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We make several observations on the implementation of Ed-
monds’ blossom algorithm for solving minimum-weight perfect-
matching problems and we present computational results for
geometric problem instances ranging in size from 1,000 nodes
up to 5,000,000 nodes. A key feature in our implementation is
the use of multiple search trees with an individual dual-change
e for each tree. As a benchmark of the algorithm’s performance,
solving a 100,000-node geometric instance on a 200 Mhz Pen-
tium-Pro computer takes approximately 3 minutes.

A perfect matching in a graph G is a subset of edges such that
each node in G is met by exactly one edge in the subset.
Given a real weight ce for each edge e of G, the minimum-
weight perfect-matching problem is to find a perfect matching
M of minimum weight ((ce;e [ M). One of the fundamental
results in combinatorial optimization is the polynomial-time
blossom algorithm for computing minimum-weight perfect
matchings by Edmonds.[22, 23] This algorithm serves as a
primary model for the development of methods for attack-
ing combinatorial integer-programming problems. More-
over, efficient implementations of the algorithm permit the
solution of large instances of matching problems that arise in
practical situations.

A classic application of minimum-weight matchings is
that of minimizing the “up” motion of a pen plotter, as
described in Reingold and Tarjan[56] and in Iri, Murota, and
Matsui.[40] Other applications include scheduling crews and
vehicles in mass transit systems (Ball, Bodin, and Dial[7]),
creating pairings in chess tournaments (Ólafsson[53]), select-
ing control groups in evaluations of experimental drugs
(Clyde Monma [personal communication]), ordering arith-
metic operations (Brandon Dixon and Arjen Lenstra [per-
sonal communication]), vehicle routing with time con-
straints (Derigs and Metz[20]), scheduling training sessions
in the NASA space shuttle (Bell[9]), transmitting images over
a network (Riskin, Ladner, Wang, and Atlas[58]), and capac-
itated vehicle routing (Miller and Pekny[52]).

Edmonds’ matching algorithm has been studied by a
great number of researchers. The efficiency of the algorithm,
as measured by bounds on its worst-case running time, has
been steadily improved over the past 30 years. The interest
in efficient implementations is motivated to a large degree
simply by the beauty of the algorithm itself, but it is also due

to the role played by matchings in solution techniques for
applied problems, such as those listed above.

A straightforward implementation of Edmonds’ original
description of the algorithm can easily be seen to run in time
bounded by O(n2m), where n is the number of nodes in the
graph and m is the number of edges. This was improved by
Lawler[47] and by Gabow[27] to O(n3), and later to O(nm log
n) by Galil, Micali, and Gabow.[33] A further improvement
was made by Gabow, Galil and Spencer,[30] lowering the
bound to O(n(m log log logmax{m/n,2} n 1 n log n)). The log
log log term was then removed by Gabow,[29] resulting in a
bound of O(n(m 1 n log n)). Some of the techniques that are
used to established these results are surveyed in Ball and
Derigs[8] and Galil.[32]

Gabow’s bound is currently the best known result in
terms of n and m, but other bounds are possible when the
edge weights are integers. In this case, Edmonds’ algorithm
can be combined with scaling techniques to produce bounds
that depend not only on n and m, but also on N, the largest
magnitude of an edge weight. A result of this type was
described by Gabow,[28] who obtained an O(n3/4m log N)
time bound. Gabow and Tarjan[31] later used a sophisticated
approach to obtain a bound of O(m log(nN)=na(n, m) log n),
where a(n, m) is Tarjan’s[61] “inverse” of Ackerman’s func-
tion.

A summary of these complexity results is given in Table I.
One of the practical outcomes of this line of research has
been a steady stream of ideas that can be incorporated into
computer implementations of Edmonds’ algorithm. This has
helped to spur a parallel line of research aimed at creating
robust computer codes for solving perfect-matching prob-
lems. A list of some of the studies in this area is given in
Table II. With the exception of the cutting-plane methods
employed by Grötschel and Holland[37] and Trick,[62] each of
the papers listed in Table II presents an implementation of
Edmonds’ algorithm. A number of the papers report com-
putational results on problem instances having more than
1,000 nodes, and Applegate and Cook[3] include results for
instances with up to 131,072 nodes.

Despite this work on good implementations of Edmonds’
algorithm, there has been a large body of research on heu-
ristic methods for finding good, although perhaps not opti-
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mal, perfect matchings. Recent work in this area includes
Bentley,[11] Imielinska and Kalantari,[39] Jünger and Pulley-
blank,[43] and Williamson and Goemans,[63] surveys of ear-
lier work can be found in Avis[6] and Gerards.[34] The re-
search into heuristic algorithms is motivated, in part, by the
fact that in many scenarios the time required to compute an
optimal matching may not be justified. The main contribu-
tion of the present article is a new implementation of Ed-
monds’ algorithm that hopefully will extend the range of
instances where optimal solutions can be obtained.

Our implementation combines a number of techniques
used in earlier efforts together with several new observa-
tions. The code appears to be significantly faster than pre-
vious implementations and it permits the solution of in-
stances that are larger than those reported in earlier studies.
Our test set includes geometric instances (complete graphs,
described by points in the plane) generated randomly, as
well as structured instances from Reinelt’s[57] TSPLIB library
of traveling salesman problem instances, and from VLSI

design. The largest of the instances in our test set has
5,000,000 nodes. As a benchmark of the code’s performance,
solving a 100,000-node geometric instance on a 200 Mhz
Pentium-Pro computer takes approximately 3 minutes.

