
Computing Many Faces in Arrangements of

Lines and Segments

Pankaj K. Agarwal Ji�r�� Matou�sek Otfried Schwarzkopf

UU{CS{1994{39
September 1994

�
Utrecht University
Department of Computer Science

Padualaan 14, P.O. Box 80.089,

3508 TB Utrecht, The Netherlands,

Tel. : + 31 - 30 - 531454

Computing Many Faces in Arrangements of

Lines and Segments

Pankaj K. Agarwal Ji�r�� Matou�sek Otfried Schwarzkopf

Technical Report UU{CS{1994{39
September 1994

Department of Computer Science

Utrecht University
P.O.Box 80.089
3508 TB Utrecht
The Netherlands

ISSN: 0924{3275

Computing Many Faces in Arrangements of Lines and

Segments �

Pankaj K. Agarwaly Ji�r�� Matou�sekz Otfried Schwarzkopfx

Abstract

We present randomized algorithms for computing many faces in an arrangement of lines or

of segments in the plane, which are considerably simpler and slightly faster than the previously

known ones. The main new idea is a simple randomized O(n log n) expected time algorithm

for computing
p
n cells in an arrangement of n lines.

1 Introduction

Given a �nite set of lines, L, in the plane, the arrangement of L, denoted as A(L), is the cell
complex induced by L. The 0-faces (or vertices) of A(L) are the intersection points of L, the
1-face (or edges) are maximal portions of lines of L that do not contain any vertex, and the 2-faces
(called cells) are the connected components of R2�SL. For a �nite set S of segments we de�ne
the arrangement, A(S), in an analogous manner. Notice that while the cells are convex in a line
arrangement, they need not even be simply connected in an arrangement of segments.

Line and segment arrangements have been extensively studied in computational geometry (as
well as in some other areas), as a wide variety of computational geometry problems can be formu-
lated in terms of computing such arrangements or their parts [11, 14].

Given a set L of n lines and a set P of m points in the plane, we de�ne A(L;P) to be the
collection of all cells of A(L) containing at least one point of P . The combinatorial complexity
of a cell C, denoted by jCj, in A(L) is the number of edges of C. Let �(L;P) =

P
C2A(L;P) jCj

denote the total combinatorial complexity of all cells in A(L;P), and let

�(n;m) = max�(L;P) ;

where the maximum is taken over all sets of n lines and over all sets of m points in the plane. It
is known that

�(n;m) = �(n2=3m2=3 + n+m) :

The upper bound was proven by Clarkson et al. [9]; previous results and related work can be found
in Canham [4], Edelsbrunner and Welzl [13], Szemer�edi and Trotter [20].

In this paper we study the problem of computing A(L;P), that is, for each cell C 2 A(L;P),
we want return the vertices of C in, say, clockwise order. We will refer to the cells of A(L;P) as

�A part of this work was done while the �rst and third authors were visiting Charles University and while the
�rst author was visiting Utrecht University. The �rst author has been supported by National Science Foundation
Grant CCR{93{01259 and an NYI award. The second author has been supported by Charles University grant
No. 351 and Czech Republic Grant GA�CR 201/93/2167. The third author has been supported by the Netherlands'
Organization for Scienti�c Research (NWO) and partially supported by ESPRIT Basic Research Action No. 7141
(project ALCOM II: Algorithms and Complexity)

yDepartment of Computer Science, Box 90129, Duke University, Durham, NC 27708-0129, USA.
zDepartment of Applied Mathematics, Charles University, Malostransk�e n�am. 25, 118 00 Praha 1, Czech

Republic.
xDepartment of Computer Science, Utrecht University, P.O. Box 80.089, 3508 TB Utrecht, the Netherlands.

1

the marked cells of A(L). Edelsbrunner et al. [12] presented a randomized algorithm, based on
the random sampling technique [16], for computing A(L;P), whose expected running time was
O(m2=3�"n2=3+2" logn+n logn logm), for any �xed " > 0. A deterministic algorithm with running

time O(m2=3n2=3 logO(1) n + n log3 n +m logn) was given by Agarwal [1]. These algorithms thus
are nearly worst-case optimal, but both of them are rather involved.

Recently randomized incremental algorithms have been developed for a wide variety of geo-
metric problems, which add the input objects one by one in a random order and maintain the
desired structure; see e.g. [6, 10, 18, 19]. In our case, we can add the lines of L one by one in a
random order and maintain the marked cells in the arrangement of lines added so far. However,
this approach seems to yield expected running time of
(n

p
m +m logn) in the worst case. We,

therefore, do not quite follow the randomized incremental paradigm.
We begin by presenting an expected O(m2+n logn) time randomized algorithm for computing

A(L;P). Notice that for m � p
n logn, this algorithm is optimal. We then apply the random

sampling technique in a standard way, obtaining an expected O(m2=3n2=3 log2=3 np
m
+(m+n) log n)

time algorithm.
We also study a similar but more di�cult problem of computing the marked cells in an ar-

rangement of n segments. Let S be a set of n segments in the plane. We use an analogous notation
A(S; P) to denote the set of the cells in A(S) containing at least one point of P , and �(n;m) to
denote the maximum combinatorial complexity of A(S; P) over all sets S of n segments and sets
P of m points in the plane. Aronov et al. [2] proved that

�(n;m) = O
�
m2=3n2=3 + n logm+ n�(n)

�
:

A randomized algorithm with expected running time

O(m2=3�"n2=3+2" logn+ n�(n) log2 n logm)

is described by Edelsbrunner et al. [12], and a slightly faster deterministic algorithm is presented
by Agarwal [1].

