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Abstract

We produce novel empirical evidence on the relevance of temperature volatil-
ity shocks for the dynamics of productivity, macroeconomic aggregates and asset 
prices. Using two centuries of UK temperature data, we document that the relation-
ship between temperature volatility and the macroeconomy varies over time. First, 
the sign of the causality from temperature volatility to TFP growth is negative in 
the post-war period (i.e., 1950–2015) and positive before (i.e., 1800–1950). Second, 
over the pre-1950 (post-1950) period temperature volatility shocks positively (nega-
tively) affect TFP growth. In the post-1950 period, temperature volatility shocks are 
also found to undermine equity valuations and other main macroeconomic aggre-
gates. More importantly, temperature volatility shocks are priced in the cross section 
of returns and command a positive premium. We rationalize these findings within a 
production economy featuring long-run productivity and temperature volatility risk. 
In the model temperature volatility shocks generate non-negligible welfare costs. 
Such costs decrease (increase) when coupled with immediate technology adaptation 
(capital depreciation).
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1 Introduction

There is near unanimous scientific consensus that climate change affects human 
health, behavior, and activity (Patz et al. 2005; Deschênes and Moretti 2009; Zivin 
and Neidell 2014; Cattaneo and Peri 2016) and has a negative impact on economic 
development (Stern 2007; Hsiang and Meng 2015). Over the past decades, the 
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economic risk of climate change has been quantified by means of the so-called Inte-
grated Assessment Models (IAMs). In this class of models climate change effects 
(costs and benefits) are captured via damage functions. IAMs easily allow to relate 
climate variables (e.g., temperature, sea-level rise, rainfall, CO

2
 concentration) to 

economic welfare. However, even if widely used, IAMs have been subject to severe 
criticism. Above all, IAMs have been questioned to have no empirical supports (Pin-
dyck 2013; Diaz and Moore 2017). Moreover, Pindyck (2013) argues that the use 
of IAMs as a climate change policy tool faces a major problem: “the modeler has 

a great deal of freedom in choosing functional forms, parameter values, and other 

inputs, and different choices can give wildly different estimates of the social cost 

of carbon and the optimal amount of abatement”. In other words, he points out 
that IAMs can deliver any result one desires. In the end the crucial flaws of IAMs 
make them “close to useless as tools for policy analysis” Pindyck (2013) (pag. 860). 
Another important issue is that IAMs focus exclusively on level effects rather than 
on growth effects. However, distinguishing between level and growth effects is of 
first order importance. Actually, the effects on the growth rate compound over time 
are more quantitatively important than effects on the level of output (Dell et  al. 
2012; Pindyck 2013; Colacito et al. 2019). Finally but equally importantly, existing 
climate change models (and in particular IAMs) have paid little attention on other 
macroeconomic variables (e.g. productivity growth, investment growth, labor supply 
and capital accumulation) other than GDP (see, for example, Revesz et al. 2014).

To address some of the issues associated with the use of IAMs to examine the 
economic costs of climate change, more recent analyses have incorporated empir-
ical evidence indicating that rising temperature levels have a negative impact on 
the real economic activity (Dell et al. 2012; Du et al. 2017; Colacito et al. 2019) 
into Dynamic Stochastic General Equilibrium (DSGE) models  (Bansal et  al. 
2016; Donadelli et  al. 2017). Empirical findings and quantitative model-based 
results confirm that a rise in the average temperature level has a negative impact 
on the growth rate of key macroeconomic aggregates (e.g., productivity, invest-
ment and consumption growth) and equity prices. However, as also pointed out 
by Diaz and Moore (2017), both standard IAMs and recently developed temper-
ature-related DSGE models typically estimate the effects of equilibrium changes 
in average temperature levels (or in average rainfall levels), but not necessarily 
the effects of extremes (persistent heatwaves) or stochastic variability (storm 
surges). The impact of climate change may be actually the result of variations 
in both the mean and the standard deviation of climate drivers (Rind et al. 1989; 
Mearns et al. 1996). By focusing exclusively on changes in the mean, the overall 
and true impact of climate change on human activity could be seriously underes-
timated (Katz and Brown 1992; Schär et al. 2004). For example, fluctuations in 
climate conditions at the inter-annual time scale represent important drivers to 
capture extreme weather events such as multi-year droughts (Peel et al. 2005) and 
water scarcity (Veldkamp et al. 2015). In this respect, Elagib (2010) and Ito et al. 
(2013) show that intra-annual temperature variability is associated with extreme 
air temperature. Moreover, changes in the intensity of extreme weather events, 
such as heatwaves, are highly sensitive to shifts in intra-annual temperature var-
iability (Fischer and Schär 2010). Thus, other than mean values, the dynamics 
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of volatility in climate drivers may be relevant for the understanding of extreme 
events, and, consequently, for the impact of climate change on the real economic 
activity (Brown and Lall 2006). In other words, climate change as well as weather 
variability are both partly to blame.

Supporting the view that volatile climate conditions matter, some studies have 
examined the relationship between weather dynamics and fluctuations in consumer 
spending. Heavy rain, snow, and other extreme events are factors forcing people 
to stay home. This in turn would lower sales (Parsons 2001). Broadly, the idea is 
that highly volatile weather conditions may impact consumption decisions (Starr-
McCluear 2000; Lazo et  al. 2011). Another stream of research argues that the 
effect of weather on consumer spending is mediated by mood. High variability in 
weather conditions has a negative impact on mood. For instance, Spies et al. (1997) 
and Murray et al. (2010) empirically observe that people in good mood tend to be 
more willing to buy consumer goods than those in bad moods. In a similar spirit, 
another branch of literature finds instead that stock market anomalies may be the 
consequence of relevant weather factors (Saunders 1993; Kamstra et al. 2003; Cao 
and Wei 2005). For example, Kamstra et  al. (2003) and Garrett et  al. (2005) find 
that seasonal weather effects (such as the number of daylight hours in a day) tend to 
influence investors’ risk-aversion.

Taken together, existing empirical evidence support the existence of two channels 
through which an adverse shock in climate conditions may affect economic factors. 
The first one operates via the destruction of capital through adverse weather events 
dampening innovations, output, and productivity (Fankhauser and Tol 2005; Stern 
2013). The second one operates via the influence that weather has directly on people 
mood. Actually, a bad mood due to extreme weather translates into consumption 
spending (Spies et al. 1997; Murray et al. 2010) and equity investments (Kamstra 
et al. 2003; Cao and Wei 2005). Loosely speaking, more volatile weather conditions 
lead to a higher probability of extreme events, which in turn implies stronger effects 
on investment and consumption plans.

Motivated by this evidence, we examine the effects of volatility in weather condi-
tions on macro-variables and asset prices. Specifically, we investigate both empiri-
cally and theoretically whether shifts in the volatility of temperature affect aggregate 
productivity, economic growth, welfare, and equity prices. While the majority of 
climate change studies examine the effect of rising temperatures on real economic 
activity, to the best of our knowledge there is no study focusing on temperature vola-
tility and its macroeconomic effects. With this paper we aim to fill this gap.

Monthly data on UK temperature for the period 1659–2015 are employed to build 
an intra-annual temperature volatility index. Since both relatively low and relatively 
high temperature volatility may be harmful, our temperature volatility index is rep-
resented by the absolute deviation from an annual benchmark volatility value (i.e., 
historical average intra-annual volatility observed in the pre-industrial revolution 
era).1 We then employ data on TFP (macro-aggregates, stock market, risk-free rate) 
for the period 1800–2015 (1900–2015). Empirically, we study the effect of changes 

1 In a robustness test, we study the effect on the TFP using a different temperature volatility index (i.e., 
inter-annual volatility). The results from this test are reported in “Appendix 2” and discussed in Sect. 3.4.
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in temperature volatility via Granger causality and standard VAR analyses over dif-
ferent historical periods (i.e., 1800–1900, 1900–1950, and 1950–2015). We find that 
the sign of the causality going from temperature volatility to TFP growth changes 
over time. By focusing on the 19th century, we find no evidence of a causality 
between temperature volatility and productivity growth.2 For the period 1900–1950, 
we instead find a significant positive unidirectional causality from temperature vola-
tility to productivity growth. In the post-war period, the direction of the causal effect 
remains unaltered but not the sign which becomes negative (i.e., temperature volatil-
ity has a negative effect on productivity). On one hand, this change in the direction 
of the causality could be due to the different sectoral structure characterizing the 
UK economy in different eras. On the other hand, it can be driven by the increas-
ing number of extreme weather events observed over the last three decades. VAR 
investigations confirm that the way in which temperature volatility affects TFP 
growth is not constant over time. During the period 1800–1900 no significant effects 
are detected. Differently, the temperature volatility has a positive (negative) effect 
over the period 1900–1950 (1950–2015). These results are robust to the inclusion 
of macroeconomic and financial variables. Over the period 1950–2015, temperature 
volatility is also found to be detrimental for equity valuations. A battery of cross-
sectional asset pricing tests suggest then that temperature volatility shocks command 
a significant and positive risk premium.

This set of novel empirical facts is rationalized by means of a production econ-
omy featuring long-run macro and temperature volatility risk. More precisely, we 
calibrate the model to match (1) the drop in TFP growth generated by a temper-
ature volatility shock and (2) main UK temperature statistics. Note that we chose 
the post-war sample since we find the strongest adverse climate economic effects in 
this period. This is in line with existing evidence documenting negative temperature 
effects in the post-war period (see e.g., Dell et al. 2012; Colacito et al. 2019). In our 
production economy a temperature volatility shock gives rise to a negative response 
of productivity, macroeconomic quantities, and equity valuations, consistent with 
our novel empirical evidence. In addition, in the model temperature volatility risk 
commands a positive risk premium. Welfare costs of this type of risk are substantial 
and amount to 9% of the agent’s consumption bundle in our benchmark scenario. 
Moreover a rise in temperature volatility is found to have long-lasting negative 
effects on output and labor productivity growth. Over a 50-year horizon, a single 
one-standard deviation shock reduces both cumulative output and labor productivity 
by about 1.0 percentage points (pp). In an economy featuring capital depreciation 
risk, welfare costs of temperature volatility risk increase when depreciation shocks 
are positively correlated with temperature volatility shocks, meaning that higher 
climate variability results in an increasing occurrence of natural disasters, which 
destroys capital faster. If we allow for adaptation to climate uncertainty by assum-
ing a positive correlation between temperature volatility shocks and long-run pro-
ductivity shocks (i.e., the economy immediately responds to temperature volatility 
shocks by boosting productivity), temperature volatility risk produces welfare gains 
and a drop in the equity risk premium. Needless to say, this evidence suggests that 

2 Note that throughout the paper we will use the term productivity and TFP interchangeably.
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“adaptation” plays a crucial role in reducing the economic costs associated to tem-
perature volatility risk.

Our benchmark production economy features capital and labor dynamics. For 
reasons of robustness, we also study the macro and welfare effects of temperature 
volatility shocks in an endowment economy. By calibrating the model to match the 
main consumption dynamics and the empirically observed impact of temperature 
volatility shocks on consumption growth, we find qualitatively and quantitatively 
similar results.

The rest of this paper is organized as follows. In Sect. 2, we review the related 
literature. Section  3 presents the main empirical findings concerning the effects 
of temperature volatility shocks on macro and financial aggregates. In Sect. 4, we 
describe our production economy featuring temperature volatility risk. Section  5 
presents the quantitative results. To shed light on the robustness of the quantitative 
implications of temperature volatility shocks, we analyze an endowment economy in 
Sect. 6. Section 7 concludes.

2  Related Literature

Our study is primarily related to the most recent empirical and theoretical literature 
examining the effects of climate change on macroeconomic and financial aggregates. 
Most papers in this field investigate this issue by looking at the impact of changes 
in average temperature levels. For example, Dell et al. (2012), Colacito et al. (2019), 
and Du et al. (2017) find that rising temperatures negatively affect economic growth. 
Moreover, Bansal et  al. (2016) and Donadelli et  al. (2017) show that temperature 
shocks have a significant negative effect on equity valuations and carry a positive 
premium in equity markets. Unlike these studies, we do not examine the effects of 
a rising temperature level but examine the implications of temperature volatility 
shocks on aggregate productivity, consumption, and equity prices. In this respect, 
we support Katz and Brown (1992) and Schär et al. (2004) who argue that focusing 
exclusively on the change in the mean of climate variables may underestimate the 
overall economic costs of climate change.

