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o us, and to other biological 
organisms, vision seems effort- 
less. We open our eyes and we 

“see” the world in all its color, brightness, 
and movement. Flies, frogs, cats, and 
humans can all equally well perceive a 
rapidly changing environment and act on 
it. Yet, we havegreat difficulties when try- 
ing to endow our machines with similar 
abilities. In this article, we describe recent 
developments in the theory of early 
vision that led from the formulation of the 
motion problem as an ill-posed one to its 
solution by minimizing certain “cost” 
functions. These cost or energy functions 
can be mapped onto simple analog and 
digital resistive networks. Thus, we can 
compute the optical flow by injecting cur- 
rents into resistive networks and recording 
the resulting stationary voltage distribu- 
tion at each node. These networks, which 
we implemented in complementary metal 
oxide semiconductor (CMOS) very large 
scale integrated (VLSI) circuits, represent 
plausible candidates for biological vision 
systems. 

Motion 

The movement of objects relative to 
eyes or cameras serves as an important zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

k 
We can compute 

optical flow by 

injecting currents into 

resistive networks and 

recording the 
stationary voltage 

distribution at 

each node. 

source of information for many tasks. We 
need motion to track objects and to deter- 
mine whether an object is approaching or 
receding. Relative motion contains infor- 
mation regarding the three-dimensional 
structure of objects and allows biological 
organisms to navigate quickly and effi- 
ciently through the environment. 

There exist two basic methods for com- 
puting motion. Intensity-based schemes 
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rely on spatial and temporal gradients of 
the image intensity to compute the speed 
and the direction in which each point in the 
image moves. The output is a velocity or 
motion vector field covering the entire 
image. The second method is based on the 
identification of special features in the 
image, called zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtokens, which are then 
matched from image to image. This 
method relies on the unambiguous iden- 
tification of the tokens-for instance, 
corners-in each image frame before the 
matching occurs and only yields a veloc- 
ity vector at the sparse token locations. 
Psychophysical evidence suggests that 
both systems coexist in humans.’ 

The principal drawback of all intensity- 
based schemes lies in the data used- 
temporal variations in brightness 
patterns-which give rise to the perceived 
motion field, the optical f low. In general, 
the optical flow and the underlying veloc- 
ity field, a purely geometrical concept, dif- 
fer.’ For example, a featureless rotating 
sphere will not give rise to any optical flow, 
because the brightness does not appear to 
change even though the velocity field is 
non-zero. Conversely, if a shadow moves 
across the same featureless but now sta- 
tionary sphere, the optical flow is non-zero 
although the velocity field is zero. Apart 
from such situations, the estimated opti- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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cal flow will be very nearly identical to the 
underlying velocity field, if strong enough 
gradients exist in the image. In this article, 
we assume that such strong gradients exist, 
as they do for most natural scenes, and 
consider how we can compute the velocity 
field using simple resistive networks. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Aperture problem. Let us derive an 
equation relating the change in image 
brightness to the motion of the image.2 
We denote the image at time zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt by I(x,y, t) .  
Let us assume that the brightness of the 
image is constant over time: 

This will be true, for instance, if a rigid 
object translates in space (assuming ortho- 
graphic projection), but not if it rotates. 
On the basis of the chain rule of differen- 
tiation, Equation 1 transforms into zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
_ _  a I d x  + L I L Y  + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2-1 = 

a x d t  a y d t  a t  (2)  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I,u + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZ”V + I, = VI*v + I /  = 0 

where we define the velocity v as (U, v )  = 

(dx /d t ,  dy ld t ) ,  and where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI,, I,,, and It are 
the partial derivatives of the brightness I 
with respect to x ,  y ,  and t .  Because we 
assume that we can compute these spatial 
and temporal image gradients, we now 
have a single linear equation in two 
unknowns, U and v ,  the two components 
of the velocity vector. 

In other words, this equation by itself is 
not sufficient to determine the velocity 
field. Figure 1 graphically illustrates this 
apertureproblem. Any measuring system 
with a finite aperture, whether biological 
or artificial, can only sense the velocity 
component perpendicular to the edge or 
along the spatial gradient ( -Zt/lVIl). The 
component of motion perpendicular to the 
gradient cannot, in principle, be regis- 
tered. The problem remains unchanged 
even if we measure these velocity compo- 
nents at many points throughout the 
image. For each measurement, we recover 
one equation with two unknowns. 

