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COMPUTING CONVEX HULLS IN THE AFFINE BUILDING OF SLd

LEON ZHANG

ABSTRACT. We describe an algorithm for computing the convex hull of a finite collection of points
in the affine building of SLd(K), for K a field with discrete valuation. These convex hulls describe
the relations among a finite collection of invertible matrices over K. As a consequence, we bound the
dimension of the tropical projective space needed to realize the convex hull as a tropical polytope.

1. INTRODUCTION

Affine buildings are infinite simplicial complexes originally introduced by Tits to study the struc-
ture of simple Lie groups. They have since found use in a variety of other contexts, including arith-
metic and algebraic geometry [CHSW11, KT06], optimization [Hir18], and phylogenetics [DT98].

We consider the affine building Bd associated to the group SLd(K) over a discrete valued field
K. There is a natural notion of convex hull in Bd, which provides a geometric data structure for
the relations among d × d invertible matrices over K. Originally introduced by Faltings [Fal01],
this data structure underlies Mustafin varieties [CHSW11, HL17] and can be used to study the
fundamental group of certain 3-manifolds [Sup08]. Joswig, Sturmfels, and Yu [JSY07, Algorithm 2]
give a procedure for computing such a convex hull in Bd as the standard triangulation of a tropical
convex hull in some tropical projective space. However, their algorithm requires the enumeration
of all lattice points in the convex hull under consideration, which can be difficult to implement
and is expensive in practice. We devise an improved algorithm with time complexity bounded in
the dimension of the building and the number of matrices spanning the convex hull, making it
feasible for the first time to compute convex hulls in practice.

We briefly describe the structure of this manuscript. In Section 2 we review the basics of convex
lattice theory and tropical geometry that we rely on throughout. We review an algorithm for
computing an apartment containing two vertices and develop its application to our problem in
Section 3. We then describe our novel algorithm and prove its correctness in Section 4. In Section
5 we discuss an improvement on the previous algorithm when computing the convex hull of
three lattice classes. Our algorithms have been implemented over the rational function field as a
Polymake extension [GJ00]. Algorithm 5.1 has also been implemented in Mathematica over the
field of rational numbers with a p-adic valuation. This software and the code for the examples in
this paper can be found at our supplementary materials webpage:

https://math.berkeley.edu/~leonyz/code/convex-hulls
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2. PRELIMINARIES

2.1. Convex hulls. We begin by fixing notation and reviewing the setup of [JSY07]. Let K be a
field with discrete valuation val : K → Z ∪ {∞}, let R be its valuation ring with residue field k,
and π a uniformizer. Note that Kd is an R-module in a natural way.

Definition 2.2. A lattice Λ is an R-submodule of Kd generated by d linearly independent vectors
in Kd. We often represent a lattice by an invertible matrix whose columns generate the lattice.

Let Λ1, Λ2 ⊆ Kd be two lattices. We say that Λ1 and Λ2 are equivalent if there exists c ∈ K∗ such that
Λ1 = cΛ2, and we write [Λ] for the equivalence class of the lattice Λ. We say that two equivalence
classes of lattices are adjacent if there exist representative lattices Λ1 and Λ2 respectively such that
πΛ1 ⊆ Λ2 ⊆ Λ1.

Definition 2.3. Let Bd be the flag simplicial complex whose 0-simplices are equivalence classes of
lattices in Kd and whose 1-simplices correspond to adjacent equivalence classes. We call Bd the
affine building of SLd(K).

Example 2.4. Consider the building B2 for K = Q3 the 3-adic numbers. In this case our valuation
ring R = Z3 is the 3-adic integers and our uniformizer π is 3. The affine building B2 is the infinite
tree with every vertex having degree 4 in Figure 1.

(
1 0
0 1

)

(
1 0
0 3

)

(
1 0
1 3

) (
1 0
2 3

)

(
3 0
0 1

)

FIGURE 1. Left: the building B2 for K = Q3. Right: the link of the identity in this building.

Definition 2.5. Let M = (v1, . . . , vn) be a d× n matrix over K with columns v1, . . . , vn spanning
Kd as a K-vector space, where n > d. The membrane [M] of M is the collection of all lattice classes
of the form R{πu1 v1, . . . , πun vn} for ui ∈ Z. If M is square, so that d = n, we call the membrane
[M] an apartment.
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Lemma 2.6 ([KT06], Lemma 4.13). Let M be a rank d matrix over K of size d× n with n > d. Then the
membrane [M] is the union of all apartments spanned by d× d invertible submatrices of M.

Example 2.7. Let K = Q2, and consider the rank-2 building B2 over K. This is an infinite tree where

every vertex has degree 3. Within B2, the matrix
(

1 0 1
0 1 2

)
defines the membrane in Figure 2,

a simplicial subtree of the building consisting of three infinite paths emanating from a vertex of
degree 3.

(
1 0
0 2

)

(
1 0
0 1

)
(

2 0
0 1

)(
4 0
0 1

)

(
1 0
0 4

)(
1 0
0 4

)(
1 0
0 4

)(
2 1
0 2

)

(
1 0
0 8

)
(

1 0
0 16

)
(

4 1
0 2

)
(

8 1
0 2

)

FIGURE 2. A membrane, in red, contained in the building B2 over K = Q2.

Definition 2.8. If Λ1 and Λ2 are lattices, then their intersection Λ1 ∩ Λ2 is also a lattice. We say
that a collection of lattice classes is convex if it is closed under taking intersections of a finite subset
of representatives.

Given a finite collection of lattices Λ1, . . . , Λs, we call their convex hull conv(Λ1, . . . , Λs) the small-
est convex set containing their lattice classes. We can similarly define the convex hull of an infinite
collection of lattices. In addition, given invertible matrices M1, . . . , Ms, we write conv(M1, . . . , Ms)
for the convex hull conv(Λ1, . . . , Λs) where each Λi is the lattice spanned by the columns of Mi.

