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COMPUTING MEDIANS AND MEANS IN HADAMARD SPACES

MIROSLAV BAČÁK

Abstract. The geometric median as well as the Fréchet mean of points in an
Hadamard space are important in both theory and applications. Surprisingly,

no algorithms for their computation are hitherto known. To address this issue,
we use a split version of the proximal point algorithm for minimizing a sum

of convex functions and prove that this algorithm produces a sequence con-
verging to a minimizer of the objective function, which extends a recent result
of D. Bertsekas (2001) into Hadamard spaces. The method is quite robust
and not only does it yield algorithms for the median and the mean, but it
also applies to various other optimization problems. We moreover show that
another algorithm for computing the Fréchet mean can be derived from the
law of large numbers due to K.-T. Sturm (2002).

In applications, computing medians and means is probably most needed in
tree space, which is an instance of an Hadamard space, invented by Billera,

Holmes, and Vogtmann (2001) as a tool for averaging phylogenetic trees. It
turns out, however, that it can be also used to model numerous other tree-like

structures. Since there now exists a polynomial-time algorithm for computing
geodesics in tree space due to M. Owen and S. Provan (2011), we obtain
efficient algorithms for computing medians and means, which can be directly
used in practice.

1. Introduction

Given positive weights w1, . . . , wN satisfying
∑

wn = 1, and a finite set of points
a1, . . . , aN in a metric space (X, d), we define its geometric median as

(1) Ψ (w; a) := argmin
x∈H

N
∑

n=1

wnd (x, an) ,

and its Fréchet mean as

(2) Ξ (w; a) := argmin
x∈H

N
∑

n=1

wnd (x, an)
2
,

where we denote w := (w1, . . . , wN ) and a := (a1, . . . , aN ) . These definitions will
not function well in an arbitrary metric space, but as far as geodesic metric spaces
of nonpositive curvature (so-called Hadamard spaces) are concerned, they become
highly appropriate. Hadamard spaces include, apart from Hilbert spaces, Euclidean
buildings, and some Riemannian manifolds, also the Billera-Holmes-Vogtmann tree
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2 M. BAČÁK

space (BHV tree space), which is a nonpositively curved cubical complex con-
structed in [9] as a model space for phylogenetic trees. Computing means and me-
dians in this setting can therefore be of great importance in practice. We would like
to mention one more application. Very recently, Fréchet means have also emerged
in connection with so-called consensus algorithms in Hadamard spaces [19].

Our goal in the present paper is to introduce algorithms for computing medians
and means in Hadamard spaces. Research in this direction has already started,
see for instance [14, 15]. Three different methods (centroid, Birkhoff’s shortening,
and weighted averages) for computing the Fréchet mean were introduced in [14,
Section 4]. Unfortunately, none of these methods gives a correct result, as will be
demonstrated in Remark 1.1 below. To the best of our knowledge, no algorithms
for computing medians and means hitherto exist.

Remark 1.1. Let (H, d) be an Hadamard space consisting of three geodesic rays
issuing from the origin 0. This is an R-tree, and as a matter of fact the BHV tree
space T3. Consider three points x, y, z ∈ H lying in distinct rays issuing from the
origin 0 such that d(0, z) = 5, and d(0, x) = d(0, y) = 1. Then it is easy to see
that the Fréchet mean Ξ of x, y, z with the uniform weights 1

3 ,
1
3 ,

1
3 lies on the

geodesic [0, z] and d(0,Ξ) = 1. On the other hand if we apply Birkhoff’s shortening
or the centroid method, we will get a point c ∈ [0, z] such that d(0, c) > 5

4 . Finally,
the weighted average method of the points x, y, z yields a point w ∈ [0, z] with
d(0, w) = 5

3 , or the origin 0, depending on the order we choose.

It is worth mentioning that in spite of an apparent similarity between (1) and (2),
there is a substantial difference in the complexity of computing the median and the
mean even in Euclidean spaces. While it is trivial to find a mean in finitely many
steps, see (13) below, there exists no formula for computing a median in R

d, and
we can use only approximation algorithms; see [10] and the references therein.

The BHV tree space and statistical biology. To increase the motivation and
whet the appetite even more we will now take a closer look at the BHV space and its
applications. The BHV tree space is a CAT(0) cubical complex whose elements are
(combinatorial) trees with a fixed number of terminal nodes and lengths assigned
to all edges [9].

Combinatorial trees with a fixed number of terminal vertices can represent evo-
lutionary trees in phylogenetics. Then, given a finite collection of such trees, it is
desirable to find an average tree. Most naturally this average is the Fréchet mean.
On the other hand until now, no algorithm for its computation was available in the
BHV tree space and therefore alternative and less satisfactory concepts of an aver-
age were used, for instance, a centroid [9], or a majority consensus [34]. However,
with our algorithms at hand, one can efficiently compute the Fréchet mean itself.
For a general mathematical background of contemporary phylogenetics, the reader
is referred to [13, 37, 39].

Apart from phylogenetics, tree-like structures emerge naturally in other subject
fields of biology and computing an average tree is again of interest. Let us mention
applications to airway systems in human lungs [14, 15] and blood vessels [46].

All the algorithms presented in this paper require computing geodesics in the
underlying Hadamard space. While it can be a difficult task in a general Hadamard
space, there exists an efficient polynomial-time algorithm for computing geodesics
in the BHV tree space due to M. Owen and S. Provan [35, 36], which makes our
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algorithms directly applicable in practice. See Section 5 at the end of the present
paper.

The proximal point algorithm and its applications. Let (H, d) be an Hada-
mard space. Our algorithms for computing medians and means are based on a spe-
cial version of the proximal point algorithm (PPA) for minimizing a convex func-
tion f of the form

(3) f :=

N
∑

n=1

fn,

where fn : H → (−∞,∞] are all convex and lower semicontinuous (lsc). The main
trick here is that instead of applying iteratively the resolvent

Jλ(x) := argmin
y∈H

[

f(y) +
1

2λ
d(x, y)2

]

of the function f, we apply the resolvents

Jn
λ (x) := argmin

y∈H

[

fn(y) +
1

2λ
d(x, y)2

]

of its components fn either in cyclic or random order; see Definitions 3.3 and 3.5
for the precise formulations of the algorithms. Such algorithms have been recently
shown by D. Bertsekas [7] to converge to a minimizer of f when the underlying
space is R

d. We extend these results into locally compact Hadamard spaces and
then apply them with fn being fn = wnd (·, an) in the case of the median (1), and

with fn = wnd (·, an)
2
in the case of the mean (2). In either case, it is then easy to

find explicit formulas for the resolvents Jn
λ , and one hence obtains simple algorithms

for computing means and medians, respectively. The detailed description is given
in Section 4.

