fast floating-point
model” in Microsoft Visual C++ 2005, which accelerated the
casting operation markedly without leading to any precision
errors.

For a more precise evaluation, our voxelization method
was compared with a typical scanline method [Kau87]. As
expected, the scanline method was found to be faster than
our method. However, the numbers of cells found by both
methods can be compared in the ‘B-cell’ and ‘Cell’ columns.
As emphasized in this paper, our method exactly located the
boundary cells that crossed the triangular surfaces. On the
other hand, the simple scanline algorithm, while faster, ob-
viously failed to mark all the boundary cells. This weakness
became more severe when the relative size of the triangle
over the cell increased, i.e., the grid resolution increased, (for
example, when the grid resolution was 321×750×313, the
scanline method located approximately 70% of the boundary
cells for the Happy Buddha data).

The voxelization time increased as the volume resolution
increased, because the larger triangles ranging over multiple
cells generated more microtriangles and more complicated
situations that were difficult to handle. This is experimen-
tally demonstrated in Table 2, where the ratio of the most ex-

submitted to Eurographics/ IEEE-VGTC Symposium on Visualization (2008)

6 B. Chang & D. Cha & I. Ihm / Computing Local Signed Distance Fields

(Time unit: ms)

Object Res. Ours Scanline
Time B-cell Time Cell

Happy A 253.51 117,855 181.25 103,514
Buddha B 501.49 488,720 227.84 377,874

(1,087,716) C 825.21 1,111,966 285.23 791,105
Vellum D 584.93 41,556 446.06 41,100

Manuscript E 615.33 171,373 494.14 168,128
(4,305,679) F 667.71 392,312 512.96 380,435

Asian G 1,087.45 84,424 787.89 81,606
Dragon H 1,318.79 351,597 869.83 326,886

(7,218,906) I 1,419.21 802,734 956.23 717,455
Thai J 1,746.99 119,727 1,396.31 115,660

Statue K 1,943.07 505,870 1,484.36 468,206
(10,000,000) L 2,288.25 1,156,530 1,613.67 1,025,354

Table 1: Comparison of our voxelization technique with the
standard scanline method [Kau87]. The figures in parenthe-
ses indicate the number of polygons of the respective models.
Our method, while slower than the scanline method, robustly
marked all the boundary cells. One can compare the actual
number of boundary cells (B-cell column) with the number
of cells found by the scanline method (Cell column).

pensive fourth case (C4) is shown to increase with the num-
ber of microtriangles created (M-tri), with increasing relative
triangle size. Our voxelization method can be viewed as a
tessellating, if necessary, of triangles into the ‘tractable’ (the
first three cases) and ‘intractable’ (the fourth case) regions,
treating the latter case more carefully. Considering that this
costly fourth case is rare, particularly when the models are
very large, and that the number of boundary cells found (the
B-cell column in Table 1) increases faster than the voxeliza-
tion time (Time) (in other words, the time complexity of the
voxelization computation is, at worst, linear with respect to
the number of located boundary cells), then we can say that
the voxelization process of building the precise volumetric
boundary representation was well optimized for very large
models.

5.2. Analysis of the Method of Building the Local
Signed Distance Field

Table 3 shows the performance statistics collected during
the process of building the local signed distance field, where
the values in the ‘Ours’ column represent the total times (in
seconds) taken using our method. As can be seen in the
‘L-cell’ column, the number of local cells around the two-
dimensional manifolds increased quadratically. When the lo-
cal signed distance field was constructed, the distance cal-
culation was the most expensive elementary operation. For
a fixed grid resolution, it appears that the total computa-
tion time is linearly proportional to the total number of lo-
cal cells. However, this is not the case, as the average size
of the triangle list per boundary cell decreases with increas-
ing resolution, reducing the overall frequency of the distance
computation. Experimentally, a much slower increase was
observed.

We also tested two prospective methods for a compari-
son with other relevant methods. The first method we ex-

Object Res. M-tri C1,2 C3 C4

Happy A 1,241,251 0.78 0.19 0.03
Buddha B 2,498,768 0.58 0.35 0.07

(1,087,716) C 3,860,249 0.43 0.43 0.14
Vellum D 4,307,312 0.98 0.02 0.00

Manuscript E 4,311,413 0.92 0.08 0.00
(4,305,679) F 4,318,054 0.82 0.17 0.01

Asian G 7,220,368 0.97 0.03 0.00
Dragon H 7,225,657 0.89 0.10 0.01

(7,218,906) I 7,265,321 0.77 0.20 0.03
Thai J 10,277,117 0.96 0.03 0.01

Statue K 11,145,247 0.86 0.13 0.01
(10,000,000) L 13,051,184 0.74 0.23 0.03

Table 2: The frequencies of the four cases occurring during
voxelization. The figures in the ‘M-tri’ column represent the
number of microtriangles produced. As shown in the table,
the first two cases (C1 and C2), which incur no additional
cost, occur frequently, whereas the most expensive case (C4)
occurs with a low frequency.

