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Abstract Internet based volunteer computing

projects such as SETI@home are currently re-

stricted to performing coarse grained, embar-

rassingly parallel master-worker style tasks. This

is partly due to the “pull” nature of task dis-

tribution in volunteer computing environments,

where workers request tasks from the master

rather than the master assigning tasks to arbi-

trary workers. In this paper we propose algorithms

for computing batches of medium grained tasks

with deadlines in pull-style volunteer computing

environments. We develop models of unreliable

workers based on analysis of trace data from an

actual volunteer computing project. These mod-

els are used to develop algorithms for task dis-

tribution in volunteer computing systems with a

high probability of meeting batch deadlines. We

develop algorithms for perfectly reliable work-

ers, computation-reliable workers and unreliable
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workers. Finally, we demonstrate the effective-

ness of the algorithms through simulations using

traces from actual volunteer computing environ-

ments.
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1 Introduction

In recent years, public-resource computing or

“volunteer computing” projects have demon-

strated the power of performing distributed

computation using donated resources over the

Internet. Projects such as SETI@home [1] and

Folding@home [2] sustain computation speeds of

tens or hundreds of teraflops, comparable with

high end supercomputers. In these projects, inde-

pendent computational tasks are distributed and

executed on donated computer resources around

the world.

Volunteer computing (VC) systems use a

master-worker style of computing, where tasks are

distributed from a master machine to worker ma-

chines and executed. Because these systems are

composed of donated resources, they can make

few guarantees about network or machine relia-

bility. Therefore VC is usually applied to coarse

grained embarrassingly parallel computation with
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tasks that require hours or days to complete. Task

completion deadlines are generally on the order

of days or months because of the volatile nature

of the donated resources.

VC environments differ from traditional grid

computing environments in several important

ways. First, because the worker machines in VC

systems are owned by private individuals, com-

munication and computation reliability is signifi-

cantly lower than in most Grid systems. A worker

machine may often be disconnected from the net-

work, used for other purposes or completely quit

the computation without advanced warning. Sec-

ond, worker machines are often behind firewalls

and use NAT (network address translation) tech-

niques which only allow one-way worker to mas-

ter connections. This means that a “pull” model

of task distribution must be used, instead of the

common “push” model where the master distrib-

utes tasks to arbitrary workers. Finally, worker

machines provide virtually no resource reserva-

tion or querying capabilities, thereby making task

scheduling difficult.

In this paper, we propose algorithms for com-

puting batches of tasks with deadlines in VC

systems given varying types of worker reliabil-

ity. Rather than normal VC deadlines of days

or months, we deal with deadlines of minutes

or hours. We call this “low latency computing.”

Low latency computing in a VC system is appro-

priate for executing submitted batches of tasks

with quick turnaround, or performing large scale

barrier synchronous computations such as in the

bulk synchronous parallel model [3]. Examples

of such applications include molecular dynamics

simulations with multiple trajectories, evolution-

ary based optimization algorithms with periodic

swapping of solutions and any other problem

with medium grained tasks and periodic barrier

synchronizations. Applications such as Fold-

ing@home should have higher computing effi-

ciency if they use a low latency style scheme. For

pull-style task distribution in a VC system, the

key to meeting batch deadlines is ensuring that

all tasks are distributed to workers in a timely

manner and that workers complete the tasks be-

fore the deadline. Because of the nature of VC

systems, we use techniques similar to those from

stochastic scheduling [4] to handle worker unreli-

ability.

Previous studies investigated task distribution

in grid and VC environments [5–7]. However,

some of these assume work may be distributed to

arbitrary workers, which is not valid for pull style

environments. Others describe methods to max-

imize total system throughput rather than meet

specific task deadlines. To the best of our knowl-

edge, this paper is the first to investigate methods

for computing low latency batches in a pull-style

VC environment.

To develop suitable algorithms for low latency

VC, we first define the environment and worker

characteristics in Section 2. Using trace data from

an actual VC environment, we show how worker

task requests can be modeled as a Poisson process

and task computation time can be predicted from

past worker behavior in Section 3. From these

models, we develop algorithms for task distribu-

tion in Section 4. The algorithms are verified using

trace-driven simulations in Section 5. Finally, we

review related work and offer our conclusions in

Sections 6 and 7.

2 Computation Model

In this model for VC low latency batch com-

puting, there are M batches of work, denoted

B1, . . . , BM. Each batch Bi has N indepen-

dent tasks of equal computational size denoted

T i
1
, . . . , T i

N , a submission time Si and a deadline

Di with Si < Di. All tasks in batch Bi are available

for distribution at time Si. Batches are sequential

and do not overlap, i.e. ∀i, n, (i < n) ⇒ Di < Sn.

Figure 1a graphically shows the model of tasks and

batches used in this paper.

All tasks are initially on a single master server,

which tries to assign tasks to workers so as to

minimize the number of tasks completed after

their deadline. A task that is completed before

the batch deadline is called a satisfied task, and

a batch whose tasks are all satisfied is called a

satisfied batch. Note that batch submission and

deadline times need not be predetermined, mean-

ing that creation of the tasks in Bi can depend on

completion of the tasks from Bi−1. In fact, due to
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Fig. 1 Graphic depiction of tasks and batches in the low latency computing model, and three example workers with their
availability intervals. a Batch diagram. b Availability intervals and worker lifespan

the unpredictable nature of VC systems, it is often

difficult to predict Si and Di for batches far in the

future.