This article is organized as follows. In Section 1 we
present a short outline of Edmonds’ algorithm and in Sec-
tion 2 we discuss an idea that can be used to improve its
practical performance on large-scale problem instances. In
Section 3 we present a method for handling dense graphs,
improving on the techniques developed by Ball and De-
rigs[8] and Applegate and Cook.[3] In Section 4 we report the
results of our computational tests.

We will assume that the reader is familiar with basic
results in matchings. Excellent general references are Ger-
ards[34] and Lovász and Plummer.[50]

Our computer implementation is available for research
purposes. The code is written in the C programming lan-
guage (Kernighan and Ritchie[45]) and it can be obtained
over the internet at http://www.or.uni-bonn.de/home/
rohe/matching.html

1. Edmonds’ Algorithm
Edmonds’ algorithm is based on a linear-programming for-
mulation of the minimum-weight perfect-matching prob-
lem. Linear-programming duality provides a stopping rule
used by the algorithm to verify the optimality of a proposed
solution.

Let G be a graph with node set V and edge set E. To
describe the linear-programming formulation, let 2 denote
the set of all odd subsets of V containing at least 3 nodes, and
for each S # V, let d(S) denote the set of edges that meet
exactly one node in S. For a vector (xe;e [ E) and a set H #
E, let x(H) denote the sum ((xe;e [ H). The incidence vector
of any perfect matching in a graph G satisfies the linear
system

x~d~$v%!! 5 1 for all v [ V , (1)

xe > 0 for all e [ E , (2)

x~d~S!! > 1 for all S [ 2 . (3)

So the minimum weight of a perfect matching is at least as
large as the value of

min ~wx;x satisfies ~1! , ~2! , and ~3!! . (4)

Table I. History of Worst-Case Bounds

Year Authors Running Time

1965 Edmonds[22, 23] O(n2m)
1973 Lawler[47] O(n3)
1974 Gabow[27] O(n3)
1985 Gabow[28] O(n3/4m log N)
1986 Galil, Micali, and Gabow[33] O(nm log n)
1989 Gabow, Galil, and Spencer[30] O(n(m log log logmax{m/n,2} n 1 n log n))
1990 Gabow[29] O(n(m 1 n log n))
1991 Gabow and Tarjan[31] O(m log(nN)=na(n, m) log n)

Table II. History of Computer Implementations

Year Authors

1969 Edmonds, Johnson, and Lockhart[24]

1973 Pulleyblank[55]

1978 Cunningham and Marsh[14]

1980 Burkard and Derigs[12]

1980 Kazakidis[44]

1981 Derigs[15]

1982 Havel[38]

1983 Minoux[51]

1985 Grötschel and Holland[37]

1986 Derigs[16]

1986 Derigs and Metz[18]

1987 Trick[62]

1988 Derigs[17]

1989 Lessard, Rousseau, and Minoux[48]

1991 Derigs and Metz[19]

1991 Gerngross[35]

1993 Applegate and Cook[3]

1993 Atamtürk[5]

1995 Miller and Pekny[52]
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The dual to this linear-programming problem is

max O~ yv;v [ V! 1 O~YS;S [ 2! (5)

subject to

yu 1 yv 1 O~YS;S [ 2 , e [ d~S!!

< we for all e 5 uv [ E , (6)

YS > 0 for all S [ 2 . (7)

Given a dual solution (y# , Y# ), the reduced cost of an edge e 5
uv, denoted by slack(e), is

slack~e! :5 we 2 y# u 2 y# v 2 O~Y# S;S [ 2 , e [ d~S!! ,

that is, the slack in the corresponding constraint (6). An edge
is called tight, with respect to (y# , Y# ), if its reduced cost is 0.
Similarly, a set S [ 2 is called full, with respect to a (partial)
matching x# , if x#(d(S)) 5 1. With these definitions, the com-
plementary slackness conditions for a primal-dual pair of
solutions can be stated as: for all edges e [ E, if x#e . 0, then
e is tight, and for all sets S [ 2, if Y# S . 0 then S is full. So we
can prove that a specified perfect matching is optimal by
providing a dual solution such that these conditions are
satisfied. The remarkable result of Edmonds[22] is that such
a proof of optimality always exists—indeed, it is constructed
by the blossom algorithm.

At each step, Edmonds’ algorithm has a matching and a
dual solution that together satisfy the complementary slack-
ness conditions. (As proposed by Derigs and Metz,[18] we
can initialize these solutions by solving a linear program-
ming relaxation of the matching problem.) The matching is
grown via augmenting paths until we reach a perfect match-
ing. To ensure that the complementary slackness conditions
hold after an augmentation is carried out, the algorithm only
considers augmenting paths made up entirely of tight edges.
The heart of the algorithm is thus a search engine for finding
such augmenting paths. We will not describe the algorithm,
but we do need to indicate several of its components in
order to present the new features in our implementation.

A key notion is that of shrinking a set S [ 2 into a single
pseudonode. The intuition is that if Y# S . 0 then the comple-
mentary slackness condition x#(d(S)) 5 1 is the same as the
constraint x#(d({v})) 5 1 for individual nodes v.