Smoothness assumption. Formally, this 
problem can be characterized as ill- 
posed.3 Hadamard introduced this con- 
cept to describe problems in mathematical 
physics that (1) have no solution at all, (2) 
have no unique solution, or (3) do not 
depend continuously on the initial data. 
Inverse problems, such as computer 
tomography, represent ill-posed prob- 

Figure 1. The aperture problem of motion. Any system with finite aperture, 
whether of biological or artificial origin, can only measure the velocity component 
-Z,/lVIl along the spatial gradient VZ. Motion perpendicular to the gradient will 
not be visible, except by tracking salient features in the image.’ 

lems. All problems in early vision, which 
we define as the set of processes that 
recover the properties of the visible three- 
dimensional surfaces from the two- 
dimensional intensity arrays on retinae or 
cameras, are ill-posed. For example, 
binocular stereo and interpolating surfaces 
from sparse and noisy data are ill-posed, 
because in the former many and in the lat- 
ter infinitely many solutions exist. 

How can we make these problems well- 
posed, with unique solutions depending 
continuously on the data? One method of 
“regularizing” ill-posed problems 
involves restricting the class of admissible 
solutions by imposing appropriate con- 
s t r a i n t ~ . ~  Applying this method to  

motion, we argue that, in general, objects 
are smooth-except a t  isolated 
discontinuities-undergoing smooth 
movements. Thus, in general, neighboring 
points in the world will have similar veloc- 
ities. The projected velocity field should 
reflect this fact. We therefore impose on 
the velocity field the constraint that it 
should be the smoothest (in a given sense) 
while satisfying the data. As the measure 
of smoothness we choose the square of the 
velocity field gradient: 

A variational functional provides the most 
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Figure 2. Rectangular grid and resistive network. (a) Rectangular grid for solving 
the discrete version of Equation 4. (b) Part of the resistive network minimizing the 
discrete approximation of the energy function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE in Equation 4. We assume the con- 
ductance T connecting neighboring nodes to be constant. Each node connects to a 

variable battery Eo via a conductance &. Parasitic capacities (on the order of 0.1 
picofarad) give the circuit its dynamic behavior. The final network consists of two 
such resistive networks superimposed, where corresponding nodes are connected 
via a variable conductance Tc-o, as in Figure 3b. Once the batteries Eij and conduc- 
tances & and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAgi have been set, the network will converge-following Kirchhoff’s 
laws-to the state of least power dissipation that corresponds to the solution of the 
variational Equation 4. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
general way to formulate the problem.’ 
The final velocity field (u,v) minimizes 

E(u,v) = JJ(I& + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI y v  + I/)’ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt 

where the regularization parameter A is 
inversely dependent on the signal-to-noise 
ratio. The first term describes the fact that 
the final solution should follow as closely 
as possible the measured data, whereas the 
second term imposes the smoothness con- 
straint on the solution. The degree of 
minimization of one or the other term is 
governed by A. With accurate data, violat- 
ing the first term should be “expensive” 
and A will be small. Conversely, with 
unreliable data (low signal-to-noise ratio), 
much more emphasis will be placed on the 
smoothness term. Horn and Schunck’ 
first formulated this variational approach 
to the motion problem. 

The energy E(u, v)  is quadratic in the 

unknown U and v .  It then follows from 
standard calculus of variation that the 
associated Euler-Lagrange equations will 
be linear in U and v: 

I;U + I~I,V - AQ’U + rXrt = o 
rXryu + 1 y 2 ~  - A Q ~ V  + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI J ~  = o (5)  

We now have two linear equations at every 
point. Our problem is therefore com- 
pletely determined. We could now use a 
number of iterative techniques, such as 
steepest descent, to solve these equations. 
Instead, we pursue a different path. 