To compute the tasks of a batch, there are

P workers W1, . . . , WP. In standard VC environ-

ments, connections may only be made from a

worker to the master, not vice-versa. A connec-

tion is made when the worker initially becomes

active, and at specified times afterwards called

“reconnection times”. At any given time, a worker

is in one of two states — available or unavailable.

The master is always available. Previous studies

[8, 9] have shown this to be a good approxi-

mation of actual systems, rather than measuring

availability as a fraction of available CPU power.

A period where a worker is in an uninterrupted

available state is called an availability interval, and

a period where a worker is in an uninterrupted

unavailable state is called an unavailability inter-

val. The lifespan of a worker is defined as the time

between the start of the earliest availability inter-

val and the end of the latest availability interval.

Average availability is the fraction of the worker

lifespan spent in the available state. Figure 1b

shows availability intervals for three workers with

different average availability (A: 95%, B: 65%

and C: 33%). Black sections indicate the worker

is available and white sections indicate the worker

is unavailable. The striped bars show the begin-

ning and end of the worker lifespan. As seen in

this figure, worker availability may be erratic and

difficult to predict.

A worker in the available state may per-

form computation or communication, an unavail-

able worker may do neither. Various factors

may cause transition between these states—user

activity/idleness, machine reboot/shutdown, ma-

chine/network failure, etc. If a worker transitions

from available to unavailable while executing a

task, the task is resumed at the same point when

the worker returns to the available state. This

behavior can be achieved through task check-

pointing. Each worker Wi also has a task compu-

tation time Ci, which is the number of seconds the

worker requires in the available state to complete

a task. This can be thought of as the inverse of the

computation speed.

In this paper we treat Ci as a deterministic

variable, though in real systems it might be more

accurately treated as a probability distribution de-

pending on the worker and task characteristics.

For simplicity, we assume Ci is constant and that

non-deterministic effects, such as swapping due to

insufficient memory, can be avoided by using stan-

dard worker selection techniques. In addition, ma-

licious or malfunctioning workers occurring in VC

systems are not explicitly considered in this paper.

These can be handled by computing redundant
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tasks or other techniques such as ringers and

magic numbers [10] or worker reputation mea-

surement [11], though the usage of these is outside

the scope of this paper.

In terms of communication and computation,

workers can be termed either reliable or semi-

reliable. A worker is “communication-reliable”

if it can guarantee communication with the

master at an arbitrary time R. A worker is “semi-

communication-reliable” if it cannot guarantee

communication at time R, but behaves like

a standard VC worker. A worker Wi is

“computation-reliable” if it can guarantee task

completion within the task computation time of

the worker (Ci). A worker is “semi-computation-

reliable” if it cannot guarantee task completion

within Ci, but behaves like a standard VC worker.

Communication-reliable and computation-reli-

able workers are only theoretical constructs, but

we use them as a basis to develop algorithms in

later sections.

3 Analysis of Volunteer Computing Workers

In this section we examine workers from an ac-

tual VC environment and create models of them

based on analysis. In Section 3.1 we describe the

experimental data taken from a VC system used

to model the workers. Analysis of worker avail-

ability is performed in Section 3.2. In Section 3.3

we examine communication reliability in work-

ers and demonstrate that connections from VC

workers can be modeled using a Poisson process.

In Section 3.4 we examine computation reliabil-

ity in workers, and derive a model for predict-

ing worker computation reliability based on prior

worker availability.

3.1 Worker Trace Data

To perform the analysis and experiments in this

paper, we used a set of worker availability trace

data. This trace data was measured using the

Berkeley Open Infrastructure for Network Com-

puting (BOINC) [12]. The BOINC middleware is

used to perform large scale VC over the Internet.

The BOINC client software currently runs on

over 1 million computers throughout the world.

The BOINC client was augmented to record the

start and stop times of CPU availability on each

worker machine. In BOINC, CPU availability is

determined by user preferences and whether the

machine is running. For example, some users only

allow BOINC to run when the computer is idle

or only on weekends, while other users shut down

the machine every night.

Volunteer participants downloaded this

BOINC client, which recorded the CPU availabil-

ity intervals and reported the intervals back to the

main server. A total of 112,268 worker machines

ran the client during the period between April

1, 2007 to February 12, 2008, though none of the

worker lifespans covered the entire period. In

total, the modified client recorded 16,293 years

worth of CPU availability. Among the worker

operating systems, 66% ran Windows XP, 12%

ran Windows Vista, 9% ran Mac OS X, 7% ran

a variant of UNIX/Linux, and the remaining 6%

ran a variant of Windows. Further analysis of the

trace data is available in [13].

3.2 Analyzing Worker Availability

To learn more about the typical worker machine

in a VC system, we performed several analyses of

the trace data in regards to worker availability.

These analyses were performed to confirm the

validity of the trace data compared with previ-

ous studies, and to examine the characteristics of

worker availability.

Figure 2a shows the number of available work-

ers over the trace recording period. This was ob-

tained by measuring the number of workers in the

available state every 8 h over the entire trace pe-

riod. The oscillation of available workers is caused

by computers being shut down at night and on the

weekends. Although this oscillation grows over

time, the oscillation relative to the total number

of workers stays relatively constant and doesn’t

affect the algorithms described here.

Figure 2b shows cumulative distribution plots

of worker lifespan and worker availability. The

point (x,y) on the dotted line means that x fraction

of workers have lifespans less than y, and on the

solid line means that x fraction of workers spend

less than y of their lifespan in the available state.

From this graph we see that only a small fraction
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Fig. 2 Worker availability and lifespan characteristics. a Number of available workers. b Worker availability over trace
period

of workers (roughly 5%) are available over 80%

of their lifespan and that half of the workers are

available for less than 40% of their lifespan. This

environment of high unreliability and downtime

makes traditional scheduling algorithms difficult

to use.