Our paper is also connected to the literature on the economics of climate change 
quantifying the macroeconomic and financial effects of global warming. A popular 
approach to quantifying the economic costs of climate change and carbon emissions 
is the use of IAMs (Stern 2007; Nordhaus 2008). Recent contributions in this class 
of models are provided by Golosov et  al. (2014) and Cai et  al. (2015) who study 
climate change within a DSGE framework. Bansal and Ochoa (2011a) and Bansal 
et al. (2016) account for temperature dynamics in long-run consumption risk models 
to quantify the effects of temperature shocks on consumption and asset prices. We 
differ from IAMs as we do not model temperature effects on economic activity as 
a damage function on the level of GDP, but rather on the growth rate of TFP. We 
therefore allow temperature to permanently affect economic activity as in the long-
run consumption risk models (see Pindyck 2012). Unlike the latter, we model tem-
perature effects in a production economy framework, which allows us to analyze the 
effects of temperature also on investment and labor growth. Moreover, as opposed to 
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IAMs, we do not compute economic costs as losses in GDP but follow Bansal and 
Ochoa (2011b) who define welfare costs of temperature risk as in Lucas (1987). We 
believe our modeling choice to be more natural than others for several reasons. First, 
it allows for a clear-cut exogenous link between temperature dynamics (i.e., temper-
ature level and temperature volatility) and productivity growth, as observed in the 
UK macro and weather data. Second, it is not driven by a large number of arbitrary 
choices. Actually, parameters are calibrated to match main macro-quantities, asset 
prices and temperature statistics. Third, it accounts for the joint dynamics of tem-
perature level and temperature volatility and equity returns, an aspect not considered 
in standard IAMs (or any other previous climate change models).

Finally, our theoretical analysis builds on the recent production-based asset pric-
ing literature dealing with the long-run effects of aggregate productivity shocks 
(Croce 2014) or oil shocks (Hitzemann 2016; Hitzemann and Yaron 2017; Ready 
2018) on macroeconomic aggregates and asset prices. Most of the elements of our 
production economy are therefore as in Croce (2014). What is new in our model is 
that aggregate productivity is influenced by temperature volatility shocks, as sug-
gested by the empirical evidence. In this respect, we are more closely related to Gao 
et al. (2016) who develop a two-sector production model to study the effects of oil 
volatility risk on macroeconomic variables and asset prices.

3  The Facts

This section empirically examines the implications of temperature volatility shocks. 
First, in Sect. 3.1, we describe the data employed in our analysis and present some 
preliminary facts. In Sect.  3.2, we analyze the effects of temperature volatility 
shocks on aggregate macro quantities such as productivity, output, consumption, and 
investment. For the sake of completeness, Sect. 3.3 compares temperature level and 
temperature volatility shock effects. A battery of robustness tests on the macroeco-
nomic implications of temperature volatility shocks are presented and discussed in 
Sect. 3.4. The effect of temperature volatility shocks on asset prices are then pre-
sented in Sect.  3.5. We finally examine whether temperature volatility shocks are 
priced in the cross-section of equity returns in Sect. 3.6.

3.1  Data Description and Some Preliminary Facts

Our empirical analysis on the effects of temperature volatility (hereinafter TVOL) on 
macroeconomic and financial aggregates is based on annual UK data.. Data on real 
TFP, output, consumption, investment, and labor force have been retrieved from the 
“Bank of England’s Three Centuries Macroeconomic Dataset”. All macroeconomic 
series run from 1900 to 2015, except for TFP which starts in 1800. The equity mar-
ket return and the risk-free rate have been obtained from the “Barclays Equity Gilt 
Study 2016”. Data are annual for the period from 1900 to 2015. Monthly tempera-
ture levels have been retrieved from MET Office for the period 1659–2015 (http://

http://www.metoffice.gov.uk/hadobs/hadcet/
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www.metoffi ce.gov.uk/hadob s/hadce t/). This dataset represents one of the longest 
continuous temperature records available. Admittedly, MET temperature levels are 
observed only for central England. However, this does not represent a major draw-
back. In fact, Croxton et al. (2006) suggest that the central-UK temperature level fits 
pretty well the average temperature level of the UK as a whole.3 Some key statistics 
on the UK temperature level and volatility and main macro and financial variables 
are reported in “Appendix 1” (see Table 13). Two results are noteworthy: (1) the UK 
annual average temperature rose by more than 1 degree Celsius over the last two 
centuries and (2) temperature volatility rose as well and exhibited an unprecedented 
increase in the last 15 years.

In the spirit of Katz and Brown (1992) and Schär et  al. (2004), we capture 
changes in climate conditions by means of shifts in TVOL. Precisely, we rely on a 
temperature anomaly volatility index, defined as the difference between the intra-
annual volatility and a benchmark volatility level. The latter is represented by the 
average intra-annual volatility calculated over the pre-industrial revolution era in 
the UK (i.e., 1659–1759). Note that both positive and negative deviations from the 
benchmark can have adverse economic effects. It has been shown that a relatively 
high level of TVOL tends to be associated with more frequent extreme weather 
events (see, for example, Elagib 2010; Ito et al. 2013; Brown and Lall 2006). On the 
other hand, a year with relative low variation across monthly temperatures—caused, 
for instance, by a persistent summertime heatwave—could result in severe droughts 
and flow of surface waters. As a consequence, crop and hydroelectricity production 
drop and irrigation is largely reduced. In addition, substantial weather fluctuations 
(positive or negative) may affect people’s mood leading to changes in consumption 
dynamics (Spies et al. 1997; Murray et al. 2010) and portfolio investment decisions 
(Kamstra et  al. 2003; Cao and Wei 2005). Our TVOL measure is thus defined as 
follows:

where �(JAN−DEC)
t
 indicates intra-annual volatility in year t (i.e., the standard devia-

tion computed using monthly temperature levels within each year in the post-indus-
trial revolution era), and �̄(JAN−DEC)1659−1759

 represents the average intra-annual volatil-
ity observed over the industrial revolution era (i.e., 1659–1759).

Climate change is expected to increase the frequency of extreme weather events. 
Of course, linking any single weather event to global warming can be complicated. 
However, volatility in main climate drivers (especially in temperature and rainfall) 
seems to be more strongly related to the frequency of severe weather events. This 

(1)TVOL
t
=∣ �(JAN−DEC)

t
− �̄(JAN−DEC)1659−1759

∣, for t = 1760,… , 2015,

3 The UK has a long tradition in collecting data on weather conditions. Actually, early measurements 
started in the seventeenth century and that is why we decided to focus on the UK. Unfortunately, some 
measurements from older stations got lost while other weather stations started recording data later. For 
this reason, secular data on UK weather (including temperature) rely only on a homogeneous set of 
recording stations (i.e., central UK stations). In this respect, Croxton et al. (2006) show that the tempera-
ture level computed by collecting (and averaging) temperatures across central areas of the UK represent a 
very good proxy of the UK temperature. This evidence is important as it allows us to track the dynamics 
of temperature at national level.

http://www.metoffice.gov.uk/hadobs/hadcet/
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is confirmed by Fig. 1 (Panel A) which shows (historically) a positive correlation 
between TVOL and the number of extreme weather events.4 Importantly, this posi-
tive relationship has strengthened (on average) in the post-war period and skyrock-
eted in the last 20  years. In addition, TVOL is found to be negatively correlated 
with consumption growth (Fig.  1, Panel B) and aggregate equity market returns 
(Fig. 1, Panel C). In both cases, the negative relationship is stronger for the period 
1950–2015 than for the pre-war period (i.e., 1900–1950). These dynamics confirm 
an increasing degree of co-movement between climate change-related uncertainty 
and economic quantities, and could be responsible for increasing adaptation costs 
(or slower adaptation).

3.2  Temperature Volatility Shocks and the UK Macroeconomy

To test for the sign and the direction of the TVOL–TFP nexus over time, we perform 
a Granger causality test (GC) between TFP growth ( �a ) and TVOL for three differ-
ent sample periods: (1) 1800–1900; (2) 1900–1950 and (3) 1950–2015. This allows 
us to account for the fact that both climate change-related phenomena and the struc-
ture of the UK economy have changed substantially over the last two centuries. In 
order to improve the size and power of the test, a residual-based bootstrap technique 
is employed. Entries in Table 1 suggest the presence of a time-varying component in 
the sign of the causality between TFP growth and TVOL.

A significant unidirectional causality from TVOL to TFP is observed in the 
pre- and post-war periods. However, the sign of the causality differs across the two 
periods. Actually, it is positive (negative) for the period 1900–1950 (1950–2015). 
We instead find no evidence of a statistical significant causality between TVOL 
and productivity in the 19th century. All entries in Table 1 may seem surprising as 
one would expect negative implications for TFP growth following rising tempera-
ture levels variability in particular during those periods in which production relies 
largely on the agricultural sector, which is well known to be more influenced by 
climate change (Dell et al. 2012).5

We suspect that during the period 1900–1950, workers in the agricultural sec-
tor were forced to adapt and invest in technology in order to reduce the economy’s 
vulnerability to extreme weather events. This could explain the positive and statisti-
cally significant sign in the causality from TVOL to TFP growth. In contrast, the past 
60 years are characterized by negative economic effects. It is widely accepted that 
within this period the services-related sectors have contributed most to economic 
growth in developed countries. As discussed in Tol et al. (2000), these sectors tend 
to be less influenced by climate change-related phenomena. It is thus most likely 

5 As highlighted by Roses and Wolf (2018), the agricultural sector’s average share in total employment 
across European regions was about 45% in at the beginning of the 20th century while during the period 
1950–2010 it quickly fell to less than 10%. This suggests that adverse effects of temperature volatility on 
TFP are found in the productive sectors and not in the agricultural one, which today accounts for a small 
fraction of total output.

4 Let us stress that modeling extreme weather events is beyond the scope of this paper, which is instead 
aimed at capturing the productivity effects of temperature volatility shifts.
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that these sectors allocated most of their resources in technologies for the purpose of 
increasing productivity and not adapting to climate change. However, when extreme 
whether-related events such as flood and storms—induced by drastic changes in 
temperature dynamics—occur, the economy as a whole is affected.6 In other words, 
it is most likely that natural disasters will generate more sizable adverse effects in an 
economy characterized by highly-productive sectors than in agricultural-based econ-
omies. Note also that the period 1950–2015 is characterized by a higher number of 
extreme weather events than the pre-war period (see Fig. 1, Panel A). Even in the 
presence of a relatively high level of technology, massive variations in temperature 
levels (within the year and across years) leading to more frequent extreme weather 
events could seriously harm any form of investment to climate change adaptation. 
In particular, more volatile weather conditions make (1) firms less willing to invest 
in adaptation due to higher cost and (2) existing adaption mechanisms weaker and 
slower.

To quantify the impact of time-varying temperature uncertainty, we compute the 
impulse response of future TFP growth to a one-standard deviation shock in TVOL.7 
The analysis follows the same strategy as the GC analysis and is thus carried out 
for the following sub-periods: 1800–1900, 1900–1950, and 1950–2015. Impulse 
responses (dashed grey lines)—obtained from a bi-variate VAR of TVOL and 
TFP growth—are depicted in Fig. 2. It is worth noting that the impact of a TVOL 
shock on TFP is not constant over time. Over the period 1800–1900, the effect of a 
positive shock in TVOL on productivity growth oscillates around zero. The period 
1900–1950 is instead characterized by a positive impact of TFP growth follow-
ing a TVOL shock: on impact the response of productivity is slightly negative and 
becomes positive and statistically significant after two periods. In line with the evi-
dence provided by our preliminary GC analysis, the nature of the TVOL–TFP nexus 
has changed in the post-war era. In particular, a rise in TVOL is found to be detri-
mental for TFP growth. Importantly, this negative effect is statistically significant 
and lasts for almost 4 years (Fig. 2, Panel C).

In order to get a better understanding of the effects of an increase in our TVOL 
index on real economic activity, we also compute impulse responses of consump-
tion, output, investment, employment and TFP growth to a TVOL shock. Given the 

6 Using U.S. data at the industry-level for two different sub-periods (i.e., 1993–1997 and 1997–2011), 
Colacito et al. (2019) find that over the last 20 years there is a stronger and more statistically significant 
negative effect of rising temperatures on the two largest sectors of the U.S. economy: (1) services and (2) 
finance, insurance, real estate. This confirms the increasing inattention of these sectors to climate change 
as well as their lack in efficiency in fighting against the occurrence of an increasing number of extreme 
weather events.
7 Even if the direction of the causality between TVOL and TFP growth ( �a ) results clear from entries 
in Table 1, we decide to use the generalized impulse response function (GIRF) approach to detect the 
impact of TVOL shocks on �a . We do so in order to be consistent with a multivariate VAR analysis (see 
Figs. 3 and 4) that cannot rely on a pre-determined variables’ ordering supported by an economic theory. 
In the presence of uncertainty around the mechanisms driving the economy following TVOL shocks, 
a GIRF approach seems to be more appropriate. Anyway, the patterns depicted in Fig. 2 do not differ 
from the dynamics obtained using a Cholesky decomposition where TVOL is ordered first. Results, not 
reported for the sake of brevity, are available upon request.
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absence of theories linking temperature volatility and macroeconomic aggregates, 
we do not rely on any specific identification scheme and compute generalized 
impulse responses that do not depend on the ordering of variables in the system. 
Impulse responses of main macro-aggregates obtained from our augmented VAR 
are reported in Fig. 3 for the sub-period 1900–1950 and in Fig. 4 for the post-war 
period. First, and most importantly, we find that the inclusion of additional macro-
economic variables does not alter the impact of the TVOL shock on TFP growth. 
As in Fig. 2 (Panel B), over the period 1900–1950, TFP growth displays an imme-
diate small and statistically insignificant drop, with a fast subsequent recovery and 
rebound from 2 years after the shock. Differently, a TVOL shock produces a statis-
tically significant drop in the TFP of around 0.4pp in the post-war period. In line 
with our preliminary bi-variate estimations (see Fig. 2, Panel C), this adverse effect 
lasts for (approx.) 4 years. Impulse responses on the other macroeconomic aggre-
gates also differ across sub-periods. For the period 1900–1950, we observe a drop 
in consumption and investment (Fig.  3, Panels C and D). Instead, labor and out-
put increase on impact (Fig. 3, Panels B and E). However, most of these effects are 