(Time unit: sec.)

Object Res. L-cell Time
Ours CPT BBox

Happy A (1x) 258K 5.11(1.20) 19.01 11.55
Buddha B (2x) 1,086K 9.93(2.69) 20.25 12.87

(1,087K) C (3x) 2,475K 16.10(4.89) 22.12 14.64
Vellum D (1x) 117K 8.4(1.92) 76.65 35.59

Manuscript E (2x) 478K 10.92(2.22) 77.11 36.04
(4,305K) F (3x) 1,086K 13.81(2.67) 77.19 36.77

Asian G (1x) 176K 15.29(3.96) 116.71 66.69
Dragon H (2x) 741K 22.29(5.28) 119.51 68.93

(7,218K) I (3x) 1,695K 30.88(7.52) 123.72 71.38
Thai J (1x) 257K 25.35(6.70) 166.31 99.74

Statue K (2x) 1,111K 35.48(8.59) 169.81 101.81
(10,000K) L (3x) 2,560K 47.77(11.69) 176.25 105.28

Table 3: Timing results for building the local signed distance
field. Here, the figures in parentheses in the column ‘Ours’
denote the time taken for voxelizing the triangular mesh and
then constructing the triangle lists for all the boundary cells.
As expected, it was observed that the number of local cells
found (in thousands) shown in the ‘L-cell’ column increased
quadratically with respect to the grid resolution.

amined was the Closest Point Transform (CPT), developed
by Mauch [Mau03], which is appropriate for computing the
signed distance field of polygonal models of moderate size
up to a given maximum distance. In this method, special
polyhedra serving as truncated Voronoi cells are constructed,
and then, these are scan converted one at a time to build the
local distance field. This algorithm is efficient, in that its time
complexity is linear in both the number of voxels for which
the distance is computed and in the number of triangles used.

The second method we investigated was a simple
bounding-box method, which computed the local distances
as follows. For each triangle of the polygonal model, a tight
axis-aligned bounding box is built and expanded to a proper

submitted to Eurographics/ IEEE-VGTC Symposium on Visualization (2008)

B. Chang & D. Cha & I. Ihm / Computing Local Signed Distance Fields 7

width. Then, examine all the voxels inside the bounding box,
immediately rejecting those farther from the triangle than
the width. For each remaining voxel, calculate the distance
to the triangle and store this value to the voxel if a shorter
distance is found.

In Table 3, the timing performances of these two meth-
ods are shown in columns ‘CPT’ and ‘BBox’, respectively,
where the CPT code, cordially provided by Mauch [Mau07],
was run for timing the CPT algorithm. As clearly indicated
by these results, our method compares very favorably with
the two methods tested. While our method was competi-
tive for large polygonal models, all three methods showed
different characteristics in their timing performance. First,
our method and the simple bounding-box method performed
better than the CPT approach when the distance of the lo-
cal cells within three layers, as illustrated in Figure 4(a),
was computed. This is because the times for constructing
the polyhedra and for preparing the scan conversion dom-
inated the time for computing the distance of a relatively
small number of cells. However, the efficiency of the CPT
method increases relatively as the local distance is computed
for a thicker layer, as the setup times are amortized over
more cells. The setup time also becomes less severe for ei-
ther less complex polygonal models or for higher-resolution
grids.

Compared with the bounding-box approach, our method
was similar, in that both methods attempted to build the local
distance field by locating the neighboring cells first and then
calculating the distance from them. The major difference is
that our method scanned the local cells more cleverly, so that
any unnecessary distance computation between voxels and
triangles was culled as much as possible. Because the dis-
tance calculation is the most expensive operation in building
the local distance field, this effort to minimize the number of
distance calculations has a marked influence on the timing
performance.

5.3. Our Method as an Initializer for the Propagation
Method

In many applications in computer graphics, the distance
fields must often be constructed in the entire volume domain
or within a band region with an arbitrary thickness. One of
the most competitive solutions for this problem is the fast
sweeping method, proposed by Zhao [Zha04]. This propaga-
tion method solves the Eikonal equation |∇d(x)|= f (x), x ∈
Rn, with the boundary condition d(x) = φ(x), x ∈ Γ ⊂ Rn.
The first-order hyperbolic partial differential equation may
be applied to building the distance field by setting f (x) = 1
and φ(x) = 0. The easy-to-implement sweeping method of-
fers an optimum linear-time complexity with respect to the
number of voxels for which the distance is evaluated, and
the only difficult part in using this method is enforcing the
boundary condition, d(x) = 0,x ∈ Γ ⊂ Rn. In fact, our lo-
cal distance computation method was very well suited as an
initializer for the propagation method.