In this paper we assume that worker unavail-

ability is transient rather than permanent, in other

words workers do not become permanently un-

available. For actual systems this is not a cor-

rect assumption due to machine failures, volun-

teers ending their participation, etc. An analysis

of VC projects indicates worker lifespan roughly

follows an exponential distribution with a mean of

3 months [14]. As seen in Fig. 2b, the mean and

median worker lifespan are on the order of 2 to

3 months. This means that for low latency tasks

less than 15 h in length, fewer than 1% of tasks

will fail due to permanent worker unavailability.

Therefore, we can simplify our model by ignoring

permanent worker unavailability without signifi-

cant effect.

To create algorithms for performing low la-

tency computation in a VC environment, it is

crucial to understand and model the behavior of

workers in terms of availability and unavailability.

Many studies have investigated worker availabil-

ity in desktop grids [8, 9, 15, 16] and in VC type

environments [13, 17, 18]. In the following two

sections, we develop models of VC workers partly

based on our own analysis and partly based on the

work in these studies.

3.3 Modeling VC Worker Communication

In this section we examine the effect of worker

unavailability on task requests and propose a

model for task requests from VC workers. To de-

velop a model of task requests from VC workers,

we perform simulations using worker trace data.

The simulation results indicate that task requests

from VC workers can be modeled as a Poisson

process. Furthermore, the task request rate of this

process can be controlled through the worker re-

connection period T. This means that rather than

scheduling communication for individual work-

ers, we treat the entire worker pool as a tunable

stream.

To perform the simulations, we used a subset of

11,320 randomly selected workers from the entire

trace data set. We performed a wide range of

simulations to test multiple reconnection periods,

worker pools and stretches of time. In a simula-

tion, the workers transition between available and

unavailable based on the trace data. Each worker

W j connects to the master at the start of their lifes-

pan. After each connection, the worker is assigned

a reconnection time R j = CurTime() + T. If a

worker is unavailable at time R j, the connection is

initiated when the worker next becomes available.

Because the number of active workers changes

over the course of the trace data, we define the

number of recently active workers (Pactive) as the

number of workers which have connected in the

last 2T seconds.
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To analyze the results of the simulations, we

recorded each time a worker connected to the

master. These times were recorded during inter-

vals [S0 + XL, S0 + (X + 1)L] for X ∈ [0, M−2].

This effectively emulates the task request be-

havior of the workers performing M batches.

The parameters for the simulations are shown in

Table 1.

The results of one simulation are shown in

Fig. 3a with the time gaps between consecutive

connections to the master plotted as a histogram

and cumulative fraction. The parameters of this

simulation are T = 4 h, L = 1 h, S = 08 Dec 2007,

and at the start of the simulation Pactive = 4024.

Note that this represents connections from all

workers, not from a single worker. For a reconnec-

tion time T with Pactive active workers, the average

expected rate of connection is one connection

every T/Pactive seconds. In Fig. 3a, the average

time gap between connections of 3.76 s closely

matches the expected time gap of 4 hours/4024 =

3.58 s. The cumulative distribution of time gaps in

this simulation and others appears similar in shape

to that of an exponential distribution function.

We made QQ and PP plots for the simulation

shown in Fig. 3a. Figure 4 also shows QQ/PP plots

for the same simulation. As seen, there is a close fit

between the simulation results and an exponential

distribution. There is a slight deviation for larger

values as seen in the QQ plot (left). The PP plot

(right) also shows a good fit. Based on these re-

sults we offer Hypothesis 1.

Hypothesis 1 Let T be a positive time period. P

workers with availability characteristics common

to VC system workers are assigned reconnection

times (T) as described above. Then the time gap

between connections to the master can be modeled

as an exponential distribution function (EDF).

To confirm Hypothesis 1, we apply the

Kolmogorov-Smirnov (KS) test [19] to all simu-

lation results. This allows comparison of the sim-

ulation results with EDFs using the parameter

based on the expected time between connections

λ = P/T. The KS test is sensitive to imperfections

in large data sets, so each KS p-value is based on

the average from 100 random samplings of 100

data points each from each data set. Generally,

the minimum acceptable p-value for the KS test

is 0.05, so p-values higher than this indicate good

fit with the EDF and the validity of Hypothesis 1.

Figure 3b shows the results of applying the KS

test to the simulation results. In this figure, the x

and y axes represent the reconnection time T and

interval length L. The z axis represents the 5th

percentile p-value over all simulations for a given

T and L (i.e. 95% of simulations had a higher p-

value than indicated in the graph). In other words,

the graph shows the validity of Hypothesis 1 for a

range of T and L. For example, with T = 4 h and

L = 2 h, 95% of simulation results had a p-value

greater than 0.22.

In this figure, the accuracy of modeling worker

connection time gaps as an EDF varies depending

on the ratio of T to L. If T is much greater than L,

then few workers will connect in a given interval

and the KS test will show a poor fit. For example,

with T = 4 h, L = 5 min and P = 1000, an average

interval will have only 4.2 connections even with

full worker availability. For a lower ratio of T to

L, worker connections fit an EDF very well.

A Poisson process [20] is defined as a process

with time between events following an EDF.

