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Abstract. We construct a probabilistic polynomial time algorithm that computes the
mixed discriminant of givenn positive definiten × n matrices within a 2O(n) factor. As a
corollary, we show that the permanent of ann×n nonnegative matrix and the mixed volume
of n ellipsoids inRn can be computed within a 2O(n) factor by probabilistic polynomial time
algorithms. Since every convex body can be approximated by an ellipsoid, the last algorithm
can be used for approximating in polynomial time the mixed volume ofn convex bodies in
Rn within a factornO(n).

1. Introduction

In this paper we address the problem of estimating the permanent of a given nonnegative
matrix and the mixed volume of givenn ellipsoids inRn. We show that these compu-
tational problems are related to that of estimating the mixed discriminant ofn positive
definiten×n matrices. We present a randomized polynomial time algorithm for the last
problem and discuss its applications. Our main results are:

A randomized polynomial time algorithm that computes the permanent of a givenn×n
nonnegative matrix within a 2O(n) factor.

A randomized polynomial time algorithm that computes the mixed volume of givenn
ellipsoids inRn within a 2O(n) factor.

For any fixedk a deterministic polynomial time algorithm that computes the mixed
volume of givenn ellipsoidsE1, . . . , E1, E2, . . . , E2, . . . , Ek, . . . , Ek in Rn, only k
being pairwise different, within a 2O(n) factor.
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and by the grant of Horace H. Rackham School of Graduate Studies and the Office of the Vice-President for
Research at the University of Michigan.
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(1.1) Permanent. Let Sn be the symmetric group of alln! permutations of the set
{1, . . . ,n}. Let A = (ai j ) be ann× n matrix. The number

perA =
∑
σ∈Sn

n∏
i=1

aiσ(i )

is called thepermanentof A. If A is a 0–1 matrix, then perA is the number of perfect
matchings in the bipartite graph with the adjacency matrixA. We are interested in the
problem of computing the permanent of a given nonnegative matrix. This problem is
known to be #P-complete. Despite various results on computing the permanent of a
“typical” 0–1 matrix [6], [19], the permanent of a “sparse” matrix [8], the permanent
of a “dense” matrix [11], and the permanent of a matrix with the bounded rank [3],
surprisingly little is known about how well can one approximate the permanent of any
given nonnegative (and even 0–1 matrix) in polynomial time. It is easy to construct a
polynomial time algorithm that for any given nonnegative matrixA computes a number
α such that

p(n)

n!
perA ≤ α ≤ perA,

wherep(n) is a polynomial given in advance. Using an algorithm for the Assignment
Problem (see, for example, [18]) we can find in polynomial time the firstp(n) permuta-
tions with largest weights

∏n
i=1 aiσ(i ). Apart from this trivial estimate, nothing seems to

be known.
In this paper we construct a randomized polynomial time algorithm that, for any given

nonnegative matrixA, computes a numberα such that

cn perA ≤ α ≤ perA,

wherec > 0 is an absolute constant (we can choosec = 0.28). Although this is the best
known polynomial time approximation for a “worst-case” nonnegative matrix, it is still
far from a polynomial time approximation scheme known for an “average” 0–1 matrix
(see [6], [11], and [19]). The author conjectures though that the proposed algorithm leads
to a polynomial time approximation scheme for (properly defined) “average” nonnegative
matrices. V. D. Milman suggested that forany c< 1 a polynomial time algorithm might
exist that approximates the permanent of a given nonnegative matrix within a factorcn.

(1.2) Mixed Volumes. Let K1, . . . , Kn be convex bodies in the Euclidean spaceRn

and letV(·) be the Euclidean volume inRn. As is well known (see, for example, [21]
and [22]) the value ofV(λ1K1+ · · ·+ λnKn) is a homogeneous polynomial of degreen
in nonnegative coefficientsλ1, . . . , λn, where “+” denotes the Minkowski addition and
λK denotes the dilatation ofK with the coefficientλ. Thus we have

V(λ1K1+ · · · + λnKn) =
n∑

i1=1

· · ·
n∑

in=1

λi1 · · · λin V(Ki1, . . . , Kin)

for nonnegativeλi . CoefficientsV(Ki1, . . . , Kin)are uniquely determined by the assump-
tion that they are symmetric with respect to permutations ofKi1, . . . , Kin . The coefficient
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V(K1, . . . , Kn) in the above expansion is called themixed volumeof K1, . . . , Kn. The
mixed volume is known to be nonnegative and monotone, that is, ifKi ⊂ K ′i for all i
thenV(K ′1, . . . , K ′n) ≥ V(K1, . . . , Kn), see [21] and [22].

The problem of computing the mixed volume of given convex bodies is important
for Combinatorics, Algebraic Geometry, and Operations Research (see [9] and [4]). For
example, the number of toric solutions to a generic system ofn polynomial equations
onCn is equal ton! times the mixed volume of the Newton polytopes of the equations.

An important particular case is computing the mixed volume ofnellipsoidsE1, . . . , En

inRn. The problem of computingV(K1, . . . , Kn) andV(E1, . . . , En), in particular, was
studied in [4]. There a polynomial time algorithm was constructed that approximates
V(E1, . . . , E1, E2, . . . , E2) within a factorcn, wherec > 0 is an absolute constant.

In this paper we construct a randomized polynomial time algorithm that for any given
ellipsoidsE1, . . . , En ⊂ Rn computes a numberα such that

cnV(E1, . . . , En) ≤ α ≤ V(E1, . . . , En),

wherec > 0 is an absolute constant (we can choosec = 0.66). Furthermore, for any
fixed k we construct a deterministic polynomial time algorithm that achieves the same
degree of approximation (withc = 1/

√
3≈ 0.577) for

V(E1, . . . , E1, E2, . . . , E2, . . . , Ek, . . . , Ek),

i.e., when we have onlyk pairwise different ellipsoids. In particular, this settles in part a
conjecture of [4] that the mixed volume of ellipsoids can be approximated in polynomial
time within a factor depending on the dimension alone. “In part” refers to the fact that
in the general case, we have only a randomized polynomial time algorithm, whereas a
deterministic algorithm is desirable. V. D. Milman conjectured that forany c< 1 there
exists a randomized polynomial time algorithm that computes the mixed volume of given
n ellipsoids with a factorcn.

For each convex bodyKi ⊂ Rn there is an ellipsoidEi so thatEi ⊂ K ⊂ nEi (after
a suitable translation), see, for example, [10]. Since mixed volumes are monotone, our
algorithms can be used for approximating the mixed volumeV(K1, . . . , Kn) within a
factornO(n) providedKi belong to a class of convex bodies that can be approximated
by ellipsoids within a factornO(1) in polynomial time. This is the first polynomial time
algorithm that approximatesV(K1, . . . , Kn) within a factor depending onn alone for a
reasonably broad class of convex bodies.

Our computational model is the RAM with the uniform cost criterion [1]. For con-
venience, together with the arithmetic operations (addition, subtraction, multiplication,
division, and comparison of real numbers) we allow taking the square root of a non-
negative real number. All these operations are assumed to have cost 1. We also include
a standard subroutine from Linear Algebra, that is computing the eigenvalues of a real
symmetric matrix. In the probabilistic setting, we assume that our machine can sam-
ple a point from the uniform distribution on the unit sphere. This assumption is not
very restrictive since it is known that the standard normal distribution inRn (and thus
the uniform distribution on the sphere) can be simulated with an arbitrary precision in
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polynomial time from the standard Bernoulli distribution by means of the Central Limit
Theorem.

To compute permanents and mixed volumes we use mixed discriminants introduced
by Aleksandrov in his proof of the Aleksandrov–Fenchel inequality (see [2]). They turned
out to be useful in proving the van der Waerden conjecture for permanents of doubly
stochastic matrices (see [5]).

(1.3) Mixed Discriminants. Let Q1, . . . , Qn be symmetricn × n matrices and let
t1, . . . , tn be real variables. Then there is an expansion similar to that of (1.2):

det(t1Q1+ · · · + tnQn) =
n∑

i1=1

· · ·
n∑

in=1

ti1 · · · tin D(Qi1, . . . , Qin), (1.3.1)

where the coefficientsD(Qi1, . . . , Qin) are assumed to be symmetric with respect to
permutations ofQi1, . . . , Qin . The coefficientD(Q1, . . . , Qn) is called themixed dis-
criminantof Q1, . . . , Qn.

Mixed discriminants have many interesting properties somewhat parallel to those of
mixed volumes (see, for example, Section 3 of [15]) and they seem to be easier to deal
with. Mixed discriminants can be considered as a generalization of permanents and they
also have some interesting combinatorial applications. For example, the number of bases
in the intersection of a unimodular matroid with a transversal matroid can be expressed
as the mixed discriminant of some positive semidefinite matrices. The author believes
that the problem of computing the mixed discriminant is interesting in its own right.

If we fix an orthonormal basis inRn we may identify a symmetric matrixQ with a self-
adjoint operator onRn and consider the ellipsoidEQ = {x ∈ Rn : 〈x, Qx〉 ≤ 1}, where
〈·, ·〉 is the scalar product inRn. Relations between permanents, mixed discriminants,
and mixed volumes are described by the following theorem.

(1.4) Theorem.

(1.4.1) Let A= (ai j ) be an n×n matrix. Let Mi = diag{ai 1, . . . ,ain} be the diagonal
matrix whose jth diagonal element is ai j . Then

perA = n! D(M1, . . . ,Mn).

(1.4.2) Let Q1, . . . , Qn be positive definite n× n matrices and let

EQi = {x ∈ Rn : 〈x, Qi x〉 ≤ 1}, i = 1, . . . ,n,

be the corresponding ellipsoids. Then

(
√

3)−n+1vn D1/2(Q−1
1 , . . . , Q−1

n ) ≤ V(EQ1, . . . , EQn)

≤ vn D1/2(Q−1
1 , . . . , Q−1

n ),

wherevn = πn/2/0(n/2+ 1) is the volume of the unit ball inRn.

The central result of this paper is a randomized polynomial time algorithm that for any
given positive definiten×n matricesM1, . . . ,Mn with probability at least 0.9 computes
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a numberα such that

cn D(M1, . . . ,Mn) ≤ α ≤ 20D(M1, . . . ,Mn)

for some absolute constantc > 0 (we can choosec = 0.28). To get an overwhelming
probability, we have to run the algorithm several times and choose the median of the
computedα’s.