Given a matching x# and a dual solution (y# , Y# ), the algo-
rithm searches for an augmenting path of tight edges in a
graph that may possibly have some pseudonodes. (We will
use “node” to refer to both original nodes and to pseudo-
nodes.) To carry out the search, we choose an unmatched
node r (that is, x#(d({r})) 5 0) and grow a tree T rooted at r
having the following properties: each edge in T is tight and
for each node v in T, the unique path in T from v to r
alternates between matched edges (x#e 5 1) and unmatched
edges (x#e 5 0). Such a tree T is called an alternating tree. The
nodes of T are labeled “1” and “2” according to the parity
of the number of edges in the path back to the root r, that is,
node r and all nodes of even distance from r receive the label
“1” and all nodes of odd distance receive the label “2”. We
grow T by appending matched edges that meet “2” nodes or
tight unmatched edges that join “1” nodes to nodes not yet

in T. If we reach an unmatched node v in T (other than r),
then x# can be augmented along the path from v to r, by
replacing x#e by 1 2 x#e for each edge e in the path.

If the tree T has not reached an unmatched node and we
cannot grow T any further, we attempt to alter the dual
solution in order to create new tight edges, while keeping
each edge in T tight. The form of the dual change is to add
a nonnegative value e to y#v for each “1” node v and to
subtract e from y#v for each “2” node v. We choose e as large
as possible, subject to the condition that after the dual
change the complementary slackness conditions remain sat-
isfied. The constraints on e are therefore

e < slack~e!

for each edge e joining a “1” node to a node not in T ,

(8)

e < slack~e!/ 2 for each edge e joining two “1” nodes,
(9)

e < Y# S for each set S [ 2 corresponding

to a “2” pseudonode in T . (10)

If the bound on e is determined by a constraint in (8), then
after the dual change e is a new tight edge and we can grow
T. If, on the other hand, e is determined by a constraint in (9),
then adding e to the tree T creates a unique circuit C. Notice
that C must contain an odd number of nodes and pseudo-
nodes, and thus determines a set S [ 2. The circuit C is then
shrunk into a new pseudonode, and we again try to grow T.
Finally, if a condition (10) bounds e, then we expand the
previously shrunk circuit corresponding to the pseudonode,
adjust T to obtain a new alternating tree, and once again try
to grow T.

This rough outline will suffice for our purposes. Detailed
descriptions of the blossom algorithm can be found in Pul-
leyblank,[55] Ball and Derigs,[8] Gerards,[34] Cook, Cunning-
ham, Pulleyblank, and Schrijver,[13] and elsewhere.

2. Variable Dual Changes
One of the fundamental decisions that must be made in an
implementation of Edmonds’ algorithm is whether to grow
a single tree T from an unmatched node r or to simulta-
neously grow trees T1, T2, . . . , Tk from each of the un-
matched nodes r1, r2, . . . , rk. It is easy to work out the details
of the algorithm for either version, but it is not so easy to
predict how the variants will behave in practice. Applegate
and Cook[3] used a single tree in order to minimize the
amount of overhead in the search procedure, but this some-
times forced the code to find long augmenting paths in cases
where short paths were available (but starting from nodes
other than r). The question is whether the added complexity
of the multiple-tree version is worth the potential savings
obtained by carrying out global searches for augmenting
paths. Gerngross[35] made an extensive study of this issue
and proposed a two-phased implementation, where the sin-
gle-tree variant is used to match the first 95% of the nodes
and the multiple-tree variant is used to match the remaining

140
Cook and Rohe

Copyright ' 1999. All rights reserved.



5% of the nodes. Experimenting with Gerngross’s approach,
we were led to the improved procedure that we describe
below.

The major drawback of the multiple-tree variant is that to
compute the value of e in a dual change we need to examine
the edges meeting the “1” nodes in each of the (possibly
many) trees, but typically the dual change will create new
tight edges meeting only a very small number of these trees.
We therefore perform a great deal of computation in order to
make relatively little progress. A simple idea to overcome
this difficulty is to allow each of the trees Ti to have their
own dual change value ei Ä 0. The values (e1, . . . , ek) will be
constrained by (8), (9), and (10) for the corresponding trees
Ti, together with the following constraints involving pairs of
trees Ti and Tj, for i, j [ {1, . . . , k}:

e i 1 e j < slack~e!

for each e joining a “1” in Ti to a “1” in Tj , (11)

e i 2 e j < slack~e!

for each e joining a “1” in Ti to a “2” in Tj . (12)

These additional restrictions on the dual change values are
illustrated in Figure 1.

To make as much progress as possible in the dual objec-
tive function, we would like to choose (e1, . . . , ek) so as to
maximize ((ei;i 5 1, . . . , k), subject to the constraints (8), (9),
(10), (11), and (12). Computing such values (e1, . . . , ek) is a
linear-programming problem and can thus be solved in
polynomial time. (In fact, as observed by W.H. Cunningham
[personal communication], this is the linear programming
dual of a network optimization problem on a mixed graph.)
It would be interesting to see how the use of an optimal
solution to this linear-programming problem would impact
the performance of Edmonds’ algorithm, but this approach
is unlikely to be of practical value due to the time required
to solve the linear-programming problems.