Since Hypothesis 1 showed that time gaps be-

Table 1 Task request
simulation parameters

Parameter Values

Number of workers (Ptotal) 11320

Reconnection time (T) 5 m, 15 m, 1 h, 2 h, 4 h, 12 h, 1 day, 2 days, 4 days, 10 days

Interval lengths (L) 1 m, 5 m, 15 m, 1 h, 2 h, 4 h

Number of intervals (M) 200

Test period start times (S0) Sun, 01 Jul 2007, Wed, 01 Aug 2007, Mon, 01 Oct 2007,

Sat, 01 Sep 2007, Thu, 01 Nov 2007,

Sat, 01 Dec 2007, Tue, 01 Jan 2008
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tween worker connections follow an EDF, we

offer Corollary 1.

Corollary 1 Let T be a positive time period. Then

connections from P volunteer computing workers

can be modeled as a Poisson process with rate

parameter λ = P/T.

Fundamentally, this means that we can handle

worker communication unreliability by treating

the group of all workers as a Poisson process

with a tunable connection rate parameter. Based

on the results shown in Fig. 3, we maintain that

Corollary 1 is correct for short reconnection peri-

ods (≤ 12 h) with long interval lengths (≥ 5 min).

These are well within the range expected in low

latency batch computing. With greater numbers of

workers, Corollary 1 may apply for longer T and

shorter L. The idea of a tunable Poisson process

is used in Section 4 to develop algorithms for

maintaining a continuous stream of workers for

computing low latency batches.
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3.4 Modeling VC Worker Computation

Here we propose a model of worker computation

reliability based on worker availability prediction.

Previous studies [13, 17] demonstrated techniques

to ensure future worker availability based on

correlated worker behavior, Bayesian classifiers

and other techniques. These techniques provided

means of organizing workers into groups based on

training data for performing simultaneous compu-

tation. In this study, we use a simpler method of

recent worker availability, which is more suited

for low latency batches where workers need not

be simultaneously active.

Although the other methods could possibly be

used for low latency batch computing, we chose

not to for a couple reasons. First, the other two

methods discard roughly half of the worker popu-

lation and require weeks of training data, which

can discourage many VC projects from using

them. Also, by using only highly available and pre-

dictable workers, the algorithms can cause cycli-

cal unavailability in workers which share CPU

time between projects in a round-robin fashion.

Therefore, in this paper we focus on the technique

described below.

To examine worker predictability, we per-

formed 1 million simulations using the trace data

subset described earlier. The goal of these sim-

ulations is to determine how well a workers

recent past state can predict the future availabil-

ity. Our hypothesis is that worker availability/

unavailability can be predicted based on periodic

worker behavior. Each simulation involves ran-

domly selecting a worker with a chance propor-

tional to its lifespan. The availability state of the

worker is examined at a randomly selected time R

in the workers lifespan. Next, for a range of time

lengths T we examine worker availability at times

R − T X for X ∈ [1, 10]. The same analysis was

performed for worker unavailability prediction

based on previous unavailable states. The results

of these analyses are shown in Fig. 5.

Figure 5a shows the accuracy of using the re-

cent past availability to predict current availability

and Fig. 5b shows the same for unavailability.

For a given time period T and number of recent

(un)available states X, these graphs show how ac-

curate a prediction of (un)available is. For almost

all of the simulations, (un)availability at all recent

time periods is a strong indicator that the worker

will be (un)available at time R.

In both graphs, shorter time periods yield bet-

ter accuracy for predicting worker state. Figure 5a

shows that using older states gives a poor predic-

tion of worker availability. An interesting feature

in this graph is the jump in accuracy for time pe-

riods of 1 day, implying that daily usage patterns

exist for workers. Worker unavailability is also

well predicted with time periods of 1 week and 3

(a) (b)

Fig. 5 Simulation results for worker availability and unavailability prediction. a Worker availability prediction results. b
Worker unavailability prediction results
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weeks, which would capture night and weekend

downtime. We use these results in Section 4.3 to

predict whether a worker will finish an assigned

task before a deadline.

To confirm these results, we performed 100,000

simulations to examine the accuracy of using past

worker availability to predict task completion suc-

cess. In these experiments, we randomly select a

worker and a time R when the worker is active.

We simulate the worker receiving 10 tasks at times

R − T X for X ∈ [1, 10] with each task having

deadline R − T X + 2C (twice the task computa-

tion time). We then check whether the worker

completes the task by the deadline.

Figure 6 shows the results of the simulations.

The left graph shows the accuracy of the past

simulation results in predicting task completion in

the present. In this graph we show the accuracy of

predicting deadline satisfaction given the number

of tasks which met their past deadlines. The lower

axis shows the minimum number of past simula-

tions that must have satisfied the deadline (out of

10) in order for a current prediction of “Will Meet

Deadline”. As seen, the accuracy of this method

increases as the bounds on past failures get tighter.

The right graph shows the tradeoff of tight-

ening the bounds for prediction. As the bounds

get tighter, the fraction of failure predictions and

thus the number of denied work requests grows.

This is equivalent to a worker connecting to the

master but not receiving a task due to poor past

performance.

4 Task Distribution Algorithms

In order to meet batch deadlines, tasks must be

distributed to workers in a timely manner. Pull-

style VC task requests go from workers to the

master. Thus, a sufficient number of task requests

must occur between the batch submission and

deadline. In a VC system, this is done by request-

ing workers to connect at certain times. This is

known as the “reconnection time” and is denoted

R j for worker W j.

A simple method for performing low latency

batches is to estimate the submission time Si of

each batch Bi and request a number of workers

to connect soon after that. However, even for

synchronous batch computing, due to the unreli-

able nature of VC workers it is nearly impossible

to predict when a given batch will complete and

the next batch will begin. This is particularly true

when a worker fails to complete a task and delays

the generation of the next batch. For this reason,

we assume that submission times cannot be known

accurately far in advance.