Analog resistive networks. Let us 
assume that we are formulating Equations 
4 and 5 on a discrete two-dimensional grid, 
such as the one shown in Figure 2a. Equa- 
tion 5 then transforms into 

where we replaced the Laplacian with its 
five-point approximation on a rectangular 
grid. We now show that this set of linear 
equations can be solved naturally using a 
simple resistive network. Let us apply 
Kirchhoff‘s current law to the center node 
of the resistive network shown in Figure 
2b. We then have the following update 
equation: 

Let us now assume that we have two such 
resistive networks superimposed, with the 
node zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi j  in the upmost network 
connected-via a conductance Tc- ,-to 
the appropriate node ijin the bottom net- 
work (see Figure 3b). We then have two 
equations similar to Equation 7 with a 
coupling term Tc-lJ(vlJ - ulJ), where vlJ is 
the voltage at node ij in the bottom net- 
work. If we assume that the resistive net- 
work has converged to its final state, 
du,/dt = 0 and dvlJ/dt = 0, we see that 
both equations are identical with Equation 
6, if we identify 

Once we set the batteries and the con- 
ductances to the values indicated in Equa- 
tion 8, the network will settle-following 
Kirchhoff‘s laws-into the state of least 
power dissipation. The associated station- 
ary voltages correspond to the solution 
sought: uij is equivalent to the x compo- 
nent and vu to the y component of the 
optical flow field. A unique and stable 
solution always exists, even if some of the 
conductances have negative values. In 
fact, many of the conductances connect- 
ing the lower and the upper networks 
(T,- 0) and the conductances associated 
with the batteries (g: and g;) will be nega- 
tive, because the sign of I, and Iy can be 
either negative or positive. As we will see, 
this poses no serious problems, given the 
technology we have chosen to build 
resistances. (See the sidebar “Parallel 
computer implementation. ”) 
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Figure 3. Rectangular grid with line processes and hybrid network. (a) The location of the horizontal zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(6) and vertical zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(c,) line 
processes relative to the rectangular motion-field grid. (b) The hybrid resistive network, computing the optical flow in the pres- 
ence of discontinuities. The conductances zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT,-,, which connect both grids, depend on the brightness gradient, as do the con- 
ductances zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA&, and g;, which connect each node with the battery. For clarity, only two such elements are shown. The battery Eij 
depends on both the temporal and the spatial gradient and is zero if no brightness change occurs. The zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx component of the 
velocity, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU, is given by the voltage in the top network, while they component of the velocity, v, is given by the voltage in the 
bottom network. A high voltage value at location i,j will spread to its four neighboring nodes. The degree to which voltage 
spreads depends on the value of the fixed conductance, T, given by the inverse of the signal-to-noise ratio. Binary switches, 
which make or break the resistive connections between nodes, implement motion discontinuities, because an arbitrary high 
voltage (velocity) will not affect the neighboring site across the discontinuity. An extended horizontal motion discontinuity is 
indicated. These switches could be under the control of distributed digital processors. Analog CMOS implementations of the 
line processes also are feasible.* 

The sequences in Figures 4, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 ,  and 6 
illustrate the resulting optical flow for syn- 
thetic and natural images. Figure 4c illus- 
trates the initial velocity data and the 
velocity component perpendicular to the 
image gradient. Figure 4d shows the result- 
ing smooth optical flow. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAs discussed by 
Horn and Schunck,’the smoothness con- 
straint leads to a qualitatively correct esti- 
mate of the velocity field. Thus, one 
undifferentiated blob appears to move to 
the lower right and one blob to the upper 
left. However, at the occluding edge where 
both squares overlap, the smoothness 
assumption results in a spatial average of 
the two opposing velocities, and the esti- 
mated velocity is very small or zero. 

Parallel computer implementation 
We simulated the behavior of 

these networks for both synthetic 
and natural images by solving the 
previous circuit equations at each 
node. As boundary conditions, we 
copied the initial velocity data at the 
edge of the image into the nodes 
lying directly adjacent to but outside 
the image (zero normal derivative). 
We estimated the spatial and tem- 
poral derivatives I,, I,, and I ,  using a 
discrete eight-point approximation. 