The proximal point algorithm in turn relies upon the supermartingale conver-
gence theorem, which is recalled in Section 2 below.

The function (3) can apparently accommodate more general problems. For in-
stance, we can put

(4) f(x) :=

N
∑

n=1

wnd (x, an)
p
, x ∈ H,

where p ∈ [1,∞). Then f is convex continuous and encompasses medians and means
as special cases:

(i) If p = 1, then f becomes the objective function in the Fermat-Weber

problem for optimal facility location and its minimizer is the median of
the points a1, . . . , aN with weights w1, . . . , wN .

(ii) If p = 2, then a minimizer of f is the barycenter of the probability measure

π :=

N
∑

n=1

wnδan
,

where δan
stands for the Dirac measure at the point an. For further details

on barycenters, the reader is referred to [23, Chapter 3] and [44]. Thus the
mean of the points a1, . . . , aN can be equivalently viewed as the barycenter
of π.
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Another way of generalizing (1), and (2) alike, is to replace the points a1, . . . , aN
by convex closed sets C1, . . . , CN ⊂ H. Since the distance functions to such sets
are convex continuous (see Example 1.3 below) in Hadamard spaces, the objective
function in this problem is of the form (3). Namely, we are to minimize the function

(5) f(x) :=

N
∑

n=1

wnd (x;Cn) , x ∈ H.

Problems of this type have been recently studied from various perspectives [31, 32,
33]. Our approach, based on the proximal point algorithm, seems to be however
novel even in linear spaces. See also Remark 4.5 where we give an explicit algorithm.

We will now present several natural examples of convex lsc functions in Hada-
mard spaces to see that the proximal point algorithm is applicable in many more
situations. Let still (H, d) be an Hadamard space.

Example 1.2 (Indicator functions). Let K ⊂ H be a convex set. Define the indi-

cator function of K by

ιK(x) :=







0, if x ∈ K,

∞, if x /∈ K.

Then ιK is a convex function and it is lsc if and only if K is closed.

Example 1.3 (Distance functions). The function

(6) x 7→ d (x, x0) , x ∈ H,

where x0 is a fixed point of H, is convex and continuous. The function d (·, x0)
p
for

p > 1 is strictly convex. More generally, the distance function to a closed convex
subset C ⊂ H, defined as

d(x;C) := inf
c∈C

d(x, c), x ∈ H,

is convex and 1-Lipschitz [12, p.178].

Example 1.4 (Displacement functions). Let T : H → H be an isometry. The
displacement function of T is the function δT : H → [0,∞) defined by

δT (x) := d(x, Tx), x ∈ H.

It is convex and Lipschitz [12, p.229].

Example 1.5 (Busemann functions). Let c : [0,∞) → H be a geodesic ray. The
function bc : H → R defined by

bc(x) := lim
t→∞

[d (x, c(t))− t] , x ∈ H,

is called the Busemann function associated to the ray c. Busemann functions are
convex and 1-Lipschitz. Concrete examples of Busemann functions are given in
[12, p. 273]. Another explicit example of a Busemann function in the Hadamard
space of positive definite n × n matrices with real entries can be found in [12,
Proposition 10.69]. The sublevel sets of Busemann functions are called horoballs

and carry a lot of information about the geometry of the space in question, see [12]
and the references therein.
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Example 1.6 (Energy functional). The energy functional is a convex lsc function
on an Hadamard space of L2-mappings. It has been studied extensively at a varying
level of generality [16, 17, 20, 21, 22, 25]. Minimizers of the energy functional are
called harmonic maps and are of importance in both geometry and analysis. For a
probabilistic approach to harmonic maps in Hadamard spaces, see [41, 42, 45].

The indicator function of Example 1.2 is often employed to convert a constrained
minimization problem into an unconstrained one. Indeed, the minimization of the
function (3) on a closed convex set C ⊂ H is equivalent to the minimization of

f̃ := ιC +
N
∑

n=1

fn,

over the whole space H.
We explicitly mention yet another application of the above version of the prox-

imal point algorithm. Namely, if C1, . . . , CN are closed convex subsets of H such
that

C1 ∩ · · · ∩ CN 6= ∅,

and if we set fn = ιCn
in (3), then it is easy to see that

Jn
λ (x) = PCn

(x),

for any x ∈ H, λ > 0, and n = 1, . . . , N. Here PCn
stands for the metric projection

onto Cn; see Section 2. The proximal point algorithm hence becomes the method of

cyclic and random projections, respectively, and converges to a point c ∈
⋂N

n=1 Cn.
Such algorithms play an important role in optimization, for instance in convex
feasibility problems; see [4, 5, 6] and the references therein. If N = 2, both cyclic
and random orders of the projections give the same approximating sequence, and
we get the so-called alternating projections, which were in Hadamard spaces studied
in [3].

The Lie-Trotter-Kato formula. There is also a tight connection to gradient
flow semigroups for a function of the form (3), since the proximal point algorithm
is a discrete time version of the gradient flow.

We need the following notation. If F : H → H is a mapping, we denote its
kth power, with k ∈ N, by

F (k)x := (F ◦ · · · ◦ F )x, x ∈ H,

where F appears k-times on the right hand side.
Recall that the gradient flow semigroup (St)t≥0 of f is given as

(7) Stx := lim
k→∞

(

J t

k

)(k)

(x), x ∈ dom f.

The limit in (7) is uniform with respect to t on bounded subintervals of [0,∞), and
(St)t≥0 is a strongly continuous semigroup of nonexpansive mappings, see [24, The-

orem 1.3.13] and [29, Theorem 1.13]. In the same way we define the semigroups Sn
t

of the components fn, using the appropriate resolvents Jn
λ , for n = 1, . . . , N.

The following nonlinear version of the Lie-Trotter-Kato formula was proved
in [40]. It shows that, given a function f of the form (3), we can approximate
the semigroup of f by the resolvents (or semigroups) of the components fn. The
symbol Pn will denote the metric projection onto dom fn, where n = 1, . . . , N.
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Theorem 1.7 (Stojkovic). Let (H, d) be an Hadamard space, and fn : H →

(−∞,∞] be convex lsc, where n = 1, . . . , N. Denote f =
∑N

1 fn. Then, for any

t ∈ [0,∞), and x ∈ dom f, we have

St(x) = lim
n→∞

(

JN
t

n

◦ · · · ◦ J1
t

n

)(n)

(x),(8a)

and,

St(x) = lim
n→∞

(

SN
t

n

◦ PN · · · ◦ S1
t

n

◦ P1

)(n)

(x).(8b)

The convergence in both (8a) and (8b) is uniform with respect to t on any compact

subinterval of [0,∞).