Following the same strategy as for the case of lines, we �rst develop a randomized algorithm
with O((m2+n logm+n�(n)) logn) expected running time. Let us remark that the above upper
bound for �(n;m) is not known to be tight, and a bound like �(n;

p
n) = O(n�(n)) (which is

conjectured to be the complexity of
p
n cells) will immediately improve the expected running time

of our algorithm to O(n logn�(n)). Plugging this algorithm to the standard random sampling
technique, as in the case of lines, we obtain a randomized algorithm for computing A(S; P) whose
expected running time is

O(m2=3n2=3 log4=3
np
m

�1=3(
np
m
) + (m + n logm+ n�(n)) logn) :

If the segments of S have only k = o(n2) intersection points, the expected running time of the
algorithm is

O(m2=3k1=3 log4=3
k

m
� 1=3(

k

m
) + (m + n logm+ n�(n)) logn):

For the analysis of the expected running time of our algorithms we will use a generalization of
a lemma due to Chazelle and Friedman [7]. (An alternative analysis could probably be obtained
using a method similar to that of Chazelle et al. [6], but we hope that our approach is somewhat
more intuitive).

2

2 A generalization of Chazelle-Friedman lemma

Let S be a set of lines or segments, and P a set of points in the plane. For a cell C of the collection

A(S; P), let Cjj

denote the collection of trapezoids in the vertical decomposition of C,1 and let

Ajj

(S; P) =
S
C2A(S;P) C

jj

denote the set of trapezoids in the vertical decomposition of A(S; P).
Abusing the notation slightly, we will use Ajj

(S; P) to denote the corresponding planar subdivision
as well.

Let R be a subset of S. For a trapezoid � 2 Ajj

(R;P), let w(�) denote the number of elements
of S intersecting the interior of �.

Let n = jSj, and let R be a random subset of S of size r. For the analysis of our algorithms,
we are interested in estimating the expectation, over all random choices of R,

E
h X
�2Ajj

(R;P)

w(�)c
i
; (2.1)

where c is a small constant like c = 2. Well-known results concerning the so-called "-nets (Haussler

and Welzl [16]) imply that, for every � 2 Ajj

(R), w(�) � C(n=r) log r with high probability, where
C is a suitable constant. From this one can derive a bound for (2.1). We are, however, interested
in the following, slightly stronger bound (better by a factor of logc r):

Proposition 2.1 (i) Let L be a set of n lines and P a set of m points in the plane. If R � L
is random subset of size r, where each subset of size r is chosen with equal probability, then
for any constant c � 1.

E
� X
�2Ajj

(R;P)

w(�)c
�
= �(r;m) �O((n=r)c) :

(ii) Let S be a set of n segments and P a set of m points in the plane. If R � S is random
subset of size r, where each subset of size r is chosen with equal probability, then for any
constant c � 1.

E
� X
�2Ajj

(R;P)

w(�)c
�
= �(r;m) �O((n=r)c) :

These bounds essentially say that the cth moment of the quantities w(�) behaves as if w(�)
were O(n=r). If we sum w(�) over all cells in A(R)|the case where every cell of A(R) contains a
point of P|then Proposition 2.1 follows from a result of Clarkson and Shor [10]. In our situation,
where the sum is taken over only some of the cells, the Clarkson-Shor framework does not apply
directly anymore (the main distinction between these two situations will be outlined below). We
give a proof based on a generalization of an approach due to Chazelle and Friedman [7], which is
somewhat di�erent from the Clarkson-Shor method. Recently, de Berg et al. [3] gave an alternative
proof of Proposition 2.1.

We derive a key lemma in a somewhat abstract framework; see also [6, 7, 10] for various
approaches to axiomatize similar situations.

Let S be a set of objects. For a subset R � S, we de�ne a collection of `regions' called CT (R);

in Proposition 2.1 the objects are segments, the regions are trapezoids, and CT (R) = Ajj

(R;P).
Let T = T (S) =

S
R�S CT (R) denote the set of regions de�ned by all possible subsets of S. We

associate two subsets D(�);K(�) � S with each region � 2 T .
D(�), called the de�ning set , is a subset of S de�ning the region � in a suitable geometric

sense.2 We assume that for every � 2 T , jD(�)j � d for a (small) constant d. In Proposition 2.1,

1The vertical decomposition C
jj
of a cell C in an arrangements of segments (or of lines) is obtained by drawing

a vertical line from each vertex of C in both directions (within C) until it hits another edge of C.
2We need not make this precise here, as this is only an intuitive meaning of D(�). The analysis depends only

on the axioms involving D(�) given below, and these will be satis�ed in our speci�c examples.

3

each trapezoid � is de�ned by at most 4 segments (or lines) of S, which constitute the set D(�);
details can be found in Chazelle et al. [6].