Given the high computational cost 
associated with solving these ellipti- 
cal equations, we used parallel com- 

puters of the Hypercube family: the 
32-node Mark Ill Hypercube at the Jet 
Propulsion Laboratory and a 4- and a 
16-node Ncube in the laboratory at 
Caltech. Even though we used a vari- 
able time-step algorithm, conver- 
gence times were slow (10 minutes 
for a 128x128 image). Solving Equa- 
tion 4 is similar to solving Poisson’s 
equation. Thus, the number of itera- 
tions required to converge is propor- 
tional to n2 (on an n x n-pixel image). 
A multigrid approach will greatly 
speed up the performance. 
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Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4. Motion sequence using synthetic data. (a) and (b) Two 32 x 32-pixel images of three high-contrast squares on a 
homogeneous white background. Only the two squares on the upper left are displaced. (c) The initial velocity data. The insides 
of both squares contain zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAno data. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(d) The final state of the network after 240 iterations, corresponding to the smooth optical 
flow field. The algorithm gives a qualitatively correct estimate of the velocity field. Note, however, the vanishing velocity estimate 
at the occluding edges where the two moving squares overlap, caused by the averaging property of the smoothness constraint. 
Moreover, the moving objects are not delineated in the flow field, because the algorithm smooths over the figure-ground 
motion discontinuity. (e) Optical flow in the presence of motion discontinuities (indicated by solid lines). Numerous line 
processes are turned on in the area where the moving objects overlap. The formation of discontinuities along continuous con- 
tours is explicitly encouraged. (f) Discontinuities are strongly encouraged to form at the location of intensity edges.’ This addi- 
tional constraint leads to the correct velocity field. The location of these discontinuities facilitates object segmentation at a 
later stage of visual analysis. Both (e) and (f) show the state of the hybrid network after six analog-digital cycles. 

In parts of the image where the bright- 
ness gradient is zero and thus no initial 
velocity data exist (for instance, in the 
interiors of the two squares), the velocity 
estimate is simply the spatial average of the 
neighboring velocity estimates. These 
empty areas eventually will fill in from the 
boundary, similar to the flow of heat for 
a uniform flat plate with “hot”  
boundaries. 

The sequence in Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 also illustrates 

the effect of varying the conductance T 
between neighboring points. As we place 
more confidence in the measured data 
(small A), the coupling between neighbor- 
ing nodes decreases because T decreases, 
and the optical flow becomes more 
inhomogeneous, better reflecting the cor- 
rect velocity field. As the data becomes less 
reliable (large A), more smoothing occurs 
until little spatial variation exists (see Fig- 
ure 3). 

Motion discontinuities. The smoothness 
assumption of Horn and Schunck’ 
regularizes the aperture problem and leads 
to the qualitatively correct velocity field 
inside moving objects. However, this 
approach fails to detect the locations at 
which the velocity changes abruptly or dis- 
continuously. Thus, this strategy smooths 
over the figure-ground discontinuity or 
completely fails to detect the boundary 
between two objects with differing veloc- 
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Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5. Optical flow of a moving hand. (a) and (b) Two 128 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx 128-pixel images 
captured by a video camera. The hand is displaced downward by up to two pixels. 
(c) Zero-crossings of the Laplacian of a Gaussian (with seven-pixel-wide center 
lines) superimposed on the initial velocity data. The zero-crossings are thresholded 
to remove noise. In areas with little or no spatial gradients, amplified image noise 
leads to noisy velocity data, since their amplitude is given by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-Z,/lVZl. The zero- 
crossings of both images are shown, thus the double line. Notice the stationary 
zero-crossing at the right edge. (d) The smooth optical flow after lo00 iterations. In 
these and the following images, the plotted individual velocity vectors are not 
highly visible; however, the gray-scale intensity is proportional to the magnitude of 
the velocity (the direction is always downward). The smooth optical flow for a five- 
times-lower and five-times-higher value of the conductance zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT appears in (e) and (f). 
The next four images show the state of the hybrid network after the first (g), sec- 
ond (h), fifth (i), and ninth (j) analog-digital cycles. In the final image, the fingers 
have a higher velocity than does the band itself. It takes several cycles for the 
motion discontinuities to “creep” around the outline of the hand. 
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Figure 6. Optical flow of a moving person. (a) and (b) Two 128 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX 128 pixel images captured by a video camera. The person in 
the foreground is moving toward the right while the person in the background is stationary. The noise in the lower part of the 
image is a camera artifact. (c) Thresholded zero-crossings superimposed on the initial velocity data. (d) The smooth optical 
flow after 1000 iterations. Note that the noise in the lower part of both video images is completely smoothed away. (e) The 
final piecewise smooth optical flow after 13 analog-digital cycles. The velocity field is subsampled to improve visibility. With 
the exception of a square appendage at the right hip, the optical flow field shown corresponds to the correct velocity field. The 
appendage, caused by the edge-detection scheme lumping part of the garbage can in the background with the contour of the 
person, represents an instance of what psychophysicists term motion capture. More recently, we have successfully computed 
the optical flow field for images with many, partially occluding, moving people. 