Remark 2.9. Our notion of convexity corresponds to min-convexity in the language of [JSY07].
There is another notion of convexity called max-convexity which arises by considering sums of
lattices instead of intersections. The duality functor Λ 7→ Λ∗ = HomR(Λ, R) switches sums
and intersections, so via this map the max-convex hull maxconv(Λ1, . . . , Λs) is isomorphic to
conv(Λ∗1 , . . . , Λ∗s ). In particular, we may restrict our attention to convex hulls, and everything
that follows can easily be translated to the language of max-convexity.
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Example 2.10. Let K = Q5 and consider the matrices

M1 =

1 0 0
0 1 0
0 0 1

 , M2 =

1 0 0
0 1

5 0
0 0 1

125

 , M3 =

5 625 150
0 25 1
0 0 1

5

 .

In Example 2.20 we will see that the convex hull conv(M1, M2, M3) contains nine vertices, fifteen
edges, and seven triangles, with the simplicial complex structure shown in Figure 3.

M1

M3

M2

FIGURE 3. The convex hull of the matrices M1, M2, and M3 in B3.

Lemma 2.11. Let Λ1, . . . , Λs be a finite collection of lattices. Then

conv(Λ1, . . . , Λs) =
⋃

Λ′∈conv(Λ2,...,Λs)

conv(Λ1, Λ′).

Proof. Pick any class V in conv(Λ1, . . . , Λs) with representative πa1 Λ1∩πa2 Λ2∩ · · · ∩πas Λs. Clearly
Λ′ = πa2 Λ2 ∩ · · · ∩ πas Λs satisfies [Λ′] ∈ conv(Λ2, . . . , Λs), so V ∈ conv(Λ1, Λ′). Conversely,
fix a lattice Λ′ = πa′2 Λ2 ∩ · · · ∩ πa′s Λs representing a class in conv(Λ2, . . . , Λs). Any class V in
conv(Λ1, Λ′) has a representative of the form πa1 Λ1 ∩πbΛ′ = πa1 Λ1 ∩πa2 Λ2 ∩ · · · ∩πas Λs, where
ai = b + a′i for i = 2, . . . , s. In particular, V is certainly in conv(Λ1, . . . , Λs). �

The following result was originally stated in Faltings’s paper on matrix singularities [Fal01]. For
completeness we provide an easy proof.

Proposition 2.12. Let Λ1, . . . , Λs be a finite collection of lattices representing equivalence classes in Bd.
Then conv(Λ1, . . . , Λs) is finite.

Proof. Any class in conv(Λ1, Λ2) has a representative of the form Λ1 ∩ πaΛ2. For a � 0 we know
that Λ1 ⊇ πaΛ2, and for a � 0 we know Λ1 ⊆ πaΛ2. Hence the convex hull of two lattices is
finite. The result then follows by induction and Lemma 2.11. �

It is therefore natural to ask how to compute a convex hull. In fact, the building Bd and membranes
have an innate tropical structure which can be exploited for this purpose.
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2.13. Tropical basics. We next review some basics of tropical convexity. For a more detailed ex-
position of this material, see [MS15, Chapter 4] or [Jos, Chapter 5].

We work over the tropical semiring T = (R ∪ {∞},⊕,�) with the min-plus convention. In this
semiring, the basic arithmetic operations of addition and multiplication are redefined:

a⊕ b := min(a, b), a� b := a + b where a, b ∈ T.

The tropical projective space TPn−1 is the space (Tn − (∞, ∞, . . . , ∞))/1R, where 1 = (1, 1, . . . , 1) is
the all-ones vector. When illustrating this space, as in Figure 4, we always choose the affine chart
in which the first coordinate is 0. There is a tropical distance metric dtr in TPn−1, given by

dtr(v, w) := max{|vi − vj + wj − wi| : 1 ≤ i < j ≤ n}.

The lattice of integral points Zn ⊆ TPn−1 forms the skeleton of a flag simplicial complex, with
a 1-simplex between two lattice points if they are of tropical distance 1 apart. This is called the
standard triangulation of TPn−1.

(0, 0, 0)

FIGURE 4. The standard triangulation of TP2, with the origin colored cyan.

Given a collection P of points in TPn−1, we define their tropical convex hull or tropical polytope as
the tropical semimodule spanned by these points, i.e.:

tconv(P) = {λ1 � p(1) ⊕ · · · ⊕ λs � p(s) : λi ∈ T, p(i) ∈ P}.
If P ⊆ Zn, we call their tropical convex hull a tropical lattice polytope.

A map p from the set of all d-sized subsets of [n] to T satisfying the following exchange relation is
called a valuated matroid [DT98] or tropical Plücker vector: for any (d− 1)-subset σ and any (d + 1)-
subset τ of [n], the minimum

min{p(σ ∪ {τi}) + p(τ − {τi}) : i ∈ [d + 1]}
is attained at least twice. (By convention we say that p(σ) = ∞ if σ has size less than d.)

A tropical Plücker vector p gives rise to a tropical linear space L, consisting of all points x ∈ TPn−1

such that, for any (d + 1)-subset τ of [e], the minimum of the numbers p(τ − {τi}) + xτi , for
i = 1, . . . , d, d + 1, is attained at least twice. Given a tropical linear space L, there is a projection
map prL taking a point x ∈ TPn−1 to a nearest point prL(x) ∈ L, which can be evaluated via the

5



red rule or blue rule [JSY07, Theorem 15]. We state here the blue rule, which gives a formula for the
ith coordinate of prL(x) in terms of an optimization over all (d− 1)-sized subsets σ of [n]:

prL(x)i = min
σ

max
j 6∈σ

(p(σ ∪ {i})− p(σ ∪ {j}) + xj).