An alternative idea is to employ a heuristic algorithm
aimed at obtaining good, but perhaps not optimal, values
(e1, . . . , ek). A first attempt would be to order the trees,
T1, . . . , Tk, and then, for i 5 1, . . . k, greedily make ei as large
possible. A difficulty with this approach is that the con-

straints on (e1, . . . , ek) may require that ei 5 ej for some i and
j and the greedy algorithm will therefore set both values to
0. To handle this, we can form a directed graph D on nodes
t1, . . . , tk, with a directed edge from ti to tj if and only if there
is a tight edge e [ E that joins a “1” node in Ti to a “2” node
in Tj (such an edge constrains ei to be at most ej). The
strongly connected components of D impose an equivalence
relationship on the trees T1, . . . , Tk. If two trees Ti and Tj are
in the same equivalence class, then we must have ei 5 ej in
any set of dual change values. We can therefore modify the
greedy algorithm to first order the equivalence classes, and
then, for each equivalence class in turn, greedily make the
common value of ei for the trees Ti in the equivalence class
as large as possible. In our computer code, we employ a
simplified version of this idea, where we define the equiv-
alence classes of the trees as the connected components of D.
This requires slightly less overhead than computing the
strongly connected components, and appears to work ade-
quately in practice.

A computational comparison of the single-tree, multiple-
tree, and the variable-e methods is given in Table III. The
problem instances are sparse graphs derived from geometric
data sets that are described in Section 4 (the graphs are
approximations of the Delaunay triangulation of the point
set). The tests were run on a 200 Mhz Pentium-Pro computer
(see Section 4 for more details on the computing platform).

Although the running times indicate that the variable-e
approach is worthwhile, there is no doubt room for im-
provement. One sign is that finding the last several augmen-
tations in our code often takes more than half of the total
computation time (see Table IV). This suggests that some
other strategy (such as a priority queue-based implementa-
tion) may be preferable for the final stages of the algorithm.

3. Price and Repair
To solve large problem instances, we adopt the strategy of
first computing the optimal matching over a sparse subset of

Figure 1. Constraints on dual change values.

Table III. Sparse Graphs (Pentium-Pro, seconds)

Nodes Edges Single Tree Multiple Trees Variable e

1,002 2,972 0.08 0.06 0.03
5,934 17,770 7.78 5.11 0.80
15,112 45,310 49.77 5.94 2.37
85,900 257,604 171.15 230.34 54.18

Table IV. Percentage Time for Final Augmentations

Nodes Edges
Final

Augmentation
Final 10

Augmentations

1,002 2,972 0.0% 50.0%
5,934 17,770 18.0% 58.4%
15,112 45,310 8.0% 38.3%
85,900 257,604 1.1% 78.7%
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edges and then using linear-programming duality to guide
us towards a solution over the entire edge set. This is a
standard technique in combinatorial optimization—in this
context it was first proposed by Derigs and Metz.[19]

There are many choices for the initial set of edges. Derigs
and Metz[19] used the k-nearest graph, consisting of the k
least costly edges meeting each node. Miller and Pekny[52]

used the k-quad-nearest graph, defined as the k least costly
edges in each of the four geometric quadrants around each
node. In Applegate and Cook,[3] the “fractional k-nearest
graph” was used; this graph is obtained by first solving a
linear-programming relaxation of the matching problem and
then choosing the k edges of least reduced cost meeting each
node. In our study, we generally use the edges of an ap-
proximate Delaunay triangulation of the set of points. This
edge set has the nice property that it is not too dense, but still
captures well the structure of the point set and it contains a
perfect matching (see Akl[2] and Dillencourt[21]).

Once we have solved the minimum-weight perfect-
matching problem over the initial set of edges, we compute
the reduced costs of the remaining edges. This procedure is
called pricing. If all of the reduced costs are nonnegative,
then our dual solution (y# , Y# ) is a feasible solution to the full
dual linear-programming problem and we can therefore
conclude that the matching is optimal over the entire set of
edges. If, on the other hand, some of the reduced costs are
negative, then we cannot be sure that the matching we
computed is optimal over the entire edge set. In this latter
case, we can add some (or all) of the edges having negative
reduced cost to our initial edge set, resolve the matching
problem, and repeat the pricing procedure. This process can
be iterated until we obtain an optimal matching over the
entire edge set.

For this procedure to be successful on large problem
instances, we need, first of all, an efficient pricing mecha-
nism. In our code, we follow the ideas described in Apple-
gate and Cook.[3] Namely, we use the least-common-ances-
tor algorithm of Aho, Hopcropt, and Ullman[1] to compute
the reduced costs for sets of edges, taking advantage of the
nested structure of the sets {S [ 2;Y# S . 0}. Moreover, we
use Applegate and Cook’s underestimate of the reduced cost
to avoid pricing the entire set of edges. This is accomplished
by computing, for each node v, the value

sum~v! :5 y# v 1 O$Y# S;S [ 2 , v [ S% .