Fig. 1  Temperature dynamics and extreme weather events, 1900–2015. Notes: Panel A depicts the 
dynamics of the UK intra-annual temperature volatility (black line, 5Y average) and the annual average 
number of weather extreme events (dotted gray line, 5y average). Annual number of extreme events ∶= 
number of extreme rainfalls, floods, frosts, hot temperature anomaly, and droughts occurred within a year 
in the UK for the period 1900–2015. The number of extreme events is constructed using the chronologi-
cal listing of events reported in the website http://www.trevo rharl ey.com/weath er_web_pages /britw eathe 
r_years .html. Panel B plots the dynamics of the UK intra-annual temperature volatility (black line, 5Y 
average) and consumption growth (dotted gray line, 5y average). Panel C presents the dynamics of the 
UK intra-annual temperature volatility (black line, 5Y average) and the stock market returns (dotted gray 
line, 5y average). The dotted vertical line (in all plots) indicates the year 1950

Table 1  Granger causality: 
Productivity growth versus 
temperature volatility

The sign of the causality is reported in parentheses. Numbers refer 
to p-values. “LAG” indicates the number of lags used in the regres-
sions. Significance at the 5% (10%) level is denoted by ** (*)

Period 1800–1900 1900–1950 1950–2015

Panel A: LAG 1

 TVOL → �a 0.366 (+) 0.051* (+) 0.074* (−)

 �a → TVOL 0.386 (+) 0.522 (−) 0.665 (+)

Panel B: LAG 2

 TVOL → �a 0.544 (+) 0.099* (+) 0.039** (−)

 �a → TVOL 0.193 (+) 0.439 (−) 0.411 (−)

http://www.trevorharley.com/weather_web_pages/britweather_years.html
http://www.trevorharley.com/weather_web_pages/britweather_years.html
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not statistically significant. Over the post-war period, labor, consumption and out-
put react differently to a TVOL shock. For instance, the impact on labor growth is 
negative and lasts for several years. However, it is not statistically significant (Fig. 4, 
Panel B). Output increases on impact and displays a significant drop (at 32%) 2 and 
3 years after the shock (Fig. 4, Panel E). Consumption displays a similar (but less 
significant) response. Overall, our empirical findings suggests that in the post-war 
era TVOL shocks generate non-negligible adverse effects on real economic activity.8

Fig. 2  Impulse response of TFP to temperature volatility. Notes: This figure depicts the general-
ized impulse response of TFP growth ( �a ) to a one-standard-deviation shock in temperature volatility 
(TVOL). Impulse responses are obtained by estimating a bi-variate VAR(1) using data for three different 
periods: (1) 1800–1900 (PANEL A); (2) 1900–1950 (PANEL B); and (3) 1950–2015 (PANEL C). VAR 
estimations include a constant. Solid “black” lines: IRFs. Dashed “dark grey” lines: 90% confidence 
bands. Dashed “light grey” lines: 68% confidence bands

Fig. 3  Impulse response of macroeconomic variables to temperature volatility (1900–1950). Notes: 
This figure depicts generalized impulse responses of TFP growth ( �a ), labor growth ( �L ), consumption 
growth ( �C ), investment growth ( �I ), and output growth ( �Y  ) to a one-standard-deviation shock in tem-
perature volatility (TVOL). VAR is estimated with one lag and a constant. Solid “black” lines: IRFs. 
Dashed “dark grey” lines: 90% confidence bands. Dashed “light grey” lines: 68% confidence bands

8 To quantify the relative importance of temperature volatility shocks to macroeconomic fluctuations we 
have also computed the variance decomposition of consumption, output, investment, and labor. In par-
ticular, in line with our IRF analysis, we compute a generalized forecast error variance decomposition in 
the spirit of Lanne and Nyberg (2016). Results suggest that TVOL shocks account for around 5% of the 
fluctuation in output and consumption over a horizon of 3–5 years.
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3.3  Temperature Volatility and Temperature Level Shocks

Results presented so far have focused exclusively on the role of TVOL shocks. What 
about temperature level shocks? Are results still valid once accounting for tem-
perature level dynamics? To address these issues, we need to investigate whether 
the negative effect of a TVOL shock on TFP growth observed over the period 
1950–2015 is driven by shifts in the UK temperature level. We therefore estimate a 
VAR(1) including TFP growth, the average temperature level and temperature vola-
tility. Impulse responses from this test are depicted in Fig. 5 and suggest that the 
adverse effect of a TVOL shock on the TFP growth is not absorbed by temperature 
level shifts. Surprisingly, the TVOL-induced negative effect on TFP growth (Panel 
B) is more statistically significant than the one induced by a temperature level shock. 
Note also that our robustness check corroborates recent empirical findings—based 
mainly on U.S. data—showing that shifts in temperature levels undermine real eco-
nomic activity (Dell et al. 2012; Colacito et al. 2019; Bansal et al. 2016; Du et al. 
2017; Donadelli et al. 2017).

3.4  Robustness

We consider various robustness checks regarding the effect of TVOL shocks on TFP 
growth and other macroeconomic aggregates.

First, we compute impulse responses using a different identification scheme. 
By relying on a simple Cholesky decomposition where TVOL is ordered first, we 

Fig. 4  Impulse response of macroeconomic variables to temperature volatility (1950–2015). Notes: 
This figure depicts generalized impulse responses of TFP growth ( �a ), labor growth ( �L ), consumption 
growth ( �C ), investment growth ( �I ), and output growth ( �Y  ) to a one-standard-deviation shock in tem-
perature volatility (TVOL). VAR is estimated with one lag and a constant. Solid “black” lines: IRFs. 
Dashed “dark grey” lines: 90% confidence bands. Dashed “light grey” lines: 68% confidence bands
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show that a TVOL shock produces qualitatively and quantitatively similar impulse 
responses (see Fig. 12).

In a second check, we ask whether alternative VAR models provide similar 
responses of TFP growth and other macroeconomic variables to a TVOL shock. In 
practice, we compute impulse responses using a different lag order (i.e., VAR(2)), 
the local-projection methodology suggested by Jordà (2005), and a Bayesian VAR 
(BVAR). The impulse responses estimated from these different VAR models and for 
the periods 1900–1950 and 1950–2015 are reported in “Appendix 2”. The pattern 
of the response of TFP growth to a TVOL shock seems to be robust to alternative 
VAR specifications. Actually, the dynamics depicted in Fig. 13 are similar to those 
obtained from our benchmark bi-variate VAR (see Fig. 2). Similar conclusions can 
be drawn by comparing Figs. 14 and 15 to Figs. 3 and 4.

Third, in order to further investigate the time-varying nature of the impact of TFP 
growth to TVOL shocks, we compute the dynamics of the impulse response of TFP 
growth to a shock in TVOL by estimating a Bayesian VAR in a rolling-window fash-
ion. Using a window length of 50 years, we corroborate our previous findings sug-
gesting that the negative impact of TVOL on productivity materializes in the post-
war period (see Fig. 17). More importantly, our rolling window estimates show that 
the magnitude of the negative impact of TVOL shocks on the TFP is increasing over 
time. For the sake of robustness, we compute the dynamic impulse response of TFP 
growth to TVOL shocks by employing a full-fledged time-varying parameter vector 
autoregressive (TVP-VAR) a l Primiceri (2005). Impulse responses are estimated by 
relying on a VAR including our measure of temperature volatility, the annual aver-
age temperature level and the TFP growth. By using data for the period 1700–2015, 
we observe a negative impact of TVOL on TFP growth only starting from the second 
half of the 20th century (see Fig. 17, Panel C). We argue that such evidence can be 
also related to an increasing degree of urbanization. Intuitively, damages caused by 
extreme weather events are supposed to be larger in the presence of a relatively high 
degree of urbanization. For instance, in Western Europe the degree of urbanization 
rose massively in the post-war period. Actually, it was around 40% at the beginning 
of the 20th century and jumped to almost 80% in early ’00s (Source: OWID). More 
importantly, over the last 50  years the UK has registered an average urbanization 
rate of 80%. In addition, as previously mentioned, the structure of national product 
in the UK has undergone drastic changes over the years (Deane 1957). Actually, 
the contribution of the agriculture, forestry and fishing (manufacturing, mining, con-
struction and services) sector has showed a declining (increasing) path. Once again, 
the idea here is that the adverse effects of climate change materialize in environ-
ments exhibiting a high degree of urbanization/industrialization and in those econo-
mies whose national industrial profile is dominated by services sectors (e.g., finance, 
tourism, ICT).

Fourth, we consider a different proxy for temperature volatility. Specifically, we 
rely on an inter-annual measure of temperature volatility. This is captured by com-
puting the standard deviation of annual average temperature levels using a rolling 
window of 10 (or 15) years. Bi-variate VAR estimates suggest that an inter-annual 
temperature volatility shock has a negative effect on productivity (see Fig. 18). Note 
that this is in line with results from our benchmark analysis (Fig. 2, Panel C) where 
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TVOL is defined as in Eq. (1). However, the effect is weaker in statistical terms but 
more long-lasting.

Finally, in attempting to further capture the effect of climate change variability 
on real economic activity, we estimate a bi-variate VAR using a different climate 
variable. Specifically, we build a Rainfall Volatility Index for the UK and estimate 
its impact on TFP growth. Similarly to the volatility of temperature, rainfall volatil-
ity is found to undermine aggregate productivity growth only in the post-war era. 
However, the impact is less statistically significant and (slightly) less persistent (see 
Fig. 19).

Taken together, our empirical findings suggest that the nature of the effects of 
TVOL on TFP growth in not constant over time. In particular, TVOL is found to 
positively (negatively) affect TFP growth over the pre-war (post-war) period. Data 
for the period 1950–2015 also suggest that TVOL shocks adversely affect the growth 
rate of output, investments, and consumption. This evidence might be the result 
of firms’ inattention to the potential effects of climate change on the technology 
stock in the manufacturing and services sectors. To examine whether these climate 
change-related effects are also reflected in the dynamics of financial variables, we 
move to study the relationship between TVOL and asset prices in the next section.

3.5  Temperature Volatility Shocks and Financial Variables

In the spirit of the most recent macro-finance literature focusing on the effects of cli-
mate change, we also examine whether shocks in temperature volatility affect asset 
prices (Bansal and Ochoa 2011a, b; Bansal et al. 2016). To this end we run a VAR 
with three variables including our measure of temperature volatility, the equity mar-
ket return (R), and the risk-free rate ( Rf  ). In doing so, we also check whether the 
previously obtained response of TFP growth to TVOL is robust to the inclusion of 

Fig. 5  Impulse response of TFP to temperature (T) and temperature volatility (TVOL). Notes: This figure 
depicts the generalized impulse response of TFP growth ( �a ) to a temperature (Panel A) and temperature 
volatility (Panel B) shock. Impulse responses are obtained by estimating a VAR (with one lag) includ-
ing a temperature anomaly index (T), our measure of temperature volatility (TVOL) and TFP growth. 
A constant is included. In line with climate change studies, temperature anomaly index is calculated as 
deviations of yearly average temperature from pre-industrial revolution temperature mean (1659–1759). 
Solid “black” lines: IRFs. Dashed “dark grey” lines: 90% confidence bands. Dashed “light grey” lines: 
68% confidence bands
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these additional variables. Note that such variables can also be responsible for shifts 
in productivity growth (Croce 2014).

Based on data availability, impulse responses are presented for two sub-samples: 
(1) 1900–1950 (Fig.  6) and (2) 1950–2015 (Fig.  7). For the period 1900–1950, 
we find that the response of both the risk-free rate (Fig. 6, Panel A) and the equity 
return (Fig. 6, Panel B) to a TVOL shock is negative. However, these two effects are 
not statistically significant. Similar effects are found for the period 1950–2015, but 
differently from the results of the pre-war period, we find that the effect of a TVOL 
shock on the equity return is immediate and highly statistically significant (Fig. 7, 
Panel B). In “Appendix 2” we also show that this pattern is robust with respect to 
different VAR model specifications (Fig. 16, Panel B).

Finally, for the sake of robustness, we compute IRFs also from a VAR including 
TVOL, �a, and R. The idea here is to investigate whether the two main transmission 
channels through which TVOL shocks affect the economy do not vanish when they 
are jointly considered. Figure 20 shows that the effect of a TVOL shock is negative 
and statistically significant for productivity (Panel A) and the equity return (Panel 
B) over the post-war period. This indicates that the TFP and the equity return rep-
resent important transmission channels of temperature volatility shocks on the UK 
economy.