In this section, we describe algorithms for en-

suring a high probability of sufficient task requests

to complete all batches before their deadlines.
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We start by developing an algorithm for fully reli-

able workers, then modify it to handle communi-

cation and computation unreliability. Section 4.1

presents an algorithm for fully reliable (communi-

cation-reliable and computation-reliable) work-

ers, and proves that it satisfies all deadlines in

certain conditions. In Section 4.2 we provide an

algorithm for semi-communication-reliable work-

ers with a probabilistic bound on failure. The

algorithm for semi-reliable (semi-communication-

reliable and semi-computation-reliable) workers

is given in Section 4.3, and also provides a prob-

abilistic bound on failure. The effectiveness of

these algorithms is demonstrated in Section 5.

4.1 Fully Reliable Homogeneous Workers

In this section we consider fully reliable workers,

with guaranteed communication and computation

times. Using fully reliable workers, we develop

an algorithm for task distribution that provides a

basis for later algorithms with unreliable workers.

In this section, workers are considered computa-

tionally homogeneous and reliable, meaning that

a task always takes C seconds and finishes at time

R j + C. To meet the deadline Di, all tasks in Bi

must be distributed to workers before the distri-

bution deadline Li = Di − C. We assume that all

workers connect before S1.

Algorithm 1 shows the algorithm for the master

when dealing with fully reliable workers. The al-

gorithm works by pre-assigning a task to a worker

using the variables AssignBatch and AssignTask.

Worker W j connects at time R j or immediately

if the current time is past R j. Upon connection

the worker receives a task (line 5) and next con-

nection time, then executes the task. The master

gives workers reconnection times that ensure the

workers will receive tasks at the necessary time.

Because all workers are homogeneous and reli-

able, task assignment is in a simple round-robin

fashion and the algorithm needs only ensure

that N task requests occur during each batch.

It is worth noting that the calculation of R j

(line 12) does not simply assign the batch sub-

mission time Si to a worker. Instead, the algo-

rithm spreads worker connections over the entire

batch. This prevents the master from being over-

whelmed by connections, and is also necessary

in later algorithms for semi-reliable workers.

Given this algorithm and constraints on the task

length, deadline/submission times, and number of

tasks/workers, Theorem 1 proves that all batches

will meet their deadlines.

Algorithm 1 Fully Reliable Homogeneous

Workers
1: AssignBatch ← 1, AssignTask ← 1, SendBatch ←

1, SendTask ← 1

2: while SendBatch < M do

3: Get connection from W j

4: if CurrentTime() ≥ SSendBatch then

5: Send task T SendBatch
SendTask

to W j

6: SendTask ← SendTask + 1

7: end if

8: if SendTask > N then

9: SendTask ← 1, SendBatch ← SendBatch + 1

10: end if

11: if AssignBatch ≤ M then

12: R j ← SAssignBatch + (AssignTask − 1) ∗

(LAssignBatch − SAssignBatch)/(N − 1)

13: AssignTask ← AssignTask + 1

14: end if

15: if AssignTask > N then

16: AssignTask ← 1, AssignBatch ←

AssignBatch + 1

17: end if

18: end while

Theorem 1 If, for all batches, the deadline time is

greater than the submission time plus the maxi-

mum execution time among workers (∀i, Di ≥ Si +

C⌈ N
P
⌉) then Algorithm 1 results in all batches meet-

ing their execution deadlines.

Proof Proof by induction. At time S0, by defin-

ition no workers are executing a task and all P

workers have connection times. Next, assume that

no workers are executing a task and all workers

have been given connection times by time Si. We

now demonstrate that if Di ≥ Si + C⌈ N
P
⌉, then all

tasks in Bi will be finished at or before Di and at

time Si+1 there will be no workers executing tasks.

If P ≥ N then at time Si all tasks for batch Bi

have been assigned, and each worker will receive

at most 1 task from the batch. The latest task

distribution time will be Si + (N − 1) Li−Si

N−1
= Li =

Di − C and the latest task completion time will

be Di, meaning that no workers are executing a
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task after Di. If Di < Si + C, then Li < Si, which

is a contradiction because no tasks from Bi can be

distributed before Si.

If P < N then at time Si only P tasks from

batch Bi have been assigned. During the execu-

tion of batch Bi, a worker will request and exe-

cute either ⌊ N
P
⌋ or ⌈ N

P
⌉ tasks. Because a worker

executes tasks one by one, the latest a worker

will request a task is at time max(Li, C(⌈ N
P
⌉ −

1)) and the latest task completion time will

be max(Di, C⌈ N
P
⌉). If Di < Si + C⌈ N

P
⌉, the batch

completion time will be C⌈ N
P
⌉ > Di and the dead-

line will not be met. In this case, there can be no

guarantees about the execution state of workers

at time Si+1. If Di ≥ Si + C⌈ N
P
⌉, the batch com-

pletion time will be Di and no workers will be

executing tasks at Si+1.