K(�), called the killing set , is a set of objects of S, such that including any object of K(�)
into R prevents � from appearing in CT (R). In many applications K(�) is the set of objects
intersecting the cell �; this is also the case in Proposition 2.1. Set w(�) = jK(�)j.

Let S;CT (R); D(�);K(�) be such that for any subset R � S, CT (R) satis�es the following
axioms:

(i) For any � 2 CT (R), D(�) � R and R \K(�) = ;, and
(ii) If � 2 CT (R) and R0 is a subset of R with D(�) � R0, then � 2 CT (R0).

It is easily checked that these axioms hold in the situations of Proposition 2.1.
For any natural number t, let us denote

CT t(R) = f� 2 CT (R) j w(�) � tn=rg :

We establish the following:

Lemma 2.2 Given a set S of b objects, let R be a random sample of size r � n drawn from
S, and let t be a parameter, 1 � t � r=d, where d = max jD(�)j. Assuming that CT (R), D(�)
and K(�) satisfy Axioms (i) and (ii) above, we have

E jCT t(R)j = O(2�t) � E jCT (R0)j ; (2.2)

where R0 � S denotes a random sample of size r0 = br=tc.

Roughly speaking, Lemma 2.2 says that the expected number of \large" trapezoids in CT(R), that
is, the trapezoids for which the value of w(�) exceeds the \right" value n=r more than t times,
decreases exponentially with t.

Chazelle and Friedman [7] proved a result analogous to Lemma 2.2 under the following stronger
axiom replacing (ii):

(ii0) If D(�) � R and K(�) \R = ;, then � 2 CT (R).
This assumption implies that the presence of � in CT(R) depends only on D(�) and K(�),

thus it is determined purely \locally." Notice that (ii0) may fail in the situation of Proposition 2.1.
However, (ii0) holds in the special case, when CT (R) is the vertical decomposition of all cells in
A(R).
Proof of Lemma 2.2: Let Tt =

S
R�S CT t(R). We have

E jCT t(R)j =
X
�2Tt

Pr[� 2 CT (R)] ; (2.3)

E jCT (R0)j =
X
�2T

Pr[� 2 CT (R0)]

�
X
�2Tt

Pr[� 2 CT (R0)] : (2.4)

We will prove that, for each � 2 Tt,

Pr[� 2 CT (R)] = O(2�t) � Pr[� 2 CT (R0)] ; (2.5)

which in conjunction with (2.3) and (2.4) implies (2.2).

4

Let A� denote the event D(�) � R and K(�)\R = ;, and let A0� denote the event D(�) � R0

and K(�) \R0 = ;.
We rewrite Pr[� 2 CT (R)] using the de�nition of conditional probability:

Pr[� 2 CT(R)] = Pr[A�] � Pr[� 2 CT (R) j A�]

and analogously
Pr[� 2 CT (R0)] = Pr[A0�] � Pr[� 2 CT (R0) j A0�] :

We observe that, by Axiom (ii), we have

Pr[� 2 CT (R) j A�] � Pr[� 2 CT (R0) j A0�] : (2.6)

Indeed, Pr[� 2 CT (R0) j A0�] is the probability that � appears in CT (R0), where R0 is created as
follows: Include all elements ofD(�), and then choose the remaining r0�jD(�)j elements randomly
among the elements of S n (D(�)[K(�)). We may continue this experiment by choosing R to be
R0 plus a random subset of r� r0 elements of S n (R0 [K(�)). Clearly for such subsets R0 and R,
Pr[� 2 CT (R)] � Pr[� 2 CT (R0)]. Moreover, the subset R selected by this experiment contains
D(�) plus r � jD(�)j random elements of S n (D(�) [K(�)), so Pr[� 2 CT(R)] is the same as
the left hand side of (2.6).

Therefore
Pr[� 2 CT (R)]
Pr[� 2 CT (R0)] �

Pr[A�]

Pr[A0�]
:

(Note that r0 = br=tc � d, and hence both denominators are nonzero.)
It remains to estimate the latter ratio, which can be done in the same way as by Chazelle

and Friedman. Let d = jD(�)j, w = w(�), and for two non-negative integers a � x, let xa =
x(x� 1) � � � (x � a+ 1). Then

Pr[A�]

Pr[A0�]
=

�
n�w�d
r�d

�
�
n
r

� �
�
n
r0

�
�
n�w�d
r0�d

�
=

rd

r0d
� (n� w � r0)r

(n� r0)r
:

By our assumption r0 � d, so we obtain

r � i

r0 � i
� dt for i = 0; 1; : : :; d� 1:

Thus, the �rst factor in the above expression is O(td). To bound the second factor, we observe
that, for i = r0; r0 + 1; : : : ; r � 1,

n� w � i

n� i
= 1� w

n� i
� 1� w

n
� exp(�w=n) :

Since w � tn=r, we have w=n � t=r, and therefore

Pr[A�]

Pr[A0�]
� O(td) exp

��t(r � r0)
r

�
= O(td) exp(�(t� 1)) = O(2�t) ;

as desired. �

We now prove Proposition 2.1.