Then the reduced cost of an edge e 5 uv is at least

g~e! :5 ce 2 sum~u! 2 sum~v! ,

so we need only to price those edge for which g(e) , 0.
Applegate and Cook describe a technique to avoid explicitly
computing g(e) for every edge in the complete graphs de-
termined by geometric problem instances, taking advantage
of the distance function to rule out the possibility that certain
edges have g(e) , 0. We do not adopt this aspect of the
Applegate-Cook process, using instead a kd-tree (see Bent-
ley[11]), treating sum[ as an extra geometric coordinate and
using g[ as our distance function. This allows us to locate
edges having g(e) , 0 using the standard nearest-neighbor

search algorithms for kd-trees. This idea is similar to the
technique used by Johnson, McGeoch, and Rothberg[42] for
computing spanning trees in the Held-Karp procedure for
the traveling salesman problem.

If a pricing phase produces many edges having negative
reduced cost, then it may make sense to resolve the new
perfect-matching problem from scratch, since the addition of
many edges will most likely cause both the perfect matching
and the dual solution to change considerably. If, however,
we have relatively few edges of negative reduced cost, then
it may be quite wasteful to simply throw away our matching
and dual solution. Instead, we would like to repair the
matching by inserting the new edges into our existing solu-
tions. Ball and Derigs,[8] building on earlier work of We-
ber,[64] described an elegant method for accomplishing this.
Suppose we wish to add the edge e 5 uv to the initial edge
set. Their method begins by carrying out a sequence of dual
changes and pseudonode expansions (preserving the com-
plementary slackness conditions) so that one end of e, say v,
is no longer contained in any pseudonode. Let f be the
matching edge meeting v, and set x# f 5 0. Now we can
decrease the value of y#v so that the reduced cost of edge e
becomes 0. We then have a matching x# and a dual solution
(y# , Y# ) that satisfy the complementary slackness conditions
(except that we may have an unmatched pseudonode), so
we can search for an augmenting path to restore x# to an
optimal perfect matching.

The Ball-Derigs method is very clean, but it does have
some practical drawbacks, as does the slightly improved
procedure used by Applegate and Cook.[3] Firstly, the dual
steps and the primal steps often fight one another: the dual
steps expand pseudonodes to uncover node v, and the pri-
mal steps shrink v back into a chain of pseudonodes in order
to find an augmenting path. If we have more than one edge
to add to our initial set, then it is advantageous to delay the
primal steps until each of the edges has been added. This
will result in a graph having a number of unmatched nodes
and pseudonodes that can be matched with the variable-e
approach.

Secondly, the Ball-Derigs method requires a great deal of
computational effort to ensure that the complementary
slackness conditions continue to hold for the matching x# and
dual solution (y# , Y# ). If we give up this requirement, we can
simply expand each pseudonode containing v, setting x# f 5 0
for the matching edges f that meet the pseudonodes. This
will result in a graph having a greater number of unmatched
nodes and pseudonodes, but we can once again apply the
variable-e approach to restore x# to an optimal perfect match-
ing. We call this simplified procedure careless repairs, since
we have dropped most of the constraints that guide the
Ball-Derigs procedure.

In Table V, we compare careless repairs, the Ball-Derigs
procedure, and the procedure of simply resolving the
matching problems from scratch after each pricing iteration.
The times reported are for solving the matching problem
over the complete graph specified by the geometric problem
instances, starting with the Delaunay edge set. It is interest-
ing to note the good performance of the resolve method.
This can be explained by the results we presented in Table
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IV, showing that, with the variable-e approach, completing a
nearly-perfect matching to a perfect matching is sometimes
close to being as difficult as computing the perfect matching
from scratch. We take advantage of this fact to make our
code more robust when dealing with initial edge sets that do
not provide a good representation of the full graph: when
we find greater than n/32 edges having negative reduced
cost (in an instance having n nodes), then we simply resolve
the matching problem from scratch, rather than calling our
repair routine.

4. Computational Results
We refer to our computer code as Blossom IV, following the
names “Blossom I” through “Blossom III” used by Ed-
monds, Johnson, and Lockhart,[24] Pulleyblank,[55] and Cun-
ningham and Marsh,[14] respectively.

A crucial component in any efficient implementation of
Edmonds’ algorithm is the choice of the data structures for
maintaining the search tree and the blossom family. In Blos-
som IV we employ the framework described in Pulley-
blank[55] (see also Applegate and Cook[3]).

We tested Blossom IV on a variety of geometric problem
instances, both structured and randomly generated, as well
as on some sparse graphs obtained from these instances. The
structured instances are listed in Table VI. Most of these
examples can be found in the TSPLIB library, maintained by
Gerd Reinelt.[57] We worked with a selection of the TSPLIB
instances having between 1,002 and 85,900 nodes. The orig-
inal data set for “usa13509” contains an odd number of
points; for this instance, we follow the practice of Applegate
and Cook[3] and drop the last point after sorting the x, y
coordinates. The “kanto” instance is described in Asano,

Edahiro, Imai, Iri, and Murota.[4] The two large VLSI in-
stances were obtained from the VLSI design project at the
Research Institute for Discrete Mathematics at the Univer-
sity of Bonn. For all instances other than “kanto,” the edge
weights are defined as the Euclidean distance (rounded to
the nearest integer) between the points corresponding to the
end nodes of the edges (this is the distance function speci-
fied in TSPLIB). The edge weights for “kanto” are defined
similarly, but with the L` norm used instead of the L2 norm.