3.6  Temperature Volatility Shocks and the Cross-Section of Returns

In this paper we are not only interested in the implications of TVOL shocks for the 
macroeconomy but also in their effect on asset prices and in particular on the cross-
section of stock returns. Our interest in the asset pricing implications of TVOL risk 
is also motivated by recent empirical evidence about the effects of temperature shifts 
on asset prices. Using US data, for instance, Balvers et al. (2017) find that tempera-
ture shocks have a negative impact on equity market returns. Temperature shocks 
are also found to have a positive impact on the cost of capital. The magnitude of 
this impact is increasing over time. Using panel data on 39 countries, Bansal et al. 
(2016) show that temperature risks have a significant negative impact on equity val-
uations. Bansal and Ochoa (2011a) find that temperature risk is priced in the cross-
section of portfolio equity returns. In particular, their cross-sectional tests indicate 
temperature-related risks to be responsible for a positive risk premium. Moreover, 
the risk premium arising from temperature-related risks tends to be larger in coun-
tries closer to the equator than in those further away from it.

We contribute to this literature by examining the implications of temperature 
volatility shocks for the cross-section of UK (and EU) stock returns. To the best of 
our knowledge, ours is the first study to investigate whether TVOL shocks carry a 
risk premium and if so, of which sign. We fill this gap by means of standard cross-
sectional regressions of stock returns. In our framework average returns are a func-
tion of the newly introduced climate driver, namely TVOL innovation. In the spirit 
of Bansal et al. (2016) and Garlappi and Song (2017), when estimating temperature 
volatility risk premia, we control for market and productivity risks. In this respect, 
we let portfolio returns be a function of the excess return of the market portfolio, 
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R
e

M
 , and the 2-year moving-average of aggregate productivity growth, �a.9 The fol-

lowing factor model is thus estimated:

where R
i is the return of asset i, �

i
= [�

mkt,i
, ��a,i

, ��TVOL,i
] is the vector of risk 

exposures of asset i containing the exposures of stock returns to the market, varia-
tions in macro-economic growth and innovations to temperature volatility. Finally, 
� = [�
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] are the implied factor risk premia which encompass both 

the vector of the underlying prices of risks and the quantity of risks. The classical 
two-stage regression approach is followed. Therefore, in the first stage, we estimate 
the exposure to the above risk factors (i.e., the betas) from full-sample time series 
regressions:

The vector of risk premia is estimated from the cross-sectional second stage 
regression:

where �[Ri] is the average return of each asset over time and the vector of estimated 
betas

for each portfolio is taken from the first stage regression (3).10 We refer to this 
approach as “Avg Returns”.

An alternative second stage regression is suggested by Fama and MacBeth 
(1973). Here, the second step consists of computing T cross-sectional regressions of 
the returns on the betas estimated from the first step. Formally,

The estimated � is then computed by averaging the � s over T. This alternative 
“Fama-McBeth” procedure gives exactly the same values for � , but different stand-
ard errors.

In our benchmark tests, we use UK portfolios formed on different characteristics 
provided in Stefano Marmi’s Data Library following the methodology outlined in 
Fama and French (1993).11 We first use six portfolios formed on size and book-to-
market and six portfolios formed on size and momentum, a total of twelve portfolios. 
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9 To make our cross-sectional analysis comparable to existing studies focusing on effects of temperature 
shifts on asset prices (Bansal and Ochoa 2011a; Bansal et al. 2016; Balvers et al. 2017), in a robustness 
test, changes the temperature level are considered as an additional risk factor. The results remain unaf-
fected and are available upon request.
10 Note that we obtain similar results when we use excess returns and impose a zero-beta restriction in 
the estimation by running the second stage regression without an intercept.
11 Data are freely available at http://homep age.sns.it/marmi /Data_Libra ry.html.

http://homepage.sns.it/marmi/Data_Library.html
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We then use 40 portfolios formed on the following characteristics: price-earnings, 
price to book, price to cash flow and gross profit margin. All these portfolios are 
available for the period 1989–2011.

Table 2 reports the risk premium estimates from the second stage for the twelve 
UK benchmark portfolios. Results are reported for both the univariate model where 
only temperature volatility risk is considered (specification “1”) and the multi-
variate model accounting for market and macroeconomic risk (specification “2”). 
The risk premium estimates from TVOL shocks are positive and statistically sig-
nificant. Results are similar after controlling for market and macroeconomic (TFP) 
risk. Similar conclusions can be drawn by looking at Table  3 which reports risk 

Fig. 6  Impulse response of financial variables to temperature volatility (1900–1950). This figure depicts 
generalized impulse responses of the risk-free rate ( Rf  ) and the equity market return (R) to a one-stand-
ard-deviation shock in temperature volatility (TVOL). VAR is estimated with one lag and a constant. 
Solid “black” lines: IRFs. Dashed “dark grey” lines: 90% confidence bands. Dashed “light grey” lines: 
68% confidence bands

Fig. 7  Impulse response of financial variables to temperature volatility (1950–2015). Notes: This figure 
depicts generalized impulse responses of risk-free rate ( Rf  ) and equity market return (R) to a one-stand-
ard-deviation in temperature volatility (TVOL) shock. VAR is estimated with one lag and a constant. 
Solid “black” lines: IRFs. Dashed “dark grey” lines: 90% confidence bands. Dashed “light grey” lines: 
68% confidence bands
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premia estimated by employing the 40 UK portfolios. In this larger set of portfo-
lios, the temperature volatility related risk premium is still found to be positive but 
smaller. Moreover, results are less statistically significant when the “Fama-McBeth” 
approach is used (Table 3, Panel B).12

To get additional insights on the effect of temperature volatility shocks on the 
cross-section of stock returns, in an alternative test we use a larger number of port-
folios. Precisely, we use 100 EU portfolios: 25 portfolios formed on size and book-
to-market; 25 portfolios formed on size and operating profitability; 25 portfolios 
formed on size and investment; and 25 portfolios formed on size and momentum. 
Data on these EU portfolios are freely available from Kenneth R. French’s Data 
Library for the period 1990–2015. Results from this alternative test are reported in 
Table  4. The result with respect to temperature volatility shocks are qualitatively 
similar to those reported in Tables 2 and 3.

Finally, for the sake of robustness, we perform our cross-sectional tests by con-
trolling for the 2008–2009 Great Recession. We first run our one factor regression 
by focusing on the pre-2008 period. Second, in order to control for the crisis years 
we run a four factors regression where a dummy capturing the 2008 and 2009 is 
added. Results are qualitatively similar and are reported in “Appendix  3” (see 
Tables 14 and 15).

Note that the evidence that TVOL risk demands a positive risk premium in the 
cross-section of stock market returns—even after controlling for market and mac-
roeconomic risk—corroborates the findings in Sect.  3.5. In Sect.  3.5 we find that 
TVOL shocks significantly affect financial variables. Given that our empirical analy-
sis predicts significant adverse effects of temperature volatility on asset prices and 
macroeconomic variables for the post-war period, we rationalize these findings in a 
production economy featuring temperature volatility risk (i.e., TVOL shocks). This 
allow us to quantify the economic costs of this type of risk.

4  A Framework to Examine the Macro-E�ects of TVOL Shocks

We rationalize our empirical findings within a production economy featuring long-
run macro risk à la Croce (2014) and temperature risk along the lines of Bansal and 
Ochoa (2011a) and Donadelli et al. (2017). As a main novel ingredient, we introduce 
stochastic uncertainty of temperature into the model (i.e., TVOL risk). Specifically, 
temperature dynamics are coupled with the evolution of TFP in a way that innova-
tions in temperature volatility generate a negative impact on long-run productivity. 
In a robustness test, we also introduce a stochastic depreciation rate of capital to pro-
vide new insights on the interplay of capital accumulation and climate change. Note 
that our main goal here is to maximize the intuition and insight into the relationships 

12 We have repeated the test by using each set of 10 single factor sorted portfolios and other portfolios 
formed on alternative characteristics (e.g., price to sales, dividend yield, and 1 year EPS growth). The 
results—not reported for the sake of brevity—are qualitatively similar.
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between TVOL risk and the macroeconomy and asset prices, and avoid tangential 
complications. We therefore strive to keep the model as simple as possible while 
still matching main macro-quantities and asset prices. For this reason, we deliber-
ately introduce real rigidities into the model only in the form of capital adjustment 
costs and abstract from any other type of frictions (e.g., financial and labor market 
frictions).13

Let us stress that our choice of focusing on a production economy with long-run 
productivity risk (i.e., a RBC model where productivity growth contains a small per-
sistent component) is motivated by its ability to account for asset pricing anomalies 
while preserving main RBC features. Specifically, the model generates a low and 
smooth risk-free rate as well as a sizable excess return on the aggregate stock market 
of around 3.0%. Using a standard New-Keynesian monetary model would not allow 
to simultaneously match main macro-quantities and asset prices, unless doubts and 
ambiguity aversion are accounted for (Benigno and Paciello 2014).

Temperature and Productivity: We capture the economic effects of temperature 
volatility shocks by using the following specification for productivity and tempera-
ture dynamics:

where the shocks �
a,t+1 , �x,t

 , �
�,t+1 and �

z,t+1 are independent of each other and are 
each distributed i.i.d. standard normally. In addition to temperature level shocks 
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growth, as observed in the data.
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14 We specify stochastic volatility in the temperature process—depicted in the last two equations of the 
system (6)—as Gao et al. (2016) model oil volatility risk to quantify the macroeconomic and financial 
effects of oil-specific uncertainty shocks.

13 Note that the inclusion of labor market frictions would have marginal effects on main macro-quanti-
ties and asset prices. For instance, adding moderate wage rigidity into a standard RBC model would only 
lead to slightly more volatility and pro-cyclical labor and less volatile wages (Donadelli and Grüning 
2016). Financial frictions in the forms of investment-specific shocks (or in other forms) may instead help 
production economies to generate (i) a better co-movement between investment growth and consumption 
or labor growth; (ii) a higher investment growth volatility and (iii) a higher risk-premium. Let us stress 
that neither labor market frictions nor financial frictions affect the main implications of our model.
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Table 2  Temperature volatility risk versus 12 UK portfolio returns (1989–2011)

This table reports the estimates of the TVOL risk premium. Test assets are 12 UK portfolios: six portfo-
lios formed on size and book-to-market and six portfolios formed on size and momentum (Source: Ste-
fano Marmi’s Data Library). All portfolio returns are value-weighted returns expressed in local currency 
(GBP). We use annual data for the period 1989–2011. The t-statistics in square brackets for the risk pre-
mium are adjusted for autocorrelation and heteroskedasticity following Newey and West (1987)

Panel A: Risk Premia ( �)

Avg Returns Intercept �
MKT

�
�a

�
�TVOL

“1” 15.121 0.535

[9.481] [3.972]

“2” 11.901 − 0.545 − 0.155 0.652

[3.992] [− 0.216] [− 0.742] [6.255]

Panel B: Risk Premia ( �)

Fama-MacBeth Intercept �
MKT

�
�a

�
�TVOL

“1” 15.121 0.535

[2.934] [2.369]

“2” 11.901 − 0.545 − 0.155 0.652

[1.661] [− 0.066] [− 0.578] [2.588]

Table 3  Temperature volatility risk versus 40 UK portfolio returns (1989–2011)

This table reports the estimates of the TVOL risk premium. Test asset are 40 UK portfolios: 10 portfolios 
formed on price-earnings, 10 portfolios formed on price to book, 10 Portfolios formed on price to cash 
flow, 10 portfolios formed on gross profit margin (Source: Stefano Marmi’s Data Library). All portfolio 
returns are value-weighted returns expressed in local currency (GBP). We use annual data for the period 
1989–2011. The t-statistics in square brackets for the risk premium are adjusted for autocorrelation and 
heteroskedasticity following Newey and West (1987)

Panel A: Risk Premia ( �)

Avg Returns Intercept �
MKT

�
�a

�
�TVOL

“1” 12.247 0.146

[31.645] [2.770]

“2” 10.530 0.854 0.151 0.161

[7.388] [0.549] [1.038] [2.370]

Panel B: Risk Premia ( �)

Fama-MacBeth Intercept �
MKT

�
�a

�
�TVOL

“1” 12.247 0.146

[3.293] [0.873]

“2” 10.530 0.854 0.151 0.161

[3.071] [0.152] [0.497] [1.209]
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In line with our empirical findings (see Fig.  5), the shock terms �
z
�

z
�

z,t+1 
( �

�
�
�
�
�,t+1 ) represent the impact of changes in the temperature level (temperature 

volatility) on TFP growth.15 �
z
�

z,t+1 is the unpredictable part of the change in tem-
perature level, while the term e�t+1 represents time-varying volatility of temperature. 
In this setup, � represents a proxy for the volatility of key climate variables (in our 
case temperature volatility as defined in Eq.  (1)). The parameters �

z
 and �

�
 in the 

dynamics for xz in the system (6) capture the direction and the intensity with which 
unpredictable temperature level and temperature volatility shocks impact long-run 
productivity growth. Based on the empirical analysis in Sect. 3.2, we assume �

�
< 0 

when studying the quantitative implications of the model, i.e., TVOL shocks have a 
negative impact on long-run expected productivity growth. For completeness and 
to be consistent with our UK-based empirical evidence, we also let the model rep-
licate the negative effect of a shock in the level of temperature on productivity. We 
thus impose �

z
< 0 . This is also in line with recent studies showing that tempera-

ture level shocks harm real economic activity (see, among others, Bansal and Ochoa 
2011b; Colacito et al. 2019; Du et al. 2017). Our goal here is to study exclusively 

Table 4  Temperature volatility risk versus 100 EU portfolios (1991–2016)

This table reports the estimates of the TVOL risk premium. Test assets: 100 European portfolios, i.e., 25 
European portfolios formed on size and book-to-market, 25 European portfolios formed on size and oper-
ating profitability, 25 European portfolios formed on size and investment, 25 European portfolios formed 
on size and momentum (Source: Kenneth R. French’s Data Library). We use annual data for the period 
1991–2015. The t-statistics in square brackets for the risk premium are adjusted for autocorrelation and 
heteroskedasticity following Newey and West (1987)

Panel A: Risk Premia ( �)

Avg Returns Intercept �
MKT

�
�a

�
�TVOL

“1” 11.625 0.270

[31.366] [5.561]

“2” 3.774 6.330 0.738 0.368

[0.831] [1.512] [2.359] [3.093]

Panel B: Risk Premia ( �)

Fama-MacBeth Intercept �
MKT

�
�a

�
�TVOL

“1” 11.625 0.270

[2.756] [1.637]

“2” 3.774 6.330 0.738 0.368

[0.821] [1.031] [2.640] [2.406]

15 Note that we slightly differ from Croce (2014) and Gao et al. (2016) who introduce time-varying eco-
nomic uncertainty directly in the TFP. Said differently, we do not include uncertainty shocks to macro 
productivity. Consistently with our empirical analysis, here we are exclusively interested on capturing the 
long-run effects of a shock to the volatility of temperature (i.e., �

�
> 0).
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the quantitative implications of TVOL risk. We therefore abstract from studying the 
effects of temperature level shocks on the UK macroeconomy.16

Households: The representative household is equipped with recursive prefer-
ences, as in Epstein and Zin (1989):

C̃
t
 is a Cobb-Douglas aggregator for consumption C

t
 and leisure 1 − L

t
 (the remain-

der of a total time budget of 1, when the amount of labor is L
t
):

where A
t
 denotes aggregate productivity (i.e., TFP).