Proof. The proof given in [40] uses ultralimits of Hadamard spaces. A simpler proof
relying on weak convergence appeared in [1]. �

The law of large numbers in Hadamard space. The law of large numbers
is related to the Fréchet mean in a classical linear setting as well as in Hadamard
spaces. For a historical remark, we refer the interested reader to [43, Remark 2.7a].
As we shall see in the sequel, more precisely in Section 5, the probabilistic point of
view enables us to find an alternative algorithm for computing the Fréchet mean.
We shall also the algorithms based on the PPA with this algorithm based on the
law of large numbers.

The author was informed that the algorithm relying upon the law of large num-
bers was independently discovered by E. Miller, M. Owen, and S. Provan [30].

The organization of the paper. The following Section 2 is devoted to the rudi-
ments of Hadamard space theory including a discussion on medians and means.
The main results of the present paper are contained in Section 3. We prove that
both the cyclic and random order versions of the PPA converge to a minimizer of
the function in question. In Section 4 we apply the PPA to the case of medians
and means, respectively, and obtain explicit and user-friendly algorithms for their
computations. The last part, Section 5, is devoted to an alternative algorithm for
Fréchet means which relies upon the law of large numbers.

Acknowledgments. I would like to thank Megan Owen for bringing the ques-
tion of computing medians in the BHV tree space to my attention and sharing
her insight with me. I am also very grateful to Aasa Feragen, Ezra Miller, and
Sean Skwerer for many inspiring discussions on this and related subjects during
the Workshop on Geometry and Statistics in Bioimaging: Manifolds and Stratified

spaces in Sønderborg, Denmark, in October 2012. Special thanks go to Martin Kell
and Ezra Miller for their helpful comments on earlier versions of the manuscript.

2. Preliminaries

Hadamard spaces. We will now recall basic facts on Hadamard spaces. For
further details on the subject, we refer the reader to [12] or [23].

A metric space (X, d) is called geodesic if for any pair of points x, y ∈ X there
exists a geodesic which connects them. That is, there exists a mapping γ : [0, 1] →
X such that γ(0) = x, γ(1) = y, and

d (γ(s), γ(t)) = d(x, y) |s− t|,
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for s, t ∈ [0, 1]. If for any point z ∈ X, geodesic γ : [0, 1] → X, and t ∈ [0, 1], we
have

(9) d (z, γ(t))
2 ≤ (1− t)d (z, γ(0))

2
+ td (z, γ(1))

2 − t(1− t)d (γ(0), γ(1))
2
,

the space (X, d) is called CAT(0). This property in particular implies that any two
points are connected by a unique geodesic.

We will moreover assume the Hadamard spaces in our theorems be locally com-
pact. Apart from the BHV tree space described in the Introduction, the class of
locally compact Hadamard spaces includes Euclidean spaces, hyperbolic spaces,
complete simply connected Riemannian manifolds of nonpositive sectional curva-
ture, Euclidean buildings, locally compact R-trees and CAT(0) complexes. The
algorithm in Section 5 however works without the local compactness assumption.

We will now recall an inequality which goes back to the work of Reshetnyak. Its
modern proof can be found in [44, Proposition 2.4], or in [26, Lemma 2.1].

Lemma 2.1. Let (H, d) be an Hadamard space. Then we have

d(x, y)2 + d(u, v)2 ≤ d(x, v)2 + d(y, u)2 + 2d(x, u)d(y, v),

for any points x, y, u, v ∈ H.

Given a pair of points x, y ∈ H, we denote (1 − t)x + ty = γ(t), where γ is the
geodesic connecting x and y. We say that a set C ⊂ H is convex provided x, y ∈ C
implies (1 − t)x + ty ∈ C for any t ∈ [0, 1]. Furthermore, we say that a function
f : H → (−∞,∞] is convex if the function f ◦ γ : [0, 1] → (−∞,∞] is convex for
any geodesic γ : [0, 1] → H.

Let (H, d) be an Hadamard space and C ⊂ H be a convex closed set. Then for
any x ∈ H there exists a unique point c ∈ C such that

d(x, c) = inf
y∈C

d(x, y),

and we denote this point c by PC(x). The mapping PC : H → C is nonexpansive
and we call it the metric projection onto the set C.

Given a function f : H → (−∞,∞], we say that a point z ∈ H is a minimizer
of f if

f(z) = inf
x∈H

f(x).

The set of all minimizers of f will be denoted Min(f). A resolvent of the function f
is defined by

(10) Jλ(x) := argmin
y∈H

[

f(y) +
1

2λ
d(x, y)2

]

,

for any x ∈ H, and parameter λ > 0. If f is convex and lsc, then Jλ : H → H is
a well-defined nonexpansive mapping [24, Lemma 2.5], and [29, Lemma 1.12].

Let us now state the following result from [18, Lemma 2.2], which then implies
the existence of a minimizer of a coercive function in Lemma 2.3 below.

Lemma 2.2. Let (H, d) be an Hadamard space and (Cn) be a nonincreasing se-

quence of bounded closed convex subsets of H. Then
⋂

n∈N

Cn 6= ∅.

Proof. See [18, Lemma 2.2]. �
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As a consequence, we obtain the following Lemma 2.3. Just recall that a function
f : H → (−∞,∞] is coercive if it satisfies f(x) → ∞ whenever d (x, x0) → ∞, for
some x0 ∈ H.

Lemma 2.3. Let (H, d) be an Hadamard space and f : H → (−∞,∞] be a coercive

convex lsc function. Then f has a minimizer.

Proof. We will first observe that f is bounded from below on bounded sets. Let
C ⊂ H be bounded, and without loss of generality assume that C is closed convex.
If infC f = −∞, then the sets SN = {x ∈ C : f(x) ≤ −N} for N ∈ N are all
nonempty, closed, convex, and bounded. But then Lemma 2.2 yields a point z ∈
⋂

N∈N
SN . Clearly f(z) = −∞, which is not possible.

Since f is bounded from below on bounded sets, it is bounded from below on H,
by the coercivity assumption. Therefore infH f > −∞, and the sublevel sets

Cn :=

{

x ∈ H : f(x) ≤ inf
H

f +
1

n

}

,

form a nonincreasing sequence of nonempty, bounded, closed, convex subsets of H.
Such a family has according to Lemma 2.2 nonempty intersection and any point in
this intersection is obviously a minimizer of f. �

Means. Given a finite set of points a1, . . . , aN ∈ H, recall that the (weighted)
Fréchet mean with positive weights w1, . . . , wN satisfying

∑

wn = 1, was in (2)
defined as

(11) Ξ := Ξ (w; a) := argmin
x∈H

N
∑

n=1

wnd (x, an)
2
,

where again we denote w = (w1, . . . , wN ) and a = (a1, . . . , aN ) . Some authors
alternatively use the name Karcher mean. The existence and uniqueness of the
minimizer in the definition is a consequence of nonpositive curvature. It is guaran-
teed by the following theorem, which is a combination of [23, Theorem 3.2.1], [44,
Proposition 4.4], and [26, Lemma 4.2].