The randomly generated examples that we consider have
integer coordinates drawn uniformly from the N by N
square, when N is the number of nodes in the instance. We
use the “lprand” generator that is available as part of the
DIMACS Challenge that was organized by Johnson and
McGeoch.[41] The generator is described in Bentley[10] and is
based on Algorithm A in Section 3.2.2 of Knuth.[46] It has the
nice property that on most machine types it will produce the
identical sequence of integers for a given seed. We use the
rounded Euclidean distance to define the edge weights in
these random problem instances.

Our computational tests were carried out on three differ-
ent computing platforms: an IBM RS6000, Model 590 run-
ning IBM’s AIX operating system and using the IBM xlc
compiler with the options “2O2 2Q520”; a Hewlet Packard
Vectra XU 6200 with a 200 Mhz Pentium-Pro processor and
256k cache, running Sun Solaris and compiled with the GNU
gcc compiler using optimization level 2O3; and a Digital
AlphaServer 4100 (400 Mhz processor) running Digital Unix
and compiled with Digital’s cc compiler with the options
“-tune host -O4”. In Table VII, we report the running times
on these three machines for the complete set of structured
instances (the two VLSI instances were not run on all three
machines due to memory and time limitations). In these tests
we used the Delaunay graph as the initial edge set, as
computed by the “sweep2” code of Fortune,[25, 26] with the
exception of the L`-norm instance “kanto” (sweep2 requires
L2-norm instances), where we use the union of the 1-quad-
nearest edge set and the edge set of a nearest-neighbor
traveling salesman tour for the set of points. The running
times given in the table include all phases of the algorithm:
initial edge set generation, matching the initial set, and
price-repair. The times for the Pentium-Pro are roughly 1.3

Table V. Comparison of Repair Routines (Pentium-Pro,
seconds)

Nodes Ball-Derigs Resolve Careless

1,002 0.20 0.27 0.15
5,934 9.55 6.63 4.19
15,112 833.27 15.16 11.73
85,900 5557.79 236.77 155.84

Table VI. Test Instances

Name Nodes Source

pr1002 1,002 TSPLIB
pcb3038 3,038 TSPLIB
rl5934 5,934 TSPLIB
usa13509 13,508 TSPLIB
d15112 15,112 TSPLIB
kanto 20,726 Map of Tokyo
pla85900 85,900 TSPLIB
p626628 626,628 VLSI (Bonn)
p2184278 2,184,278 VLSI (Bonn)

Table VII. Blossom IV Running Times (seconds)

Name IBM 590
200 Mhz

Pentium-Pro
AlphaServer

4100

pr1002 0.42 0.25 0.12
pcb3038 1.42 0.96 0.45
rl5934 7.79 5.76 2.56
usa13509 16.39 13.36 5.42
d15112 17.19 12.81 5.98
kanto 86.27 63.33 24.73
pla85900 210.84 165.19 76.76
p626628 36634.15 31215.27 12931.03
p2184278 Not Run Not Run 279143.68
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times faster than the IBM 590, and the times for the Al-
phaServer 4100 are roughly 3.0 times faster than the IBM 590
and 2.3 times faster than the Pentium-Pro. (We note that the
relatively poor running times for p626628 and p2184278 are
due to the time required in the pricing phase of the algo-
rithm. For these large, structured instances, the running
times can be greatly reduced by working with a more dense
initial edge set.)

It is a difficult task to properly compare the performance
of Blossom IV with earlier implementations, due both to the
unavailability of the earlier codes and to the fact that the
early codes were written for greatly different computing
platforms. We limit ourselves to a comparison with the code
of Applegate and Cook,[3] which appears to be the best
performing code of the earlier implementations—a compar-
ison with the code of Derigs[17] is given in Applegate and
Cook.[3] In Table VIII, we report the times for Applegate-
Cook on our test bed. For these instances, Blossom IV ranged
from 4 to 87 times faster than the earlier code. It should be
noted, however, that Applegate-Cook is known to perform
well over structured instances such as those in our test set.
Indeed, in tests carried out by Williamson and Goemans,[63]

they found that Applegate-Cook (for computing optimal
matchings) was usually faster than their own implementa-
tion of the Goemans and Williamson[36] matching heuristic

on TSPLIB problems, whereas for large randomly generated
problems the heuristic was up to 2 times faster than Apple-
gate-Cook. It is therefore not surprising that Blossom IV
obtains a greater speedup on large random instances, as
indicated in Table IX.

Blossom IV has an advantage over the Applegate-Cook
code in that its superior price-repair routine permits it to
work efficiently with a smaller initial edge set. The initial set
used by Applegate-Cook is the “fractional 10-nearest”; this
is a denser graph than the Delaunay graph used by Blossom
IV. Moreover, the computation time needed to construct the
fractional 10-nearest edge set is considerably more than that

Figure 2. Log-log plot of random instances (IBM 590).