The standard triangulation of TPn−1 descends to a standard triangulation of any tropical convex
hull of lattice points or of any tropical linear space L with Plücker vector image in Z∪ {∞}.

One important class of tropical linear spaces arises as follows. Let M = (v1, . . . , vn) be a d × n
matrix of rank d over K. Then M defines a tropical Plücker vector p (and hence tropical linear
space L) as follows: if ω is a collection of d integers in [n], then Mω denotes the corresponding
d× d submatrix, and p(ω) := val(det(Mω)). A tropical linear space obtained in this way is called
a tropicalized linear space.

Example 2.14. Let M be the matrix over Q2 from Example 2.7: M =

(
1 0 1
0 1 2

)
. We can compute

the Plücker vector p coming from M:

p({1, 2}) = 0, p({1, 3}) = 1, p({2, 3}) = 0.

The corresponding tropical linear space L consists of three rays emanating from the apex point
(0,−1, 0) in the (0, 0, 1), (0, 1, 0), and (1, 0, 0) directions of tropical projective space.

(0,−1, 0)

(0,−1,−2)

(0,−1, 2)

(0, 0, 0)

(0,−2, 2)

(0, 1, 1)

FIGURE 5. The standard triangulation of the tropical linear space L coming from
the matrix M, along with projections of three lattice points not in L.

We can now describe the tropical structure underlying the building Bd. In effect, membranes are
just standard triangulations of tropicalized linear spaces.

Theorem 2.15 ([KT06], Theorem 4.15). Let M = (v1, . . . , vn) be a d× n matrix of rank d over K and let
L be its associated tropical linear space. Then there is an isomorphism ΨM between the membrane [M] and
the standard triangulation of L,

ΨM(R{π−u1 v1, . . . , π−un vn}) := prL((u1, . . . , un)),

sending a lattice R{π−u1 v1, . . . , π−un vn} to the projection onto L of the point (u1, . . . , un) ∈ TPn−1.

As a first illustration of this theorem, note that Figures 2 and 5 are isomorphic as simplicial com-
plexes. They are both trees comprising three infinite branches stemming from a single node.
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Example 2.16. If our matrix M is square, so that its membrane [M] is actually an apartment in the
building, then ΨM describes a simplicial complex isomorphism between the apartment and the
tropical projective torus Rn/R1.

Example 2.17. Keep the notation of Theorem 2.15. Rincón [Rin13] describes a local structure of
any tropical linear space L with Plücker vector p, in which a basis σ of the underlying matroid
yields a local tropical linear space defined by

Lσ = {u ∈ L : p(σ)−∑
i∈σ

ui ≤ p(τ)−∑
j∈τ

uj ∀ bases τ}.

These local tropical linear spaces Lσ are isomorphic to Euclidean space Rn−1, are contained in L,
and together form a non-disjoint cover of L.

The covering of a membrane by its apartments derives from this local structure of tropical linear
spaces. In particular, let σ describe a basis of the matroid of M, so that the d × d matrix Mσ

with columns indexed by σ is invertible. Then the linearity of the determinant over column sums
implies that the apartment [Mσ] is mapped by ΨM to the local tropical linear space Lσ.

Given any membrane [M] represented by a d× n matrix M = ( f1, . . . , fn), there is a retraction rM
of the entire building Bd onto [M], which restricts to the identity on [M] itself:

rM : Λ 7→ (Λ ∩ K{ f1}) + · · ·+ (Λ ∩ K{ fn}).
We may use this map to describe a tropical structure for convex hulls.

Theorem 2.18 ([JSY07], Proposition 22). Let M be a d× n matrix of rank d over K, [M] its corresponding
membrane, and L its corresponding tropical linear space. Also let Λ1, . . . , Λs be lattices corresponding to
points in Bd. The following two simplicial complexes coincide:

rM(conv(Λ1, . . . , Λs)) ⊆ [M],

tconv(ΨM(rM(Λ1)), . . . , ΨM(rM(Λs))) ⊆ L.

In particular, if [M] contains the convex hull of Λ1, . . . , Λs, then the retraction map acts as the
identity, and the convex hull conv(Λ1, . . . , Λs) is isomorphic to the standard triangulation of a
tropical polytope. This suggests an approach for computing convex hulls in Bd as follows:

Algorithm 2.19 (Convex hull computation).
INPUT: M1, . . . , Ms d× d invertible matrices over K whose columns are bases for lattices Λ1, . . . , Λs
OUTPUT: conv(Λ1, . . . , Λs) ⊆ Bd

1: [M]← a membrane containing conv(Λ1, . . . , Λs)
2: for all i ∈ {1, . . . , s} do
3: Pi ← ΨM(rM(Λi))
4: end for
5: X ← tconv(P1, . . . , Ps)
6: return X

Note that given a lattice Λi represented by a matrix Mi, we can compute the image ΨM(rM(Λi))
in TPn−1 simply by taking the tropical row sum of the matrix val(M−1

i M), by [JSY07, Lemma 21].

Example 2.20. Retain the setup of Example 2.10. We can apply Algorithm 5.1, which we will soon
discuss, to get that the membrane [M] with

M =

1 0 0 0
0 1 0 5
0 0 1 1


7



contains the convex hull of M1, M2, and M3. Running through Algorithm 2.19 with this membrane
yields the following tropical matrix,  0 0 0 0

0 1 2 3
−1 −2 1 −1

 ,

whose rows or columns span the tropical convex hull in Figure 3. Note that tropical polytopes
are self-dual, i.e. the columns and rows of any tropical matrix span isomorphic tropical polytopes
[DS04, Theorem 1].

FIGURE 6. The tropical polytope isomorphic to the convex hull of the three matri-
ces in Example 2.10, with coordinates of spanning vertices labeled.