Theorem 2.4. Let (H, d) be an Hadamard space, let a1, . . . , aN ∈ H be a finite set

of points, and w1, . . . , wN be positive weights satisfying
∑

wn = 1. Then there exists

a unique point Ξ ∈ H defined in (11). Furthermore, this Ξ satisfies the variance

inequality

(12) d (z,Ξ)
2
+

N
∑

n=1

wnd (Ξ, an)
2 ≤

N
∑

n=1

wnd (z, an)
2
,

for any z ∈ H. Finally, the function Ξ(w; ·) satisfies

d (Ξ (w; a) ,Ξ (w; a′)) ≤
N
∑

n=1

wnd (an, a
′
n) ,

for any a1, . . . , aN ∈ H, and a′1, . . . , a
′
N ∈ H.

Proof. We are to show that there exists a unique minimizer of the function

ϕ : x 7→
N
∑

n=1

wnd (x, an)
2
, y ∈ H.
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The function ϕ is bounded from below by 0. Take a minimizing sequence (yk) ⊂ H,
that is, a sequence such that ϕ (yk) → inf ϕ. The inequality (9) yields that (yk) is
Cauchy. Indeed, if ykl denotes the midpoint of yk and yl, then (9) with t = 1

2 gives

d (ykl, an)
2 ≤

1

2
d (yk, an)

2
+

1

2
d (yl, an)

2 −
1

4
d (yk, yl)

2
.

Multiplying this inequality by wn and summing from n = 1 to N easily gives that
the sequence (yk) is Cauchy. Since ϕ is continuous, the sequence (yk) converges
to a minimizer of ϕ. The uniqueness of this minimizer follows again from (9). It
remains to show (12). Employing (9) yields

N
∑

n=1

wnd (γ(t), an)
2 −

N
∑

n=1

wnd (Ξ, an)
2 ≤ (1− t)

N
∑

n=1

wn

[

d (γ(0), an)
2 − d (Ξ, an)

2
]

+ t

N
∑

n=1

wn

[

d (γ(1), an)
2 − d (Ξ, an)

2
]

− t(1− t)d (γ(0), γ(1))
2
,

for any geodesic γ : [0, 1] → H. Setting γ(0) = Ξ and γ(1) = z gives

0 ≤
N
∑

n=1

wnd (γ(t), an)
2 −

N
∑

n=1

wnd (Ξ, an)
2

≤ t

[

N
∑

n=1

wnd (z, an)
2 −

N
∑

n=1

wnd (Ξ, an)
2

]

− t(1− t)d (Ξ, z)
2

for any t ∈ (0, 1). Dividing by t and letting t → 0 yields (12).
If we denote Ξ = Ξ (w; a) and Ξ′ = Ξ (w; a′) , then Lemma 2.1 yields

d (an,Ξ
′)
2
+ d (a′n,Ξ)

2
≤ d (an,Ξ)

2
+ d (a′n,Ξ

′)
2
+ 2d (Ξ,Ξ′) d (an, a

′
n) ,

multiplying by wn and summing up over n from 1 to N further gives

N
∑

n=1

wn

[

d (an,Ξ
′)
2
+ d (a′n,Ξ)

2
]

≤
N
∑

n=1

wn

[

d (an,Ξ)
2
+ d (a′n,Ξ

′)
2
]

+ 2d (Ξ,Ξ′)
N
∑

n=1

wnd (an, a
′
n) .

By the variance inequality (12) we have

N
∑

n=1

wn

[

d (an,Ξ
′)
2
+ d (a′n,Ξ)

2
]

≥
N
∑

n=1

wn

[

d (an,Ξ)
2
+ d (a′n,Ξ

′)
2
]

+ 2d (Ξ,Ξ′)
2
.

Altogether we obtain

d (Ξ,Ξ′) ≤
N
∑

n=1

wnd (an, a
′
n) ,

which finishes the proof. �
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If a1, . . . , aN ∈ R
d, then of course

(13) Ξ (w; a) =
w1a1 + · · ·+ wNaN

N
.

In other words, the Fréchet mean coincides with the usual (weighted) arithmetic
mean.

Medians. The (weighted) geometric median of a finite set of points a1, . . . , aN ∈
H, was in (1) defined as

(14) Ψ (w; a) := argmin
x∈H

N
∑

n=1

wnd (x, an) .

Since the function

x 7→
N
∑

n=1

wnd (x, an)

is convex continuous and coercive, it has a minimizer due to Lemma 2.3. It is easy
to check that a minimizer is unique unless all the points a1, . . . , aN lie on a geodesic.
As we have already mentioned in the Introduction, a median is an optimal solution
to the Fermat-Weber problem in facility location theory.

Supermartingale convergence theorem. The main results of the present paper
rely upon the following theorem.

Theorem 2.5. Let (Yk) , (Zk) , and (Wk) be sequences of random variables and let

Fk be sets of random variables such that Fk ⊂ Fk+1, for k ∈ N. Assume that

(i) All random variables are nonnegative, and are functions of the random

variables in Fk.
(ii) For any k ∈ N we have

E (Yk+1,Fk) ≤ Yk − Zk +Wk.

(iii) We have
∑

Wk < ∞ almost surely.

Then the sequence (Yk) converges to a random variable Y, and
∑

Zk < ∞, almost

surely.

Proof. See for instance [8, Proposition 2]. �

A deterministic version of the above theorem will be used in the proof of Theo-
rem 3.4. We include its proof from [8, Lemma 3.4] for the reader’s convenience.

Lemma 2.6. Let (ak) , (bk) , and (ck) be sequences of nonnegative real numbers.

Assume that

ak+1 ≤ ak − bk + ck,(15)

for any k ∈ N, and,

∞
∑

k=1

ck < ∞.

Then the sequence (ak) converges, and
∑∞

k=1 bk < ∞.
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Proof. Fix l ∈ N. Sum (15) over k ≥ l and take lim supk→∞ to obtain

lim sup
k→∞

ak ≤ al +

∞
∑

k=l

ck.

Taking lim inf l→∞ yields
lim sup
k→∞

ak ≤ lim inf
l→∞

al,

and hence (ak) converges. Now fix n ∈ N and sum (15) from k = 1 to k = n,
n
∑

k=1

bk ≤ a1 +

n
∑

k=1

ck − an+1.

Since the last inequality holds for any n ∈ N, we get
∑∞

k=1 bk < ∞. �

3. The proximal point algorithm

The proximal point algorithm (PPA) is a method for finding a minimizer of
a convex lsc function defined on a Euclidean space. Its origins go back to Martinet,
Rockafellar, and Brézis&Lions [11, 28, 38]. Quite recently, this algorithm was ex-
tended into Riemannian manifolds of nonpositive sectional curvature [27], and later
also into Hadamard spaces [2]. We recall the main result of [2] in Theorem 3.1 be-
low.