ities, because the algorithm combines 
velocity information across motion 
boundaries. We argue that motion discon- 
tinuities are the most interesting locations 
in any image, because they indicate where 
one object ends and another one begins. 
Motion as well as intensity discontinuities 
are vital for solving the critical object seg- 
mentation problem that occurs at a subse- 
quent stage of the image understanding 
process. 

Various researchers have attempted to 
prevent the smoothing constraint from 
taking effect across strong velocity gra- 
dients.6 Geman and Geman’ proposed a 
successful strategy for dealing with discon- 

tinuities. They exploited an analogy 
between statistical mechanics and images, 
whereby the intensity values at each pic- 
ture element and the presence of discon- 
tinuities are viewed zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas states of particles on 
a lattice. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAWe can assign an “energy” func- 
tion to this system and compute its most 
likely state. 

In this article, we do not rigorously 
develop this approach, based on Bayesian 
estimation theory.’,’ Suffice it to say that 
a priori knowledge (for instance, that the 
velocity field in general should be smooth) 
can be formulated in terms of a Markov 
random field model of the image. (In zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa 
Markov random field, the conditional 

probability that a given variable at location zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
i,j has a particular valueAj depends only 
on the values off in a neighborhood of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi j . )  
Given such an image model, and given 
noisy data, we then estimate the “best” 
flow field by some likelihood criterion. 
The one we use here is the maximum a 
posteriori estimate, although other possi- 
ble criteria have certain advantages.’ 
Maximizing the a posteriori probability 
yields the best solution. We can show this 
to be fully equivalent to minimizing an 
expression such as Equation 4. 

To reconstruct images consisting of 
piecewise constant segments, Geman and 
Geman’ further introduced the powerful 
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idea of a line process zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI (see also Blake and 
Zisserman’). For our  purposes, we 
assume that a line process can occupy one 
of two states: “on” (I= 1) or “off” (I=O). 
Line discontinuities are located on a regu- 
lar lattice set between the original pixel lat- 
tice (see Figure 3a), such that each pixel zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAij 
has one horizontal 1; and one vertical zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1% 
line process associated with it. If the 
appropriate line process is turned on, the 
smoothness term between the two adjacent 
pixels will be set to zero. 

To prevent line processes from forming 
everywhere and to incorporate additional 
knowledge regarding discontinuities into 
the line processes, we must include an 
additional term zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV,(r) in the new energy 
function: 

V, contains a number of terms penaliz- 
ing or encouraging specific configurations 
of line processes: 

plus the corresponding expression for the 
vertical line process zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA/% (obtained by inter- 
changing i with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj and 1% with I;). The first 
term (C,) penalizes each introduction of a 
line process, because the cost C, has to be 
“paid” every time a line process is turned 
on. The second term prevents the forma- 
tion of parallel lines. If either l ;+] or l ; + ~  
is turned on, this term will tend to prevent 
1; from turning on. The third term (CI) 
embodies the fact that, in general, motion 
discontinuities occur along extended con- 
tours and rarely intersect. We adopt the 
function given by Koch et al.” favoring 
the formation of motion discontinuities 
along extended contours and penalizing 
both multiple line intersections and iso- 
lated discontinuities. 