The stochastic discount factor (SDF) reads:

Firms: The production sector admits a representative, perfectly competitive firm uti-
lyzing capital and labor to produce the output. The production technology is given 
by

where � is the capital share and labor L
t
 is supplied by the household. The aggre-

gate productivity growth rate, �a
t
= log

(

A
t
∕A

t−1

)

 , has a standard long-run macro 
risk component and is subject to temperature and temperature volatility risk, as 
described in Eq. (6).

The capital stock evolves according to

where �
K

 is the depreciation rate of capital. G(⋅) , the function transforming invest-
ment into new capital, features convex adjustment costs as in Jermann (1998):

Asset Prices: The intertemporal Euler conditions defining the risk-free rate Rf

t  and 
the return on capital R

t
 are as follows:

(7)U
t
=
[

(1 − �)C̃
1−

1

�

t
+ �

(

�
t
[U

1−�

t+1
]
)

1−1∕�

1−�
]

1

1−1∕�
.

C̃
t
≡ C̃(C

t
, L

t
) = C

�

t
(A

t
(1 − L

t
))1−� ,

(8)M
t,t+1 = �

(

C̃
t+1

C̃
t

)1−
1

�
(

C
t+1

C
t

)−1
(

U
1−�

t+1

�
t
[U

1−�

t+1
]

)

1∕�−�

1−�

.

Y
t
= K

�

t
(A

t
L

t
)1−� ,

K
t+1 = (1 − �

K
)K

t
+ G

(

I
t

K
t

)

K
t
,

G ∶= G

(

I
t

K
t

)

=
�

1

1 −
1

�

(

I
t

K
t

)1−
1

�

+ �
2
.

16 Note that imposing �
z
= 0 would not affect our results on the implications of TVOL shocks.
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where

The price of capital qt is equal to the marginal rate of transformation between new 
capital and consumption:

Given the risk-free rate Rf

t =
1

�t[Mt,t+1]
 we calculate the unlevered equity risk premium 

as

Labor Market: In the absence of labor market frictions, optimal labor allocation 
implies that the marginal rate of substitution between consumption and leisure 
equals the marginal product of labor:

Market Clearing: Goods market clearing implies that

The model is solved numerically by a second-order approximation using perturba-
tion methods as provided by the dynare++ package.

5  Quantitative Analysis

5.1  Calibration

Our benchmark model is calibrated to an annual frequency and requires us to spec-
ify nineteen parameters: four for preferences, three relating to the final goods pro-
duction technology and labor market, four describing the TFP process, and eight 
for the dynamics of the UK temperature (see Table 5).17 The model is calibrated to 

1

R
f

t

= �t[Mt,t+1], 1 = �t[Mt,t+1Rt+1],

Rt+1
=

�Yt+1
−It+1

Kt+1

+ qt+1
(Gt+1

+ 1 − �K)

qt

.

qt =
1

G�

(

It

Kt

)

Rex,t = Rt − R
f

t−1
.

1 − �

�

(

C
t

1 − L
t

)

= (1 − �)
Y

t

L
t

.

Y
t
= C

t
+ I

t
.

17 Note that the calibration presented here is meant as a benchmark. We have found that our main results 
are robust to reasonable variations around this benchmark.
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match the adverse climate effects on macro-quantities and asset prices observed in 
the post-war period.

Let us first discuss the “less standard”, i.e., UK temperature-related parameters. 
The persistence of the innovations in the long-run temperature risk component is 
chosen to let the model reproduce the relative persistent effect of TVOL shocks on 
productivity growth observed in the postwar UK temperature and macro data (Fig. 2, 
Panel C). To this end, we set �x

z
 = 0.6. Note that this value is in line with the average 

empirical estimates reported in Fig. 8 where we estimate the dynamics of �x

z
 using a 

rolling window of 50 years.18

The two parameters measuring the sensitivity of TFP growth to temperature-
related shocks are jointly calibrated using the empirical evidence provided in 
Sect.  3.3. Therefore, the parameter �

�
 that measures the impact of TVOL shocks 

on TFP growth is calibrated to a value of − 0.0285 . This implies that in the model 
productivity growth falls by 0.4pp following a one-standard deviation temperature 
volatility shock (see Fig.  5, Panel B). The parameter �

z
 , measuring the impact of 

temperature level shocks on TFP growth, is then calibrated to a value of − 0.0054 , 
which implies in our model that productivity growth declines by around 0.3pp after 
an unexpected one-standard deviation increase in temperature (see Fig. 5, Panel A). 
Regarding the stochastic volatility parameters in the temperature process, we set the 
persistence of TVOL shocks equal to 0.85, as suggested by empirical estimates. The 
standard deviation of time-varying temperature uncertainty, �

�
 , is assumed to be a 

small fraction of the volatility of temperature level shocks. Precisely, we impose 
0.25 ⋅ �

z
.19 The other parameters regarding temperature dynamics are set to match 

the UK temperature statistics observed in the data over the period 1950–2015. In 
particular, we set �

z
= 9.74 (degrees Celsius), �

z
= 0.4 , and �

z
= 0.56 to match the 

long-term mean, persistence and volatility of UK temperature, respectively.
We next turn to the standard parameters. Most of the parameters are set in accord-

ance with the long-run risk literature and are chosen to match the main dynamics of 
UK macroeconomic quantities and prices. More precisely, as in Croce (2014), we set 
the coefficient of relative risk aversion, � , and the elasticity of intertemporal substi-
tution (IES), � , to values of 10 and 2, respectively (i.e., the representative agent has 
preference for the early resolution of uncertainty, since � > �−1 ). In line with Bansal 
and Ochoa (2011b), the annualized subjective discount factor, � , is fixed at 0.988. 
The consumption share in the utility bundle C̃ is chosen such that the steady-state 
supply of labor is one third of the total time endowment of the household. Given 
the other parameters, this is achieved by setting � = 0.3407. On the final production 
side, we set the capital share � in the production technology equal to 0.345 as in 
Croce (2014). Regarding the adjustment cost parameters, � is set to 0.7 as in Kung 

18 In the literature on adaptation to climate change, the parameter �x

z
 can be interpreted as the speed of 

adaptation (see e.g. Tol 2002). A value of 0 refers to the case of an immediate adaptation to temperature-
related shocks while a value of 1 would imply no adaptation. According to Fig. 8, the speed of adaptation 
has increased during the last three decades, which may be due to technological improvements.
19 Note that both temperature uncertainty-related parameter values (i.e., �� = 0.85 and �

�
= 0.25�

z
 ) are 

in line with GARCH(1,1) estimations which confirm that the conditional variance of UK temperature is 
time-varying.
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and Schmid (2015). The constants �
1
 and �

2
 are chosen such that there are no adjust-

ment costs in the deterministic steady state. The depreciation rate of capital �
K

 is set 
to 0.06 as in Croce (2014). The parameter �

a
 is set to a value of 0.0142, so that the 

average annual TFP growth rate is 1.42%, as indicated by the UK data. The volatil-
ity of the short-run shock, �

a
 , is calibrated to match the annual volatility of output 

growth observed in the macroeconomic data. We then calibrate the parameters of 
the long-run productivity risk process, x

t
 , according to empirical estimates, resulting 

in �
x
= 0.97 and �

x
= 0.12�

a
.20

5.2  Macro and Asset Pricing Implications

The main results produced by our benchmark calibration (BC) are reported in 
Table  6, denoted by specification [1]. In line with standard long-run risk models, 
our framework produces �[RLEV

ex
] = 3.14% , a value close to what is observed on the 

major capital markets around the world. Compared to specification [2], representing 
a model without temperature volatility effects, we observe that the impact of TVOL 
on TFP growth significantly affects asset prices. �[RLEV

ex
] increases by 11 basis points 

when volatility effects of temperature are introduced.
Equity volatility also experiences an additional increase by 15 basis points after 

introducing temperature volatility effects. The correlation between the excess return 
and temperature volatility is negative with a value of − 0.13 . The reason for the neg-
ative sign is that unexpected increases in TVOL negatively affect firms’ productivity 
and, hence, their return on capital. In the data, the negative correlation is somewhat 
stronger than in our benchmark model.

The negative effects of a rise in TVOL on the macroeconomy are captured by a 
negative correlation between the volatility of temperature and both TFP and output 
growth, with values of − 0.19 and − 0.16 , respectively. An important advantage of 
our model is that the inclusion of temperature volatility risk can explain asset price 
dynamics and replicate TVOL effects in the data, while it does not affect the long-
run moments of macroeconomic quantities.

To analyze how TVOL shocks are transmitted through the economy, we plot the 
responses of macro quantities to an unexpected increase in TVOL (see Fig. 9). This 

20 We estimate the following state-space model:

where 0.0142 corresponds to the UK long-run mean of aggregated productivity estimated over the period 
1950–2015, �

x
 is the estimated persistence parameter of the long-run productivity component, �

a,t
 and �

x,t
 

are the estimated volatilities of the short- and long-run TFP shock, and �
a,t

 and �
x,t

 are independent and 
identically distributed standard normal shocks. Estimates are obtained using the Newton-Raphson opti-
mization procedure with Marquardt step. Huber–White standard errors are employed in order to account 
for heteroskedasticity. *** indicates significance at 1% level.

�a
t
= 0.0142 + x

t−1 + �
a,t

⏟⏟⏟
0.015∗∗∗

⋅ �
a,t,

x
t
= �

x

⏟⏟⏟
0.97∗∗∗

⋅x
t−1 + �

x,t

⏟⏟⏟
0.002∗∗∗

⋅�
x,t,
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Fig. 8  Speed of adaptation. Notes: This figure shows the evolution of the parameter �z

x
 representing the 

persistence of temperature-related TFP shocks. �z

x
 is estimated from the system in Eq.  (6)—in a state 

space framework—using a rolling window of 50 years for the period 1900–2015. Var–Cov matrix is esti-
mated using Huber–White standard errors

Table 5  Benchmark calibration

This table reports the set of parameters used to calibrate (at an annual frequency) the model described 
in Sect. 4. Parameter sources: 1 = Croce (2014), 2 = Bansal and Ochoa (2011a), 3 = Kung and Schmid 
(2015), 4 = Donadelli and Grüning (2016), 5 = own calibration

Parameter Description Source Value

Preferences

 � Subjective time discount factor 2 0.988

 � Elasticity of intertemporal substitution 1 2

 � Relative risk aversion 1 10

 � Consumption share in utility bundle 5 0.3407

Production and Investment Parameters

 � Capital share in final good production 1 0.345

 �
K

Depreciation rate of physical capital 1 0.06

 � Capital adjustment costs elasticity 3/4 0.7

TFP

 �
a

Long-run mean of TFP 5 0.0142

 �
a

Volatility of short-run shocks to TFP 5 0.0205

 �
x

Long-run TFP shock persistence 5 0.97

 �
x

Volatility of long-run shocks to TFP 5 0.12*�
a

Temperature

 �
z

Long-run mean of UK temperature 5 9.74◦C

 �
z

Impact of temperature level innovations on TFP growth 5 − 0.0054

 �
�

Impact of TVOL innovations on TFP growth 5 − 0.0285

 �z

x
Long-run temperature-related TFP shock persistence 5 0.6

 �
z

Temperature persistence parameter 5 0.4

 �� Persistence of volatility shocks to UK temperature 5 0.85

 �
z

Standard deviation of level shocks to UK temperature 5 0.56

 �
�

Standard deviation of volatility shocks to UK temperature 5 0.25*�
z
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shock negatively affects the temperature-related long-run risk component of produc-
tivity growth. While long-run macro shocks have an delayed effect on productiv-
ity, an unexpected temperature volatility increase reduces TFP growth on impact by 
about 0.4pp. This translates into an immediate decrease in consumption growth of 
more than 0.2pp (Panel B) and a decrease in investment of more than 0.4pp, which 
reduces total output growth by almost 0.3pp (Panel C).