5

Proof of Proposition 2.1: We will only prove the �rst part, the second part is identical. For
any subset R � L of size r, let CT (R) denote the set of trapezoids in the vertical decomposition

of the marked cells of A(R), i.e., CT (R) = Ajj

(R;P). Obviously, jCT (R)j � �(r;m). Now

E
� X
�2Ajj

(R;P)

w(�)c
�

= E

2
4X
t�1

�
t
n

r

�c
(jCTt(R)j � jCTt�1(R)j)

3
5

�
�n
r

�cX
t�0

(t+ 1)c � E jCTt(R)j

=
�n
r

�cX
t�0

tcO(2�t) � �(r=t;m)

� �(r;m)
�n
r

�cX
t�0

O(tc � 2�t)

= �(r;m) �O ��n=r�c� :
�

3 Computing cells in line arrangements

Let L be a set of n lines and P a set of m points in the plane. We assume that the points of
P are sorted in nondecreasing order of their x-coordinates, and that the lines of L are sorted
by their slopes. In this section we describe a randomized algorithm for computing A(L;P). In

fact, it computes the vertical decomposition Ajj

(L;P) of A(L;P). Each face of Ajj

(L;P) is a
trapezoid, bounded by at most two vertical segments and portions of at most two edges of a cell of

Ajj

(L;P). We begin by presenting a very simple randomized algorithm for computing Ajj

(L;P)
with O(m2 + n logn) expected time, which we will use as a subroutine in the main algorithm.
Notice that this algorithm is optimal for m � p

n logn. If n � n0, where n0 is an appropriate
constant, the algorithm computes the vertical decomposition of the entire arrangement using any
standard algorithm. Otherwise, it proceeds as follows.

1. Let t be a su�ciently large constant. Choose a random subset R � L of r = bn=tc lines.
2. Partition P into q = dpt e subsets P1; : : : ; Pq, each of size at most k = bm=

p
tc, where

Pi = fp(i�1)k+1; : : : ; pikg, for i < q, and Pq = fp(q�1)k+1; : : : ; pmg.

3. For each i � q, compute Ajj

(R;Pi) recursively. If a cell C of A(R) is computed more than
once, retain only one copy of C. (Note that multiple copies of a cell C are computed if C
contains the points of more than one Pi's.) Since P is sorted in the x-direction, it is easy to

detect multiple copies of a cell. In this way, obtain Ajj

(R;P).

4. For each line ` 2 L nR, compute the cells of A(R;P) that ` intersects.
5. For each trapezoid � of Ajj

(R;P), compute the set L� � L n R of lines that intersect the
interior of �.

6. For each trapezoid � 2 Ajj

(R;P), compute the arrangement of lines of L�, clip it within
�, and compute the vertical decomposition of the clipped arrangement. For each cell C 2
A(R;P), perform a graph search on trapezoids of these vertical decompositions to merge

appropriate trapezoids and to discard super
uous ones, thus forming the portion of Ajj

(L;P)
within the cell C.

6

Steps 1{3 are trivial, so we only describe Steps 4{6 in more detail.

Step 4. We want to compute the cells of A(R;P) intersected by each line in LnR. The situation
can be viewed as follows: we have a collection C of disjoint convex polygons (the cells of A(R;P)),
and a set LnR of lines. The collection C has at most m polygons with a total of O(n+m2) edges3.
For each polygon C 2 C, consider C�, the set of points that are dual to the lines intersecting C. C�
is a polygonal region, bounded by an in�nite convex chain from above and by an in�nite concave
chain from below. Each vertex of C� is dual to the line supporting an edge of C. For a pair of
polygons C1; C2 2 C, an intersection point of the edges of C�1 ; C�2 is dual to a common tangent of
C1 and C2. Since C1; C2 are disjoint, the boundaries of C

�
1 ; C

�
2 intersect in at most 4 points.

Let us consider the arrangement A(C�) of the polygonal chains bounding the regions C�, for
all C 2 C. It has O(n+m2) complexity, and can be computed in expected time O(m2 + n logn),
for instance by Mulmuley's randomized incremental algorithm [18, 6]. This algorithm actually

computes the vertical decomposition Ajj

(C�) of the arrangement, together with a point location
data structure with O(logn) expected query time. We use this data structure to locate the points
`� dual to all lines ` 2 LnR. From this we can determine, for every `, the regions of C� containing
`�, or in other words, the polygons of C intersecting `. Indeed, after having located all points

of the form `�, we traverse the adjacency graph of the trapezoids in Ajj

(C�). At each trapezoid

� 2 Ajj

(C�) we compute C�(�), the set of regions that contain the trapezoid � 2 Ajj

(C�), and
output the pairs (`; C) for `� 2 � and C� 2 C�(�). Suppose we arrive at � from � 0, then C�(�)
and C�(� 0) di�er by at most one region (the region whose boundary separates � from � 0), and thus
C�(�) can be obtained from C�(� 0) in O(1) time.

The total time spent in this step is O(m2+n logn) plus the number of polygon/line incidences.
The expected number of these incidences is bounded by O(�(r;m) � (n=r)) = O(n + m2), using
Proposition 2.1 with r = n=t and c = 1.

`

C

v1

v2

�

Figure 1: Finding �.