We obtain the optical flow by minimiz- 
ing the cost function in Equation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9 with 
respect to both the velocity field v = ( U ,  v) 
and the line processes fh  and I”. However, 
unlike before, this cost or energy function 
is nonconvex, since it contains cubic and 
possibly higher terms (in Vc). Geman and 
Geman resorted to annealing, a statistical 
optimization technique, to find the ground 
state of their system. If annealing is 
applied appropriately, the system con- 

verges with probability converging to one 
to the global maximum.’ However, the 
length of the required convergence times 
makes any practical application expensive. 

To find an optimal solution to this non- 
quadratic minimization problem, we fol- 
low the approach used by Koch et al.” 
and use a purely deterministic algorithm, 
based on solving Kirchhoff‘s equations for 
a mixed analog and digital 
Our algorithm exploits the fact that for a 
fixed distribution of line processes, the 
energy function of Equation 9 is quad- 
ratic. Thus, we first initialize the analog 
resistive network (see Figure 3b) according 
to Equation 8 and with no line processes 
on. The network then converges to the 
smoothest solution. Subsequently, we 
update the line processes by deciding at 

each site of the line process lattice whether 
the overall energy can be lowered by set- 
ting or breaking the line process. We 
always accept the state of the line process 
corresponding to the lower energy config- 
uration: 1; will be turned on if E(u, v /h = 

1,l”) < E(u,v,l; = 0,I”); otherwise, Ill = 

0. This computation requires only local 
information. Breaking the appropriate 
resistive connection between the two 
neighboring nodes switches on the line 
processes. After the completion of one 
such analog-digital cycle, we reiterate and 
compute the smoothest state of the analog 
network for the newly updated distribu- 
tion of line processes. 

Although we have no guarantee that the 
system will converge to the global mini- 
mum, given our use of a gradient descent 

’ K  

Restricting motion discontinuities to edges 

As edges we use the zero-crossings 
of a Laplacian of a Gaussian con- 
volved with the original image. Marr 
and Hildreth“ have shown that these 
locations usually correspond to 
physical edges. We threshold these 
zero-crossings (based on the square 
of the gradient) in order to remove 
spurious zero-crossings caused by 
noise and “weak” edges. Other edge 
detection algorithms should work 
equally well. 

We now add a new term Vz-cl/ to 
our energy function E, such that 
V,-,,, is zero i f  I,, is off or i f  is on 

and a zero-crossing exists between 
locations i and j .  If /,, = 1 in the 
absence of a zero-crossing, V,-,,, is 
set to a large positive number (in our 
case, 1000). 

This strategy effectively prevents 
motion discontinuities from forming 
at locations where no zero-crossings 
exist, unless strongly suggested by 
the data. Conversely, however, zero- 
crossings by themselves will not 
induce the formation of discontinui- 
ties in the absence of motion gra- 
dients. 

Varying the ‘amplitude’ of motion 
discontinuities 

When dealing with real data, the 
amplitude of velocity and, consequent- 
ly, the amplitude of any motion dis- 
continuity vary over a considerable 
range (as compared to the artificial 
situation in Figure 4). Our strategy in 
dealing with this problem involves 
varying the magnitude of the V, term 
in Equation 9 by multiplying V, with 
l /K(t) . ’ ’  Initially, K( t )  is small, but it 
then increases linearly until a given 
upper bound. 

In other words, the formation of 
discontinuities i:: penalized initially, 

encouraging a smooth interpolation 
everywhere except at very steep 
velocity gradients. Subsequently, by 
paying a smaller price for the forma- 
tion of line processes, the optical 
flow will break at smaller velocity 
gradients. The final state of the net- 
work is independent of the speed at 
which K( t )  changes (adiabatic con- 
vergence). Al l  other parameters 
remain constant and are identical for 
all simulations reported in this 
article. 
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Figure 7. Basic resistance element in analog subthreshold CMOS technology. (a) 
Shows a one-dimensional cut through the resistive network of Figures 2 and 8. The 
active circuits-built out of nine transistors-within the shaded areas implement a 
variable nonlinear resistance. Each transconductance amplifier implements the con- 

ductance G (see Figure 8), whose value can be set by Vc0,p The spatial response of 
such a network to a point voltage stimulus applied to the left-hand side is shown in 
(c). In an ideal tap line, the measured voltage values (points) should follow an 
exponential decay (lines). VT- V,, ,  sets the decay length L .  The current-voltage 
characteristic of one such resistive element is illustrated in (b). The voltage YT con- 
trols the maximum current and thus the slope of the resistance, which can vary 
between 100 kR and 10 GR. Many variations are po~s ible .~  