Our production economy model further allows us to analyze the impact of TVOL 
shocks on labor market dynamics. While the effect on labor growth is negative dur-
ing the first two periods, it becomes positive afterwards due to the income effect. 
As the agent feels poorer, she reduces consumption of leisure and increases labor 

Table 6  Model versus (UK) data: Macroeconomic quantities and asset prices

This table reports the main moments for the benchmark calibration (specification [1] in bold type) and 
two other model specifications. In model [2], we assume that volatility shocks to temperature do not 
affect long-run productivity growth, i.e., �

�
= 0 . In model [3] and [4], by imposing �(�

x
, ��) > 0 , TVOL 

shocks are assumed to be positively correlated with long-run productivity shocks. The levered equity risk 
premium is defined as RLEV

ex
= (1 +

D

E
)(Rt − R

f

t−1
) where financial leverage is imposed by assuming an 

average debt-to-equity ratio D

E
 of 1 (see, e.g., Croce 2014; Gao et al. 2016). Models’ entries are obtained 

from repetitions of small-sample simulations (i.e., averages over 1000 simulations of 100  years). �[⋅] , 
�(⋅) , �(⋅, ⋅) , and AC1(⋅) denote mean, volatility, correlation, and first-order autocorrelation, respectively. 
Means and volatilities are expressed in percentage points. Empirical moments are computed from annual 
data spanning the period 1950–2015. Additional details on data are provided in Sect. 3.1

Variable Data BC �
�
= 0 �(�

x
, ��) = 0.5 �(�

x
, ��) = 1

[1] [2] [3] [4]

Macro Quantities

 �(�a) 1.44 1.43 1.44 1.43 1.44

 AC1(�a) 0.25 0.12 0.10 0.10 0.08

 �(�y) 2.02 2.05 2.00 2.02 2.00

 �(�l) 0.26 0.68 0.68 0.67 0.67

 �(�c)/�(�y) 1.02 0.82 0.82 0.83 0.84

 �(�i)/�(�y) 3.08 1.82 1.84 1.82 1.81

 �(�l)/�(�y) 0.13 0.33 0.34 0.33 0.34

 �(�c,�y) 0.79 0.87 0.86 0.87 0.86

 �(�c,�i) 0.55 0.53 0.52 0.52 0.51

 �(�l,�y) − 0.01 0.58 0.57 0.56 0.55

 �(�i,�l) 0.08 0.89 0.89 0.89 0.89

Temperature

 �(z) 9.74 9.74 9.74 9.74 9.75

 �(z) 0.60 0.60 0.60 0.60 0.61

 �(�,�a) − 0.18 − 0.19 0.00 − 0.10 − 0.01

 �(�,�y) − 0.16 − 0.16 0.00 − 0.06 0.05

Asset prices

 �[RLEV

ex
] 7.31 3.14 3.03 2.55 1.99

 �(RLEV

ex
) 19.78 5.09 4.94 4.64 4.17

 �(�, R
LEV

ex
) − 0.32 − 0.13 0.00 0.07 0.32
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supply. Labor productivity growth falls on impact as well, since labor growth 
decreases less than output growth. Later on, the effect is still negative since labor 
growth turns positive, while output growth is still negative over a longer horizon. 
Thus, our model reproduces the negative effects of a temperature volatility shock on 
macroeconomic quantities found in Fig. 4 with a magnitude close to the empirical 
counterparts. So, modeling temperature volatility shocks within a production econ-
omy with endogenous investment and labor decisions represents the most natural 
choice.

As indicated by our VAR analysis, TVOL shocks also affect the financial sec-
tor. Impulse responses for financial variables are shown in Fig. 10. As unexpected 
increases in TVOL reduce productivity, firms’ profits decline, which also has 
a negative effect on dividends. Due to the fall in investment, the price of capital 
depreciates, which implies lower stock market returns (Panel B) and a contempo-
raneous increase in the stochastic discount factor (Panel E). The price dividend-
ratio increases following the shock (Panel D) because dividends decrease more 
than equity prices in our model. As equity markets experience a contraction, the 
agent’s demand for risk-less securities increases, producing a drop in the risk-free 
rate (Panel A). As the returns on the aggregate stock market decreases more than the 
risk-free rate, the excess return declines as well (Panel C). This also means that the 
equity market does not provide insurance against temperature volatility risk. There is 
no positive excess return when the marginal utility of the agent is high, i.e. in a bad 

Fig. 9  Response of macro quantities to temperature volatility. This figure reports impulse responses 
(expressed as percentage annual log-deviations from the steady state) for a length of 10 years of TFP 
growth, �a , consumption growth, �c , output growth, �y , investment growth, �i , labor growth, �l , and 
labor productivity growth, �lp , with respect to a TVOL shock. Solid black lines: model-implied impulse 
responses. Dashed black lines: average empirical impulse responses (i.e., average of the three different 
VAR models impulse responses estimated and plotted in Fig. 15). All the parameters are calibrated to the 
values reported in Table 5
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state of the world. Therefore, temperature volatility risk is associated with increases 
in the equity premium (see Table 6).

Correlated Long-Run Macro and Temperature Volatility Shocks: To capture 
possible adaptation to temperature volatility risk, we assume long-run TFP shocks 
and TVOL shocks to be positively correlated. This may reflect increasing invest-
ment by agents in new technologies to shield against higher temperature volatil-
ity, and this investment increases productivity. In specification [3], we therefore set 
�(�

x
, ��) = 0.5 . The counter-cyclicality between the equity market return and tem-

perature volatility, i.e. �(�, R
LEV

ex
) < 0 , almost disappears, which decreases the over-

all level of risk. As a result, the equity risk premium decreases by about 59 basis 
points, and equity volatility decreases by 45 basis points compared to the bench-
mark scenario. In the extreme case of specification [4] we assume a perfect correla-
tion between temperature volatility shocks and long-run productivity shocks, which 
represents the case where agents perfectly respond to increasing temperature vola-
tility by means of adaption efforts. This results in a sharp drop of the equity pre-
mium. Moreover, the counter-cyclicality between TVOL and TFP as well as the one 
between TVOL and output growth weaken significantly.

5.3  Welfare and Growth Effects of Temperature Volatility Risk

In the spirit of Bansal and Ochoa (2011b), we measure the economic costs of tem-
perature volatility risk by means of welfare compensation of a change in the level 
of temperature volatility. The welfare compensation is expressed as a permanent 
change of agent’s lifetime utility relative to the economy with no temperature vola-
tility risk. Formally,

where � represents welfare-costs, and C̃ = {C̃
t
}∞

t=0
 and C̃∗ = {C̃

∗
t
}∞

t=0
 denote the opti-

mal consumption paths with and without temperature volatility risk, respectively.
Table 7 reports welfare costs of temperature volatility effects in the benchmark 

economy and for the cases with positive correlation between TVOL shocks and long-
run TFP shocks. In addition, costs are calculated for two values of the intertemporal 
elasticity of substitution to check if our results are qualitatively robust to whether the 
substitution effect or the income effect dominates. The first case is represented by 
� > 1 , and more precisely, we use � = 2 as in the benchmark specification. To let 
the income effect dominate we set � = 0.9.

In our benchmark calibration, welfare costs amount to 9.1% of per capita com-
posite consumption. This means that the bundle consisting of consumption and 
leisure of an agent living in an economy with temperature volatility risk needs to 
be increased by 9.1% in every state and at every point in time to give the agent 
the same utility as in an economy without temperature volatility risk. Since TVOL 
shocks have a large and persistent effect on productivity and other macroeconomic 
and financial variables, they produce sizable welfare costs.

(9)�[U0((1 + �)C̃)] = �[U0(C̃
∗)],
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In the case where long-run TFP shocks are positively correlated with TVOL 
shocks ( �(�

x
, ��) > 0.5 ), welfare costs decrease substantially and become negative 

meaning that there are welfare gains from temperature volatility risk. In specifica-
tion [2] with a correlation coefficient of 0.5 welfare costs are offset and turn into 
welfare benefits amounting to 41% of lifetime utility. We interpret the positive cor-
relation between long-run TFP shocks and TVOL shocks as adaptation by agents to 
temperature uncertainty. Therefore, increases in temperature volatility that reduce 
TFP growth come with long-run macro shocks which in turn increase TFP growth. 
This hedge decreases overall risk and welfare costs. In specification [3] where we 
assume that long-run productivity shocks perfectly respond to TVOL shocks with a 
correlation coefficient of 1, welfare gains from temperature volatility risk are higher 
accordingly.21

In case of a lower value � = 0.9 of the IES, results change quantitatively, but not 
qualitatively. With a lower IES the welfare loss in the benchmark case is about one 
third of the value for � = 2 . Welfare costs are decreasing in the IES, since a lower 
IES implicitly makes the agent less patient, i.e., future consumption has a lower 
weight in the value function. This makes temperature volatility risk as a source of 
long-run macroeconomic risk less costly for the agent.

Fig. 10  Responses of asset prices to temperature volatility. Notes: This figure reports impulse responses 
(expressed as percentage annual log-deviations from the steady state) for a length of 10 years of the log 
of the price dividend ratio, log(p/d), the pricing kernel, SDF, the equity market return, R

m
 , the risk-free 

rate, Rf  , and the excess return, R
ex

 , with respect to a TVOL shock. All the parameters are calibrated to the 
values reported in Table 5

21 In this setting, we assume adaptation to be costless. In order to asses properly the benefits of adapta-
tion, one would need to take into account the costs of these measures. This is left for future research.
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Expected Losses: To quantify the long-term effects of TVOL increases, we calcu-
late expected changes in GDP and labor productivity growth for horizons from 1 to 
50 years ahead after a temporary positive shock to UK temperature volatility. More 
specifically, we compare the cumulative growth in an economy in which TVOL 
negatively affects TFP growth to cumulative growth in an economy without TVOL 
effects. The shock sizes are one and two standard deviations of temperature volatil-
ity changes, i.e., 0.14 and 0.28.

Panels A and B of Table 8 report results for output growth and labor productivity 
growth. A single initial temperature volatility shock has a sizable long-run negative 
impact on both variables as it induces a long-lasting decline in productivity. Over 
a 50-year horizon, a one-standard deviation shock decreases both cumulative out-
put and labor productivity growth by about 0.95pp. A two-standard deviation shock 
leads to a fall in cumulative output and labor productivity growth by about 1.9pp 
each after half a century. Hence, increases in temperature volatility affects eco-
nomic activity negatively not only in the short but also in the long run by decreasing 
growth perspectives for output and labor productivity.

5.4  Temperature Volatility and Capital Depreciation

Global climate is projected to continue to change. The effects on the environment of 
the unstable climate are well known and—based on scientists views—are expected to 
become even stronger. In particular, temperatures will keep rising, the frost-free season 
(and growing season) will lengthen, hurricanes will become stronger, more intense and 
more frequent, and there will be further changes in precipitation patterns in the sense 
of more droughts and heat waves. More volatile climate conditions are therefore associ-
ated with stronger and more frequent extreme weather events. As a result, we should 
also expect stronger adverse effects of volatility in climate drivers on real economic 
activity (see Fig. 1). Benson and Clay (2004) argue that one of the channels through 

Table 7  Welfare costs of 
temperature volatility risk

This table reports the welfare costs of TVOL shocks for two differ-
ent IES values. Welfare costs are defined as the percentage increase 
� > 0 in composite consumption ( ̃C ) that the household should 
receive in every state and at every point in time in order to be indif-
ferent between living in an economy with full risk exposure (i.e., 
�

z
, �

a
, �

x
> 0, , �

�
> 0 ) and an economy with no temperature vola-

tility risk. Temperature volatility risk is eliminated by imposing 
�
�
= 0 . Specification [1] refers to the benchmark calibration (i.e., 

�
�
= −0.0285 ) while specification [2] and [3] assume a positive cor-

relation between temperature volatility and long-run productivity 
shocks (i.e., �(�

x
, ��) > 0)

� [1] [2] [3]

(�
�
= −0.0285) (�(�

x
, ��) = 0.5) (�(�

x
, ��) = 1)

(BC)

2.00 9.1% − 41.0% − 71.0%

0.90 3.0% − 13.1% − 29.3%
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which natural disasters affect the macroeconomy is the destruction of the stock of capi-
tal. Based on these expectations and existing evidence, it is most likely that the increas-
ing number of extreme weather events—induced by unusual weather dynamics—will 
exacerbate the process through which capital depreciates. In the spirit of Furlanetto and 
Seneca (2014), we account for a direct effect of temperature volatility (i.e., our climate 
change-related variable) on the capital stock by assuming a stochastic depreciation rate 
of capital. More importantly, we assume TVOL and depreciation rate shocks to be posi-
tively correlated. This is to stress the fact that innovations to temperature level varia-
tions exacerbate the overall effects of climate change and destroy capital more rapidly.