This paper is organized as follows. In Section 2 we prove a recurrence for the mixed
discriminant that allows us to reduce its computation to the computation of the average
value of a positive definite quadratic form on the unit sphereSn−1. In Section 3 we
study the distribution of values of a quadratic form onSn−1. In Section 5 we present our
algorithm for computing the mixed discriminantD(M1, . . . ,Mn)and prove that it has the
desired complexity (almost obvious) and achieves the desired degree of approximation
(far less obvious). The main idea of the algorithm is to construct a random variable on
the orthogonal groupOn whose expectation is the mixed discriminant of given matrices.
To estimate the expectation we use a Monte Carlo algorithm with just one sampling.
We use the results of Section 4 on the integration over the orthogonal group to prove
that our algorithm indeed achieves the desired degree of approximation. In Section 6 we
apply our algorithm to the permanent computation. In Section 7 we prove part (1.4.2)
of Theorem 1.4. Together with the algorithm from Section 5 this gives us an algorithm
for estimating the mixed volume of ellipsoids. In Section 9 we present an independent
algorithm for the last problem that gives us an unbiased estimator, achieves, in principle,
a better approximation, and is more geometric. We use a known recurrence for the mixed
volume that allows us to reduce its computation to the computation of the average value
of the support function of a zonoid inRn. We use Theorem 1.4 to construct a deterministic
polynomial time algorithm when the number of different ellipsoids is fixed. In Section 8
we study the distribution of values of the support function of a zonoid which is necessary
for our analysis of the algorithm.

(1.5) Notation. We summarize some notation used throughout this paper. Thus〈·, ·〉
is the standard scalar product inRn. We denote byQ∗ the operator adjoint toQ, that is,
〈x, Qy〉 = 〈Q∗x, y〉 for all x, y ∈ Rn.

For a convex bodyK ⊂ Rn and a linear subspaceL ⊂ Rn we denote byK |L the
orthogonal projection ofK ontoL. If Q: Rn −→ Rn is a self-adjoint operator onRn and
L ⊂ Rn is a linear subspace we define itsprojection Q|L as follows: LetP: L −→ Rn

be the inclusion and letP∗: Rn −→ L be the orthogonal projection ontoL. Then
Q|L = P∗Q P is a self-adjoint operator onL. In other words, ifq(x) = 〈x, Qx〉 is the
quadratic form associated withQ, then for the restriction ofq(x) ontoL we haveq(x) =
〈x, (Q|L)x〉 for eachx ∈ L. We note that(αQ1 + βQ2)|L = α(Q1|L) + β(Q2|L).
A self-adjoint operatorQ is calledpositive definiteif 〈x, Qx〉 > 0 for anyx 6= 0. It is
immediate thatQ|L is positive definite providedQ is positive definite. We denote byI
the identity operator onRn.

For a convex compact setK ⊂ Rn we denotehK (u) = max{〈u, x〉 : x ∈ K },
hK : Rn −→ R the support function ofK . A zonotopeis the Minkowski sum of finitely
many segments (symmetric about the origin) inRn and azonoidis a limit of zonotopes
in the Hausdorff metric (see, for example, [16] and [21]).
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Let Sn−1 = {x ∈ Rn : 〈x, x〉 = 1} be the unit sphere inRn and letBn = {x ∈ Rn :
〈x, x〉 ≤ 1} be the unit ball. We denote by

vn = πn/2

0(n/2+ 1)
= 1√

πn

(
2πe

n

)n/2

(1+ O(n−1)) (Stirling’s formula)

the volume ofBn, and by

κn−1 = nvn = nπn/2

0(n/2+ 1)
=
√

n

π

(
2πe

n

)n/2

(1+ O(n−1))

the surface area ofSn−1. Let µn−1 = du be the rotation-invariant Borel probability
measure onSn−1. Sometimes we writeµ instead ofµn−1.

Let us consider the Stiefel manifoldOn,s as the space of alls-tuples(u1, . . . ,us) of
pairwise orthogonal unit vectors inRn. In particular,On,1 = Sn−1 is the unit sphere and
On,n is the space of all orthonormal bases(u1, . . . ,un) in Rn. By choosing the standard
orthonormal basise1 = (1, 0, . . . ,0), e2 = (0, 1, . . . ,0), . . . ,en = (0, . . . ,0, 1) in Rn

we identify On,n with the orthogonal groupOn in Rn. Let ν be the Haar probability
measure onOn. For a set of pairwise orthogonal unit vectors(u1, . . . ,us) we denote
by (u1, . . . ,us)

⊥ the(n− s)-dimensional linear subspaceL ⊂ Rn that is orthogonal to
u1, . . . ,us.

We denote by|X| the cardinality of a finite setX.

2. A Recurrence for Mixed Discriminants

We begin with a simple lemma.

(2.1) Lemma. Let p(t) be a homogeneous polynomial of degree n in n real variables
t = (t1, . . . , tn). For a subsetω ⊂ {1, . . . ,n} let

ti (ω) =
{

1 if i ∈ ω,
0 if i /∈ ω,

and lettω = (t1(ω), . . . , tn(ω)). Then

∂n

∂t1 · · · ∂tn
p(t) = (−1)n

∑
ω⊂{1,...,n}

(−1)|ω|p(tω),

where the sum is taken over all nonempty subsetsω of {1, . . . ,n}.

Proof. Both sides of the equation are linear inp. If p(t) = t1 · · · tn the identity holds
since p(tω) = 0 unlessω = {1, . . . ,n}. If p is a monomial whose support does not
contain ani ∈ {1, . . . ,n} the identity holds since the summands corresponding toω\{i }
andω ∪ {i } annihilate each other.

(2.2) Corollary. Suppose that rank Qi ≤ 1 for i = 1, . . . ,n. Then

D(Q1, . . . , Qn) = 1

n!
det(Q1+ · · · + Qn).
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Proof. From (1.3.1) we get the following representation for the mixed discriminant:

D(Q1, . . . , Qn) = 1

n!

∂n

∂t1 · · · ∂tn
det(t1Q1+ · · · + tnQn).

Since det(t1Q1 + · · · + tnQn) is a homogeneous polynomial of degreen in t1, . . . , tn
from Lemma 2.1 we then get

D(Q1, . . . , Qn) = (−1)n

n!

∑
ω⊂{1,...,n}

(−1)|ω| det

(∑
i∈ω

Qi

)
. (2.2.1)

Since

rank

(∑
i∈ω

Qi

)
≤ |ω|

we get

det

(∑
i∈ω

Qi

)
= 0 unless ω = {1, . . . ,n}.

The proof follows by (2.2.1).

Mixed discriminants are invariant with respect to permutations of arguments and
linear in every argument (see, for example, formula (54), Section 3 of [15]):

D(Q1, . . . , αQ′i + βQ′′i , . . . , Qn)

= αD(Q1, . . . , Q′i , . . . , Qn)+ βD(Q1, . . . , Q′′i , . . . , Qn).

It is known thatD(Q1, . . . , Qn) > 0 provided everyQi is positive definite (see, for
example, Proposition 3.2 of [15]).

We recall from Section 1.5 thatu⊥ is the hyperplaneL in Rn orthogonal to a unit
vectoru ∈ Sn−1 and thatQ|u⊥ is the projection of a self-adjoint operatorQ onto L.
If we fix an orientation ofRn we can define detQ. The choice ofu as a unit normal
to L defines the orientation ofL compatible with that ofRn and hence we may define
det(Q|u⊥).

We need the following technical result.

(2.3) Lemma. Let Q be a self-adjoint operator onRn.

(2.3.1) Letλ1, . . . , λn be the eigenvalues of Q. Then∫
Sn−1

det(Q|u⊥) du= 1

n
en−1(λ1, . . . , λn),

where en−1 is the elementary symmetric polynomial of degree n− 1 in n
variables.

(2.3.2) Suppose that rank Q= n − 1. Let us choose a vectorv ∈ Sn−1 such that
Qv = 0 (vectorv is unique up to a sign). Then

det(Q|u⊥) = 〈u, v〉2 det(Q|v⊥) for each u∈ Sn−1.
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Proof. Let us denote

p(Q) =
∫

Sn−1
det(Q|u⊥) du.

Suppose thatA is an orthogonal operator onRn and Q1 = AQ A∗. For u ∈ Sn−1 let
v = Au. Then A mapsu⊥ ontov⊥ and(A∗(Q1|v⊥)A)x = (Q|u⊥)x for any x ∈ u⊥.
SinceA is orthogonal we have det(Q1|v⊥) = det(Q|u⊥) and sinceµ is rotation invariant
we havep(Q) = p(Q1) = p(AQ A∗). Hencep(Q) is a symmetric function in the
eigenvalues ofQ. Suppose thatf1, . . . , fn are the unit eigenvectors ofQ and Qi =
〈 fi , ·〉 fi is the orthogonal projector ontofi . So Q = λ1Q1 + · · · + λnQn andQ|u⊥ =
λ1(Q1|u⊥)+· · ·+λn(Qn|u⊥). Hence det(Q|u⊥) is a homogeneous polynomial of degree
n − 1 in λ1, . . . , λn, and, therefore,p(Q) is a symmetric homogeneous polynomial of
degreen−1 inλ1, . . . , λn. Next, we note that if at least two ofλ1, . . . , λn are zeros then
rank Q ≤ n − 2, therefore rank(Q|u⊥) ≤ n − 2 and hence det(Q|u⊥) is identically
zero. Sop(Q) = 0 providedQ has at least two zero eigenvalues. This implies that
p(Q) = c(n)en−1(λ1, . . . , λn). To find the constantc(n) we let Q to be the identity
operator. ThenQ|u⊥ is the identity operator, sop(Q) = 1 andc(n) = 1/n. So (2.3.1)
is proven.

Let f1, . . . , fn−1 be the unit eigenvectors corresponding to the nonzero eigenvalues
of Q. Thus f1, . . . , fn−1, v is an orthonormal basis ofRn in which Q is represented
by a diagonal matrix. LetH = v⊥ be the hyperplane generated byf1, . . . , fn−1. Then
for any x ∈ Rn we haveQx = (Q PH )x, wherePH is the orthogonal projection of
Rn onto H . Let us choose au ∈ Sn−1 and let L = u⊥. Then for x ∈ L we have
(Q|u⊥)x = (PL Q)x, wherePL is the orthogonal projection ofRn onto L. So we may
write (Q|u⊥)x = (PL Q PH )x for any x ∈ L. Let PH,L : H −→ L be the orthogonal
projection ofH onto L. Then P∗H,L is the orthogonal projection ofL onto H and we
getQ|u⊥ = PH,L(Q|v⊥)P∗H,L . SinceH andL are oriented hyperplanes, we may define
detPH,L and write

det(Q|u⊥) = (detPH,L)
2 det(Q|v⊥).

Now we observe that det2 PH,L = 〈u, v〉2. To see this, let us choose an orthonormal
basisu1, . . . ,un−2 in L ∩ H and append it by a vectorl ∈ L to a positively oriented
orthonormal basis ofL and by a vectorh ∈ H to a positively oriented orthonormal
basis ofH . Then the projectionPH,L can be written asui 7−→ ui , h 7−→ 〈h, l 〉l . Hence
detPH,L = 〈h, l 〉 = 〈u, v〉 and the proof of (2.3.2) follows.