Step 5. Let C be a cell in A(R;P), and let LC � L n R be the set of lines intersecting the

interior of C. For each line ` 2 LC , we compute the trapezoids of C
jj

intersected by `, as follows.
Since the lines in L are sorted by their slopes, by being careful in Step 4, we can ensure that the
lines of LC are also sorted by their slopes. For each line ` 2 LC we compute the two vertices v1; v2
of C that support the lines parallel to ` (see Figure 1). This can be done, over all lines of LC ,
in O(jLC j) time by merging the slopes of LC with the slopes of the edges of C; we leave out the

3The latter estimate follows from the bound for �(n;m) mentioned in Section 1, in fact it is the weaker bound
proved by Canham [4].

7

easy details for the reader. Next, we traverse @C in clockwise as well as counter-clockwise order in
a lock-step fashion, starting from both v1 and v2 simultaneously (so we perform 4 traversals in a
lock-step fashion, as depicted in Figure 1), until we reach an intersection point � of ` and C. Since

` intersects C, we will eventually �nd such an intersection point. Finally, by tracing ` through C
jj

,

starting from �, we compute all k trapezoids of C
jj

that ` intersects. The time spent in �nding �
and tracing ` is easily seen to be O(k). Summing over all cells C 2 A(R;P) and over all lines of
LC , the total time spent is O(

P
�2Ajj (R;P)

w(�)), whose expected value, by Proposition 2.1 (i),

is O(m2 + n).

Step 6. Let � be a trapezoid of Ajj

(R;P). After having computed L�, we compute the
arrangement A(L�) using, say, a randomized incremental algorithm. We clip A(L�) within �,
and compute the vertical decomposition of the clipped arrangement. For each point p 2 P \ �,
we also compute the trapezoid of this vertical decomposition containing p. The time spent in this

step is easily seen to be O(w(�)2 + jP \�j logw(�)) per trapezoid � 2 Ajj

(R;P).
For a cell C 2 A(R;P), let �C be the set of the resulting trapezoids that lie in C. We now

de�ne a graph GC on the trapezoids of �C. The vertices of GC are the trapezoids of �C , and
two trapezoids are connected by an edge if they share a vertical edge. By performing a depth �rst
search on GC, we can extract all connected components of GC whose trapezoids contain any point
of P . That is, we pick a point p 2 P \C. Let �p 2�C be the trapezoid containing p. We perform
a depth �rst search in GC starting from �p until we �nd the entire connected component of GC
containing �p. Let �C(p) be the set of trapezoids in this component; then the union of these
trapezoids is exactly the cell of A(L; fpg). The vertices of the cell, sorted in the clockwise order,
can be easily obtained by merging the trapezoids of �C(p) in an obvious manner.

If there is a point q 2 P \C that does not lie in �C(p), we repeat the same procedure with q.
We continue this process until we have extracted all components of GC that contain any point of
P \C. This gives A(L;P \C).

Repeating this step for all cells of A(R;P), we obtain all cells of A(L;P). Finally, we compute
the vertical decomposition of all the cells. The total running time for Step 6 is

O(m logn) +
X

�2A(R;P)
O(w(�)2) ;

and its expected value is

O(m logn+ �(r;m)(n=r)2) = O(m2 + n) :

Putting all the pieces together, the total expected running time of Steps 4{6 is O(m2+n logn).
Let T (n;m) denote the maximum expected time of the entire algorithm, then we obtain the
following recurrence.

T (n;m) �

8>><
>>:

c1 if n � n0,
qX

i=1

T (bn=tc ;mi) + C(m2 + n logn) if n > n0,

where mi � m=
p
t for i � q =

�p
t
�
,
Pq

i=1mi = m, and C is an appropriate constant. The
solution of this recurrence is

T (n;m) = O(m2 + n logn) :

If m >
p
n logn, we can divide the points of P into groups of size

p
n logn, and solve the

subproblems separately. This standard batching technique yields a more convenient bound for the
expected running time, namely O(m

p
n logn+ n logn). Hence, we can conclude

8

Lemma 3.1 Given a set L of n lines and a set P of m � n2 points in the plane, the cells
of A(L) containing the points of P can be computed by a randomized algorithm in expected
time O(m

p
n logn+ n logn).

We now present another randomized algorithm whose running time is signi�cantly better for
larger values of m. Although the basic idea is the same as in [1], the algorithm presented here is
simpler because we allow randomization.

We choose a random subset R � L of size r, where

r =

&
m2=3

n1=3 log1=3(n=
p
m)

'
:

Using a randomized incremental algorithm, we construct Ajj

(R) plus a point-location data struc-

ture for Ajj

(R) in expected time O(r2) [6]. For each trapezoid � 2 Ajj

(R), let L� � L n R be
the set of lines that intersect the interior of � and P� � P the set of points that are contained

in �. L� can be computed in time O(nr) by tracing each line through Ajj

(R) and P� can be

computed in expected time O(m logn) by locating each point of P in Ajj

(R). Set n� = jL�j and
m� = jP�j. For the sake of convenience, we assume that A(L�);A(L�; P�) are clipped within

�, and Ajj

(L�);Ajj

(L�; P�) are their vertical decompositions. Let Z� denote the set of cells in
A(L�) that intersect the vertical edges of �. It is well-known that the number of edges in the
faces in Z� is O(n�) [9].