Therefore all batches will meet their execution

deadlines if and only if ∀i, Di ≥ Si + C⌈ N
P
⌉. ⊓⊔

4.2 Semi-Communication-Reliable

Homogeneous Workers

Algorithm 2 Semi-Communication-Reliable Ho-

mogeneous Workers

1: Calculate λ from K and N; estimate P; T ← 0.9PL
λ

2: SendBatch ← 1, SendTask ← 1

3: while SendBatch < M do

4: Get connection from W j

5: if CurrentTime() ≥ SSendBatch then

6: Send task T SendBatch
SendTask

to W j

7: SendTask ← SendTask + 1

8: end if

9: R j ← CurrentTime() + T; Send R j to W j

10: if SendTask > N then

11: SendTask ← 0, SendBatch ← SendBatch+1

12: Pactive = num connections in last 2T seconds,
T ←

0.9Pactive L
λ

13: end if

14: end while

In this section we consider homogeneous

workers that are computation-reliable and semi-

communication-reliable. In other words, they be-

have like VC workers when requesting tasks, but

will always complete a task on time once it is

received. Here we modify Algorithm 1 to use the

model of worker requests from Section 3.3 and

ensure enough task requests for a given batch.

Predicting the availability state of an arbitrary

VC worker at a specific time is extremely difficult,

especially for times far in the future. Algorithm 1

cannot be used in such environments because it

requires each worker W j to be available at R j. As

previously mentioned, Algorithm 1 does not re-

quest all workers to connect at time Si but instead

maintains a constant rate of task requests between

Si and Li. In the same way, computing low latency

batches with semi-communication-reliable work-

ers is possible by maintaining a stream of task

requests.

In Section 3.3, we demonstrated that task re-

quests from VC workers can be modeled as a Pois-

son process. Given this model, we now determine

how to calculate the reconnection period T so as

to distribute all tasks before the batch deadline L.

Given Corollary 1, we can control the probability

K of at least N task requests being sent to the

master from P workers in a time period L. This

probability is controlled by specifying a reconnec-

tion period T based on P, L and N. Although in

this algorithm we use P to calculate T, there is no

intrinsic dependence of T on P. Other techniques

for counting active workers are just as suitable, as

long as the active time period is greater than T.

The number of task requests occurring in a

Poisson process follows the Poisson distribution.

This gives the probability of exactly N task re-

quests occurring in a given time period. Because

this is a probabilistic model we can only put a

bound on the probability K of a specified number

of task requests occurring. For a probability K of

at least N task requests in a given time period L,

λ must satisfy:

K ≥ 1 −

N−1∑

i=0

e−λλi

i!
(1)

Based on our observations, roughly 10% of work-

ers become inactive in a daily cyclical pattern. λ is

calculated assuming large numbers of workers do

not become inactive simultaneously. To compen-

sate, we calculate the reconnection period using

90% of the active worker count. In Section 3.3

we showed worker connections can be modeled as

a Poisson process with rate parameter λ = P/T.
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Given λ from the above equation we can rewrite

this as the reconnection period:

T =
0.9PL

λ
(2)

The number of active workers P can change over

long time periods, though λ and L are assumed to

be constant. Therefore the value of T must change

during the course of the computation. One way

to track active workers is to count the number of

workers which connected recently, in this case, the

number of unique workers which connected in the

last 2T seconds.

Algorithm 2 demonstrates how to use the ac-

tive worker count to distribute tasks to semi-

communication-reliable workers. This algorithm

ensures sufficient task requests to the master be-

fore the distribution deadline even with individual

worker unreliability and daily fluctuations. Algo-

rithm 2 differs from Algorithm 1 in that it does

not track the pre-assignment of tasks to workers.

Instead, the goal of N task requests is implicitly

achieved by altering the reconnection rate (line

12). We demonstrate the effectiveness of this al-

gorithm in Section 5.

4.3 Semi-reliable Heterogeneous Workers

Finally, we propose an algorithm to replicate

and distribute tasks to semi-reliable heteroge-

neous workers. These are semi-communication-

reliable and semi-computation-reliable workers as

described in Section 2 and modeled in Sections 3.3

and 3.4. As demonstrated, worker availability at

time R can be estimated based on the number

of times the worker was available at past times

R − T X.

To determine whether a worker will complete

a given task by the deadline, we estimate the

probability of the worker providing the required

amount of computational power between task

distribution and the deadline. Suppose a worker

receives a task at time R with deadline D. For a

worker with task computation time C, we want

to estimate the probability of the worker being

in the available state for more than C seconds

in the time interval [R, D]. If C > D − R then

the probability is 0. Otherwise, we estimate the

probability based on the time to compute the task

if it were started at past times R − T X using

T = 1 day and T = 1 week. If more than half

of the tasks computed at the previous time peri-

ods would have missed the deadline, PrSuccess
i =

0 and the worker is not assigned a task. Other-

wise, the probability is estimated based on mean

worker task computation time C relative to this

workers computation time Ci using the equation

PrSuccess
i = min(0.99, 2C/Ci). The justification for

this is that for faster workers, small unpredictable

periods of unavailability will have less effect and

the task will more likely finish before the dead-

line. This type of speed based scheduling is also

investigated in [15].

Algorithm 3 shows the master task distribution

algorithm for semi-reliable heterogeneous work-

ers. This algorithm is similar to Algorithm 2, ex-

cept we create replicas of some tasks that have a

low probability of finishing before the deadline.

To decide which tasks to replicate, we keep an

estimate of the probability PrFail
i of missing the

deadline for each task Ti. This estimate starts at

1 for all tasks, then is updated (line 9) based on

the estimated probability of success (line 6) as the

tasks are assigned to workers. Also, because the

workers are heterogeneous, L is computed using

the mean task completion time C.