In this section we prove the following main result.

(2.4) Theorem. Let Q1, . . . Qn be positive definite operators onRn.

(2.4.1) Suppose that Q1 = T T∗ for some nondegenerate T. Let Rk = T−1Qk(T−1)∗

for k = 2, . . . ,n. Then

D(Q1, . . . , Qn) = (detQ1)D(I , R2, . . . , Rn).

(2.4.2) D(I , R2, . . . , Rn) =
∫

Sn−1 D(R2|u⊥, . . . , Rn|u⊥) du.
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(2.4.3) There exists a positive definite quadratic fromq: Rn −→ R, called the mixed
quadratic form of R2, . . . , Rn such that

D(R2|u⊥, . . . , Rn|u⊥) = q(u)

for any u∈ Sn−1.

Proof. Formula (2.4.1) follows from (1.3.1) since

det(t1Q1+ · · · + tnQn) = det(T(t1I + t2R2+ · · · + tn Rn)T
∗)

= (detQ1) det(t1I + t2R2+ · · · + tn Rn)

for all t1, . . . , tn.
To prove (2.4.2) letQ = t2R2+ · · · + tn Rn for some fixed coefficientst2, . . . , tn and

let λ1, . . . , λn be the eigenvalues ofQ. Applying (2.3.1) we get

d

dt1
det(t1I + Q) = en−1(λ1, . . . , λn) = n

∫
Sn−1

det(Q|u⊥) du.

Now

D(I , R2, . . . , Rn) = 1

n!

∂n

∂t1 · · · ∂tn
det(t1I + t2R2+ · · · + tn Rn)

= 1

n!

∂n−1

∂t2 · · · ∂tn

∂

∂t1
det(t1I + t2R2+ · · · + tn Rn)

= 1

(n− 1)!

∂n−1

∂t2 · · · ∂tn

∫
Sn−1

det(t2R2|u⊥ + · · · + tn Rn|u⊥) du

=
∫

Sn−1

1

(n− 1)!

∂n−1

∂t2 · · · ∂tn
det(t2R2|u⊥ + · · · + tn Rn|u⊥) du

=
∫

Sn−1
D(R2|u⊥, . . . , Rn|u⊥) du,

so (2.4.2) follows. We can differentiate the integral since the integrand is a polynomial
in t2, . . . , tn.

Instead of (2.4.3) we will prove a somewhat more general fact, namely, that for
any self-adjoint operatorsR2, . . . , Rn there exists a quadratic formq: Rn −→ R such
that D(R2|u⊥, . . . , Rn|u⊥) = q(u) for eachu ∈ Sn−1. Since the mixed discriminant
of positive definite operators is positive we would haveq(u) > 0 for eachu ∈ Sn−1

providedR2, . . . , Rn are positive definite and (2.4.3) would follow.
Every self-adjoint operatorRi can be represented as a sumRi =

∑n
j=1 Qi j of self-

adjoint operatorsQi j such that rankQi j ≤ 1. Since mixed discriminants are linear in
every argument we get

D(R2|u⊥, . . . , Rn|u⊥) =
n∑

j2=1

· · ·
n∑

jn=1

D(Q2 j2|u⊥, . . . , Qnjn |u⊥).

Therefore it suffices to prove that for any self-adjoint operatorsQ2, . . . , Qn such that
rank Qi ≤ 1 for i = 2, . . . ,n there exists a quadratic formq: Rn −→ R such that
D(Q2|u⊥, . . . , Qn|u⊥) = q(u) for anyu ∈ Sn−1.
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Let Q = Q2 + · · · + Qn, so rankQ ≤ n − 1. Then rank(Qi |u⊥) ≤ 1 for every
u ∈ Sn−1 and by Corollary 2.2 we have

D(Q2|u⊥, . . . , Qn|u⊥) = 1

(n− 1)!
det(Q|u⊥).

If rank Q < n − 1 then rank(Q|u⊥) < n − 1 and hence we may chooseq to be
identically zero. If rankQ = n− 1, then for somev ∈ Sn−1 by (2.3.2) we may choose
q(u) = (1/(n− 1)!)〈u, v〉2 det(Q|v⊥), which is a quadratic form inu.

As we noted, there is a certain similarity between properties of mixed discriminants
and mixed volumes. We present the analogue of Theorem 2.4 for quermassintegrals in
Section 7, Theorem 7.3. The analogue of the mixed quadratic formq is the “mixed
brightness,” that is the support function of the mixed projection body (see also [16]).

Our algorithm for computing the mixed discriminant is suggested by Theorem 2.4.
Given n positive definite operatorsQ1, . . . , Qn, by (2.4.1) we reduce computation of
D(Q1, . . . , Qn) to that of D(I , R2, . . . , Rn). Then we choose a vectoru ∈ Sn−1 at
random and replace the computation ofD(I , R2, . . . , Rn) by that ofD(Q′1, . . . , Q′n−1),
whereQ′i = Ri+1|u⊥. Then we repeat the procedure. It easy to see that this procedure
has polynomial time complexity. To estimate what kind of approximation we get, we
discuss the following two issues: What error do we get on every step while passing from
D(Q1, . . . , Qn) to D(Q′1, . . . , Q′n−1) and how do these errors accumulate? Because of
(2.4.3) the first question reduces to the following: How well do we approximate the
average value of a positive definite quadratic form on the unit sphere by the value of
that form at a random point on the sphere? We address to this question in Section 3.
The second question has to do with the “law of large numbers,” specifically for the
martingales on the orthogonal group. We discuss it in Section 4.

3. Distribution of Values of a Quadratic Form on the Sphere

Let f : Rn −→ R be a continuous function. We denote by

E( f ) =
∫

Sn−1
f (u) du

the average value off on Sn−1 (recall from Section 1.5 thatµ = du is the rotation
invariant probability measure onSn−1). In our inductive constructions we are going to
use the following argument: let us choose a coordinate systemx1, . . . , xn+1 in Rn+1 and
let us “slice” Sn onto (n − 1)-dimensional spheresSn−1

ϕ = {x ∈ Sn : xn+1 = sinϕ}
of radii cosϕ. Let f : Sn −→ R be a continuous function which is a constantf (ϕ) on
every sliceSn−1

ϕ . Then (see Section 1.5)

E( f ) = κn−1

κn

∫ π/2

−π/2
f (ϕ) cosn−1 ϕ dϕ.

In particular,
∫ π/2
−π/2 cosn−1 ϕ dϕ = κn/κn−1.
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(3.1) Lemma. Let q: Rn −→ R be a quadratic form with the eigenvaluesλ1, . . . , λn.
Then

E(q) = λ1+ · · · + λn

n
and

E(q2) = 3

n(2+ n)
(λ2

1+ · · · + λ2
n)+

2

n(2+ n)

∑
1≤i< j≤n

λiλj .

Proof. Let us considerE(q) and E(q2) as functions ofq. We note that ifA is an
orthogonal transformation ofRn andq1(x) = q(Ax), thenE(q1) = E(q) andE(q2

1) =
E(q2). ThereforeE(q) andE(q2) are symmetric functions in the eigenvalues of the form
q. Obviously,E(q) is a linear function ofq, so we haveE(q) = c(n)(λ1 + · · · + λn).
Substitutingq = 〈x, x〉 we getE(q) = 1, soc(n) = 1/n.

Furthermore,E(q2) is a quadratic polynomial inq, sinceE(q1 · q2) is a bilinear form
in q1 andq2. Therefore,

E(q2) = a(n)
n∑

i=1

λ2
i + b(n)

∑
1≤i< j≤n

λ1λ2

for somea(n) andb(n). Substitutingq(x) = 〈x, x〉 we get

n · a(n)+
(

n

2

)
b(n) = 1.

To get another relation betweena(n) andb(n) let us substituteq(x) = x2
n = sin2 ϕ. The

computations show

E(q2) = E(x4
n) =

κn−2

κn−1

∫ π/2

−π/2
sin4 ϕ cosn−2 ϕ dϕ

= κn−2

κn−1

∫ π/2

−π/2
(1− cos2 ϕ)2 cosn−2 ϕ dϕ

= 1− 2
κn−2κn+1

κn−1κn
+ κn−2κn+3

κn−1κn+2
= 3

n(2+ n)
.

Therefore

a(n) = 3

n(n+ 2)
and b(n) = 2

n(n+ 2)
.

(3.2) Corollary. Let q be a positive semidefinite quadratic form. Then

E(q2) ≤ 3(E(q))2.

Proof. Follows by Lemma 3.1.

One can observe that the ratioE(q2)/E2(q) is the greatest when rankq = 1. For an
“average” quadratic form one can expect the ratio to be much closer to 1.
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(3.3) Theorem. Let q: Rn −→ R be a positive semidefinite form which is not identi-
cally zero. Then for any t≥ 0

µ{x ∈ Sn−1 : q(x) ≤ tE(q)} ≤ C0

√
t,

where C0 is an absolute constant(independent of q and n).

Proof. The statement is obvious forn = 1 and anyC0 ≥ 1. Therefore without loss of
generality we assume thatn ≥ 1. Let us choose a constantα > 0 (to be specified later)
and let

Cn = κn−1

κn
√
(n+ 1)

α for n ≥ 1.

It is easy to see (see Section 1.5) that

lim
n−→+∞Cn = α√

2π
,

so we can chooseα so thatCn ≥ 1 for anyn ≥ 1. Finally, letC0 = sup{Cn : n ≥ 1} <∞.
We are going to prove by induction onn that

µn{x ∈ Sn : q(x) ≤ E(q)t} ≤ Cn

√
t (3.3.1)

for anyn ≥ 1. This will obviously prove our theorem.

Let n = 1. Let M(q) be the largest eigenvalue of a quadratic formq: R2 −→ R
and letu ∈ S1 be the corresponding eigenvector. We note thatE(q) ≤ M(q) and that
q(x) ≥ M(q)〈u, x〉2. Therefore

µ1{x ∈ S1 : q(x) ≤ E(q)t} ≤ µ1{x ∈ S1 : q(x) ≤ M(q)t}
≤ µ1{x ∈ S1 : 〈u, x〉2 ≤ t}
= 4

2π
arcsin

√
t ≤ √t ≤ C1

√
t .

Now we perform the induction step. SinceCn ≥ 1 it suffices to check the case
t < 1 only. Letq: Rn+1 −→ R be a positive semidefinite quadratic form, not identically
zero and letm(q) = min{q(x) : x ∈ Sn} be the smallest eigenvalue ofq. Consider
q0 = q−m(q)〈x, x〉. If q0 is identically zero thenq is a nonzero constant and the result
is obvious. Otherwise, we observe thatE(q0) = E(q)−m(q) and sincet < 1 we have
tE(q)−m(q) ≤ t (E(q)−m(q)). Therefore

µn{x ∈ Sn : q(x) ≤ tE(q)} = µn{x ∈ Sn : q0(x) ≤ tE(q)−m(q)}
≤ µn{x ∈ Sn : q0(x) ≤ t (E(q)−m(q))}
= µn{x ∈ Sn : q0(x) ≤ tE(q0)}.