Table VIII. Applegate-Cook (AlphaServer 4100,
seconds)

Name Applegate-Cook Blossom IV Speedup

pr1002 0.57 0.12 4.8
pcb3038 2.05 0.45 4.6
rl5934 26.55 2.56 10.4
usa13509 474.81 5.42 87.6
d15112 75.16 5.98 12.6
kanto 1001.74 24.73 40.5
pla85900 559.65 76.76 5.9

Table IX. Applegate-Cook on Random Instances
(AlphaServer 4100, seconds)

Nodes Applegate-Cook Blossom IV Speedup

10,000 106.69 3.09 34.5
100,000 40063.40 92.15 434.7
250,000 726347.22 272.70 2663.5

Table X. Applegate-Cook on Fractional Nearest 10
(AlphaServer 4100, seconds)

Nodes Edges Applegate-Cook Blossom IV Speedup

10,000 58,583 67.11 1.60 41.9
100,000 585,072 23813.34 28.35 840.0
250,000 1,462,226 334009.88 114.10 2927.3

Table XI. Random Geometric Problems (IBM 590,
seconds)

Nodes Trials Mean Time Max Time Min Time

1,000 100 0.36 0.57 0.23
2,000 100 0.89 1.46 0.54
5,000 100 2.99 4.84 2.07

10,000 100 7.59 11.81 5.59
20,000 100 18.34 29.43 13.63
50,000 100 69.87 165.06 45.03

100,000 100 189.06 538.13 110.13
200,000 100 581.16 2970.35 265.20
500,000 100 2317.63 12609.14 1045.71

1,000,000 33 11819.44 83621.12 2843.38
2,000,000 11 61864.41 207752.32 8297.41

Table XII. 5,000,000 Node Random Instances (10 trials,
IBM 590, seconds)

Initial Edge Set Mean Time Max Time Min Time

LK10 1 Nearest 2 150978.66 453890.36 57364.17
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needed by the fast Delaunay graph codes of Fortune,[25]

Shewchuk,[60] and others. We remark, however, that even
just solving over the fractional 10-nearest, Blossom IV is
significantly faster than Applegate-Cook, as indicated in
Table X.

To give an indication of the growth in running time for
Blossom IV as the problem size increases, we present in
Table XI results for our code over a range of random geo-
metric instances. In these instances, the Delaunay graph was
computed using the “triangle” code of Shewchuk.[60] (We
found “triangle” to be more robust than “sweep2” when
dealing with large point sets.) A log-log plot of these values
is given in Figure 2. The running times are mean values over
a number of independent instances for each problem size, as
indicated in the table. It should be noted that the running
times increase if the points are distributed in a larger square,
for example, working in a 100N by 100N square increases the
mean time by about a factor of 2 for instances on 50,000

nodes. (This is due to the increase in the number of dual
changes brought on by the greater precision in the integer
edge lengths.)

The plot in Figure 2 indicates that the growth in running
time is modest enough to consider solving even larger prob-
lem instances. A difficulty that we encounter, however, is
that the memory required by the computer code is also
growing with the number of nodes.

One of the main contributors to the memory usage in
Blossom IV is the storage for the edges. It is natural, there-
fore, to consider using an initial edge set that is less dense
than the Delaunay graph. There are many possibilities for
such an edge set; one that we tested consists of the union of
10 matchings produced by a Lin-Kernighan heuristic for
perfect matchings, similar to the well known heuristic of Lin
and Kernighan[49] for the traveling salesman problem. (For
details of this matching heuristic see Rohe.[59]) For small

Figure 3. Lengths of 1,000,000 node random instances.

Table XIII. Computational Estimates on bM

Year Authors Estimate Largest Test Instance

1977 Papadimitriou[54] bM ' 0.35 200 nodes
1983 Iri, Murota, and Matsui[40] 0.32 ¶ bM ¶ 0.33 250 nodes
1986 Weber and Liebling[65] bM ' 0.3189 1,000 nodes

Table XIV. Delaunay Matching (Pentium-Pro, seconds)

Name Time Cost Optimal Cost % Gap Speedup

pr1002 0.07 112723 112630 0.083 3.6
pcb3038 0.31 64489 64487 0.003 3.1
rl5934 1.09 246887 246834 0.021 5.3
usa13509 3.25 8839441 8838275 0.013 4.1
d15112 3.09 720699 720617 0.011 4.1
pla85900 61.13 67648209 67647278 0.001 2.7

Table XV. Delaunay Matching on Random Instances
(IBM 590, seconds)

Nodes Trials
Mean
Time

Mean %
Gap

Max %
Gap Speedup

1,000 100 0.04 0.043 0.257 9.73
10,000 100 1.24 0.036 0.070 6.11

100,000 100 40.33 0.035 0.045 4.69
500,000 100 416.30 0.035 0.040 5.57

1,000,000 33 2018.34 0.035 0.037 5.86
2,000,000 11 3834.78 0.035 0.036 16.13

Table XVI. Delaunay Graphs with (0–9,999) Edge
Weights (IBM 590, seconds)

Nodes Trials Mean Time Max Time Min Time

1,000 100 0.08 0.23 0.03
2,000 100 0.23 0.55 0.09
5,000 100 1.10 3.75 0.24

10,000 100 3.04 9.52 1.07
20,000 100 9.89 35.51 3.16
50,000 100 41.68 187.01 11.71

100,000 100 105.31 268.88 43.30
200,000 100 281.54 1109.93 68.83
500,000 10 1230.13 4861.29 399.23

1,000,000 10 2346.22 5650.23 1158.77
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instances, this edge set is not practical, since it requires as
much time to compute as the total computation time for
Blossom IV starting with the Delaunay graph. At 100,000
nodes, computing the Lin-Kernighan edge set requires
roughly one-third of the time needed by Blossom IV with the
Delaunay graph, and the total running time is about 1.5
times the Delaunay version. At 1,000,000 nodes, the time
needed to compute the edge set is about one-tenth of the
time for Blossom IV with Delaunay, and the total running
time is only about 25% slower than using the Delaunay
version. The additional slowdown for the Lin-Kernighan
version of the code (over the time needed to generate the
edge set) results from the fact that the very sparse initial set
can lead to a larger number of rounds of price-repair. To
partially offset this effect, we add the nearest-2 edge set to
the union of the 10 matchings when we consider large
instances. To test this approach, we ran Blossom IV on 10
instances having 5,000,000 nodes. The running times for this
test (on an IBM RS6000, 590) are given in Table XII.