From this tropical polytope we can construct representatives for any of the lattice classes in Figure
3. For example, consider the central lattice point (0, 1,−1) with six neighbors. By Equation (14) in
[DS04], this lattice point in the column-span of our tropical matrix corresponds to (−1,−1, 0, 0) in
the row-span. In turn, this point corresponds to the class of the lattice

Z5

51 ·

1
0
0

 , 51 ·

0
1
0

 , 50 ·

0
0
1

 , 50 ·

0
5
1

 .

Of course, Algorithm 2.19 requires an enveloping membrane of Λ1, . . . , Λs: a membrane containing
the convex hull of Λ1, . . . , Λs. Without such a membrane the tropical polytope produced by Algo-
rithm 2.19 need not be isomorphic to our original convex hull. Note that membranes need not be
convex, so it is not sufficient to simply find a membrane containing the spanning lattice classes.
This fact will be demonstrated in Example 4.8.

No bounded-time algorithm for computing an arbitrary enveloping membrane has thus far been
described. A procedure for computing such an enveloping membrane is described in [JSY07], but
it is often impractical: it relies on the computation of each individual element of the convex hull,
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while expanding a starting membrane to contain each element whenever necessary. In Section
4 we will describe an improved algorithm with bounded complexity in d and s, allowing us to
algorithmically realize any convex hull as a tropical polytope.

Remark 2.21. Our notion of convexity was originally introduced by Faltings [Fal01], who noted
that configurations Γ of vertices in Bd correspond to certain schemes M(Γ) called Mustafin varieties
or Deligne schemes over the spectrum of a DVR. In the arithmetic setting, these Mustafin varieties
function as local models of Shimura varieties [PRS13]. The special fiber of M(Γ) generally has
many singularities, but replacing Γ with its convex hull Γ′ yields a regular Mustafin variety M(Γ′)
with a dominant morphism M(Γ′) → M(Γ), such that the irreducible components of the special
fiber of M(Γ′) intersect transversally [CHSW11, Lemma 2.4 and Theorem 2.10]. In this way, our
fully-specified version of Algorithm 2.19, derived in Section 4, allows for the explicit resolution of
singularities of Mustafin varieties.

3. SIMULTANEOUSLY-ADAPTABLE BASES

In this section we review a classical result on lattices over valued fields, following [AB08, Section
6.9], and describe its relevance to our setting of convex hulls in affine buildings. Note that in what
follows we say monomial matrix to refer to any matrix A supported on a permutation matrix: i.e.,
there exists a permutation σ such that Aij 6= 0 if and only if j = σ(i).

Algorithm 3.1 (Simultaneously adaptable basis for two lattices).
INPUT: M1, M2 d× d invertible matrices over K whose columns are bases for lattices Λ1 and Λ2

in Bd
OUTPUT: Invertible matrix A, monomial matrix ∆ such that the columns of A and A∆ are bases

for Λ1 and Λ2, respectively
1: B1 ← M1
2: C1 ← M2
3: for all i ∈ {1, . . . , n− 1} do
4: Ni ← B−1

i Ci
5: ni ← entry of minimal valuation in Ni not equal to n1, . . . , ni−1
6: Li ← the matrix such that LiNi is obtained from Ni by eliminating all other elements in the

column of ni
7: Ri ← the matrix such that LiNiRi is obtained from LiNi by eliminating all other elements

from the row of ni
8: Bi+1 ← BiL−1

i
9: Ci+1 ← CiRi

10: end for
11: A← Bd
12: ∆← B−1

d Cd
13: return A, ∆

Lemma 3.2. Let M1 and M2 be d × d invertible matrices over K for lattices Λ1 and Λ2 in Bd. Then
Algorithm 3.1 correctly returns a basis A for Λ1 and a monomial matrix ∆ such that A∆ is a basis for Λ2.

Proof. Because ni is chosen to be of minimal valuation in Ni, each Li and Ri will be matrices in
SLd(R). It follows that the new matrices Bi+1 and Ci+1 will be bases for Λ1 and Λ2 if Bi and Ci
are, with base change matrix LiNiRi. In particular, after d − 1 steps of the for-loop, the matrix
∆ = Ld−1Nd−1Rd−1 will have d− 1 distinct entries which are uniquely nonzero in their respective
rows and columns. Hence ∆ is a monomial matrix, as desired. �
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Definition 3.3. We call the output A in Algorithm 3.1 a simultaneously adaptable basis (SA-basis) for
Λ1 and Λ2.

Algorithm 3.1 is a demonstration of the building-theoretic fact that any two lattices lie in a com-
mon apartment. In general, there should be many distinct apartments containing any two given
points. Indeed, the SA-basis A obtained above depends not only on the lattices Λ1 and Λ2 but on
our original choice of bases, which lattice we designate as Λ1, and how we break ”ties” between
elements of minimal valuation when choosing pivots. In what follows, we break ties between
potential pivots by picking the option in the leftmost column, then topmost row.

Because apartments are min-convex, we have the following fact:

Corollary 3.4. Pick two lattice classes represented by Λ1 and Λ2 in Bd, and let A be a SA-basis for the two
lattices. Then the apartment [A] contains the convex hull conv(Λ1, Λ2).

We can therefore view Algorithm 3.1 as a procedure for computing an apartment containing the
convex hull of two points.

Lemma 3.5. Let M1 and M2 be two invertible d × d matrices representing lattices Λ1 and Λ2, and let
Γ be any diagonal matrix with M′2 = M2Γ. Let Ni and N′i be the base-change matrices at the ith step of
Algorithm 3.1 executed with the pairs (M1, M2) and (M1, M′2) as input respectively, ni and n′i the chosen
pivots of least valuation at step i, and so on. If k is a positive integer such that the positions of the pivots ni
and n′i agree for all i up to k− 1, then Lk−1 = L′k−1 and N′k = NkΓ.