Therefore it suffices to check our bound (3.3.1) for the formsq that are not identically
zero, but have at least one zero eigenvalue.
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Let u ∈ Sn be an eigenvector ofq corresponding to the zero eigenvalue. We identify
Rn = u⊥. Let q0 be the restriction ofq ontoRn. Sinceq0 as a quadratic form onRn has
the same nonzero eigenvalues as the formq, by Lemma 3.1 we get

E(q0) = n+ 1

n
E(q).

Let

Sn−1
ϕ = {x ∈ Sn : 〈x, u〉 = sinϕ}, −π

2
< ϕ <

π

2
.

ThusSn−1
ϕ is an(n−1)-dimensional sphere of radius cosϕ. We identifySn−1

0 = Sn−1 ⊂
Rn. For a pointx ∈ Sn−1

ϕ let x0 be its orthogonal projection ontoRn and letx′ =
(1/cosϕ)x0 ∈ Sn−1. We haveq(x) = (cos2 ϕ)q0(x′).

Let us consider the rotation invariant Borel probability measureµn−1,ϕ on Sn−1
ϕ (we

letµn−1,0 = µn−1). Then

µn−1,ϕ{x ∈ Sn−1
ϕ : q(x) ≤ tE(q)} = µn−1

{
x′ ∈ Sn−1 : q0(x

′) ≤ t

cos2 ϕ
E(q)

}
= µn−1

{
x′ ∈ Sn−1 : q0(x

′) ≤ n

n+ 1

t

cos2 ϕ
E(q0)

}
≤ Cn−1

√
n

n+ 1

√
t

cosϕ

by the induction conjecture. Therefore,

µn{x ∈ Sn : q(x) ≤ tE(q)}
= κn−1

κn

∫ π/2

−π/2
µn−1,ϕ{x ∈ Sn−1

ϕ : q(x) ≤ tE(q)} cosn−1 ϕ dϕ

≤ √tCn−1

√
n

n+ 1

κn−1

κn

∫ π/2

−π/2
cosn−2 ϕ dϕ

= Cn−1

√
n

n+ 1

κ2
n−1

κnκn−2

√
t = Cn

√
t

and the proof follows.

It follows from the proof that for smallt the value ofµ{x ∈ Sn−1 : q(x) ≤ tE(q)}
is the largest when rankq = 1. For a “typical” quadratic formq we should expect a
sharper concentration of its values aroundE(q).

(3.4) Corollary. Let q: Rn −→ R be a positive definite quadratic form such that
E(q) = 1. Then

|E(ln q)| ≤ 2C0 and E(ln2 q) ≤ ln2 n+ 8C0,

where C0 is the absolute constant from Theorem3.3.
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Proof. Since lnx is a concave function, we get thatE(ln q) ≤ ln E(q) ≤ 0. Lemma 3.1
implies that the largest eigenvalueM(q) of the formq does not exceedn, soq(x) ≤ n
for everyx ∈ Sn−1.

Using integration by parts we may write

E(ln q) =
∫ n

0
ln t dµ{x ∈ Sn−1 : q(x) ≤ t} ≥

∫ 1

0
ln t dµ{x ∈ Sn−1 : q(x) ≤ t}

= (ln t) · µ{x ∈ Sn−1 : q(x) ≤ t}|t=1
t→+0−

∫ 1

0
t−1µ{x ∈ Sn−1 : q(x) ≤ t} dt.

Applying Theorem 3.3 we conclude that

lim
t−→+0

(ln t) · µ{x ∈ Sn−1 : q(x) ≤ t} = 0

so we get the estimate∫ 1

0
ln t dµ{x ∈ Sn : q(x) ≤ t} = −

∫ 1

0
t−1µ{x ∈ Sn−1 : q(x) ≤ t} dt

≥ −C0

∫ 1

0
t−1/2 dt = −2C0,

so the first inequality is proven.
Similarly,

E(ln2 q) =
∫ n

0
ln2 t dµ{x ∈ Sn−1 : q(x) ≤ t}∫ 1

0
ln2 t dµ{x ∈ Sn−1 : q(x) ≤ t} +

∫ n

1
ln2 t dµ{x ∈ Sn−1 : q(x) ≤ t}.

For the second integral we get a trivial estimate∫ n

1
ln2 t dµ{x ∈ Sn−1 : q(x) ≤ t} ≤ (ln2 n) · µ{x ∈ Sn−1 : q(x) ≤ n} ≤ ln2 n.

Using Theorem 3.3 we estimate the first integral∫ 1

0
ln2 t dµ{x ∈ Sn−1 : q(x) ≤ t}

= (ln2 t) · µ{x ∈ Sn−1 : q(x) ≤ t}|1t→+0−
∫ 1

0
2t−1 ln t µ{x ∈ Sn−1 : q(x) ≤ t} dt

≤ −2C0

∫ 1

0
t−1/2 ln t dt ≤ 8C0.

It is possible to find a tight bound for|E(ln q)| whenn is sufficiently large.

(3.5) Theorem. We have

lim
n−→+∞ sup{|E(ln q)|, q: Rn −→ R is positive semidefinite andE(q) = 1} = C1,
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where

C1 = − 4√
2π

∫ +∞
0

(ln t)e−t2/2 dt ≈ 1.270362845.

Proof. Letλ1, . . . , λk be nonzero eigenvalues of a positive semidefinite formq: Rn −→
R and letu1, . . . ,uk be the corresponding unit eigenvectors. Then

q(x) =
k∑

i=1

λi 〈ui , x〉2 =
k∑

i=1

αi qi (x), where αi = λi

n
and qi (x) = n〈ui , x〉2.

Suppose thatE(q) = 1. Then Lemma 3.1 implies thatα1+· · ·+αk = 1 andE(qi ) = 1.
Since lnx is a concave function we have

0 ≥ E(ln q) = E(ln(α1q1+ · · · + αkqk)) ≥ E(α1 ln q1+ · · · + αk ln qk)

≥ α1E(ln q1)+ · · · + αkE(ln qk) ≥ min{E(ln qi ) : i = 1, . . . , k}.
Therefore the supremum in question is attained on positive semidefinite formsq of rank
1. Without loss of generality we may chooseq(x) = nx2

1. We get

E(ln q) = κn−2

κn−1

∫ π/2

−π/2
ln(n sin2 ϕ) cosn−2 ϕ dϕ = 2κn−2

κn−1

∫ π/2

0
ln(n sin2 ϕ) cosn−2 ϕ dϕ.

It is easy to see that cosϕ ≤ e−ϕ
2/2 for 0 ≤ ϕ ≤ π/2 (the functioneϕ

2/2 cosϕ is
decreasing on [0, π/2]) and hence cosn−2 ϕ ≤ e(2−n)ϕ2/2. Let us choose a sufficiently
smallε > 0, sayε = 0.1. Then

E(ln q) = 2κn−2

κn−1

∫ n−1/2+ε

0
ln(n sin2 ϕ) cosn−2 ϕ dϕ + O(e−nε).

Substitutionϕ = t/
√

n reduces the integral to

2κn−2

κn−1
√

n

∫ nε

0
ln

(
n sin2 t√

n

)
cosn−2 t√

n
dt.

Now limn−→∞ 2κn−2/κn−1
√

n = 2/
√

2π (see Section 1.5).
On the interval [0, nε] we have:n sin2(t/

√
n) = t2 + O(t4/n) = t2(1+ O(n2ε−1)).

Therefore ln(n sin2(t/
√

n)) = ln t2+ O(n2ε−1). Similarly,

cos
t√
n
= 1− t2

2n
+ O

(
t4

n2

)
= 1− t2

2n
+ O(n4ε−2),

so

cosn−2 t√
n
= e−t2/2(1+ O(n4ε−1)).

Therefore∫ nε

0
ln

(
n sin2 t√

n

)
cosn−2 t√

n
dt = (1+ O(n4ε−1))

∫ nε

0
(ln t2)e−t2/2 dt + O(n4ε−1).
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Finally, we get

lim
n−→+∞E(ln(nx2

1)) = lim
n−→+∞

2√
2π

∫ nε

0
(ln t2)e−t2/2 dt = 4√

2π

∫ +∞
0

(ln t)e−t2/2 dt

and the proof follows.

4. Integration on the Orthogonal Group

We need to invoke some integration technique on the orthogonal groupOn with respect
to the Haar probability measureν.

Let C(On,s) be the Banach space of all continuous functions on the Stiefel manifold
On,s of all s-tuples(u1, . . . ,us) of pairwise orthogonal vectors inRn (see Section 1.5)
with the norm‖ f ‖ = max{| f (x)| : x ∈ On,s}. The natural action of the orthogonal
groupOn onOn,s: A(u1, . . . ,us) = (A(u1), . . . , A(us)) induces the action onC(On,s) :
A( f )(x) = f (A−1x), A ∈ On. We agree thatC(On,0) = R, the space of constants with
the trivial action ofOn.

(4.1) Operators Es (“Conditional Expectations”). We define an operatorEs: C(On,s)

−→ C(On,s−1) as follows. Forf : On,s −→ R we let

g = Es( f ), g(u1, . . . ,us−1) =
∫

Sn−s⊂(u1,...,us−1)⊥
f (u1, . . . ,us−1, us) dus,

whereSn−s is the unit sphere in the orthogonal complement(u1, . . . ,us−1)
⊥ anddus is

the rotation invariant Borel probability measure onSn−s. We summarize a few obvious
properties ofEs:

OperatorsEs are linear and monotone, that is, iff (x) ≥ g(x) for all x ∈ On,s then
Es( f )(x) ≥ Es(g)(x) for all x ∈ On,s−1. Furthermore,Es(1) = 1, where1 is the
function onOn,s that is identically 1. It follows then thatEs are continuous linear
operators of the norm 1.

OperatorsEs commute with the action of the orthogonal group, that is,Es(A( f )) =
A(Es( f )) for any f ∈ C(On,s) and anyA ∈ On.

OperatorsEs are partially multiplicative: ifg is a continuous function onOn,s−1 andh is
a continuous function onOn,s, then f (u1, . . . ,us) = g(u1, . . . ,us−1)h(u1, . . . ,us)

is a continuous function onOn,s andEs( f ) = gEs(h).

We note thatE1( f ) is just the average value off on the unit sphereSn−1.

(4.2) Lemma. Let f : On −→ R, f = f (u1, . . . ,un) be a continuous function on On.
Then ∫

On

f dν = E1E2 · · ·En−1En( f ).