Let (H, d) be an Hadamard space and f : H → (−∞,∞] be a lsc convex function.
Assume that f has a minimizer, that is, Min(f) 6= ∅. The proximal point algorithm

starting at a point x0 ∈ H generates in the k-th step, k ∈ N, the point

(16) xk = argmin
y∈H

[

f(y) +
1

2λk

d (y, xk−1)
2

]

.

In terms of resolvents, we can equivalently express (16) as

(17) xk = Jλk
(xk−1) .

The convergence of the algorithm was established in [2, Theorem 1.4].

Theorem 3.1. Let (H, d) be an Hadamard space and f : H → (−∞,∞] be a convex

lsc function attaining its minimum on H. Then, for an arbitrary starting point

x0 ∈ H and a sequence of positive reals (λn) such that
∑∞

1 λn = ∞, the sequence

(xn) ⊂ H defined by (16) weakly converges to a minimizer of f.

If the underlying space H is locally compact, or the function f is strongly convex,
we obtain strong convergence in the above theorem.

In the present paper, we consider a function f : H → (−∞,∞] of the form

(18) f :=

N
∑

n=1

fn,

where fn : H → (−∞,∞] are convex lsc, and N ∈ N. In many cases, it is much
easier to find the resolvents

(19) Jn
λ (x) := argmin

y∈H

[

fn(y) +
1

2λ
d(x, y)2

]

of the components fn than the resolvent of the function f itself. This is true
for instance for the median and the mean. Then, instead of applying iteratively
the resolvent of f as in (17), we will apply the resolvents (19) of the components
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fn. There are essentially two ways of doing that. We either fix an order of the
components (that is, a permutation of the numbers 1, . . . , N, which without loss
of generality may be the identity permutation), and at each cycle we will apply
the corresponding resolvents in this fixed order, or alternatively, we will at each
step pick a number r ∈ {1, . . . , N} at random, and apply the resolvent of fr. In
either case, we get a sequence converging to a minimizer of f. For (H, d) being the
Euclidean space, such results were recently obtained by D. Bertsekas [7], and we
follow his proof strategy.

To prove Theorem 3.4 and Lemma 3.6, we will need the following estimate on
the function value at a single PPA step.

Lemma 3.2. Let h : H → (−∞,∞] be a convex lsc function on an Hadamard

space (H, d), and let

Jh
λ (x) := argmin

z∈H

[

h(z) +
1

2λ
d(x, z)2

]

be its resolvent with parameter λ > 0. Then

h
(

Jh
λ (x)

)

− h(y) ≤
1

2λ
d(x, y)2 −

1

2λ
d
(

Jh
λ (x), y

)2
,

for any x, y ∈ H.

Proof. Choose x, y ∈ H. From the definition of Jh
λ (x) we have

h
(

Jh
λ (x)

)

+
1

2λ
d(Jh

λ (x), x)
2 ≤ h(p) +

1

2λ
d(p, x)2,

for any p ∈ H. In particular, let t ∈ [0, 1) and pt = (1− t)y + tJh
λ (x), then

1

2λ
d
(

Jh
λ (x), x

)2
−

1

2λ
d (pt, x)

2 ≤ h(pt)− h
(

Jh
λ (x)

)

.

Applying (9) to the above inequality gives

(1− t)
[

h(y)− h
(

Jh
λ (x)

)]

≥−
1− t

2λ
d (y, x)

2

+
1− t

2λ
d
(

Jh
λ (x), x

)2

+
t(1− t)

2λ
d
(

Jh
λ (x), y

)2
,

or, after taking into account that t 6= 1,

h
(

Jh
λ (x)

)

− h(y) ≤
1

2λ
d (y, x)

2 −
1

2λ
d
(

Jh
λ (x), x

)2
−

t

2λ
d
(

Jh
λ (x), y

)2
.

After passing to the limit t → 1, we conclude that

h
(

Jh
λ (x)

)

− h(y) ≤
1

2λ
d (y, x)

2 −
1

2λ
d
(

Jh
λ (x), x

)2
−

1

2λ
d
(

Jh
λ (x), y

)2
,

which finishes the proof. �
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Cyclic order version. We will now prove the first main result, namely, that
the proximal point algorithm with cyclic order of applying the marginal resolvent
gives a sequence which converges to a minimizer. Let us first precisely define the
procedure.

Definition 3.3. Consider a function f of the form (18). Let (λk) be a sequence of

positive reals satisfying

(20)

∞
∑

k=0

λk = ∞, and

∞
∑

k=0

λ2
k < ∞.

Let x0 ∈ H be an arbitrary starting point. For each k ∈ N0 we set

xkN+1 = J1
λk

(xkN ) ,

xkN+2 = J2
λk

(xkN+1) ,

...

xkN+N = JN
λk

(xkN+N−1) ,

where the resolvents are defined by (19) above.

Note that the step size parameter λk is constant throughout each cycle. The
convergence of the above algorithm is assured by the following theorem. The as-
sumption (21) will be commented on later in Remark 3.8.

Theorem 3.4 (Cyclic order version of the PPA). Let (H, d) be a locally compact

Hadamard space, and f : H → (−∞,∞] be of the form (18) with Min(f) 6= ∅.
Given a starting point x0 ∈ H, let (xj) be the sequence defined in Definition 3.3.

Assume there exists L > 0 such that

(21) fn (xkN )− fn (xkN+n) ≤ Ld (xkN , xkN+n) ,

for any k ∈ N, and n = 1, . . . , N. Then (xj) converges to a minimizer of f.

Proof. We divide the proof into two steps. Step 1: We claim that

(22) d (xkN+N , y)
2 ≤ d (xkN , y)

2 − 2λk [f (xkN )− f(y)] + 2λ2
kL

2N(N + 1),

for any y ∈ H. Indeed, apply Lemma 3.2 with h = fn and x = xkN+n−1 to obtain

d (xkN+n, y)
2 ≤ d (xkN+n−1, y)

2 − 2λk [fn (xkN+n)− fn(y)] ,

for every y ∈ H, and n = 1, . . . , N. By summing up we obtain

d (xkN+N , y)
2 ≤ d (xkN , y)

2 − 2λk

N
∑

n=1

[fn (xkN+n)− fn(y)] ,

≤ d (xkN , y)
2 − 2λk [f (xkN )− f(y)]

+ 2λk

N
∑

n=1

[fn (xkN )− fn (xkN+n)] .