rule, the system seems to find next-to- 
optimal solutions (see Figures 4,s. and 6 )  
in about 10 to 15 analog-digital cycles. 
Furthermore, the algorithm must con- 
verge, because at each step the energy Eis 
always reduced and E is bound from 
below. We compared statistical annealing 
with our deterministic method in the case 
of interpolating and smoothing sparsely 

sampled data in the presence of discon- 
tinuity, where the underlying energy func- 
tion is similar to E in Equation 9. Both 
methods converged to qualitatively simi- 
lar solutions. lo 

The synthetic motion sequence in Figure 
4 demonstrates the dramatic effect of the 
line processes. The optical flow outside the 
discontinuities approximately delineating 

the boundaries of the moving squares is 
zero, as it should be (see Figure 4e). Where 
the two squares overlap, however, the 
velocity gradient is high and multiple inter- 
secting discontinuities exist. 

To restrict further the location of dis- 
continuities, we adopt a technique used by 
Gamble and Poggio’ to locate depth dis- 
continuities by requiring that depth dis- 
continuities coincide with the location of 
intensity edges. In general, the physical 
processes and the geometry of the three- 
dimensional scene giving rise to the motion 
discontinuity will also give rise to an inten- 
sity edge. For example, moving physical 
objects occluding other objects will give 
rise to an image with edges at the occlud- 
ing boundaries. In fact, only under labora- 
tory conditions-for instance, using 
random dot patterns-does a motion dis- 
continuity not coincide with intensity 
edges. 

Figure 4f demonstrates that this strategy 
leads to the correct velocity field-with the 
exception of the corners-in addition to 
labeling all motion discontinuities. Figures 
5 and 6 demonstrate our method on image 
pairs obtained with a video camera. See 
also the sidebars “Restricting motion dis- 
continuities to edges” and “Varying the 
‘amplitude’ of motion discontinuities.” 

Analog VLSI networks 

Even with the approximations and 
optimizations we previously described, the 
computations involved in this and similar 
early vision tasks require tens of minutes 
to hours on a large-scale parallel computer 
(see, however, Gamble and Poggio’). For 
the computations to be truly useful, we 
should be able to carry them out on a 
whole image in real time. Fortunately, 
modern integrated circuit technology gives 
us a medium in which we can realize 
extremely complex, analog real-time 
implementations of these computational 
 metaphor^.^ 

We can achieve a compact implementa- 
tion of a resistive network using an ordi- 
nary CMOS process, provided the 
transistors run in the subthreshold range, 
where their characterstics are ideal for 
implementing low-current analog func- 
tions. We achieve the effect of a resistor by 
choosing the circuit configuration shown 
in Figure 7 rather than by using the resis- 
tance of a special layer in the process. We 
can control the value of the resulting resis- 
tance over five orders of magnitude by 
setting the bias voltages on the upper and 
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lower current source transistors. The 
current-voltage curve saturates above 
approximately 100 millivolts, a feature 
that we can use to advantage in many 
applications. 

With small voltage gradients, we can 
treat the circuit as i f  it were a linear resis- 
tor, as shown by the shaded areas on the 
curves (Figure 7b). Conductances to signal 
input sources are implemented with trans- 
conductance amplifier followers, as 
shown in Figure 7a. Each amplifier injects 
a current into the network proportional to 
the difference between the local signal 
potential and the potential of the network. 
The effect of a conductance is thus 
achieved without drawing any current 
from the signal source. The value of the 
conductance is set by the transconductance 
control on the amplifier, which we can use 
to reflect the confidence assigned to the 
particular input. High conductance values 
give the network a short spatial-averaging 
scale, low values give a long averaging 
scale. 

Figure 7c shows the spatial response of 
an experimental one-dimensional network 
to a point stimulus. We obtained the 
different values of averaging length zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL by 
appropriate settings of the amplifier trans- 
conductances. We can easily realize 
resistances with an effective negative resis- 
tance value. 