Proof. We prove the result by induction, noting that the base case k = 1 follows trivially. Suppose
that the first k − 1 pivots are the same for the two algorithm executions. Because the first k − 2
pivots are the same, by the inductive hypothesis we have that N′k−1 = Nk−1Γ. In particular, the
ratio of any two entries in the same column is the same for Nk−1 and N′k−1. Now since the k− 1st
pivot position is also the same, the row operations to obtain Nk and N′k from Nk−1 and N′k−1 =
Nk−1Γ agree as well, so that Lk−1 = L′k−1. Next the column operations necessary to clear the rows
of two pivots may differ, but in both executions we eliminate using a column which has no other
nonzero entries. It follows that N′k = NkΓ, as desired. �

Corollary 3.6. Keep the setup of Lemma 3.5 above, and let A be the basis of Λ1 produced by Algorithm
3.1. If all pivot positions of Algorithm 3.1 are the same for the two inputs (M1, M2) and (M1, M′2), then
the lattice class [Λ′2] for M′2 is contained in the apartment [A].

Proof. Because all pivots are the same, Lemma 3.5 implies that Li = L′i for all i. This means the final
basis for Λ1 produced by both executions of the algorithm is A = LdLd−1 . . . L1M1. In particular,
we have that [A] contains both [Λ2] and [Λ′2]. �

Lemma 3.7. Let A be an invertible matrix defining an apartment [A] and M a basis for a lattice Λ whose
class is not in [A]. Then conv([Λ], [A]) can be covered with d! different apartments.

Proof. Any element of conv([Λ], [A]) will be contained in some conv([Λ], [Λ′]) where Λ′ is a lat-
tice having basis AΓ for some diagonal matrix Γ. Fix such a Γ. We can use Algorithm 3.1 to com-
pute an apartment [B] containing conv([Λ], [AΓ]). By Corollary 3.6, this apartment also contains
conv([Λ], [AΓ′]) for any other diagonal matrix Γ′ leading to the same sequence of pivot positions.
The key point is that we need only consider the sequence of columns that the pivots appear in.
Since each pivot must appear in a different column, this means there are d! different sequences of
pivot positions.
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To see why only the sequence of columns of the pivots matters, take some other Γ′ diagonal,
and suppose that the sequence of pivot columns is the same for the two executions (M, AΓ) and
(M, AΓ′). We prove by induction on the jth pivot that all pivots are actually in the same positions.
The first j− 1 pivots appear in the same positions by assumption, so by Lemma 3.5 the jth base-
change matrix N′j for the input (M, AΓ′) equals NjΓ−1Γ′, where Nj is the jth base-change matrix
for the input (M, AΓ). Then since the jth pivots appear in the same column, and scaling columns
does not change the column entry of minimal valuation, the jth pivot will be in the same position
for both executions as well. �

Remark 3.8. We note the similarity of Lemma 3.7 with [Hit11, Lemma 6.3], which states that any
apartment A in any building can be covered by the union of Weyl chambers based at some other
fixed point z with equivalence class in ∂A, the spherical apartment at infinity corresponding to A.
We expect that Lemma 3.7 is an explicit analogue of this result in our specialized setting, where ∂A
is isomorphic to the symmetric group Sd on d elements, in which each Weyl chamber is replaced
by a suitable apartment containing it to ensure the the convex hull of z and A is also covered.

4. CONSTRUCTING ENVELOPING MEMBRANES

In this section we combine the results of the previous section to solve the problem left open in
Algorithm 2.19. Namely, we present an algorithm to compute an enveloping membrane of a finite
set of lattices. This allows us to realize convex hulls in the building as tropical polytopes.

Algorithm 4.1 (List of apartments covering a convex hull).
INPUT: B1, . . . , Bs base matrices for lattices Λ1, . . . , Λs
OUTPUT: A set of apartments covering conv(Λ1, . . . , Λs)

1: if s = 2 then
2: return SA-basis of Λ1 and Λ2 via Algorithm 3.1
3: end if
4: Ls−1 ← set of apartments covering conv(Λ2, . . . , Λs) via Algorithm 4.1
5: Ls ← ∅
6: for all [A] ∈ Ls−1 do
7: LA ← set of apartments covering conv(Λ1, [A]) as in Remark 4.3
8: Ls ← Ls ∪ LA
9: end for

10: return Ls

Theorem 4.2. Let M1, . . . , Ms represent s lattices Λ1, . . . , Λs in Bd. Then Algorithm 4.1 correctly com-
putes a list of apartments Ls such that each lattice class [Λ] ∈ conv(Λ1, . . . , Λs) is contained in [A] for
some [A] ∈ Ls. Furthermore, Ls has size at most (d!)s−2.

Of course this theorem and Lemma 2.6 together imply that Algorithm 4.1 can be used to compute
an enveloping membrane for Λ1, . . . , Λs. We simply concatenate all the matrices in the output Ls.

Proof. If the algorithm is correct, then Ls−1 contains at most (d!)s−3 apartments by induction. Since
LA has size at most d! by Lemma 3.7, Ls has size at most (d!)s−2.

It remains to prove correctness. By Lemma 2.11, any lattice class [Λ] in conv(Λ1, . . . , Λs) is con-
tained in conv(Λ1, Λ′) for some [Λ′] ∈ conv(Λ2, . . . , Λs). There exists some [A] ∈ Ls−1 such
that [Λ′] ∈ [A], and so [Λ] ∈ conv(Λ1, [A]). In particular, there is some [B] ∈ LA such that
[Λ] ∈ [B]. �
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Remark 4.3. The crucial part of Algorithm 4.1 is computing the set LA of apartments covering
conv(Λ1, [A]). Recall from Lemma 3.7 that this set is indexed by permutations in Sd. We sketch
here how to compute the apartment corresponding to the identity permutation; all other apart-
ments can be computed very similarly.