Proof. Let us consider the mapψ( f ) = E1 · · ·En( f ),ψ : C(On) −→ R. From (4.1) it
follows thatψ is a continuous linear functional, so by Riesz’s theoremψ( f ) = ∫On

f dτ
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for some unique Borel measureτ on On. Furthermore, from (4.1) we haveψ(A( f )) =
ψ( f ) for everyA ∈ On andψ(1) = 1. Thereforeτ is an invariant probability measure,
so we must haveτ = ν because the Haar probability measure is unique.

Lemma 4.2 can be generalized to “piecewise continuous” functions on semialgebraic
pieces inOn,s or to L2 functions as follows from the formula for the volume element in
On (see, for example, Chapter 12 of [20]). However, we do not need it in that generality.
The following lemma will be instrumental for the analysis of our main algorithm in
Section 5. It is a special case of the law of large numbers for martingales.

(4.3) Lemma. Let fs: On,s −→ R, s= 1, . . . ,n, be continuous functions such that

‖Es( fs)‖ ≤ as and ‖Es( f 2
s )‖ ≤ b, s= 1, . . . ,n,

for some numbers as and b. Let us define a function F: On −→ R by

F(u1, . . . ,un) = 1

n

n∑
s=1

fs(u1, . . . ,us)

and let

a = 1

n

n∑
s=1

as.

Then for anyε > 0

ν{(u1, . . . ,un) ∈ On : |F(u1, . . . ,un)| ≥ a+ ε} ≤ b

ε2n
.

Proof. Letgs = Es( fs)andhs(u1, . . . ,us) = fs(u1, . . . ,us)−gs(u1, . . . ,us−1). Since
gs does not depend onus we haveEs(gs fs) = gsEs( fs) andEs(g2

s) = g2
s . Therefore

Es(h
2
s) = Es( f 2

s − 2 fsgs + g2
s) = Es( f 2

s )− 2gsEs( fs)+ Es(g
2
s) = Es( f 2

s )− g2
s .

Since the operatorsEs are monotone, the functionsEs(h2
s) andEs( f 2

s ) are nonnegative,
so we get‖Es(h2

s)‖ ≤ ‖E( f 2
s )‖ ≤ b. Summarizing, we get

fs = hs + gs, where Es(hs) = 0, ‖Es(h
2
s)‖ ≤ b and ‖gs‖ ≤ as.

Let

H(u1, . . . ,un) = 1

n

n∑
s=1

hs(u1, . . . ,us).

So we have

‖F − H‖ =
∥∥∥∥∥1

n

n∑
s=1

gs

∥∥∥∥∥ ≤ a. (4.3.1)
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We have

H2 = 1

n2

n∑
s=1

h2
s +

2

n2

∑
i< j

hi hj .

We claim that for every pairi < j ∫
On

hi hj dν = 0,

where we considerhs as a function onOn by lettinghs(u1, . . . ,un) = hs(u1, . . . ,us).
Indeed, by Lemma 4.2 ∫

On

hi hj dν = E1 · · ·En(hi hj ).

Since the functionhi hj does not depend onuj+1, . . . ,un we have thatEj+1 · · ·En(hi hj ) =
hi hj as a function onOn, j . Furthermore, sincei < j andhi does not depend onuj , we
have thatEj (hi hj ) = hi Ej (hj ) = 0. Therefore∫

On

H2 dν = 1

n2

n∑
s=1

∫
On

h2
s dν ≤ b

n
.

Now the proof follows because of (4.3.1) and the Chebyshev inequality

ν{(u1, . . . ,un) : |H(u1, . . . ,un)| ≥ ε} ≤ ε−2
∫

On

H2 dν ≤ b

ε2n
.

5. The Basic Algorithm

In this section we present our algorithm for computing the mixed discriminant of positive
definite matricesM1, . . . ,Mn. The main idea of the algorithm is to use Theorem 2.4 as
is described in Section 2. The “random” part of the algorithm consists of choosing
a random orthonormal basisu1, . . . ,un in the spaceRn. After that the algorithm is
completely deterministic and reduces to standard Linear Algebra computations. Hence
for any given inputM1, . . . ,Mn the output of the algorithm is a function on the orthogonal
groupOn. We use Theorem 2.4 to show that the expectation of the output is the mixed
discriminantD(M1, . . . ,Mn) and we use the results of Section 3 and Lemma 4.3 to
prove that with a sufficiently high probability the deviation from the expectation is within
desired limits. To sample an orthonormal basis, we do the following: first, we chooseu1

from the rotation invariant probability distribution on the sphereSn−1, then we choose
u2 from the rotation invariant probability distribution on the sphereSn−2 ⊂ u⊥ and
so forth; we chooseus from the rotation invariant probability distribution on the sphere
Sn−s ⊂ (u1, . . . ,us−1)

⊥. It is immediate that the simulated distribution is invariant under
the action of the orthogonal group, so it must coincide with the Haar distributionν (see
also Lemma 4.2). Another possibility is to choosen vectors independently from the
standard Gaussian distribution inRn and apply the Gram–Schmidt orthogonalization
process to them.
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(5.1) Basic Algorithm.

Input. Positive definite matricesM1, . . . ,Mn.

Output. A numberα > 0 approximatingD(M1, . . . ,Mn).

The Algorithm

Step0. Sample an orthonormal basis(u1, . . . ,un) in Rn. Let A be the orthogonal
matrix havingui as itsi th column. LetQi := AtMi A for i = 1, . . . ,n, whereAt is the
transpose ofA. Letβ := 1 ands := 0.

Comment. It is convenient to perform computations in the basisu1, . . . ,un of Rn.
Matrix Qi in the basisu1, . . . ,un and matrixMi in the standard basis represent the same
self-adjoint operator. We store ins the number of iterations of Steps 1–2 of the algorithm
and inβ the current value of the mixed discriminant.

Step1. Let k = n − s and lets := s+ 1. Letβ := β detQ1. If s = n, let α := β,
outputα, and stop. Otherwise compute a symmetric positive definite matrixT such that
T2 = Q1. ComputeRi = T−1Qi T−1 for i = 2, . . . , k.

Comment. On the sth iteration of this step we havek positive definite operators
Q1, . . . , Qk on thek-dimensional subspace(u1, . . . ,us−1)

⊥. These operators repre-
sented by the matrices in the basisus, . . . ,un of that subspace. By (2.4.1) we have
D(Q1, . . . , Qk) = (detQ1)D(I , R2, . . . , Rk). If k > 1, we store the factor detQ1 in
β and proceed to Step 2 with the computation ofD(I , R2, . . . , Rk). Note, that for any
positive definite operatorQ1 there exists a unique positive definite operatorT such that
T2 = Q1. In particular, it does not depend on the choice of a basis. Furthermore,T de-
pends onQ1 continuously (see, for example, Section 11 of Chapter 9 in [7]). To compute
T , we compute the eigenvaluesλ1, . . . , λk of Q1, compute the interpolating polynomial
p such thatp(λi ) =

√
λi and letT = p(Q1).

Step2. Fori = 1, . . . , k−1 letQi be the(k−1)×(k−1) lower-right corner submatrix
of Ri+1. Go to Step 1.

Comment. It is seen thatQi = P∗Ri+1P whereP : (u1, . . . ,us)
⊥ ⊂ (u1, . . . ,us−1)

⊥

is the inclusion. Thus we haveQi = Ri+1|u⊥s (see Section 1.5). From (2.4.2) we have

D(I , R2, . . . , Rk) =
∫

Sk−1⊂(u1,...,us−1)⊥
D(R2|u⊥, . . . , Rk|u⊥) du,

whereu ranges over the unit sphereSk−1 in (u1, . . . ,us−1)
⊥ and du is the rotation

invariant probability measure onSk−1. On this step of the algorithm we approximate
D(I , R2, . . . , Rn) by D(R2|u⊥, . . . , Rn|u⊥) at the pointu = us and go to Step 1 again.
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(5.2) Theorem. For any given positive definite n× n matrices M1, . . . ,Mn the algo-
rithm performs a polynomial in n number of operations(addition, subtraction, multipli-
cation, division, and taking the square root of a nonnegative number). For any ε > 0
there is an N(ε) such that for any n≥ N(ε) the numberα produced by the algorithm
with probability at least0.9satisfies the inequalities

cn
ε D(M1, . . . ,Mn) ≤ α ≤ 20D(M1, . . . ,Mn) with cε = e−C1−ε,

where C1 is the absolute constant from Theorem3.5.

Proof. The algorithm performs Steps 1 and 2 altogethern times and every operation
reduces to the standard Linear Algebra computations: computing the factorizationQ =
T2, the determinant detQ, the inverse matrixT−1, and the product of matrices. As is
well known, forn×n matrices these operations requireO(n3) arithmetic operations and
computing the factorization also requires taking a square rootn times and computing
the eigenvalues ofQ (see [7]).

Let us fix the inputM1, . . . ,Mn. Then the computations on every step are completely
determined by the choice of a random basis(u1, . . . ,un) on Step 0 and the output
α = α(u1, . . . ,un) is a continuous function on the orthogonal groupOn. Furthermore,
on thesth iteration of Step 1 the operatorsQ1, . . . , Qk and R2, . . . Rk depend only on
the firsts− 1 vectorsu1, . . . ,us−1 although their particular matrix representation may
depend onus, . . . ,un as well.

For a set ofs pairwise orthogonal unit vectorsu1, . . . ,us in Rn let

qs(u1, . . . ,us) = detQ1

D(Q1, . . . , Qk)
D(R2|u⊥s , . . . , Rk|u⊥s ),

whereQ1, . . . , Qk and R2, . . . , Rk are the operators at thesth iteration of Step 1 and
we agree thatqn(u1, . . . ,un) = 1. Thusqs(u1, . . . ,us) are continuous functions on the
Stiefel manifoldOn,s.

We claim that

α(u1, . . . ,un) = D(M1, . . . ,Mn) ·
n∏

s=1

qs(u1, . . . ,us); (5.2.1)

that∫
On

n∏
s=1

qs(u1, . . . ,us) dν = 1 and hence
∫

On

α dν = D(M1, . . . ,Mn), (5.2.2)

and that

ν

{
(u1, . . . ,un) ∈ On :

n∏
s=1

qs(u1, . . . ,us) ≤ cn
ε

}
≤ 1

20
for all n ≥ N(ε),

(5.2.3)
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or equivalently

ν

{
(u1, . . . ,un) ∈ On :

1

n

n∑
s=1

ln qs(u1, . . . ,us) ≤ −C1− ε
}
≤ 1

20
(5.2.3′)

for all n ≥ N(ε), whereC1 is the constant from Theorem 3.5.
Indeed, the matrixRi+1|u⊥s computed on thesth iteration of Step 2 is the matrixQi

used for the(s+ 1)st iteration of Step 1 and we get (5.2.1).
By (2.4.1) and (2.4.2) for any fixedu1, . . . ,us−1 ∈ On,s−1 we get∫

Sk−1⊂(u1,...,us−1)⊥
qs(u1, . . . ,us−1, us) dus = (detQ1)D(I , R2, . . . , Rk)

D(Q1, . . . , Qk)
= 1.