Table 4 shows some selective timing results (in seconds),
obtained when the local signed distance field, built using our
method, was used as an initial condition for the fast sweep-
ing method to build the signed distance field within a thick
band region with a width = 60. When the sweeping method

(Time unit: sec.)

Object Res. Ours+Sweeping CPT
Local Sweep

A 5.11 1.40 562.25
Happy (2,622,959) (2,620,213)
Buddha B 9.93 9.79 701.40

(1,087,716) (14,797,764) (14,628,477)

C 16.10 29.67 757.38
(38,064,117) (37,489,486)

G 15.29 2.63 1,770.46
Asian (3,272,140) (3,203,092)

Dragon H 22.29 17.49 1,866.44
(7,218,906) (13,425,491) (12,911,713)

I 30.88 56.75 1,898.10
(30,208,238) (29,181,039)

J 25.35 2.20 3,552.08
Thai (2,918,966) (2,905,718)

Statue K 35.48 15.17 3,773.54
(10,000,000) (13,599,690) (13,488,835)

L 47.77 48.78 3,860.48
(34,085,470) (33,761,899)

Table 4: Our method as an initializer for a propagation
method. Our method (timed in the ‘Local’ column) was com-
bined with the fast sweeping method [Zha04] (timed in the
‘Sweeping’ column) to build a signed distance field within
a band region with a width 60 times as large as the cell
width. The figures in parentheses indicate the actual num-
ber of cells processed, where our method found slightly more
cells than the CPT method did.

was applied, we first assigned a proper sign to each voxel in
the band region before its Gauss–Seidel iterations began for
fast sweeping.

The computation times were also compared with those ob-
tained using the CPT method, which is also a linear-time al-
gorithm. As clearly implied in the results, the combination of
our initializer and the fast sweeping method was a very ef-
ficient tool for computing the global signed distance field of
large polygonal models. The timing difference between the
two computational schemes increased rapidly when either a
thicker band region was considered or when the number of
triangles increased. Note that, unlike the CPT algorithm, the
fast sweeping method does not compute the exact Euclidean
distance. It only constructs a signed distance field having a
unit gradient vector, i.e., |∇d(x)|= 1. While not a geometric
distance field, the field produced by the sweeping method is
sufficient for many computer graphics applications.

6. Conclusions

We have presented an efficient method for the computation
of the local signed distance field for large polygonal mod-
els and have analyzed its performance using several com-
plicated models and high-resolution grids. As a side effect,
we obtained a robust voxelization scheme, capable of finding
all the cells that intersect a given polygonal model, including
those missed by the scanline method, for a small additional
cost. The local signed distance fields built using our method

submitted to Eurographics/ IEEE-VGTC Symposium on Visualization (2008)

8 B. Chang & D. Cha & I. Ihm / Computing Local Signed Distance Fields

(a) Asian Dragon (b) Thai Statue

Figure 7: Local signed distance field. Three axis-aligned
slices, illustrating the computed local signed distance field,
are superimposed on the sample meshes.

(a) Asian Dragon (b) Thai Statue

Figure 8: Global signed distance field. The global signed
distance function d = d(x), discretized by the sweeping
method combined with our method, is color-coded, increas-
ing from red to green to blue to white.

can themselves be used effectively in applications where up
to the first-order geometric information, i.e., tangential infor-
mation, of polygonal models is sufficient (as three layers of
cells are guaranteed in each principal direction, the second-
order information, i.e., curvature information, may be ap-
proximated at the voxels of boundary cells if the forward
difference is applied). Just as importantly, our method can
also serve as an initial condition for a propagation method
that builds the global signed distance field efficiently. Our
test results demonstrate that our method offers an easy-to-
implement and robust computational scheme for building a
signed distance field, which becomes more effective in cases
where the polygonal models are large.

Acknowledgements: This work was supported by the Ko-
rea Science and Engineering Foundation grant funded by the
Korea government (MOST) (No. R01-2007-000-21057-0).

References
[AM01] AKENINE-MÖLLER T.: Fast 3D triangle-box overlap

testing. Journal of Graphics Tools 6, 1 (2001), 29–33.