Let Γ = diag(πa1 , . . . , πad) be a diagonal matrix with indeterminates a1, . . . , ad ∈ Z. First choose
Γ to be any diagonal matrix such that the first pivot for the first base change matrix M−1

1 AΓ is in
the first column. Next we compute the second base-change matrix; by decreasing both a1 and a2
by a large enough common value, Lemma 3.5 guarantees that the first pivot will still be in the first
column, and that the second pivot will appear in the second column. We next compute the third
base-change matrix by reducing a1, a2, and a3 all by some large enough value, and so on.

Remark 4.4. We present in the next section a more efficient algorithm for the s = 3 case, Algorithm
5.1, needing only 2d apartments to cover the convex hull instead of d!. Because Algorithm 4.1 is
inductive on s, Algorithm 5.1 can be used for the s = 3 case, providing a slightly better overall
bound of 2d · (d!)s−3 apartments needed to cover the convex hull of s lattices.

Corollary 4.5. Let Λ1, . . . , Λs be lattices in Kd. Then their convex hull conv(Λ1, . . . , Λs) is isomorphic to
a tropical polytope in TPN where N ≤ d · 2d · (d!)s−3 − 1.

Proof. Remark 4.4 implies that a matrix M with at most d · 2d · (d!)s−3 columns generates a mem-
brane [M] containing conv(Λ1, . . . , Λs). Algorithm 2.19 then realizes the convex hull as a tropical
polytope in a tropical projective space of dimension at most d · 2d · (d!)s−3 − 1. �

Corollary 4.6. Let Λ1, . . . , Λs be lattices in Kd. Then their convex hull conv(Λ1, . . . , Λs) is isomorphic to
a tropical polytope spanned by at most d · 2d · (d!)s−3 points in TPs−1.

Proof. This follows directly from Corollary 4.5 and the self-duality of tropical polytopes. �

Corollary 4.7. Let Λ1, . . . , Λs be lattices in Kd. Let [M] be the enveloping membrane for conv(Λ1, . . . , Λs)
computed by concatenating the apartments from Algorithm 4.1. Then Λ1 is mapped to the origin by ΨM in
Algorithm 2.19.

Proof. There is another representation of the building Bd, which describes the vertices as additive
norms N : Kd → R ∪ {∞}. We can easily pass between these two descriptions of the building in
terms of lattice classes and additive norms. If Λ is a lattice represented by a matrix M, then the
corresponding additive norm is defined by

NΛ(v) = max{u ∈ Z : z−uv ∈ Λ}.
Write M = (v1, . . . , vn). By [JSY07, Lemma 21], the image of Λ1 under the map of Theorem
2.18 is (NΛ1(v1), . . . , NΛ1(vn)), where NΛ1 is the additive norm corresponding to Λ1. But clearly
NΛ1(vi) = 0 for each i, since each vi is an element for a basis for Λ1. �

Viewed in the dual setting of Corollary 4.6, Corollary 4.7 implies that our algorithm places us in
the affine chart of TPs−1 where the first coordinate is zero.

Example 4.8. Consider the following four 3× 3 matrices over C((t)):

M1 =

1 1 1
1 t t2

1 t−2 t

 , M2 =

 1 1 1
t t2 t3

t−2 t t5

 , M3 =

1 1 1
t2 t3 t4

t t5 t8

 , M4 =

1 1 1
t3 t4 t5

t5 t8 t12

 .

12



These are the contiguous maximal submatrices of

M =

1 1 1 1 1 1
1 t t2 t3 t4 t5

1 t−2 t t5 t8 t12

 ,

so the corresponding lattice classes certainly all lie in the membrane [M]. An optimist could sup-
pose that [M] were in fact an enveloping membrane for the convex hull of our four matrices.
Running through Algorithm 2.19 with the membrane [M] yields the following tropical matrix:

0 0 0 0 0 0
−2 0 0 0 0 0
−3 −4 0 0 0 0
−6 −8 −5 0 0 0

 .

The columns of this matrix span the tropical polytope P, visualized using Polymake in Figure 7.
Its standard triangulation contains 18 vertices, 32 edges, and 15 triangles.

FIGURE 7. The tropical poly-
tope P obtained by using the
membrane [M] for the lattices
M1, M2, M3, and M4 with Al-
gorithm 2.19. Points span-
ning the tropical convex hull
are marked in yellow.

FIGURE 8. The tropical poly-
tope P′ whose standard trian-
gulation is isomorphic to the
convex hull of M1, M2, M3, and
M4, with spanning vertices
marked in yellow.

However, when we run Algorithm 4.1 in Polymake to compute an enveloping membrane for
conv(M1, M2, M3, M4), we obtain a different matrix M′ with 12 distinct columns. Executing Algo-
rithm 2.19 using the membrane [M′] yields that conv(M1, M2, M3, M4) is isomorphic as a simpli-
cial complex to the tropical polytope P′ in Figure 8 spanned by

0 0 0 0 0 0 0 0 0 0 0 0
−2 0 0 0 −2 0 −2 0 0 −2 0 0
−3 −4 0 −1 −2 0 −2 0 −1 −3 −1 0
−6 −8 −5 −5 −7 0 −7 −4 −1 −3 −5 0

 .

The standard triangulation of this polytope contains 29 lattice points, 67 edges, and 41 triangles.
In particular, the convex hull of M1, M2, M3, and M4 is larger than the polytope P obtained via the
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membrane [M], even though each lattice spanning the convex hull is trivially contained in [M]. In
turn, this means that [M] does not contain the convex hull conv(M1, M2, M3, M4), demonstrating
the fact that membranes are not convex.