By the assumption (21), we have

fn (xkN )− fn (xkN+n) ≤ Ld (xkN , xkN+n) ,

where the right hand side can be further estimated as

d (xkN , xkN+n) ≤ d (xkN , xkN+1) + · · ·+ d (xkN+n−1, xkN+n) .
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By the definition of the algorithm we have

fm (xkN+m) +
1

2λk

d (xkN+m−1, xkN+m)
2 ≤ fm (xkN+m−1) ,

for any m = 1, . . . , N, which then gives

d (xkN+m−1, xkN+m) ≤ 2λk

fm (xkN+m−1)− fm (xkN+m)

d (xkN+m−1, xkN+m)

≤ 2λkL,

where we again employed the assumption (21). Hence,

fn (xkN )− fn (xkN+n) ≤ 2λkL
2n,

and finally,

d (xkN+N , y)
2 ≤ d (xkN , y)

2 − 2λk [f (xkN )− f(y)] + 2λ2
kL

2N(N + 1),

which finishes the proof of (22).
Step 2: Let now z ∈ Min(f), and apply (22) with y = z. Then

d (xkN+N , z)
2 ≤ d (xkN , z)

2 − 2λk [f (xkN )− f(z)] + 2λ2
kL

2N(N + 1),

which according to Lemma 2.6 implies that the sequence

(d (xkN , z))k∈N0

converges, (and in particular, the sequence (xkN ) is bounded), and

(23)

∞
∑

k=0

λk [f (xkN )− f(z)] < ∞.

From (23) we immediately obtain that there exists a subsequence (xklN ) of (xkN )
for which

f (xklN ) → f(z), as l → ∞.

Since the sequence (xklN ) is bounded, it has a subsequence which converges to
a point ẑ ∈ H. By the lower semicontinuity of f we obtain ẑ ∈ Min(f). Then we
know that

(d (xkN , ẑ))k∈N0

converges, and also that it converges to 0, since a subsequence of (xkN ) converges
to ẑ.

By Lemma 3.2 with h = f1, and x = xkN , and y = ẑ, we get that

0 ≤ f1 (xkN+1)− f1 (ẑ) ≤
1

2λ
d (xkN , ẑ)

2 −
1

2λ
d (xkN+1, ẑ)

2
,

and taking the limit k → ∞ yields

lim
k→∞

xkN+1 = ẑ.

In the same way, we obtain

lim
k→∞

xkN+n = ẑ,

for any n = 2, . . . , N. Hence the whole sequence (xj) converges to ẑ, and the proof
is complete. �
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Random order version. Instead of applying the marginal resolvents in a cyclic
order, one can at each step select a number from {1, . . . , N} at random and use
the corresponding resolvent. Next we prove that the resulting sequence converges
to a minimizer of the function f, too.

Definition 3.5. Consider a function f : H → (−∞,∞] of the form (18). Let (λk)
be a sequence of positive reals satisfying

(24)

∞
∑

k=0

λk = ∞, and

∞
∑

k=0

λ2
k < ∞.

Let (rk) be a sequence of random variables which attain values from {1, . . . , N}
according to the uniform distribution, independently of previous steps. For every

k ∈ N0, define

(25) xk+1 := Jrk
λk

(xk) ,

with a starting point x0 ∈ H. Finally, denote xn
k+1 the result of the iteration with xk

if rk = n.

The following Lemma 3.6 is a stochastic version of Lemma 3.2. Again, the
assumption (26) will be commented on in Remark 3.8.

Lemma 3.6. Let (H, d) be an Hadamard space and f be of the form (18). Given

a starting point x0 ∈ H, let (xk) be the sequence defined in Definition 3.5. Assume

there exists L > 0 such that

(26) fn (xk)− fn
(

xn
k+1

)

≤ Ld
(

xk, x
n
k+1

)

,

for any k ∈ N, and n = 1, . . . , N. If we denote Fk = {xk, . . . , x0} , then

E

[

d (xk+1, y)
2 ∣
∣Fk

]

≤ d (xk, y)
2 −

2λk

N
[f (xk)− f(y)] + 4λ2

kL
2,

almost surely, for any y ∈ H.

Proof. By Lemma 3.2 we have

d (xk+1, y)
2 ≤ d (xk, y)

2 − 2λk [frk (xk)− frk (y)] .

Taking the conditional expectation with respect to Fk gives

E

[

d (xk+1, y)
2 ∣
∣Fk

]

≤ d (xk, y)
2 − 2λkE

[

frk (xk)− frk (y)
∣

∣Fk

]

.

If we denote xn
k+1 the result of the iteration with xk when rk = n, we get

E

[

d (xk+1, y)
2 ∣
∣Fk

]

≤ d (xk, y)
2 −

2λk

N

N
∑

n=1

[

fn
(

xn
k+1

)

− fn (y)
]

= d (xk, y)
2 −

2λk

N
[f (xk)− f(y)]

+
2λk

N

N
∑

n=1

[

fn (xk)− fn
(

xn
k+1

)]

.

By the assumption (26) we have

N
∑

n=1

[

fn (xk)− fn
(

xn
k+1

)]

≤ L

N
∑

n=1

d
(

xk, x
n
k+1

)

≤ 2L2λkN,
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since

d
(

xk, x
n
k+1

)

≤ 2λk

fn (xk)− fn
(

xn
k+1

)

d
(

xk, xn
k+1

) ≤ 2λkL.

We hence finally obtain

E

[

d (xk+1, y)
2 ∣
∣Fk

]

≤ d (xk, y)
2 −

2λk

N
[f (xk)− f(y)] + 4λ2

kL
2,

which finishes the proof. �

We now get to the second convergence theorem.

Theorem 3.7 (Random order version of the PPA). Let (H, d) be a locally compact

Hadamard space and f be of the form (18) with Min(f) 6= ∅. Assume that the

Lipschitz condition (26) holds true. Then, given a starting point x0 ∈ H, the

sequence (xk) defined in Definition 3.5 converges to a minimizer of f almost surely.

Proof. Let (vi) be a countable dense subset of Min(f). For each i ∈ N apply
Lemma 3.6 with y = vi to obtain

E

[

d (xk+1(ω), vi)
2 ∣
∣Fk

]

≤ d (xk(ω), vi)
2 −

2λk

N
[f (xk(ω))− f (vi)] + 4λ2

kL
2.

Theorem 2.5 immediately gives that d (vi, xk(ω)) converges, and
∞
∑

k=0

λk [f (xk(ω))− inf f ] < ∞,

for all ω ∈ Ωvi
, where Ωvi

is a set of full measure. Next denote

Ω =
⋂

i∈N

Ωvi ,

which is obviously again a set of full measure. The last inequality yields that for
ω ∈ Ω, we have lim infk→∞ f (xk(ω)) = inf f, and since (xk(ω)) is bounded, it has
a cluster point x(ω) ∈ H. By the lower semicontinuity of f we may assume that
x(ω) ∈ Min(f).