[BA05] BÆRENTZEN J., AANÆS H.: Signed distance computa-
tion using the angle weighted pseudo-normal. IEEE Transactions
on Visualization and Computer Graphics 11, 3 (2005), 243–253.

[BMW00] BREEN D., MAUCH S., WHITAKER R.: 3D scan con-
version of CSG models into distance, closest-point and colour
volumes. In Volume Graphics, Chen M., Kaufman A., Yagel R.,
(Eds.). Springer, London, 2000, ch. 8, pp. 135–158.

[CK90] COHEN D., KAUFMAN A.: Scan-conversion algorithms
for linear and quadratic objects. In Volume Visualization, Kauf-
man A., (Ed.). IEEE Computer Society Press, 1990, pp. 280–
301.

[HICK∗99] HOFF III K., CULVER T., KEYSER J., LIN M.,
MANOCHA D.: Fast computation of generalized Voronoi dia-
grams using graphics hardware. In Proceedings of ACM SIG-
GRAPH 1999 (1999), pp. 277–285.

[HLC∗01] HUANG J., LI Y., CRAWFIS R., LU S., LIOU S.: A
complete distance field representation. In Proceedings of IEEE
Visualization 2001 (2001), pp. 247–254.

[HNB∗06] HOUSTON B., NIELSEN M., BATTY C., NILSSON
O., MUSETH K.: Hierarchical RLE level set: a compact and
versatile deformable surface representation. ACM Transactions
on Graphics 25, 1 (2006), 151–175.

[HYVK98] HUANG J., YAGEL R., V. F., KURZION Y.: An ac-
curate method for voxelizing polygon meshes. In Proceedings of
the 1998 Symposium on Volume Visualization (1998), pp. 119–
126.

[JBS06] JONES M. W., BÆRENTZEN J. A., SRAMEK M.: 3D
distance fields: a survey of techniques and applications. IEEE
Transactions on Visualization and Computer Graphics 12, 4
(2006), 581–599.

[Kau87] KAUFMAN A.: An algorithm for 3D scan-conversion of
polygons. In Proceedings of Eurographics 1987 (1987), pp. 197–
208.

[Mau03] MAUCH S.: Efficient algorithms for solving static
Hamilton-Jacobi equations. PhD thesis, California Institute of
Technology, Pasadena, California, 2003.

[Mau07] MAUCH S.: Sean’s Templete Library. �����������

�	�
��	������������	���
�����������������������,
September 2007.

[NNSM07] NIELSEN M., NILSSON O., SÖDERSTRÖM A.,
MUSETH K.: Out-of-core and compressed level set methods.
ACM Transactions on Graphics 26, 4 (2007), 16.

[Set96] SETHIAN J.: A fast marching level set method for mono-
tonically advancing fronts. In Proceedings of Nat. Acad. Sci.
(1996), vol. 93, pp. 1591–1595.

[SGG∗07] SUD A., GOVINDARAJU N., GAYLE R., ANDERSON
E., MANOCHA D.: Surface distance maps. In Proceedings of
Graphics Interface 2007 (2007), pp. 35–42.

[SGGM06] SUD A., GOVINDARAJU N., GAYLE R., MANOCHA
D.: Interactive 3D distance field computation using linear fac-
torization. In Proceedings of ACM Symposium on Interactive 3D
Graphics and Games (2006).

[SOM04] SUD A., OTADUY M., MANOCHA D.: DiFi: fast 3D
distance field computation using graphics hardware. Computer
Graphcis Forum (Eurographics 2004) 23, 3 (2004), 557–566.

[SPG03] SIGG C., PEIKERT R., GROSS M.: Signed distance
transform using graphics hardware. In Proceedings of IEEE Vi-
sualization 2003 (2003), pp. 19–24.

[Tsi95] TSITSIKLIS J.: Efficient algorithms for globally opti-
mal trajectories. IEEE Transactions on Automatic Control 40,
9 (1995), 1528–1538.

[VKK∗03] VARADHAN G., KRISHNAN S., KIM Y., DIGGAVI S.,
MANOCHA D.: Efficient max-norm distance computation and re-
liable voxelization. In Proceedings of Eurographics Symposium
on Geometry Processing 2003 (2003), pp. 116–126.

[WK03] WU J., KOBBELT L.: Piecewise linear approximation of
signed distance fields. In Proceedings of Vision, Modeling, and
Visualization 2003 (2003), pp. 513–520.

[Zha04] ZHAO H.: A fast sweeping method for Eikonal equations.
Mathematics of Computation 74, 250 (2004), 603–627.

submitted to Eurographics/ IEEE-VGTC Symposium on Visualization (2008)

http://www.cacr.caltech.edu/~sean/projects/stlib/stlib.html