In other wordsEs(qs) = 1, whereEs are the operators from Section 4.1 and1 is the
function onOn,s−1 that is identically 1. Hence by Lemma 4.2∫

On

n∏
s=1

qs(u1, . . . ,us) dν = E1 · · ·En

n∏
s=1

qs(u1, . . . ,us)

= by (4.1) E1q1(u1) · · ·Enqn(u1, . . . ,un) = 1,

and we get (5.2.2). From (2.4.3) we conclude thatqs(u1, . . . ,us) is a positive definite
quadratic form inus ∈ (u1, . . . ,us−1)

⊥ providedu1, . . . ,us−1 are fixed. Let

as = sup{|E(ln q)|,q: Rk −→ R is positive semidefinite andE(q) = 1, k = n−s+1}.
SinceEs(qs) = 1 we have‖Es(ln qs)‖ ≤ as and from Corollary 3.4 we haveas ≤ 2C0

and‖Es(ln2 qs)‖ ≤ ln2 n+ 8C0.
By Theorem 3.5

1

n

n∑
s=1

as ≤ C1+ ε
2

for all sufficiently largen. Furthermore,

ln2 n+ 8C0

(ε/2)2 n
≤ 1

20

for all sufficiently largen. Now (5.2.3′) follows by Lemma 4.3 withas, ε/2,b = ln2 n+
8C0, and fs = ln qs(u1, . . . ,us).

Sinceα(u1, . . . ,un) is positive onOn, by (5.2.2) we deduce that

α ≥ 20D(M1, . . . ,Mn)

with probability at most 1
20. Next, from (5.2.1) and (5.2.3) we deduce thatα ≤ cn

ε

D(M1, . . . ,Mn) with probability at most120. This completes the proof of the theorem.

So any approximation constant

cε < exp

{
4√
2π

∫ ∞
0
(ln t)e−t2/2 dt

}
≈ 0.2807297419

will work for a sufficiently largen.
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(5.3) Corollary. With the given matrices M1, . . . ,Mn let us run Algorithm5.1 inde-
pendently2m times and letα0 be the median of the computedα’s. Then for n≥ N(ε)
the numberα0 satisfies the inequalities

cn
ε D(M1, . . . ,Mn) ≤ α0 ≤ 20D(M1, . . . ,Mn)

with probability at least1− (0.4)m, where N(ε) and cε > 0 are the constants from
Theorem5.2.

Proof. If α0 does not satisfy the inequalities, then at leastm of the computedα’s do
not. The probability of this event is

m∑
k=0

(
2m

k

)
(0.9)k(0.1)2m−k ≤ (0.1)m

2m∑
k=0

(
2m

k

)
≤ (0.1)m4m = (0.4)m.

So to achieve an overwhelming probability 1− δ we have to run Algorithm 5.1
O(logδ−1) times and choose the median of the computedα’s.

Algorithm 5.1 can be converted into a randomized polynomial time algorithm for
approximating the mixed discriminant within a factor 2O(n) in the bit model of compu-
tation. One should simulate the uniform distribution on the sphere with a sufficiently
high precision from the standard Bernoulli distribution using the Central Limit Theorem.
Then all the computations that require finding the roots of a univariate polynomial (the
only nonrational operation we used) should be approximated well enough by the arith-
metic operations over the rationals. The bit version of Algorithm 5.1 will be presented
elsewhere.

It would be interesting to investigate the behavior of Algorithm 5.1 for “average”
matricesM1, . . . ,Mn. One can show that the algorithm works worst if on every iteration
of Step 2 matricesR2, . . . , Rk are very close to matrices of rank 1, that is, each has
precisely one eigenvalue that is much larger than the remainingk−1 eigenvalues (see the
remarks after Theorem 3.3 and Corollary 3.2). On the other hand, ifM1 = · · · = Mn = I ,
then the algorithm always outputs the precise valueα = 1. One can conjecture that for
an “average” input the algorithm gives a much better approximation and, possibly, gives
rise to a polynomial time approximation scheme. A possible approach to this problem is
via the “measure concentration phenomenon” on the orthogonal group (see Section 6 of
[17]). We representedD(M1, . . . ,Mn) as the integral of some continuous densityα on
On. If M1, . . . ,Mn are “average” we can expect that the functionα has nice Lipschitz
properties and therefore is sharply concentrated about its average value.

6. Computing the Permanent of a Nonnegative Matrix

We are going to apply our algorithm to computing the permanent of a nonnegative matrix.
First, we establish a known connection between mixed discriminants and permanents,
that is, part (1.4.1) of Theorem 1.4.
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Proof of(1.4.1). We observe thatt1M1 + · · · + tnMn is a diagonal matrix for any
t1, . . . , tn and

det(t1M1+ · · · + tnMn) =
n∏

j=1

n∑
i=1

ti ai j .

It is easy to see that

perA = ∂n

∂t1 · · · ∂tn

n∏
j=1

n∑
i=1

ti ai j .

Comparing this with (1.3.1) we get the desired formula.

(6.1) The Algorithm. Algorithm 5.1 accepts only positive definite matrices as its input.
This allows us to compute the permanent of a positive matrix. To compute the permanent
of a nonnegative matrix (this is the most interesting case) we will just put sufficiently
small positive numbers instead of zeros.

Input. An n× n nonnegative matrixB.

Output. A numberβ approximating perB.

The Algorithm

Step0. Computem= min{bi j : bi j > 0}. Let bi j := bi j /m for i, j = 1, . . . ,n.

Step1. ComputeM = max{bi j : i, j = 1, . . . ,n}. Let δ = cn
1/40n! Mn−1, where

c1 > 0 (that is,cε for ε = 1) is the constant from Theorem 5.2. Define ann× n matrix
A = (ai j ) as follows:

ai j =
{

bi j if bi j > 0,
δ if bi j = 0.

Let Mi = diag{ai 1, . . . ,ain}, i = 1, . . . ,n. Apply Algorithm 5.1 with the matrices
M1, . . . ,Mn in the input and letα be the output. Letβ = n! α.

Step2. If β ≤ 2cn
1/3, letβ := 0, outputβ, and stop.

Otherwise, letβ := mnβ/21, outputβ, and stop.

(6.2) Theorem. For any given n× n nonnegative matrix B the algorithm performs a
polynomial in n number of operations. For any1> ε > 0and any n≥ N(ε) the number
β produced by the algorithm with probability at least0.9satisfies the inequalities

cn
ε

21
perB ≤ β ≤ perB,

where N(ε) and cε > 0 are the constants from Theorem5.2.
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Proof. It is immediate from Theorem 5.2 that the algorithm performs a polynomial in
n number of operations. Step 0 reduces the problem to the case where all positive entries
of B are not smaller than 1. For matricesA andB on Step 1 we have

perB ≤ perA ≤ perB+ cn
1

40
, (6.2.1)

since every one ofn! terms
∏n

i=1 aiσ(i ) of the expansion of perA is either a term of
perB or does not exceedδMn−1. Theorem 5.2 and (1.4.1) imply that forn ≥ N(ε) with
probability at least 0.9 on Step 1 we have

cn
ε perA ≤ β ≤ 20 perA. (6.2.2)

So suppose that (6.2.2) are satisfied. There are two cases. If perB = 0, then perA ≤
cn

1/40 by (6.2.1) andβ ≤ cn
1/2 by (6.2.2) so the algorithm outputsβ = 0. If perB > 0,

then perB ≥ 1 and hence perA ≥ 1. Then from (6.2.2) we haveβ ≥ cn
ε > cn

1,
so the algorithm proceeds to the last line. By (6.2.1) and perB ≥ 1 we get perA ≤
(41/40) perB, and then (6.2.2) implies the desired inequality.

As in Section 5, to get an overwhelming probability we have to run Algorithm 6.1
several times and choose the median of the computedβ ’s.

7. Mixed Volumes of Ellipsoids and Mixed Discriminants

In this section we prove (1.4.2) of Theorem 1.4.

(7.1) Lemma. For any positive definite operators R2, . . . , Rn onRn one has∫
Sn−1

D1/2(R2|u⊥, . . . , Rn|u⊥) du≥ 1√
3

(∫
Sn−1

D(R2|u⊥, . . . , Rn|u⊥) du

)1/2

.

Proof. Let f (u) = D(R2|u⊥, . . . , Rn|u⊥). Applying the Hölder inequality∫
Sn−1

h(u)g(u) du≤
(∫

Sn−1
hp(u) du

)1/p(∫
Sn−1

gq(u) du

)1/q

,
1

p
+ 1

q
= 1,

with h = f 1/3, g = f 2/3, p = 3
2 andq = 3 we get

∫
Sn−1

f (u) du≤
(∫

Sn−1
f 1/2(u) du

)2/3(∫
Sn−1

f 2(u) du

)1/3

or (∫
Sn−1

f (u) du

)3

≤
(∫

Sn−1
f 1/2(u) du

)2(∫
Sn−1

f 2(u) du

)
.
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Part (2.4.3) of Theorem 2.4 implies thatf (u) is a positive definite quadratic form on
Sn−1. Corollary 3.2 asserts that∫

Sn−1
f 2(u) du≤ 3

(∫
Sn−1

f (u) du

)2

.

Therefore, ∫
Sn−1

f (u) du≤ 3

(∫
Sn−1

f 1/2(u) du

)2

and the proof follows.

With a positive definite operatorQ onRn we associate the ellipsoid

EQ = {x ∈ Rn : 〈x, Qx〉 ≤ 1}.
Next, we want to describe the orthogonal projection of an ellipsoid onto a hyperplane.

(7.2) Lemma. Let EQ ⊂ Rn be an ellipsoid and let L⊂ Rn be a hyperplane. Then
the image(EQ)|L of EQ under the orthogonal projection onto L is the ellipsoid

EQ′ = {x ∈ L : 〈x, Q′x〉 ≤ 1} where Q′ = (Q−1|L)−1.

Proof. As is easy to see, for the support function ofK = EQ we havehK (u) =√
〈u, Q−1u〉. Since the support function of the orthogonal projection onto a subspace

is the restriction of the support function onto the subspace and a convex compact set is
uniquely determined by its support function, the result follows (see Section 1.5).

Finally, we need a standard result from integral geometry (a version of the kinematic
formula).

(7.3) Theorem. Let Q1 . . . , Qn be positive definite operators onRn.

(7.3.1) Suppose that Q1 = T∗T for some nondegenerate T. Let Rk = (T−1)∗QkT−1

for k = 2, . . . ,n. Then

V(EQ1, . . . , EQn) = (detQ1)
−1/2V(B, ER2, . . . , ERn),

where B⊂ Rn is the unit ball.