Algorithm 3 Semi-Reliable Heterogeneous

Workers

1: Calculate λ from K, N; estimate P; T ← 0.9PL
λ

2: SendBatch ← 1, SendTask ← 1

3: ∀i ∈ [1, SendTask], PrFail
i = 1

4: while SendBatch < M do

5: Get connection from W j

6: Calculate probability PrSuccess of worker finish-
ing task before deadline

7: if CurrentTime() ≥ SSendBatch and PrSuccess > 0

then

8: Send task Ti with highest PrFail to W j

9: PrFail
i ← PrFail

i (1 − PrSuccess)

10: end if

11: R j ← CurrentTime() + T; Send R j to W j

12: if All tasks finished then

13: SendBatch ← SendBatch + 1

14: ∀i ∈ SendTask, PrFail
i = 1

15: Pactive = num workers in last 2T seconds; T ←
0.9Pactive L

λ

16: end if

17: end while
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Each of the algorithms described here distrib-

utes N tasks from each of M batches. At the end

of each batch, the number of active workers is

calculated, which takes O(P) (or less, depending

on the method). For Algorithms 1 and 2, dis-

tribution of a task takes constant time O(1), so

these algorithms have time complexity O(M(N +

P)). For Algorithm 3, the task with the highest

probability of failure is sent to the worker. Us-

ing a tree structure, maintaining a list of tasks

sorted by probability of failure has time com-

plexity O(logN). Therefore Algorithm 3 has time

complexity O(M(NlogN + P)).

However, it is worth pointing out that for the

numbers of tasks and workers typically involved in

VC systems (N < 10
5 per day, P < 10

7 [1]), each

task distribution requires very little CPU time. In

fact, the limiting factor is generally bandwidth to

the master rather than CPU time.

5 Experiments

We conducted a series of simulation experiments

to test the algorithms in Sections 4.2 and 4.3 and

compare them to alternate algorithms. Simula-

tions were implemented using a custom event-

driven simulator program that emulates a VC

master-worker environment based on trace files

using double precision for all times. To improve

simulation time, workers are skipped forward to

a week before the simulation start. Master oper-

ation depends on the algorithm being executed.

Workers execute tasks until completion—they do

not abort a task if the deadline has past. The trace

files for all simulations in this section consisted of

37,472 randomly selected workers from the trace

data set in Section 3.1.

5.1 Semi-Communication-Reliable Workers

To confirm that Algorithm 2 provides sufficient

task requests from workers, we performed ex-

periments using the trace data described above.

The parameters for the experiments are shown in

Table 2. These parameters represent a range of

possible low latency applications, from small to

large batches with short to long tasks. Simulations

with impossible parameter combinations (e.g. C ≥

Table 2 Simulation parameters

Parameter name Parameter value

Number of batches (M) 256

Tasks per batch (N) 1024, 2048, 4096

Target success probability (K) 0.99

λ derived from K, N 1100, 2155, 4247

Batch deadline (D) 1 h, 4 h

Simulation start (S0) Sep 1, 2007; Nov 1, 2007;

Jan 1, 2008

Batch submission (Si) Si+1 = Si + D

Task computation time 30 min, 1 h,

(C or C) 2 h

D) were not performed. Dates for simulation start

(S0) were chosen to get a good range of active

workers.

Figure 7 shows two sample results from the

experiments. The figures show the active worker

count at the start of each batch, and the number

of task requests received during each batch. The

light histogram represents the number of task re-

quests that arrived before the batch computation

deadline, while the dark histogram represents the

number of task requests that arrived before the

batch distribution deadline. The horizontal line is

the minimum number of task requests needed to

successfully complete the batch. Daily and weekly

worker unavailability cycles can be clearly seen in

the active worker count for both graphs.

These results show that Algorithm 2 main-

tains a steady stream of worker task requests for

batches with varying characteristics. Even though

the number of active workers changes significantly

over time, the required number of task requests

arrive before or occasionally slightly after the

distribution deadline. It is worth noting that task

requests are spread evenly before and after the

distribution deadline. This is important for sys-

tems where the submission time of a future batch

is unknown, and a constant stream of task requests

is required to ensure batch satisfaction.

For comparison, we also implemented a simpler

algorithm that adjusts the reconnection rate using

a feedback loop based on the fraction of successful

task requests in the previous batch. We refer to

this algorithm as the “shifting” algorithm. If a

batch fails to receive enough task requests before

the distribution deadline, this algorithm decreases

the reconnection rate proportional to the number
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missed. If a batch receives over 10% more than

the needed task requests, it increases the recon-

nection rate by a proportionate amount.

Figure 8 shows a comparison of the shifting

reconnection rate algorithm with the the Poisson

based algorithm described in Section 4.2. This

shows the percent of batches in the experiments

which received a given fraction of task requests

before the distribution deadline. In over 70% of

batches, both algorithms distributed all of the
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Fig. 8 Fraction of tasks in a batch that were distributed before the distribution deadline, comparing two algorithms. From
left to right, the graphs represent batches with 1024, 2048 and 4096 tasks
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tasks before the deadline. However, the shifting

algorithm resulted in many more batches with

very few task requests. This is because the shifting

algorithm can only react to changes in the active

worker count after they have affected a batch,

as opposed to the Poisson method which adapts

to the worker count as well as the expected fluc-

tuation. We found that with long reconnection

periods, the shifting algorithm increases the re-

connection rate for multiple successive batches,

then suddenly encounters a lack of workers as

the previous adjustments take effect. This helps

explain the batches with very few task requests for

the shifting algorithm in Fig. 8.

From these results, we feel confident that Al-

gorithm 2 and the model described in Section 3.3

are useful and valid for ensuring sufficient task

requests to meet low-latency batch deadlines in

VC systems. Although the algorithm failed to pro-

vide complete reliability in terms of task requests,

we demonstrated that it can adapt to changes

in worker availability better than a simpler algo-

rithm.