Formally, in the presence of a stochastic deprecation rate, the dynamic equation for 
capital reads:

where

K
t+1 = (1 − �

K,t)Kt
+ G

(

I
t

K
t

)

K
t
,

(10)�
K,t

=e
�

t�
K

,

(11)�
t
=�

k
�

t−1 + �
k,t.

Table 8  Long-run growth effects of temperature volatility shocks

This table reports the cumulative change in growth over 1, 5, 10, 20, and 50 years in percentage points 
after a temporary TVOL shock. The cumulative growth in an economy without such a shock is compared 
to that in an economy with shocks to temperature volatility z

t
 . Specifically, we report 

�

∑N

j=1
�yt+j

�

− N ⋅ �y∗ and 
�

∑N

j=1
�lpt+j

�

− N ⋅ �lp∗ where �yt+j ( �lpt+j ) is the log growth rate of total 
output (labor productivity), and �y

∗ ( �lp∗ ) is the steady state growth rate in the economy without a shock 
(i.e., with �

z
= 0 ). For example, the entry xy for a horizon of 5 years in the first row of Panel A means 

that cumulative growth over these 5 years has been xy percentage points higher than it would have been 
without the TVOL shock. The amount of lost output (Panel A) and labor productivity (Panel B) growth is 
reported for TVOL shocks amounting to one and two standard deviations, i.e., to 0.14 and 0.28, respec-
tively

Panel A: 
∑N

j=1
�yt+j − N ⋅ �y∗

Difference in expected output growth after a shock to U.S. temperature

Shock size 1Y 5Y 10Y 20Y 50Y

1 std. dev. �
�

− 0.29 − 0.67 − 0.73 − 0.82 − 0.94

2 std. dev. �
�

− 0.58 − 1.33 − 1.46 − 1.64 − 1.89

Panel B: 
∑N

j=1
�lpt+j − N ⋅ �lp∗

Difference in expected labor productivity growth after a shock to U.S. temperature

Shock size 1Y 5Y 10Y 20Y 50Y

1 std. dev. �
�

− 0.25 − 0.67 − 0.75 − 0.83 − 0.95

2 std. dev. �
�

− 0.49 − 1.33 − 1.50 − 1.67 − 1.90
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Unexpected changes in the depreciation rate are represented by the shock term �
k
 , 

and �
k
 measures the persistence of a depreciation shock. Time-varying capital depre-

ciation helps to explain the high volatility of investment observed in the data. We 
calibrate the standard deviation of depreciation shocks to obtain an investment vola-
tility of 6%, which is close to the data, and set �

k
 to 0.85. The main results produced 

by the new benchmark calibration featuring depreciation risk (BC) are reported in 
Table 9, specification [1]. Compared to an economy without depreciation risk (spec-
ification [2]), investment volatility significantly increases up to 6%, but this comes 
at the cost of an increasing volatility in labor and output. Due to higher risk, the 
equity premium increases by 127 basis points relative to the case with no deprecia-
tion shocks.

As pointed out in the beginning of this section, innovations to temperature level 
variations may exacerbate the overall effects of climate change and destroy capital 
via the increasing probability of natural disasters. To account for this effect, speci-
fications [3] and [4] assume that TVOL shocks and depreciation shocks are posi-
tively correlated. Although this assumption reduces the counter-cyclicality of TVOL 
and the excess return, the equity risk premium increases. To understand this finding 
it is helpful to look at welfare costs of temperature volatility risk in the presence 
of stochastic depreciation of capital. The results of this analysis are displayed in 
Table 10. When TVOL shocks and depreciation shocks are uncorrelated (specifica-
tion [1]), welfare costs of temperature volatility risk are not much affected compared 
to Table 7. Introducing a positive correlation between temperature volatility shocks 
and depreciation shocks (specifications [2] and [3]) increases welfare costs, and this 
effect is stronger the higher the correlation. This results from the fact that deprecia-
tion risk exacerbates TVOL risk. On the one hand, increasing temperature volatility 
has a negative effect on TFP growth, which reduces output and consumption. On 
the other hand, higher temperature volatility increases the depreciation rate, which 
decreases the capital stock. This has negative effects on production as well, which 
amplifies the response of consumption. Welfare costs of TVOL risk increase, as the 
overall volatility of consumption goes up substantially. The higher the positive cor-
relation between temperature volatility risk and depreciation risk, the stronger is the 
amplification effect, which increases welfare costs further.

6  Evidence from an Endowment Economy

Using empirical evidence from a bi-variate VAR suggesting that a global tempera-
ture shock has a negative effect on consumption growth, Bansal and Ochoa (2011b) 
develop an endowment economy featuring long-run consumption and temperature 
risk to compute the welfare costs associated to rising temperatures. In a similar spirit 
to theirs, we first check whether there is a direct relationship between consumption 
growth and TVOL. The GC test suggests the presence of a negative and significant 
effect of TVOL on consumption growth for the period 1950–2015 (see Table 11).

A bi-variate VAR impulse response analysis shows that, 2 and 3 years after it 
occurs, a TVOL shock produces a drop in consumption growth of (approx) 0.4pp. 
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This effect lasts for almost 5 years (see Fig. 11, Panel B). Based on this empirical 
evidence, we can account for the direct effect of TVOL shocks on consumption 
growth in the spirit of Bansal and Ochoa (2011b) and thus test whether TVOL 
risk still produces non-negligible welfare costs once we abstract from capital and 
labor decisions. We view this robustness check as a pure quantitative exercise to 
examine the sensitivity of our results to a different modeling choice. The model is 
briefly outlined here below.

The representative household is equipped with recursive preferences, as in 
Epstein and Zin (1989):

Table 9  Model versus (UK) data: Macroeconomic quantities and asset prices

This table reports the main moments for the benchmark calibration (specification [1] in bold type) and 
two other model specifications. In model [2], we shut down risk to the depreciation rate of capital, 
�

k
= 0 . In model [3] and [4], by imposing �(�

k
, ��) > 0 , TVOL shocks are assumed to be positively corre-

lated with depreciation shocks. The levered equity risk premium is defined as RLEV
ex

= (1 +
D

E
)(Rt − R

f

t−1
) 

where financial leverage is imposed by assuming an average debt-to-equity ratio D

E
 of 1 (see, e.g., Croce 

2014; Gao et al. 2016). Models’ entries are obtained from repetitions of small-sample simulations (i.e., 
averages over 1000 simulations of 100 years). �[⋅] , �(⋅) , �(⋅, ⋅) , and AC1(⋅) denote mean, volatility, cor-
relation, and first-order autocorrelation, respectively. Means and volatilities are expressed in percentage 
points. Empirical moments are computed from annual data spanning the period 1950–2015. Additional 
details on data are provided in Sect. 3.1

Variable Data BC �
k
= 0 �(�

k
, ��) = 0.3 �(�

k
, ��) = 1

[1] [2] [3] [4]

Macro quantities

 �(�a) 1.44 1.43 1.44 1.43 1.43

 AC1(�a) 0.25 0.12 0.12 0.12 0.12

 �(�y) 2.02 2.96 2.06 2.99 3.04

 �(�i) 6.21 5.94 3.85 5.94 5.85

 �(�l) 0.26 1.15 0.74 1.15 1.13

 �(�c)/�(�y) 1.02 0.79 0.83 0.80 0.83

 �(�i)/�(�y) 3.08 2.02 1.87 2.00 1.93

 �(�l)/�(�y) 0.13 0.39 0.36 0.39 0.37

 �(�c,�y) 0.79 0.80 0.84 0.81 0.83

 �(�c,�i) 0.55 0.42 0.46 0.42 0.43

 �(�l,�y) − 0.01 0.61 0.56 0.60 0.56

 �(�i,�l) 0.08 0.92 0.90 0.91 0.90

Temperature

 �(z) 9.74 9.74 9.74 9.74 9.74

 �(z) 0.60 0.61 0.60 0.61 0.61

 �(�,�a) − 0.18 − 0.19 − 0.20 − 0.19 − 0.19

 �(�,�y) − 0.16 − 0.11 − 0.17 − 0.21 − 0.46

Asset prices

 �[RLEV

ex
] 7.31 5.65 4.29 5.75 6.00

 �(RLEV

ex
) 19.78 7.51 7.04 7.45 7.30

 �(�, R
LEV

ex
) − 0.32 − 0.12 − 0.14 -0.05 0.14
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The intertemporal budget constraint is:

(12)U
t
=
[

(1 − �)C̃
1−

1

�

t
+ �

(

�
t
[U

1−�

t+1
]
)

1−1∕�

1−�
]

1

1−1∕�
.

Table 10  Welfare costs of 
temperature volatility risk

This table reports the welfare costs of temperature volatility shocks 
for two different IES values in the presence of stochastic depre-
ciation rate of capital. Welfare costs are defined as the percentage 
increase � > 0 in composite consumption ( ̃C ) that the household 
should receive in every state and at every point in time in order to 
be indifferent between living in an economy with full risk exposure 
(i.e., �z, �a, �x > 0, �k > 0, �

�
> 0 ) and an economy where tem-

perature volatility risk is shut down. Temperature volatility risk is 
eliminated by imposing �

�
= 0 . Specification [1] refers to the bench-

mark calibration (i.e., �
�
= −0.0215 ) while specification [2] and [3] 

assume a positive correlation between temperature volatility and 
depreciation rate shocks (i.e., �(�

k
, ��) > 0)

� [1] [2] [3]

(�
�
= − 0.0215) (�(�

k
, ��) = 0.3) (�(�

k
, ��) = 1)

(BC)

2.00 8.6% 9.7% 11.5%

0.90 3.0% 3.9% 5.4%

Table 11  Granger causality: 
Consumption growth versus 
temperature volatility

The sign of the causality is reported in parentheses. The number of 
lags is two and it has been selected according to the Akaike informa-
tion criterion. Significance at the 5% level is denoted by *

Period 1831–1900 1900–1950 1950–2015

TVOL → �c 0.609 (+) 0.997 (+) 0.092* (−)

�c → TVOL 0.566 (+) 0.355 (+) 0.762 (−)

Fig. 11  Impulse response of consumption to temperature volatility. Notes: This figure depicts generalized 
impulse responses of consumption growth ( �C ) to a one-standard-deviation shock in temperature vola-
tility (TVOL). Bi-variate VARs are estimated with two lags and include a constant. Solid “black” lines: 
IRFs. Dashed “dark grey” lines: 90% confidence bands. Dashed “light grey” lines: 68% confidence bands



382 M. Donadelli et al.

1 3

and the log SDF is:

where � =
1−�

1−
1

�

.

Consumption growth and temperature dynamics are represented by the following 
system

where the shocks �
c,t+1 , �x,t

 , �
�,t+1 and �

z,t+1 are independent of each other and are 
each distributed i.i.d. standard normally. The unconditional expected growth rate of 
consumption is �

c
 . In this economy, short-run consumption shocks are induced by 

�
c,t

 , whereas �
x,t

 , �
�,t

 , and �
z,t

 indicate long-run shocks affecting the persistent sto-
chastic components in consumption growth x

t
 and x

z

t
 . The persistence of long-run 

consumption and temperature-related productivity shocks is measured by �
x
 and 

�
z

x
 , respectively. In this framework, the two distinct long-run components for con-

sumption and temperature shocks feature the same timing of those innovations. As 
for long-run consumption shocks, temperature related shocks impact consumption 
growth with one lag, as suggested by the data.

To calibrate the model we again rely on the bi-variate VAR estimation results 
and set the parameters to match the consumption dynamics from the data (i.e., con-
sumption growth volatility). The effect of a TVOL shock on consumption growth is 
depicted in Fig. 11. It is rather persistent and leads to a drop in consumption growth 
by more than 0.4pp after 3 years. We therefore assume in the model that a TVOL 
shock has a lagged effect on consumption growth. By imposing �

�
= −0.218 and 

�
z

x
= 0.6 , we let the endowment economy produce a drop of 0.4pp in consumption 

growth following a TVOL shock. As suggested by our bivariate analysis, the negative 
impact of consumption growth produced by the model lasts for several years.22 The 
standard parameters � , � , and � are taken from Bansal and Ochoa (2011b) and are set 
to 0.988, 10, and 1.5 respectively. Except for the IES, these are also the values used 
in our production framework. The parameters governing the consumption process, �

c
 

and �
c
 , are calibrated to match the unconditional mean and volatility of consumption 

growth, which implies values of 0.0256 and 0.02, respectively. Since consumption 
growth exhibits a high autocorrelation in the data (0.47), we set the persistence of 
long-run consumption shocks �

x
 to a high value of 0.99. The standard deviation of 

(13)W
t+1 = (W

t
− C

t
)R

c,t+1,

(14)mt+1 = �Log(�) −
�

�
�(Ct+1) + (� − 1)rc,t+1,

(15)

�c
t+1 =�

c
+ x

t
+ x

z

t
+ �

c
�

c,t+1

x
t
=�

x
x

t−1 + �
x
�

x,t

x
z

t
=�z

x
x

z

t−1
+ �

z
�

z
�

z,t + ������,t+1

z
t+1 =�

z
+ �

z
(z

t
− �

z
) + e

�
t+1�

z
�

z,t+1

�
t+1 =���t

+ ����,t+1,

22 For space consideration, the model-implied impulse response of consumption growth to a TVOL 
shock is not reported but is available from the authors upon request.
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these long-run shocks, �
x
 , is assumed to be a small fraction of the volatility of short-

run consumption shocks, i.e. �
x
= 0.044 ⋅ �

c
 as in Bansal and Yaron (2004). Natu-

rally, the parameters governing the evolution of UK temperature remain as in Sect. 5.
Simulated moments and welfare costs are displayed in Table 12. As in the data, our 

benchmark endowment economy featuring TVOL effects (specification [1]) produces 
a negative correlation between TVOL and both consumption growth and the equity 
market return. Compared to an economy with no TVOL effects (specification [2]), this 
additional source of risk produces a small equity risk premium of 3bps. On the other 
hand, it entails sizeable welfare costs. These amount to 13% of lifetime consumption and 
are comparable with the magnitude found in our production economy. Note that in this 
endowment economy, welfare costs are higher as we match the volatility of consump-
tion growth which is larger compared to the one obtained in our production economy 
framework. This robustness test shows that the substantial welfare costs from TVOL risk 
are still obtained when modelling the interaction between consumption and temperature 
dynamics in an endowment economy that abstracts from labor and investment decisions.