Let p be a point of P�. If the cell A(L�) containing p lies entirely in the interior of �,
then A(L; fpg) = A(L�; fpg). Otherwise, A(L; fpg) may have edges that lie outside �, but

each such edge lies on the boundary of faces in Z�0 , �0 2 A
jj

(R). Hence, for each trapezoid
�, it is su�cient to compute A(L�; P�) and Z�. We compute A(L�; P�) in expected time
O(m�

p
n� logn� + n� logn�) using Lemma 3.1. If we clip the lines of L� within �, then Z� is

the unbounded face in the arrangement of the clipped segments, and we can compute it in expected
time O(n logn), using a (simpli�ed version of) the algorithm by Chazelle et al. [6]. Hence, the
expected running time of the algorithm is

E

� X
�2Ajj

(R)

O
�
m�

p
n� logn� + n� logn�

��
+ O(nr) +O(m logn) :

By a result of Clarkson and Shor [10] (or also by Proposition 2.1), we have

E
h X
�2Ajj

(R)

n�

i
= O(nr) and

E
h X
�2Ajj

(R)

m�

p
n� logn�

i
= O

�
m

r
n

r
log

n

r

�
:

Thus, the expected running time of the algorithm is bounded by

O(m

r
n

r
log(n=r) + nr log

n

r
+m logn) :

Substituting the value r in the above expression, we obtain

Theorem 3.2 Given a set L of n lines and a set P of m points, the faces of A(L) containing
the points of P can be computed by a randomized algorithm in expected time

O(m2=3n2=3 log2=3
np
m

+ (m + n) logn) :

9

4 Computing cells in segment arrangements

Next, we present an algorithm for computing marked cells in arrangements of segments. Let S be
a set of n segments and P a set of m points in the plane. The goal is to compute A(S; P) and
its vertical decomposition Ajj

(S; P). Again, we begin by a simpler algorithm which is e�ective for
few cells, and then plug the random sampling technique to handle larger values of m.

The outline of the �rst algorithm is the same as in the previous section, except that we must

now interpret the operations in terms of segments. Since the cells of Ajj

(R;P) are not necessarily
simply connected, we may have to deal with m + n polygons even though there are only m cells.
Consequently, the computation of the sets of cells intersected by each segment of S n R in Step 4

and the computation of S� for each trapezoid � 2 Ajj

(R;P) in Step 5 now become considerably
more complicated. Another di�culty in computing S� is that we now have to detect intersections
between simple polygons and segments rather than between convex polygons and lines. In the
remainder of this section we will describe how to compute the sets S�.

The boundary @C of each cell C 2 A(R;P) is composed of (at most) one outer component and
a family of inner components such that C lies in the interior of the outer component and in the
exterior of each inner component. Each component of @C can be regarded as a simple polygonal
chain. Let O be the set of outer boundary components of the cells in A(R;P), and let I be the
set of the inner boundary components of these cells. We have jOj � m and jIj � m+ n. Let � be
the total number of edges of all polygons in O [I; obviously, � � �(n=t;m).

We �rst decompose each segment g 2 SnR into maximal subsegments, so that each subsegment
lies in the interior of some outer component O. We cut each segment at the intersection points of
O and S, and discard the subsegments that lie in the exterior of O. Let � be the set of resulting

subsegments. Next, for each subsegment � 2 �, we compute the trapezoids ofAjj

(R;P) intersected
by �.

Suppose that we have already computed � in Step 4. Then in Step 5 we compute S�, for

all � 2 Ajj

(R;P), as follows. We preprocess each polygonal chain I 2 I, in linear time, for ray
shooting queries, so that the �rst intersection point of a query ray and I can be computed in
logarithmic time, see [5, 15]. The total time spent in preprocessing I is O(�) = O(�(n;m)).

Let � be a segment of � that lies in the interior of the outer component O 2 O of @C. Let a; b

be the endpoints of �, and let �(a) be the trapezoid of C
jj

containing a. If a is not an endpoint
of a segment of S n R, then a lies on the boundary of �(a). We check whether b 2 �(a). If the

answer is `yes', then �(a) is the only trapezoid of C
jj

intersected by �, and we stop. If b 62 �(a),
we compute the other intersection point, a1, of � and �(a). If a1 lies on a vertical edge of �(a),

we also compute, in constant time, the next trapezoid �(a1) of C
jj

intersected by �. We then
repeat the same step with a1 and �(a1). If a1, on the other hand, lies on an edge of the cell C,
then a1 lies on the boundary of some inner component I 2 I of C, and the portion of the segment
� immediately following a1 lies outside C. Using the ray shooting data structure, we compute the

next intersection point a2 of the polygonal chain I and the segment
�!
a1b. Once we know a2, we

can also compute the trapezoid of C
jj

containing a2, and we continue tracing � through C
jj

.
For each trapezoid intersected by �, we spend O(logn) time, so the total time spent in com-

puting the k� trapezoids intersected by � is O(k� logn). Summing over all segments of �, the

total time spent is
P

�2�O(k� logn) = O
�P

�2Ajj
(R;P)

n� logn
�
; where n� = jS�j.

Next, we describe how to compute the set �. Notice that it is su�cient to compute all inter-
section points between the segments of S nR and the outer polygonal chains in O.