Example 4.9. Let K = C((t)) be the field of formal complex Laurent series, and let M1 be the 4× 4
identity matrix, M2 be diagonal with entries 1, t3, t−2, and t−2 respectively, and

M3 =


t−3 − t2 1− t2 −t−2 + 1 t−2 − t
t2 − t3 −t−3 + t 1− t 0

0 −1 + t t−3 − t3 t−3 − 1
−t + t2 −t−1 + 1 0 −t−1 + t2

 ,

M4 =


1− t3 t−1 − 1 1− t2 1− t3

t−3 − 1 1− t 1− t2 1− t3

−t−3 + t −t−2 + 1 −t−3 + t−1 −1 + t
t−3 − t−2 −t−1 + 1 −t−1 + 1 t−1 − 1

 .

Concatenating the matrices produced by Algorithm 4.1 applied to M1, M2, M3, and M4 in Poly-
make gives a matrix M with 84 distinct columns. Using the corresponding membrane [M] with Al-
gorithm 2.19, we get a 4× 84 matrix over the tropical numbers. After pruning duplicate columns,
we obtain the following matrix whose tropical row or column span gives the polytope displayed
in Figure 9. The triangulation of that polytope has 30 vertices, 95 edges, 102 triangles, and 36
tetrahedra. 

0 0 0 0 0 0 0 0 0 0 0 0
−3 −2 −1 −3 −3 0 2 2 0 −1 −1 −3
1 2 3 1 1 3 3 1 1 1 3 3
3 3 3 2 1 1 3 1 1 1 1 1

 .

FIGURE 9. The 3-dimensional tropical polytope isomorphic to the convex hull of
our matrices M1, M2, M3, M4, whose standard triangulation has f -vector (30, 95,
102, 36).
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5. CONVEX TRIANGLES

Suppose that s = 3, so that we wish to compute a convex triangle: the convex hull of three lattice
classes. This is relevant e.g. to [CHSW11, Section 4.6], which focuses on Mustafin varieties arising
from convex triangles. In this case there exists a more efficient algorithm, taking advantage of the
fact that conv(Λ2, Λ3) is just a path in the building. We now describe this improvement.

With some extra book-keeping, note that Algorithm 3.1 can output all of the following:

• an SA-basis A which is a basis for Λ1,
• a diagonal matrix ∆ = diag(πc1 , . . . , πcd) such that A∆ is a basis for Λ2, where c1 ≤ · · · ≤

cd,
• all of the base change matrices N1, . . . , Nd,
• and the positions p1, . . . , pd of the pivots n1, . . . , nd.

We justify the existence of such a ∆. First, note that the base-change matrix ∆ produced by Algo-
rithm 3.1 can always be taken to be diagonal, since other monomial matrices correspond simply
to reordering the scaled basis vectors of Λ1. Second, we may reorder the columns of A itself in
any way we like; in particular, we can order them so that the matrix ∆ has the structure described
above.

Algorithm 5.1 (Enveloping membrane for a convex triangle).
INPUT: M1, M2, M3 three d × d invertible matrices over K whose columns are bases for lattices

Λ1, Λ2, Λ3 in Bd
OUTPUT: A list L of apartments covering conv(Λ1, Λ2, Λ3).

1: L← ∅
2: (A, ∆ = diag(πc1 , . . . , πcd)) ← d× d matrices such that A is a basis for Λ2 and A∆ is a basis

for Λ3, with c1 ≤ c2 ≤ . . . ≤ cd
3: for all i ∈ {1, . . . , d− 1} do
4: λ← ci
5: Γλ ← diag(πmax(λ,c1), . . . , πmax(λ,cd))
6: t← 0
7: while λ < ci+1 do
8: λ← λ + t
9: Aλ ← an SA-basis for (M1, AΓλ)

10: (N1, . . . , Nd) ← the sequence of base-change matrices in the SA-basis computation for
(M1, AΓλ)

11: (p1, . . . , pd)← the sequence of pivot positions in the SA-basis computation for (M1, AΓλ)

12: L← L ∪ {[Aλ]}
13: t← ci+1 − ci
14: for all j ∈ {1, . . . , d} such that pj is in the first i columns do
15: v1 ← valuation of jth pivot in Nj
16: v2 ← least valuation among all elements of Nj in columns i + 1, i + 2, . . . , d not in posi-

tions p1, . . . , pj
17: t← min(t, v2 − v1 + 1)
18: end for
19: end while
20: end for
21: return L
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Theorem 5.2. Let M1, M2, and M3 represent three lattices Λ1, Λ2, and Λ3 in Bd. Then Algorithm 5.1
correctly computes a list L of apartments covering conv(Λ1, Λ2, Λ3), where L has size at most 2d.

As before, we can obtain an enveloping membrane for Λ1, Λ2, and Λ3 by concatenating all matri-
ces in L.

Proof. In the setup of Algorithm 5.1, any class in conv(Λ2, Λ3) has a representative of the form
AΓλ, where Γλ = diag(πmax(λ,c1), . . . , πmax(λ,cd)) and λ is an integer between c1 and cd. It follows
from Lemma 2.11 that

conv(Λ1, Λ2, Λ3) =
⋃

c1≤λ≤cd

conv(M1, AΓλ).

We can therefore cover conv(Λ1, Λ2, Λ3) with the apartments [Aλ] containing conv(M1, AΓλ) pro-
duced by Algorithm 3.1. By Corollary 3.6, furthermore, if we have computed Aλ already we only
need to compute Aλ+1 if some pivot changes position.