7  Concluding Remarks

We show novel empirical evidence that increasing uncertainty about temperature 
variations (i.e., temperature volatility) negatively (positively) affects aggregate pro-
ductivity, economic activity, and asset valuations in the UK after (before) 1950. We 
further show that temperature volatility risk has carried a positive risk premium in 
the UK equity market over the past decades. In summary, our novel evidence sug-
gests that the adverse effects of climate change belong to the post-war era.

We suggest a model for a production economy featuring long-run macro and tempera-
ture volatility risk to explain these empirical findings. In the model temperature volatility 
shocks (1) dampen productivity growth, the growth rate of key macro-aggregates, and 
equity valuations and (2) command a positive risk premium, consistent with post-war 
UK data. Our model is then used to quantify the temperature volatility-related adverse 
effects on expected growth and welfare. The associated welfare costs are substantial, 
and positive temperature volatility shocks reduce long-run growth prospects. When 
temperature volatility shocks are associated with faster depreciation of capital (through 
increasing occurrence of natural disasters), welfare costs are exacerbated. However, if 
the economy immediately reacts to changes in temperature volatility by means of long-
run technology improvements, such costs can be totally offset or at least mitigated.

Both our empirical analysis and modeling strategy present several limitations. First, 
from an empirical point of view, we rely exclusively on the UK. It would be interesting 
to check whether temperature volatility is harmful for the real economic activity and asset 
prices also in other advanced economies. Even more interestingly would be investigating 
the impact on temperature volatility on the macroeconomic conditions of emerging/poor 
economies. Second, we capture variations in whether conditions by relying on tempera-
ture volatility. However, other indicators such as the number of extreme weather events 
can be used to capture climate change variations. Third, from a modeling point of view, 
we use a standard RBC model featuring long-run productivity and stochastic volatility of 
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temperature. However, our model does not consider fiscal or monetary authorities play-
ing a role. For instance, one could potentially allow for a government subsidizing firms 
in order to offset the negative impact of temperature volatility. It would be also interest-
ing to rationalize our empirical facts in an two-sector production economy or endogenous 
growth framework. All these improvements and extensions are left for future research.
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Appendix 1: Descriptive Statistics

See Table 13.

Table 12  Model versus (UK) 
data: Macroeconomic quantities, 
asset prices, and welfare

This table reports the main moments for the benchmark “endowment 
economy” calibration (specification [1]) and the endowment economy 
with no temp-vol risk. (specification [2]). Models’ entries are obtained 
from repetitions of small-sample simulations (i.e., averages over 1000 
simulations of 100 years). �[⋅] , �(⋅) , �(⋅, ⋅) , and AC1(⋅) denote mean, 
volatility, correlation, and first-order autocorrelation, respectively. 
Means and volatilities are expressed in percentage points. Empirical 
moments are computed from annual data spanning the period 1950–
2015. Additional details on data are provided in Sect. 3.1

Variable Data BC �
�
= 0

[1] [2]

Macro quantities

 �(�c) 2.56 2.57 2.57

 �(�c) 2.05 2.08 2.02

Temperature

 �(z) 9.74 9.75 9.75

 �(z) 0.60 0.63 0.63

 �(�,�c) − 0.09 − 0.17 0.00

Asset prices

 �(RLEV

ex
) 7.31 1.71 1.68

 �(RLEV

ex
) 19.78 2.96 2.94

 �(�, R
LEV

ex
) − 0.32 − 0.06 0.00

Welfare

 LOG(U/C) – − 2.29 − 2.16

 � – 13.2% −

http://creativecommons.org/licenses/by/4.0/
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Appendix 2: Robustness Tests

Cholesky Identification

See Fig. 12.

Alternative VAR Specifications

See Fig. 13, 14, 15 and 16.

Fig. 12  Impulse response of macro-variables to temperature volatility (1950–2015). Notes: This figure 
depicts Cholesky orthogonalized impulse responses of TFP growth ( �a ), labor growth ( �L ), consump-
tion growth ( �C ), investment growth ( �I ), and output growth ( �Y  ) to a one-standard-deviation shock in 
temperature volatility (TVOL). Variables order: TVOL, �a , �I , �C , �Y  , �L . VAR is estimated with one 
lag and a constant. Solid “black” lines: IRFs. Dashed “dark grey” lines: 90% confidence bands. Dashed 
“light grey” lines: 68% confidence bands

Fig. 13  Impulse response of TFP growth to temperature volatility: Alternative VAR models. Notes: This 
figure depicts the impulse response of TFP growth ( �a ) to a one-standard-deviation shock in temperature 
volatility (TVOL). Solid black line: IRFs of VAR with two lags (VAR(2)). Dark gray line with circles: 
IRFs of Bayesian VAR (BVAR), estimated using Minnesota prior, with one lag. Light gray line with 
squares: local projection IRFs (LPIRF) with lag length determined by the Akaike Information Criterion 
(AIC), assuming a maximum lag length of 2. All VAR include a constant. Sample periods: (1) 1800–
1900 (Panel A); (2) 1900–1950 (Panel B) and (3) 1950–2015 (Panel C)
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Fig. 14  Impulse response of macro-variables to temperature volatility (1900–1950): Alternative VAR 
models. Notes: This figure depicts generalized impulse responses of TFP growth ( �a ), labor growth 
( �L ), consumption growth ( �C ), investment growth ( �I ), and output growth ( �Y  ) to a one-standard-
deviation shock in temperature volatility (TVOL). Solid black line: IRFs of VAR with two lags (VAR(2)). 
Dark grey line with circles: IRFs of Bayesian VAR (BVAR), estimated using Minnesota prior with 
one lag. Light grey line with squares: local projection IRFs (LPIRF) with lag length determined by the 
Akaike Information Criterion (AIC), assuming a maximum lag length of 2. All VARs include a constant

Fig. 15  Impulse response of macro-variables to temperature volatility (1950–2015): Alternative VAR 
models. Notes: This figure depicts generalized impulse responses of TFP growth ( �a ), labor growth 
( �L ), consumption growth ( �C ), investment growth ( �I ), and output growth ( �Y  ) to a one-standard-
deviation shock in temperature volatility (TVOL). Solid black line: IRFs of VAR with two lags (VAR(2)). 
Dark grey line with circles: IRFs of Bayesian VAR (BVAR), estimated using Minnesota prior with 
one lag. Light grey line with squares: local projection IRFs (LPIRF) with lag length determined by the 
Akaike Information Criterion (AIC), assuming a maximum lag length of 2. All VARs include a constant
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“Time-Varying” VAR

See Fig. 17.

Fig. 16  Impulse responses of asset prices to temperature volatility: Alternative VAR models. Notes: This 
figure depicts generalized impulse responses of risk-free rate ( Rf  ) and equity return (R) to a one-standard-
deviation shock in temperature volatility (TVOL). Solid black line: IRFs of VAR with two lags (VAR(2)). 
Dark grey line with circles: IRFs of Bayesian VAR (BVAR), estimated using Minnesota prior with one 
lag. Light grey line with squares: local projection IRFs (LPIRF) with lag length determined by the Akaike 
Information Criterion (AIC), assuming a maximum lag length of 2. All VARs include a constant

Fig. 17  Dynamic impulse response of productivity to temperature volatility. Notes: This figure depicts 
the dynamics of the impulse response of TFP growth ( �a ) to a TVOL shock. In Panels (A) and (B) IRFs 
are estimated from a constant parameter Bayesian VAR model (one lag) estimated with a rolling window 
or 50 years. Impulse responses in Panel A represent 20 years response averages for different sub-periods. 
In Panel (C) IRFs are estimated from a time-varying parameter vector autoregressive (i.e., TVP-VAR). 
The TVP-VAR includes our measure of temperature volatility, the temperature level (as control) and the 
TFP growth and has been estimated using annual data for the period 1760–2015
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A Different Proxy for Temperature Volatility: Inter-Annual TVOL

See Fig. 18.

Rainfall Volatility

See Fig. 19.

Controlling for Equity Market Dynamics

See Fig. 20.

Fig. 18  Impulse response of TFP growth to temperature volatility: an alternative temperature volatility 
indicator. Note: This figure depicts generalized impulse responses of TFP growth ( �a ) to a one-stand-
ard-deviation shock in inter-annual temperature volatility ( TVOL

i ). TVOL
i

t
= |�

t
(n) − �̄

1659−1759
| , for 

t = 1950,… , 2015 , where �
t
(n) represents the standard deviation computed using a rolling window of 

length n years, and �̄
1659−1759

 is the average inter-annual standard deviation observed in the pre-industrial 
revolution period. n is equal to 10 (Panel A) and 15 (Panel B). Solid “black” lines: IRFs. Dashed “dark 
grey” lines: 90% confidence bands. Dashed “light grey” lines: 68% confidence bands

Fig. 19  Impulse response of TFP growth to rainfall volatility. Notes: This figure depicts generalized 
impulse response of TFP growth ( �a ) to a one-standard-deviation shock in rainfalls volatility (RVOL). 
Rainfall volatility is represented by the intra-annual volatility, computed in each year as standard devia-
tion of monthly observations. Monthly rainfall observations are collected from several climate stations 
operating in UK for the period 1900–2015 (Source: https ://www.metoffi ce.gov.uk/publi c/weath er/clima 
te-histo ric). To minimize contamination by local meteorological and instrumental conditions, we amal-
gamate all independent stations into one single average rainfall series. Impulse-responses are obtained 
from a bi-variate VAR with one lag. A constant is included. Solid “black” lines: IRFs. Dashed “dark 
grey” lines: 90% confidence bands. Dashed “light grey” lines: 68% confidence bands

https://www.metoffice.gov.uk/public/weather/climate-historic
https://www.metoffice.gov.uk/public/weather/climate-historic


390 M. Donadelli et al.

1 3

Appendix 3: Additional Cross-Sectional Tests

See Tables 14 and 15.

Fig. 20  Impulse-responses of TFP growth and equity return to temperature volatility. Notes: This figure 
depicts generalized impulse responses (GIRFs) of TFP growth ( �a ) and equity return (R) to a one-stand-
ard-deviation shock in temperature volatility (TVOL). VAR estimated with one lag and a constant. Solid 
“black” lines: IRFs. Dashed “dark grey” lines: 90% confidence bands. Dashed “light grey” lines: 68% 
confidence bands

Table 14  Risk premium of TVOL shocks: Pre-subprime crisis

This table reports the estimates of the temp-vol risk premium. Test assets are: (1) twelve UK portfo-
lios (UK12) with six portfolios formed on size and book-to-market and six portfolios formed on size 
and momentum (Source: Stefano Marmi’s Data Library) (2) 40 UK portfolios (40UK) with 10 portfolios 
formed on price-earnings, 10 portfolios formed on price to book, 10 portfolios formed on price to cash 
flow, and 10 portfolios formed on gross profit margin (Source: Stefano Marmi’s Data Library) (3) 100 
EU portfolios (100 EU) with 25 portfolios formed on size and book-to-market, 25 portfolios formed on 
size and operating profitability, 25 portfolios formed on size and investment, and 25 portfolios formed on 
size and momentum (Source: Kenneth R. French’s Data Library). Data on UK (EU) portfolios run from 
1989 (1991) to 2007. The t-statistics in square brackets for the risk premium are adjusted for autocorrela-
tion and heteroskedasticity following Newey and West (1987)

Panel A: Risk Premia

Fama-McBeth Intercept �
�TVOL

UK12 18.720 0.455

[5.886] [1.486]

UK40 13.917 0.186

[4.600] [1.257]

EU100 14.573 0.125

[3.420] [0.581]

Panel B: Risk Premia

Avg Returns Intercept �
�TVOL

UK12 18.720 0.455

[16.356] [5.123]

UK40 13.917 0.186

[14.042] [2.048]

EU100 14.573 0.125

[36.574] [1.226]
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