Let JO be an interval corresponding to the projection of the polygoal chain O 2 O onto the
x-axis, and let J = fJO j O 2 Og.

We construct an interval tree T on J ; see Mehlhorn [17] for details on interval trees. T is
a minimum height binary tree with at most 2m leaves. Each node v of T is associated with an
interval Uv, and a point xv. LetWv = Uv� [�1;+1] be a vertical strip, and let hv be the vertical

10

line passing through xv. For the root u, Wu is the entire plane and hu is the vertical line passing
the middle endpoint of the intervals of J . Each interval J 2 J is stored at the highest node v of
T such that xv 2 J .

Let Jv be the set of intervals stored at v. We associate two subsets Ov; Zv of O with v. Let
Ov = fO j JO 2 Jvg and Zv =

S
wOw, where the union is taken over all descendants of v,

including v; set mv = jOvj and zv = jZvj. Finally, let �v (resp. �v) denote the total number
of edges in Ov (resp. Zv). Since each polygonal chain of O appears in exactly one Ov, we haveP

v2T �v = � and
P

v2T �v � 2� logm. Moreover, it can be shown that if v1; v2 are the children
of v then zv1 ; zv2 � zv=2, which implies that

P
v2T z

2
v = O(m2).

Since the polygonal chains in Ov are pairwise disjoint and all of them intersect a vertical line,
we can regard Ov along with appropriate portions of the vertical line hv as a simple polygon �v,
and preprocess �v in O(�v) time for answering ray shooting queries. Using this data structure,
one can report all k intersection points of a segment g and Ov in time O((k + 1) log�v).

Next, we take the convex hull of each polygonal chain in Zv, and preprocess the resulting
convex polygons into a data structure, as described in the previous section, so that all convex
polygons intersected by a query line can be reported quickly. Since any two polygonal chains of
O are disjoint, the boundaries of their convex hulls intersect in at most two points, and so they
have at most 4 common tangents. Consequently, the line intersection searching structure has size
O(z2v+�v). Moreover, it can be computed in time O(z2v+zv log �v+�v), using the algorithm of [19].
We also preprocess each O 2 O in linear time for ray shooting queries as in [15]. It can be shown
that the total preprocessing time is O(m2+

P
v (zv log �v + �v)) = O(m2+m logm logn+� logm).

We omit the details.
Let g 2 S nR be a segment. All intersection points of g and O can be computed as follows. We

search the tree T with g starting from the root. Let v be a node visited by the query procedure. If
the endpoints of g do not lie in the vertical strip Wv, i.e., g completely crosses Wv, then g intersects
O 2 Zv if and only if the line supporting g intersects the convex hull of O. Thus, we �rst compute
all polygonal chains of Zv intersected by g, using the line intersection searching structure, and
then, for each O 2 Zv intersected by g, we compute the intersection points of g and O using the
ray shooting data structure. If kvg is the number of intersection points between g and the polygonal
chains of Zv, then the total time in reporting these intersections is O((kvg + 1) log �v).

If one of the endpoints of g lies in Wv, we can compute all avg intersection points between Ov

and g in time O((avg + 1) log�v), using the ray shooting data structure for Ov. Let v1; v2 be the
children of the node v. If g intersects Wv1 (resp. Wv2), we visit v1 (resp. v2). It is easily shown
that the query procedure visits O(logm) nodes, and the query time is O((logm+kg) logn), where
kg is the total number of intersection points reported.

We repeat this procedure for all segments g 2 S nR. Since

� � �(n;m) = O(m2 + n(logm+ �(n))) and
X

g2SnR
kg �

X
�2Ajj

(R;P)

n� ;

the total cost of computing the intersection points is

O((m2 + �) logn) +
X

s2SnR
O((logm + ks) logn) =

O

�
(m2 + n logm + n�(n)) logn+

X
�2Ajj(R;P)

n� logn

�
:

As in the previous section, the time spent in Step 6 (re�ning the cells of Ajj

(R;P)) is O(
P

� n2�).
Using Proposition 2.1 (ii), we obtain that the total expected time spent in the merge step is
O
�
(m2 + n logm + n�(n)

�
logn).

11

We thus obtain the following recurrence for T (n;m) (the overall running time):

T (n;m) �

8>><
>>:

c1 if n � n0,
p
tX

i=1

T
�n
t
;mi

�
+ O(m2 logn+ n(logm + �(n)) logn) if n > n0,

where mi � m=
p
t for all i � p

t, and
P

imi = m. The solution of this recurrence is T (n;m) =
O(m2 logn + n(logm + �(n)) logn). Hence, we can conclude that the total running time of the
�rst algorithm for computing A(S; P) is

O
�
(m2 + n logm + n�(n)) logn

�
:

We can again use the batching technique if m is large. Omitting the details, we obtain

Lemma 4.1 Given a set S of n segments and a set P of m points, the faces of A(S) that
contain at least one point of P can be computed by a randomized algorithm in expected time
O
��
m
p
n logm + n(logm + �(n))

�
logn

�
.