For each ε > 0 there exists vi(ε) ∈ (vi) such that d
(

x(ω), vi(ε)
)

< ε. Because the

sequence d
(

xk(ω), vi(ε)
)

converges and x(ω) is a cluster point of xk(ω), we have

lim
k→∞

d
(

xk(ω), vi(ε)
)

< ε.

This yields xk(ω) → x(ω). We obtain that xk converges to a minimizer almost
surely. This finishes the proof. �

Remark 3.8. The assumptions (21) in Theorem 3.4, and (26) in Theorem 3.7 are
satisfied, for instance, if

(i) the functions fn are Lipschitz on H with constant L, or
(ii) the functions fn are Lipschitz on bounded sets and coercive.

The latter condition applies for a function f of the form (4). In particular, for both
the mean (11), and the median (14).

4. Computing medians and means

The algorithms from Definitions 3.3 and 3.5 can be directly applied to compute
means and medians in locally compact Hadamard spaces. We will now give an
explicit description of these two special cases.
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Algorithms for computing means. Given positive weights w1, . . . , wN with
∑

wn = 1 and points a1, . . . , aN ∈ H, we wish to minimize the function

f(x) :=

N
∑

n=1

wnd (x, an)
2
, x ∈ H.

The existence and uniqueness of a minimizer is assured by Theorem 2.4. Fur-
thermore, the function f is of the form (18) and according to Remark 3.8 satis-
fies both (21) and (26). We can therefore employ proximal point algorithms with

fn = wnd (·, an)
2
, for n = 1, . . . , N. Let us first consider the cyclic order version

from Definition 3.3. Let (λk) be a sequence of positive reals satisfying (20). We
start at some point x0 ∈ H, and for each k ∈ N0 we set

xkN+1 = J1
λk

(xkN ) ,

xkN+2 = J2
λk

(xkN+1) ,

...

xkN+N = JN
λk

(xkN+N−1) ,

where Jn
λk

is now the resolvent of the function fn = wnd (·, an)
2
, for n = 1, . . . , N.

It is easy to find these resolvents explicitly. Indeed, fix k ∈ N0 and n = 1, . . . , N.
Then xkN+n is the unique minimizer of the function

wnd (·, an)
2
+

1

2λk

d (·, xkN+n−1)
2
,

and it is obvious that such a minimizer lies on the geodesic [xkN+n−1, an] , that is,

xkN+n = (1− tnk )xkN+n−1 + tnkan,

for some tnk ∈ [0, 1]. By an elementary calculation we get

(27) tnk =
2λkwn

1 + 2λkwn

.

The above algorithm then reads:

Algorithm 4.1 (Computing mean, cyclic order version). Given x0 ∈ H and (λk)
satisfying (20) we set

xkN+1 =
1

1 + 2λkw1
xkN +

2λkw1

1 + 2λkw1
a1,

xkN+2 =
1

1 + 2λkw2
xkN+1 +

2λkw2

1 + 2λkw2
a2,

...

xkN+N =
1

1 + 2λkwN

xkN+N−1 +
2λkwN

1 + 2λkwN

aN ,

for each k ∈ N0 and n = 1, . . . , N.

The convergence of the sequence (xj) produced by Algorithm 4.1 to the weighted
mean of the points a1, . . . , aN follows by Theorem 3.4 above. Note that if the
weights are uniform, that is, wn = 1

N
for each n = 1, . . . , N, then the coefficients tnk

are independent of n.
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We will now turn to the randomized version from Definition 3.5. By a similar
process as above we obtain the following algorithm.

Algorithm 4.2 (Computing mean, random order version). Let x0 ∈ H be a starting

point and (λk) satisfy (24). At each step k ∈ N0, choose randomly rk ∈ {1, . . . , N}
according to the uniform distribution and put

xk+1 =
1

1 + 2λkwrk

xk +
2λkwrk

1 + 2λkwrk

ark .

The convergence of the sequence (xk) produced by Algorithm 4.2 to the weighted
mean of the points a1, . . . , aN follows by Theorem 3.7 above.

Algorithms for computing medians. Given positive weights w1, . . . , wN with
∑

wn = 1 and points a1, . . . , aN ∈ H, we wish to minimize the function

f(x) :=

N
∑

n=1

wnd (x, an) , x ∈ H.

The function f is again of the form (18) with fn = wnd (·, an) , for n = 1, . . . , N. It
is Lipschitz, and hence satisfies the assumptions (21) and (26). In the cyclic order
version, we start at some point x0 ∈ H, and for each k ∈ N0 we set

xkN+1 = J1
λk

(xkN ) ,

xkN+2 = J2
λk

(xkN+1) ,

...

xkN+N = JN
λk

(xkN+N−1) ,

where Jn
λk

is the resolvent of the function fn = wnd (·, an) , for n = 1, . . . , N, and
(λk) is a sequence of positive reals satisfying (20). More specifically, if we fix k ∈ N0

and n = 1, . . . , N, then xkN+n is the unique minimizer of the function

wnd (·, an) +
1

2λk

d (·, xkN+n−1)
2
,

and it is obvious that such a minimizer lies on the geodesic [xkN+n−1, an] , that is,

xkN+n = (1− tnk )xkN+n−1 + tnkan,

for some tnk ∈ [0, 1]. These coefficients are again easy to determine. We have to
however treat the cyclic and the random case separately.

Algorithm 4.3 (Computing median, cyclic order version). Given x0 ∈ H and (λk)
satisfying (20) we set

xkN+1 =
(

1− t1k
)

xkN + t1ka1,

xkN+2 =
(

1− t2k
)

xkN+1 + t2ka2,

...

xkN+N =
(

1− tNk
)

xkN+N−1 + tNk aN ,

with tnk defined by

tnk = min

{

1,
λkwn

d (an, xkN+n−1)

}

,

for each k ∈ N0 and n = 1, . . . , N.
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The convergence of the sequence (xj) produced by Algorithm 4.3 to the median
of the points a1, . . . , aN with the weights (w1, . . . , wN ) follows by Theorem 3.4
above. Finally, the randomized version can be derived in a similar way.

Algorithm 4.4 (Computing median, random order version). Let x0 ∈ H be

a starting point and (λk) satisfies (24). At each step k ∈ N0, choose randomly

rk ∈ {1, . . . , N} according to the uniform distribution and put

(28) xk+1 = (1− tk)xk + tkark ,

with tk defined by

tk = min

{

1,
λkwrk

d (ark , xk)

}

,

for each k ∈ N0.

The convergence of the sequence (xk) produced by Algorithm 4.4 to the median
of the points a1, . . . , aN follows by Theorem 3.7 above.