5.2 Semi-Reliable Workers

Finally we test the efficacy of Algorithm 3 in

completing batch tasks before the deadline. The

parameters for these experiments are the same

as Section 5.1, shown in Table 2. In all these

experiments, an average of two copies of each task

is distributed to workers (more or less depending

on the algorithm). For comparison, we also tested

two alternate methods of computing the probabil-

ity of success PrSuccess in Algorithm 3.

In these experiments we tested three ways

of computing PrSuccess. The first involves simple

replication where each task is replicated twice and

sent to an arbitrary worker, regardless of worker

speed or past history. The second involves calcu-

lating PrSuccess solely based on worker speed, using

the equation described in Section 4.3. The final

technique, described in Section 4.3 uses predic-

tions based on past worker history in combination

with worker speed to estimate PrSuccess.

The results of the experiments for Algorithm 3

are shown in Fig. 9. This figure shows the percent

of batches where a given fraction of task requests

satisfied the deadline. The graphs going left to

right represent different ratios of task computa-

tion time to deadline time. The leftmost graphs

represent all experiments with the tighter deadline

of task computation time C being half of deadline

time D. The rightmost graphs represent experi-

ments with a looser deadline of C = D/8. From

top to bottom, the graphs show the results of per-

forming Algorithm 3 using the simple method of

task replication and distribution, task assignment

based on worker speed, and task assignment based

on worker speed with past history.

First we notice that longer deadlines relative to

task size result in more tasks and batches being

satisfied. This makes sense because PrFail is set to

0 when a task completes, meaning the remaining

task requests in the batch will more likely be

assigned tasks that would fail anyway. In contrast,

with tighter deadlines the tasks are allocated to

workers in a less efficient manner in order to meet

the deadline.

There is a significant jump in batch satisfaction

from using worker speed to estimate PrSuccess. This

effect has been noted before in desktop grids [15].

The same study found no connection between

worker speed and availability. This means that for

any availability pattern a faster worker will have

a greater chance of meeting a deadline simply

because the task is more likely to finish before the

worker goes into a long unavailable interval.

The bottom three graphs in Fig. 9 show the

effectiveness of the techniques proposed in this

paper. For looser deadlines of C = D/4 and C =

D/8, our techniques result in over 90% of batches

being satisfied. For the tighter deadline of C =

D/2, the number of satisfied batches significantly

drops but is still higher than the alternate tech-

niques. With tighter deadlines, worker unavail-

ability from unpredictable causes such as user

activity becomes more of an issue.

Based on these results, we feel Algorithm 3

provides a good way of performing low latency

batches in a VC environment. Compared to sim-

pler methods of managing communication unreli-

ability such as the shifting reconnection algorithm,

the Poisson method described in this paper pro-

vides a more accurate method of controlling work-

ers. For managing computational unreliability,
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probabilistic assignment based on worker speed

and past history proves more effective than arbi-

trary task assignment or using worker speed only.

6 Related Work

Related studies examined task distribution in grid

and VC environments [5–7], though some of these

assume a task push model and are not valid

for pull-style VC environments. Others describe

methods to maximize total system throughput

rather than meet specific task deadlines. There are

also several works [8, 9, 13, 15–17, 21] analyzing

the characteristics of VC and desktop grid envi-

ronments which are applicable to high throughput

computing but don’t target low latency style VC.

To the best of our knowledge, this paper is the first

to investigate methods for computing low latency

batches in a pull-style VC environment.

There is work similar to our study in regards

to completing batches of tasks with deadlines

[22], though this focused on desktop grid envi-

ronments rather than volunteer computing. This

study viewed the system as a buffer with batches

of tasks periodically entering and expiring from

the buffer. The authors analyzed the appropriate

buffer size to ensure maximum task completion

rates in a desktop grid environment, where tasks

can be assigned to arbitrary workers. Future work

in low latency batch computing could use this type

of buffer, especially for computations performing

multiple simultaneous batches.

One technique for handling unreliable workers

is the use of checkpointing or “heartbeats” to the

master server [23, 24]. In this technique, workers
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periodically report and/or save their progress to

the master server. This allows for duplication of

tasks which are unlikely to meet the deadline.

However, we believe that this would not be useful

in low latency because of the short task compu-

tation time. For short running tasks, intelligent

scheduling will provide better results than check-

pointing.

Other research related to VC scheduling in-

cludes using evolutionary algorithms to develop

scheduling algorithms [25] and using P2P to per-

form load balancing in VC systems [26]. A pos-

sible future field of research is to use genetic

algorithms in predicting worker availability for

low latency batch computing, though other meth-

ods [13, 17] appear to already be very successful

and more applicable to low latency computing.

7 Conclusion and Future Work

In this paper we proposed methods for performing

low latency batches of tasks with deadlines in VC

environments. To do so, we first proposed analysis

based models for handling communication and

computation unreliability in VC workers. These

models were used to develop task distribution

algorithms aimed at low latency batch VC, which

were then validated using execution trace data

from an actual VC environment.

Although the experiments in Section 5 showed

the effectiveness of these algorithms, further work

can be done to improve the algorithms, especially

in regards to estimating task success on a given

worker. Other techniques [13, 17] show promise in

this regard, though implementations should avoid

computationally intensive techniques when com-

puting with deadlines.

To make practical use of these results we

plan to study methods for integrating low-latency

batch computing in existing VC systems such

as BOINC. BOINC already supports client re-

connection times and recording past availability

states, so implementing low latency in BOINC

is primarily a matter of allowing users to specify

batch characteristics and quickly processes com-

pleted batches.
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