(7.3.2)
∫

Sn−1
V(ER2|u⊥, . . . , ERn |u⊥) du= vn−1

vn
V(B, ER2, . . . , ERn).

(7.3.3) There exists a zonoid K= K (ER2, . . . , ERn) in Rn, called the mixed projec-
tion body of the ellipsoids ER2, . . . , ERn such that

V(ER2|u⊥, . . . , ERn |u⊥) = hK (u)

for any u∈ Sn−1.
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Proof. The operatorT maps the ellipsoidEQ1 onto the ballB and the ellipsoidEQi

ontoERi for i = 2, . . . ,n. Since detQ1 = det2 T we get (7.3.1). Integral representation
(7.3.2) and the existence of the mixed projection body are known (see Section 3 of [22]
and [16]).

Support functionhK (u) is also known as the “mixed brightness” of the ellipsoids
EQ1, . . . , EQn . It is the analogue of the mixed quadratic form of Theorem 2.4.

Proof of(1.4.2). We proceed by induction onn. Forn = 1 the estimates are obviously
correct sinceV(EQ) = vn det−1/2 Q. Let us considern ellipsoidsEQ1, . . . , EQn in Rn.
Comparing (7.3.1) and (2.4.1) we conclude that it is enough to prove the inequalities,
assuming thatQ1 = I andEQ1 = B is the unit ball. Applying the induction conjecture
and Lemma 7.2 to the integrand in (7.3.2) we get

(
√

3)−n+2vn−1

∫
Sn−1

D1/2(R−1
2 |u⊥, . . . , R−1

n |u⊥) du

≤
∫

Sn−1
V(ER2|u⊥, . . . , ERn |u⊥) du

≤ vn−1

∫
Sn−1

D1/2(R−1
2 |u⊥, . . . , R−1

n |u⊥) du.

Applying Lemma 7.1 to the first integral and the Cauchy–Schwartz inequality to the last
integral we get:

(
√

3)−n+1vn−1

(∫
Sn−1

D(R−1
2 |u⊥, . . . , R−1

n |u⊥) du

)1/2

≤
∫

Sn−1
V(ER2|u⊥, . . . , ERn |u⊥) du

≤ vn−1

(∫
Sn−1

D(R−1
2 |u⊥, . . . , R−1

n |u⊥) du

)1/2

.

Applying (2.4.2) to the first and last integrals and (7.3.2) to the middle integral we get

(
√

3)−n+1vn D1/2(I , R−1
2 , . . . , R−1

n ) ≤ V(B, ER2, . . . , ERn)

≤ vn D1/2(I , R−1
2 , . . . , R−1

n )

and the proof follows.

Inequality (1.4.2) and Theorem 5.2 imply immediately that we can approximate the
mixed volume of givenn ellipsoids inRn within a factor 2O(n) in randomized polynomial
time. However, we can use Theorem 7.3 directly to construct an algorithm for computing
the mixed volume of ellipsoids. This way we get an unbiased estimator with a better
constant. Namely, we start withn ellipsoidsE1, . . . , En inRn. Applying a nondegenerate
linear transformT we make the unit ballB = T(E1) from the first ellipsoid. Then
we choose a unit vectoru ∈ Sn−1 at random and projectT(Ei+1) orthogonally onto
u⊥ getting an(n − 1)-dimensional ellipsoidE′i . Then we replace the computation of
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V(E1, . . . , En) by the computation ofV(E′1, . . . , E′n−1) and proceed as above. To prove
an analogue of Theorem 5.2 we need to prove the analogues of the results from Section 3
where instead of a positive semidefinite quadratic formq we have the support function
hK of a zonoidK . The author cannot prove an analogue of Theorem 3.3 but the analogues
of Corollary 3.4 and Theorem 3.5 can be obtained.

8. Support Functions of Zonoids

We recall from Section 3 thatE( f ) denotes the average value of a continuous function
f on the unit sphereSn−1. Our reasoning is somewhat parallel to that of Section 3;
instead of positive semidefinite quadratic formsq we consider the support functionshK

of zonoids.

(8.1) Lemma. Let J ⊂ Rn, J = −J be a segment of length2l such thatE(hJ) = 1.
Then

l =
√
πn

2
(1+ O(n−1)); (8.1.1)

lim
n−→+∞E(ln hJ) = 2√

2π

∫ +∞
0

ln

(
t

√
π

2

)
e−t2/2 dt ≈ −0.4093900697; (8.1.2)

lim
n−→+∞E(ln2 hJ) = 2√

2π

∫ +∞
0

ln2

(
t

√
π

2

)
e−t2/2 dt ≈ 1.401300779. (8.1.3)

Proof. Without loss of generality we assume thatJ = [−le1, le1], where e1 =
(1, 0, . . . ,0), sohJ(x) = l |x1| = l | sinϕ|. We have (n > 1):

E(hJ) = κn−2

κn−1

∫ π/2

−π/2
l |sinϕ| cosn−2 ϕ dϕ

= 2κn−2l

κn−1

∫ π/2

0
sinϕ cosn−2 ϕ dϕ = 2lκn−2

(n− 1)κn−1
.

Sol = (n− 1)κn−1/2κn−2 and (8.1.1) follows (see Section 1.5).
Now we follow the proof of Theorem 3.5. For a sufficiently smallε > 0 we have

E(ln hJ) = 2κn−2

κn−1

∫ π/2

0
ln(l sinϕ) cosn−2 ϕ dϕ

= 2κn−2

κn−1

∫ n−1/2+ε

0
ln(l sinϕ) cosn−2 ϕ dϕ + O(e−nε).

Substitutionϕ = t/
√

n transforms the integral to

2κn−2

κn−1
√

n

∫ nε

0
ln

(
l sin

t√
n

)
cosn−2 t√

n
dt.
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As in the proof of Theorem 3.5 we have

lim
n−→+∞

2κn−2

κn−1
√

n
= 2√

2π
and cosn−2 t√

n
= e−t2/2(1+ O(n4ε−1))

on the interval [0, nε]. Using (8.1.1) we conclude that

l sin
t√
n
=
√
π

2
t (1+O(n2ε−1)), so ln

(
l sin

t√
n

)
= ln

(√
π

2
t

)
+O(n−1+2ε).

Therefore

lim
n−→+∞E(ln hJ) = lim

n−→+∞
2√
2π

∫ nε

0
ln

(√
π

2
t

)
e−t2/2 dt

= 2√
2π

∫ +∞
0

ln

(√
π

2
t

)
e−t2/2 dt.

The integralE(ln2 hJ) is treated similarly.

We note that|E(ln hJ)|, |E(ln2 hJ)| <∞ for anyn > 0.

(8.2) Theorem. We have

lim
n−→+∞ sup{E(ln hK )| : K ⊂ Rn is a zonoid andE(hK ) = 1} = C2, (8.2.1)

where

C2 = − 2√
2π

∫ +∞
0

ln

(√
π

2
t

)
e−t2/2 dt ≈ 0.4093900697

and each supremum is finite;

|E(ln2 hK )| = O(ln2 n), (8.2.2)

where K⊂ Rn is a zonoid such thatE(hK ) = 1.

Proof. Since every zonoidK can be approximated by zonotopes in the Hausdorff
metric, it suffices to consider the case whenK is a zonotope, that is, the Minkowski sum
of finitely many segmentsJk symmetric about the origin. Rescaling, if necessary, we
may writeK = α1J1 + · · · + αmJm, whereE(hJk) = 1 andαk ≥ 0 for k = 1, . . . ,m.
Then we must haveα1+ · · · + αm = 1. Since lnx is a concave function, we have

0≥ E(ln hK ) = E(ln(α1hJ1 + · · · + αmhJm)) ≥ α1E(ln hJ1)+ · · · + αmE(ln hJm).

So the supremum of|E(ln hK )| is attained on the segments inRn and (8.2.1) follows
from (8.1.2).

Part (8.1.3) of Lemma 8.1 implies that there exists an absolute constantC such
that E(ln2 hJ) ≤ C provided J ⊂ Rn is a segment inRn such thatE(hJ) = 1. Let
X = {u ∈ Sn−1 : hK (u) ≤ 1} andY = Sn−1\X. Then

E(ln2 hK ) =
∫

X
ln2 hK (u) du+

∫
Y

ln2 hK (u) du.
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From (8.1.1) we gather thatK must be contained in the ball of radiusO(
√

n), so the
second integral isO(ln2 n). Let us estimate the first integral. For eachu ∈ X we have

0≥ ln hK (u) ≥ α1 ln hJ1(u)+ · · · + αm ln hJm(u).

Therefore, for eachu ∈ X, we have

ln2 hK ≤
(

m∑
k=1

αk ln hJk

)2

=
∑

1≤i,k≤m

αkαi ln hJi ln hJk .

Now, by the Cauchy–Schwartz inequality∣∣∣∣∫
X
| ln hJi (u)|| ln hJk(u)| du

∣∣∣∣ ≤ (∫
X

ln2 hJi (u) du

)1/2(∫
X

ln2 hJk(u) du

)1/2

≤ C.

Therefore, ∫
X

ln2 hK (u) du≤ C
∑

1≤ j,k≤m

αkαj = C

and the proof of (8.2.2) follows.

V. D. Milman informed the author that the existence of an absolute constantC such
that |E(ln hK )| ≤ C providedK ⊂ Rn is any centrally symmetric convex body (not
necessarily a zonoid) andE(hK ) = 1 follows by a much more general inequality [14].

9. Computing the Mixed Volume

First, we present our main algorithm for computing the mixed volume ofn ellipsoids
in Rn. We present it “coordinate free,” that is, in operators rather than matrices. A
coordinatization of the algorithm can be obtained in a similar way as in Algorithm 5.1
for mixed discriminants.

(9.1) Algorithm

Input. Positive definiten × n operatorsM1, . . . ,Mn of ellipsoidsEMi = {x ∈ Rn :
〈x,Mi x〉 ≤ 1} in Rn.

Output. A numberγ approximating the mixed volumeV(EM1, . . . , EMn).

Algorithm

Step0. Sample an orthonormal basis(u1, . . . ,un) in Rn. Let Qi := Mi for i =
1, . . . ,n. Let γ := 1 ands := 0.

Comment. We store ins the number of iterations of Steps 1 and 2 of the algorithm
and inγ the current value of the mixed volume.
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Step1. Letk = n− s and lets := s+ 1. Letγ = (detQ1)
−1/2γ . If s = n, compute

γ := γ vn, wherevn is the volume of the unit ball inRn, outputγ and stop. Otherwise,
compute a positive definite operatorT such thatT2 = Q1. ComputeRi = T−1QkT−1

for i = 2, . . . , k.