For larger values of m, we again use the random sampling technique as in the previous section.
That is, we choose a random subset R � S of size

r =

&
m2=3

n1=3
� log

1=3(n=
p
m)

�2=3(n=
p
m)

'
;

and compute Ajj

(R). For each � 2 Ajj

(R), we compute P� = P \� and S�, the set of segments
that intersect �. We clip the segments within �. The total time spent in this step is O(r2+(m+

nr) log r). Let z be a point lying in the unbounded face of A(S). For each � 2 Ajj

(R), we compute

Ajj

(S�; P� [fzg), in time O((m�
p
n� logm� + n�(logm� + �(n�))) logn�), using Lemma 4.1,

and then glue them together. We omit the rather routine details from here. The overall expected
running time of the algorithm is

E
h X
�2Ajj(R)

O((n�(�(n�) + logm�) +m�

p
n� logm�

i
+O((m + nr) log r) :

Again, using the results by Clarkson-Shor [10] and substituting the value of r, we obtain

Theorem 4.2 Given a set S of n segments and a set P of m points, the faces of A(S)
that contain a point of P can be computed by a randomized algorithm in expected time
O(m2=3n2=3 log4=3 np

m
�1=3(np

m
) + (m+ n logm + n�(n)) logn).

Finally, let us remark that if A(S) has only k = o(n2) vertices, then using the fact that the

expected number of trapezoids in Ajj

(R) is O(kr2=n2 + r), we can do a more careful analysis.

Choosing r =
l
n
�
m
k

�2=3 log1=3(k=m)
�2=3(k=m)

m
, it can be shown that the expected running time of the

algorithm is

O(m2=3k1=3 log4=3
k

m
� 1=3(

k

m
) + (m + n logm+ n�(n)) logn) :

Acknowledgments. The authors thank Mark de Berg, Mark Overmars, and Micha Sharir for
several useful discussions.

12

References

[1] P. Agarwal, Partitioning arrangements of lines: II. Applications, Discrete and Computa-
tional Geometry 5 (1990), 533{573.

[2] B. Aronov, H. Edelsbrunner, L. Guibas and M. Sharir, Improved bounds on the complexity
of many faces in arrangements of segments, Combinatorica, 12 (1992), 261{274.

[3] M. de Berg, K. Dobrindt and O. Schwarzkopf, On lazy randomized incremental construction,
to appear in Proceedings 26th Annual ACM Symposium on Theory of Computing, 1994.

[4] R. Canham, A theorem on arrangements of lines in the plane, Israel J. Math. 7 (1969),
393{397.

[5] B. Chazelle, H. Edelsbrunner, M. Grigni, L. Guibas, J. Hershberger, M. Sharir and J.
Snoeyink, Ray shooting in polygons using geodesic triangulations, Proc. 17th Int. Colloq.
Automata, Languages and Programming, 1991, pp. 661{673.

[6] B. Chazelle, H. Edelsbrunner, L. Guibas, M. Sharir and J. Snoeyink, Computing a face in
an arrangement of line segments, SIAM J. Computing 22 (1993), 1286{1302.

[7] B. Chazelle and J. Friedman, A deterministic view of random sampling and its use in geom-
etry, Combinatorica 10 (1990), 229{249.

[8] K. Clarkson, Computing a single face in an arrangement of segments, 1990, manuscript.

[9] K. Clarkson, H. Edelsbrunner, L. Guibas, M. Sharir and E. Welzl, Combinatorial complexity
bounds for arrangements of curves and spheres, Discrete and Computational Geometry 5
(1990), 99{160.

[10] K. Clarkson and P. Shor, Applications of random sampling in computational geometry II,
Discrete and Computational Geometry 4 (1989), 387{421.

[11] H. Edelsbrunner, Algorithms in Combinatorial Geometry, Springer-Verlag, Berlin, 1987.

[12] H. Edelsbrunner, L. Guibas and M. Sharir, The complexity of many faces in arrangements
of lines and of segments, Discrete and Computational Geometry 5 (1990), 161{196.

[13] H. Edelsbrunner and E. Welzl, On the maximal number of edges of many faces in an ar-
rangement, Journal of Combinatorial Theory, Series A 41 (1986), 159{166.

[14] L. Guibas and M. Sharir, Combinatorics and algorithms of arrangements, in New Trends in
Discrete and Computational Geometry (J. Pach, ed.), Springer-Verlag, New York-Berlin-
Heidelberg, 1993, 9{36.

[15] J. Hershberger and S. Suri, A pedestrian approach to ray shooting: Shoot a ray, take a walk,
Proc. 4th ACM-SIAM Symp. Discrete Algorithms , 1993, pp. 54{63.

[16] D. Haussler and E. Welzl, �-nets and simplex range queries, Discrete Comput. Geom. 2
(1987), 127{151.

[17] K. Mehlhorn, Data Structures and Algorithms 3: Multi-dimensional Searching and
Computational Geometry, Springer-Verlag, Berlin, 1984.

[18] K. Mulmuley, A fast planar partition algorithm, I, J. Symbolic Computation 10 (1990),
253{280.

[19] K. Mulmuley, A fast planar partition algorithm, II, J. Assoc. Comput. Mach. 38 (1991),
74{103.

13

[20] E. Szemer�edi and W. Trotter Jr., Extremal problems in discrete geometry, Combinatorica
3 (1983), 381{392.

14