Remark 4.5. Let now take a look at a more general situation mentioned already
in the Introduction. Let C1, . . . , CN be convex closed subsets of our locally compact
Hadamard space (H, d) and minimize the function (5), that is,

f(x) =

N
∑

n=1

wnd (x;Cn) , x ∈ H,

where w = (w1, . . . , wN ) are again positive weights with
∑

wn = 1. We have to
assume that at least one of the sets C1, . . . , CN be bounded in order to fulfill the
assumption Min(f) 6= ∅ in Theorems 3.4 and 3.7. It is also clear that f is convex and
1-Lipschitz and thus satisfies both (21) and (26). Denote Pn the metric projection
onto the set Cn, where n = 1, . . . , N. We describe the random version of the PPA
algorithm only, the cyclic version being completely analogous.

Let x0 ∈ H be a starting point and (λk) satisfies (24). At each step k ∈ N0,
choose randomly rk ∈ {1, . . . , N} according to the uniform distribution and put

xk+1 = (1− tk)xk + tkPrk (xk) ,

with tk defined by

tk = min

{

1,
λkwrk

d (Prk (xk) , xk)

}

,

for each k ∈ N0. Then the sequence (xk) converges to a minimizer of f by Theo-
rem 3.7.

5. Computing means via the law of large numbers

In this last section we give an alternative algorithm for computing the Fréchet
mean, which is based on the law of large numbers. The advantage of this approach
is that we do not require the underlying Hadamard space be locally compact. We
shall also compare this algorithm with Algorithm 4.2.

Let again a1, . . . , aN ∈ H be a finite set of points and w1, . . . , wN be positive
weights satisfying

∑

wn = 1. Denote the probability measure

(29) π =

N
∑

n=1

wnδan
,
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where δan
stands for the Dirac measure at an. Assume that Y is a random variable

with values in H distributed according to π. Then the variational inequality (12)
can be written as

(30) d (z,Ξ)
2
+ Ed (Ξ, Y )

2 ≤ Ed (z, Y )
2
, z ∈ H,

where the expectation E is of course taken with respect to the distribution π.
Given a sequence of random variables Yk with values in H, we define a se-

quence (Sk) of random variables putting S1 = Y1, and

(31) Sk+1 =
k

k + 1
Sk +

1

k + 1
Yk+1,

for i ∈ N. The random variables Yk, and hence also Sk, are defined on some proba-
bility space Ω, but this space Ω of course plays no role here. The following theorem
due to K.-T. Sturm states a nonlinear version of the law of large numbers. It
appeared in a much more general form in [43, Theorem 2.6].

Theorem 5.1 (The law of large numbers). Let (H, d) be an Hadamard space,

and (Yk) be a sequence of independent random variables Yk : Ω → H, identically
distributed according to the distribution π, defined in (29). Then

Sk → Ξ (w;x) , as k → ∞,

where the convergence is pointwise.

Proof. First denote

ξ = min
x∈H

N
∑

n=1

wnd (x, an)
2
.

We show by induction on k ∈ N that

(32) Ed (Ξ, Sk)
2 ≤

1

k
ξ.

It obviously holds for k = 1 and we assume it holds for some k ∈ N. We have

Ed (Ξ, Sk+1)
2
= Ed

(

Ξ,
k

k + 1
Sk +

1

k + 1
Yk+1

)2

,

by (9) we get

≤
k

k + 1
Ed (Ξ, Sk)

2
+

1

k + 1
Ed (Ξ, Yk+1)

2 −
k

(k + 1)2
Ed (Yk+1, Sk)

2
,

and applying independence and (30) gives

≤
k

k + 1
Ed (Ξ, Sk)

2
+

1

k + 1
Ed (Ξ, Yk+1)

2

−
k

(k + 1)2
E

[

d (Ξ, Sk)
2
+ d (Ξ, Yk+1)

2
]

=

(

k

k + 1

)2

Ed (Ξ, Sk)
2
+

1

(k + 1)2
ξ

≤
1

k + 1
ξ.

This shows that (32) holds, and hence the proof is complete. �
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One can rather straightforwardly convert Theorem 5.1 into an approximation
algorithm for computing the Fréchet mean. Let us now describe such an algorithm.
It receives the points a1, . . . , aN and weights w1, . . . , wN as the input, and at each
iteration k ∈ N it produces a new point sk ∈ H, which is an approximate version
of the desired mean Ξ = Ξ (w;x) in the sense that d (sk,Ξ) → 0 as k → ∞.
The sequence is defined as follows. At each step k ∈ N0, choose randomly rk ∈
{1, . . . , N} according to the distribution w = (w1, . . . , wN ) and put

(33) sk+1 :=
k

k + 1
sk +

1

k + 1
ark .

The convergence of this algorithm is guaranteed by Theorem 5.1.
We shall now compare the algorithm (33) with Algorithm 4.2. Let us first con-

sider the unweighted case, that is, wn = 1
N

for every n = 1, . . . , N. At each iteration
k ∈ N0, the algorithm (33) selects rk ∈ {1, . . . , N} according to the uniform distri-
bution and generates a new point

sk+1 :=
k

k + 1
sk +

1

k + 1
ark .

In Algorithm 4.2, at each step k ∈ N0 we randomly choose a number rk ∈ {1, . . . , N}
according to the uniform distribution and put

xk+1 :=
1

1 + 2λk

xk +
2λk

1 + 2λk

ark .

Thus Algorithm 4.2 produces the same sequence as the algorithm (33) provided we
set λk := 1

2k for each k ∈ N. In other words the algorithm (33) is a special case of
Algorithm 4.2.

On the other hand as far as weighted Fréchet means are concerned, there exists
a difference between these two algorithms. Indeed, if w := (w1, . . . , wN ) are the
weights, then the algorithm (33) selects rk ∈ {1, . . . , N} according to the distribu-

tion w and generates a new point

sk+1 :=
k

k + 1
sk +

1

k + 1
ark ,

that is, with the same coefficients as in the unweighted case. Algorithm 4.2 in
contrast still selects rk ∈ {1, . . . , N} according to the uniform distribution, but the
new point is given by

xk+1 =
1

1 + 2λkwrk

xk +
2λkwrk

1 + 2λkwrk

ark ,

that is, the coefficients now do depend on the weights. In summary, introducing
weights effects either the coefficients (Algorithm 4.2), or the probability distribution
which is used for selecting the points a1, . . . , aN (the algorithm (33)).

Final remarks. Notice that all the algorithms presented in this paper require
finding a geodesic at each iteration. For instance, in Algorithm 4.4, we need to find
the geodesic [xk, ark ] at each step k ∈ N0, or more presicely, we need to compute
the point xk+1 which lies on this geodesic. When employing these algorithms in
the BHV tree space, we can use the Owen-Provan algorithm (mentioned in the
Introduction) to find this point in finitely many steps in polynomial time.
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