The fact that Blossom IV can solve large random problem
instances suggests that it may be a useful tool in pursuing
the study of the asymptotic behavior of the length of the

optimum matchings. Papadimitriou[54] has shown that there
exists a constant bM, such that if (x1, y1), (x2, y2), . . . is an
infinite sequence of independent, uniformly distributed
points in the unit square, and Mn denotes the length of
the minimum-weight perfect matching on the points (x1,
y1), . . . , (x2n, y2n), then Mn/=n converges almost surely to
bM. In Table XIII we list estimates on bM that have been
obtained by a number of researchers via computational ex-
periments. Williamson and Goemans[63] argue that, rather
than simply using bM

=n, the matching length Mn can be
more accurately predicted with an estimator of the form

bMÎn 1 aM .

Using the computer code of Applegate and Cook[3] to solve
a range of problem instances (including 4 instances having
131,072 nodes), they estimated that bM ' 0.3103 and aM '
0.2357. Thus, for 1,000,000 node instances the Williamson-
Goemans estimate is Mn 5 310.5357. We used Blossom IV to
compute optimal matchings for 250 random instances hav-
ing 1,000,000 nodes (using the seeds 1 through 250 with
“lprand”). The histogram of the lengths of the matchings is
given in Figure 3. The mean of the 250 lengths is 310.6052,
and thus fits reasonably well with the Williamson-Goemans
estimate.

Although the goal of Blossom IV is the exact solution of
large scale instances, it should be noted that the code can
also be used as a heuristic algorithm by only solving over the
initial edge set, skipping the price-repair phase of the code.
Indeed, as we indicate in Table XIV, very good quality
matchings can be obtained by optimizing just over the
Delaunay graph. In each of our test instances, the cost of the
optimal matching in the Delaunay graph is within one-tenth
of one percent of the cost of the optimal matching over the
complete graph. The times reported in Table XIV include the
time used by the “sweep2” code of Fortune[26] to compute
the Delaunay graph. The speedup over the time to solve the
complete graph was 2.7 or better in all cases. Similar results

Table XVII. 100,000 Node Delaunay Graphs with
Random Edge Weights (IBM 590, seconds)

Edge
Weights Trials Mean Time Max Time Min Time

0–9 100 18.35 131.71 5.52
0–99 100 21.09 145.50 11.71
0–999 100 45.06 107.75 27.03
0–9,999 100 105.31 268.88 43.30
0–99,999 100 150.33 501.84 45.96
0–999,999 100 158.44 581.54 47.10
0–9,999,999 100 159.06 586.32 46.10
0–99,999,999 100 158.45 591.21 46.19

Table XVIII. Running Times for pla85900 (seconds)

Machine Compiler Time Speedup

Sun Sparc 10, Model 41 gcc -O3 522.27 1.0
IBM RS6000, Model 550 gcc -O3 516.08 1.0
IBM RS6000, Model 43p (133 Mhz) xlc -O2 -Q520 258.85 2.0
SGI Indigo 2, Impact (250 Mhz, R4400) cc -O2 215.42 2.1
IBM RS6000, Model 590 xlc -O2 -Q520 210.84 2.5
Digital Alpha XL 266 gcc -O3 198.61 2.6
Sun Ultra 1, Model 140 gcc -O3 172.44 3.0
HP Vectra XU 6200 gcc -O3 165.19 3.2
SGI Indigo 2, Impact 10000 cc -O2 156.82 3.3
IBM RS6000, Model 595 xlc -O2 -Q520 139.06 3.8
Sun Ultra 2, Model 200 gcc -O3 122.42 4.3
Digital Alpha XL 366 gcc -O3 111.46 4.7
DCG EV56 (500 Mhz Alpha, 2 Mbyte cache) gcc -O3 83.85 6.2
Digital AlphaServer 4100 (400 Mhz) gcc -O3 78.77 6.6
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hold for our tests on random graphs, using “triangle” to
compute the Delaunay graphs, as reported in Table XV.

Up to this point, each of the instances we have considered
have edge weights determined by some geometric norm. To
give a comparison with non-geometric instances, in Table
XVI we report times on random Delanuay graphs where the
integer edge weights are chosen at random (uniformly) from
the interval 0–9,999. In Table XVII, we give an indication of
the growth in the running time as the spread of the random
weights is increased. Notice that for these 100,000-node in-
stances, the running time appears to level off after we reach
the point where most of the edges receive distinct weights.

Finally, we report in Table XVIII the solution time for
pla85900 across a number of different computing platforms.
This gives a rough comparison of the various machines for
this type of combinatorial computing.
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