Suppose this occurs, with λ in the range ci ≤ λ < ci+1. Then BΓλ+1 is obtained from AΓλ by multi-
plying with the diagonal matrix whose first i diagonal entries are π and last d− i diagonal entries
are 1. Let pj be the earliest pivot which changes positions. By Lemma 3.5, it follows that the jth

base-change matrix N(λ+1)
j for the pair (M, AΓλ+1) factors as N(λ+1)

j = N(λ)
j diag(π, . . . , π, 1, . . . , 1),

where N(λ)
j is the jth base-change matrix for the pair (M, AΓλ). Since the jth pivot differs for these

two matrices, the jth pivot must appear in the first i columns and there must be an element of
equal valuation appearing in the last d − i columns. Conversely, suppose there exists some jth
pivot appearing in the first i columns of N(λ)

j with an element of equal valuation in the last d− i
columns. Then either some earlier pivot already changed, or the jth pivot will be different for
N(λ+1)

j .

It follows that, for λ in the range ci ≤ λ < ci+1, we can quickly compute the smallest t such that
(M1, AΓλ+t) will have some jth pivot in a different position than for (M1, AΓλ). For each jth pivot
appearing in the first i columns of N(λ)

j , we can compare its valuation v1 to the smallest valuation

v2 of all elements in the last d− i columns of N(λ)
j . If pj is the first pivot to change, it will change

when t = tj := v2 − v1 + 1. So t = min(tj) is our desired increment. In particular, Algorithm 5.1
recomputes Aλ each time a pivot changes, so it is indeed correct.

Next we prove that the list L has size at most 2d. Suppose λ is in the range ci ≤ λ < ci+1. Our claim
is that at most (d

i) apartments are computed in this range, so that ∑i (
d
i) = 2d bounds the number

of apartments in L. Write an i-sized subset σ of [d] as (σ1, σ2, . . . , σi), where σ1 < σ2 · · · < σi. We
can assign to each λ an i-sized subset σλ of [d], where j ∈ σλ if and only if the jth pivot appears
in the first i columns of Nj when computing an SA-basis for M1 and AΓλ. We can also define a
well-ordering on the set of all i-sized subsets of [d] lexicographically: σ < τ if and only if the
first j with σj 6= τj satisfies σj < τj. The key insight is that σλ < σλ+1 if the corresponding pivot
sequences for λ and λ + 1 differ. Since there are (d

i) possible choices for σλ, there can be at most
(d

i) different pivot position changes for λ in this range.

It remains to show why this key fact holds. Suppose that incrementing λ by one changes some
pivot position, with the jth pivot the first to change. The above analysis shows that the jth pivot
for the pair (M1, AΓλ) must be in the first i columns, and that this must change for the pair
(M1, AΓλ+1). It follows that j must be in σλ, and that j cannot be in σλ+1. Furthermore, because j
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is the first pivot to change, for each ` < j we have ` ∈ σλ ⇐⇒ ` ∈ σλ+1. Hence σλ < σλ+1, as
desired. �

Example 5.3. Fix K = Q3 and the building B5. Let M1 be the 5× 5 identity matrix, and let each
entry of M2 and M3 be sampled uniformly at random from the finite set {3e : e ∈ Z,−20 ≤ e ≤
20}. The author took 1000 such triangles and computed enveloping membranes via Algorithm
5.1 in Mathematica. After pruning duplicate columns, the matrices describing the enveloping
membranes always had at least 6 columns, and at most 25. For comparison, the upper bound
implied by our Algorithm 5.1 is 5 · 32 = 160 columns. A histogram describing the frequency
counts for the size of the membranes is presented in Figure 10.

FIGURE 10. Frequency counts for the number of columns of enveloping mem-
branes produced by Algorithm 5.1 for random convex triangles.

One example of a convex triangle attaining the maximal number of columns is given by

M2 =


3−15 316 3−7 3−8 3−13

3−13 320 3−12 3−9 3
3−19 319 37 3−15 310

39 3−12 3−12 3−17 3−18

3−17 3−4 3−7 3−3 320

 , M3 =


3−1 3−8 3−20 3−1 3−20

310 36 30 32 3−20

3−6 38 33 35 3−13

3−15 39 3−9 32 3−7

312 3−3 35 3−16 3−13

 .

After applying Algorithm 5.1 to obtain an appropriate membrane [M], the author computed the
tropical polytope via Algorithm 2.19 presented in Figure 11. Note that this convex hull can be
spanned by only five of the given points: (0, 19,−8), (0, 18, 15), (0, 13, 16), (0, 12, 20), and (0, 7, 20).
Let M′ be the square submatrix of M with columns corresponding to these five points. Running
through Algorithm 2.19 using the apartment [M′] yields a coarser subdivision of the same trop-
ical polytope. This implies that the convex hull of our three matrices M1, M2, and M3 all lie in
the single common apartment [M′], which can also be seen using [JSY07, Lemma 25]. That our
algorithms do not notice this fact suggests that they likely can be improved.

REFERENCES

[AB08] Peter Abramenko and Kenneth S. Brown, Buildings: Theory and applications, Graduate Texts in Mathematics,
vol. 248, Springer, New York, 2008.

[CHSW11] Dustin Cartwright, Mathias Häbich, Bernd Sturmfels, and Annette Werner, Mustafin varieties, Selecta Math.
(N.S.) 17 (2011), no. 4, 757–793.

17



FIGURE 11. The tropical polytope isomorphic to the convex hull of M1, M2, M3,
with spanning vertices in yellow. Note that the x- and y-axes have been flipped.

[DS04] Mike Develin and Bernd Sturmfels, Tropical convexity, Doc. Math. 9 (2004), 1–27.
[DT98] Andreas Dress and Werner Terhalle, The tree of life and other affine buildings, Proceedings of the International

Congress of Mathematicians, Vol. III (Berlin, 1998), vol. III, 1998, pp. 565–574.
[Fal01] Gerd Faltings, Toroidal resolutions for some matrix singularities, Moduli of abelian varieties (Texel Island, 1999),
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