Comment. On thesth iteration of this step we havek ellipsoidsEQ1, . . . , EQk in the
k-dimensional space(u1, . . . ,us−1)

⊥. Formula (7.3.1) implies thatV(EQ1, . . . , EQk) =
(detQ1)

−1/2V(B, ER2, . . . , ERk), whereB is the unit ball.

Step2. Fori = 1, . . . , k−1 let EQi be the orthogonal projection of the ellipsoidERi+1

onto the hyperplaneu⊥s in (u1, . . . ,us−1)
⊥. Go to Step 1.

Comment. On this step of the algorithm we approximate(1/vk)V(B, ER2, . . . , ERk)

by (1/vk−1)V(ER2|u⊥s , . . . , ERk |u⊥s ) for a randomus ∈ Sn−1 (see (7.3.2)). To compute
Qi , we compute the inverse operator(Ri+1)

−1, then letQi = (P∗(Ri+1)
−1P)−1, where

P: (u1, . . . ,us)
⊥ ⊂ (u1, . . . ,us−1)

⊥ is the inclusion (see Lemma 7.2).

(9.2) Theorem. For any given positive definite operators M1, . . . ,Mn the algorithm
performs a polynomial in n number of operations(addition, subtraction, multiplication,
division, and taking the square root of a nonnegative number). For any ε > 0 there
is an N(ε) such that for any n≥ N(ε) the numberγ produced by the algorithm with
probability at least0.9satisfies the inequality

cn
εV(EM1, . . . , EMn) ≤ γ ≤ 20V(EM1, . . . , EMn) for cε = e−C2−ε,

where C2 is the absolute constant from Theorem8.2.

Proof. The proof is completely analogous to the proof of Theorem 5.2. Instead of
Theorem 2.4 we use Theorem 7.3 and instead of Corollary 3.4 and Theorem 3.5 for
quadratic forms we use Theorem 8.2 for support functions of zonoids. We introduce
functions

qs(u1, . . . ,us) = vk(detQ1)
−1/2

vk−1V(EQ1, . . . , EQk)
V(ER2|u⊥s , . . . , ERk |u⊥s ),

whereQ1, . . . , Qk and R2, . . . , Rk are the operators computed on thesth iteration of
Step 1 and we agree thatqn(u1, . . . ,un) = 1. Then we conclude that

γ = V(EM1, . . . , EMn)

n∏
s=1

qs(u1, . . . ,us).

Let us consider conditional expectationsEs (Section 4.1). Part (7.3.2) of Theorem 7.3
implies thatEs(qs) = 1 and hence by Lemma 4.2 we conclude that the expectation ofγ

on the orthogonal groupOn is the desired mixed volumeV(EM1, . . . , EMn). Part (7.3.1)
of Theorem 7.3 implies thatqs(u1, . . . ,us) as a function inus for fixed u1, . . . ,us−1 is
the support function of a zonoid in(u1, . . . ,us−1)

⊥. We use Theorem 8.2 to show that

1

n

n∑
s=1

‖Es(ln qs)‖ ≤ C2+ ε
2
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for all sufficiently largen and that‖Es(ln2 qs)‖ = O(ln2 n). Now, as in the proof of
Theorem 5.2 we refer to Lemma 4.3 to show that

ν

{
(u1, . . . ,un) ∈ On :

1

n

n∑
s=1

ln qs(u1, . . . ,un) ≤ −C2− ε
}
−→ 0 as n −→∞

and we complete the proof as in Theorem 5.2.

So any approximation constant

cε < exp

{
2√
2π

∫ ∞
0

ln

(√
π

2
t

)
e−t2/2 dt

}
≈ 0.6640551540

will work for a sufficiently largen.
If the number of pairwise different ellipsoids is fixed, we can achieve a 2O(n) approx-

imation by a deterministic polynomial time algorithm.

(9.3) Lemma. Let us fix k. Then there exists an algorithm, which for any given n matri-
ces Q1, . . . , Q1, Q2, . . . , Q2, . . . , Qk, . . . , Qk with only k pairwise different computes
the mixed discriminant D(Q1, . . . , Qn). The algorithm uses a polynomial in n number
of arithmetic operations.

Proof. We use representation (2.2.1) for the mixed discriminant. Since the number of
pairwise different operators is fixed, the sum (2.2.1) can be rewritten as a sum ofnO(k)

determinants. Fori ≤ k let αi be the number of copies ofQi . Then

n! D(Q1, . . . , Q1, Q2, . . . , Q2, . . . , Qk, . . . , Qk)

=
n∑

s=1

(−1)n−s
∑

β1+···+βk=s

(
α1

β1

)
· · ·
(
αk

βk

)
det(β1Q1+ · · · + βk Qk).

Since the determinant of ann × n matrix can be computed usingO(n3) arithmetic
operations, the formula gives rise to an algorithm of polynomial complexity.

(9.4) Corollary. Let us fix k. Then there exists a polynomial time algorithm that for
any given n positive definite matrices Q1, . . . , Q1, Q2, . . . , Q2, . . . , Qk, . . . , Qk with
at most k pairwise different computes a numberδ such that

(
√

3)−n+1V(EQ1, . . . , EQ1, . . . , EQk , . . . , EQk)

≤ δ
≤ V(EQ1, . . . , EQ1, . . . , EQk , . . . , EQk).

Proof. Follows by (1.4.2) and Lemma 9.3.

Note, that 1/
√

3 ≈ 0.5773502693 so we are getting a worse approximation than we
could have gotten using randomized Algorithm 9.1.
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(9.5) Mixed Volumes of General Convex Bodies. As is known, for any convex body
K ⊂ Rn there exists an ellipsoidE such that (after translating its center to the origin) we
haveE ⊂ K ⊂ nE (see, for example, [10]). There are classes of convex bodies where an
approximating ellipsoid such thatE ⊂ K ⊂ nO(1)E can be constructed in polynomial
time in the real model of computation. This is the case, for example, whenK is a polytope
given by a list of its vertices (see [12] and [13]). For this class of convex bodies we can
approximateV(K1, . . . , Kn) within a factornO(n) in the real RAM model. We also note
that if K is given by a “well-guaranteed” oracle (see [10]) then there is a polynomial time
algorithm in the bit model that computes an ellipsoidE such thatE ⊂ K ⊂ n

√
n+ 1E.

Applying a bit version of Algorithm 9.1 (which was not discussed here) we would get a
randomized polynomial timenO(n) approximation algorithm in the bit model.

Acknowledgments

This paper was inspired by the papers [9] and [4]. I attempted to answer some of the
questions asked there. I am grateful to E. Gluskin, E. Lutwak, and V. D. Milman for many
helpful discussions during the “Sharp Inequalities in Harmonic Analysis and Convex
Geometry” workshop hosted by MSRI, Berkeley, CA.

References

1. A. Aho, J. Hopcroft, and J. Ullman,The Design and Analysis of Computer Algorithms, Addison-Wesley,
Reading, MA, 1974.

2. A. D. Aleksandrov, On the theory of mixed volumes of convex bodies, IV, Mixed discriminants and mixed
volumes (in Russian),Mat. Sb. (N.S.) 3 (1938), 227–251.

3. A. I. Barvinok, Two algorithmic results for the Traveling Salesman Problem,Math. Oper. Res. 21 (1996),
65–84.

4. M. Dyer, P. Gritzmann, and A. Hufnagel, On the complexity of computing mixed volumes, to appear.
5. G. P. Egorychev, The solution of van der Waerden’s problem for permanents,Adv. in Math. 42 (1981),

299–305.
6. A. Frieze and M. Jerrum, An analysis of a Monte Carlo algorithm for estimating the permanent,

Combinatorica, 15 (1995), 67–83.
7. F. R. Gantmakher,The Theory of Matrices, Chelsea, New York, 1960.
8. D. Yu. Grigoriev and M. Karpinsky, The matching problem for bipartite graphs with polynomially bounded

permanents is in NC,Proc. Twenty-Eighth Annual IEEE Symp. Foundations of Computer Science, IEEE
Computer Society Press, Washington, DC, 1987, pp. 162–172.

9. P. Gritzmann and V. Klee, On the complexity of some basic problems in computational convexity: II. Volume
and mixed volumes, In:Polytopes: Abstract, Convex, and Computational(T. Bisztriczky, P. McMullen,
R. Schneider, and A. Ivi´c Weiss, eds.), Proceedings of the NATO Advanced Study Institute, Scarborough,
Ontario, Canada, August 20–September 3, 1993, 1994, Kluwer Academic, Amsterdam, pp. 373–466.

10. M. Grötschel, L. Lovász, and A. Schrijver.Geometric Algorithms and Combinatorial Optimization,
Springer-Verlag, Berlin, 1988.

11. M. Jerrum and A. Sinclair, Approximating the permanent,SIAM J. Comput. 18 (1989), 1149–1178.
12. L. Khachiyan, Rounding of polytopes in the real number model of computation,Math. Oper. Res. 21

(1996), 307–320.
13. L. Khachiyan and M. Todd, On the complexity of approximating the maximal inscribed ellipsoid for a

polytope,Math. Programming, 61 (1993), 137–159.
14. R. Latala, On the equivalence between geometric and arithmetic means for logconcave measures, Preprint.



Computing Mixed Discriminants, Mixed Volumes, and Permanents 237

15. K. Leichtweiß, Convexity and Differential Geometry, In:Handbook of Convex Geometry, vol. B, Chap-
ter 4.1 (P. M. Gruber and J. M. Wills, eds.), North-Holland, Amsterdam, 1993, pp. 1045–1080.

16. E. Lutwak, Mixed projection inequalities,Trans. Amer. Math. Soc. 287(1985), 91–105.
17. V. D. Milman and G. Schechtman,Asymptotic Theory of Finite Dimensional Normed Spaces. With an

Appendix by M. Gromov, “Isoperimetric Inequalities in Riemannian Manifolds,” Lecture Notes in Math-
ematics, vol. 1200, Springer-Verlag, Berlin, 1986.

18. C. H. Papadimitriou and K. Steiglitz,Combinatorial Optimization: Algorithms and Complexity, Prentice
Hall, Englewood Cliffs, NJ, 1982.

19. L. E. Rasmussen, Approximating the permanent: A simple approach,Random Structures and Algorithms
5 (1994), 349–361.

20. L. A. Santalo,Integral Geometry and Geometric Probability, Addison-Wesley, Reading, MA, 1976.
21. R. Schneider,Convex Bodies: The Brunn–Minkowski Theory, Encyclopedia of Mathematics and Its

Applications, vol. 44, Cambridge University Press, New York, 1993.
22. R. Schneider and J. A. Wieacker, Integral geometry, In:Handbook of Convex Geometry, vol. B, Chapter 5.1

(P. M. Gruber and J. M. Wills, eds.), North-Holland, Amsterdam, 1993, pp. 1351–1390.

Received July10, 1995,and in revised form May20, 1996.