Figure 8 shows the ideal configuration 
for a network implementation in two 
dimensions. Each point on the hexagonal 
grid is coupled to six equivalent neighbors. 
The high degree of symmetry of such an 
arrangement creates a nearly isotropic 
environment, free of many of the “pre- 
ferred axis artifacts” introduced by an 
orthogonal grid. In addition, the larger 
connectivity allows a greater variation in 
effective resistor value caused by varia- 
tions in transistor parameters. 

Figure 9 shows a test chip implementing 
this network. Each node includes the resis- 
tor apparatus and a set of sample-and-hold 
circuits for setting the confidence and sig- 
nal input voltages. In addition, an output 
amplifier enables measurement of the 
node voltage without disturbing the node 
itself. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA scanning mechanism addresses 
both the sample-and-hold circuits and the 
output buffer, so the stored variables can 
be refreshed or updated, and the map of 
node voltages can be read out in real time. 

A 48 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx 48 silicon retina has been con- 
structed that uses the hexagonal network 
of Figure 8 as a model for the horizontal 
cell layer in the vertebrate retina.I3 In this 
application, the input potentials were the 

Figure 8. Circuit design for a resistive network for interpolating and smoothing 
noisy and sparsely sampled depth measurements.” The basic version of this CMOS 
circuit contains 20 x 20 grid points on a hexagonal lattice. The individual resistive 
elements with a variable slope controlled by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV T ,  shown in Figure 7, correspond to 
the term governing the smoothness, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1. At those locations where a depth measure- 
ment zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdV is present, the battery is set to this value ( Vin = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdU) and the value of the 
conductance G is set to 1/(202), where oz is the variance of the Gaussian noise pro- 
cess associated with the depth measurements. If no depth data are present al that 
node, G is set to zero. The voltage at each node corresponds to the discrete values 
of the smoothed surface fitted through the noisy and sparse measurements.8q’0 The 
network for computing smooth optical flow minimizing E in Equation 4 via the 
network shown in Figure 3b is similar to this circuit. 

outputs of logarithmic photoreceptors- 
implemented via phototransistors-and 
the potential difference across the conduc- 
tance T formed an excellent approxima- 
tion to the Laplacian operator.12 This 
model results in the classical center- 
surround receptive field properties 
observed in the response of retinal gan- 
glion cells. The circuit performs in real 
time. 

e have demonstrated that the 
introduction of binary motion W discontinuities into Horn and 

Schunck’s’ algorithm leads to a much 

improved performance of their method, 
particularly for the optical flow in the pres- 
ence of a number of moving objects. 
Moreover, we have shown that the appro- 
priate computations map onto simple 
resistive networks. 

We are now implementing these resistive 
networks in VLSI circuits, using sub- 
threshold CMOS technology. Many prob- 
lems in early vision can be formulated in 
terms of similar nonconvex energy func- 
tions that need to be minimized, such as 
binocular stereo, edge detection, surface 
interpolation, and structure from 

A similar approach to early 
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Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9. Partial layout of the CMOS chip implementing the resistive network shown in Figure 8, which interpolates sparsely 
sampled noisy data. Only seven cells (out of the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA20 X 20 cell array) are shown in order to demonstrate the hexagonal grid. Each 
cell is dominated by the two capacities (approximately two picofarads each) for holding the depth data and its associated confi- 
dence value, consists of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA46 transistors, and measures 180 X 132 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA*. For a A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 1.5 pm production run, the total chip measures 
5.4 x 2.6 mm. If image acquisition-devices (phototransistors) are placed on the chip, the sample-and-hold circuitry can be 
eliminated, substantially reducing the area of the elementary cell.’’ 

f zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI Fault tolerance 
Hutchinson and Koch” demon- 

strated the robustness of these resis- 
tive networks to component errors. In 
their circuit simulations of the resistive 
network for interpolating surfaces 
from noisy and sparsely sampled data 
(shown in Figures 2b and 8), they 
replaced each transversal conductance 
T by T(l i zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN ( o ~ ) ,  where N is a zero- 
mean Gaussian probability distribution 
with variance U’. 

Due to the linearity of the network 
connections, errors “average out” 
and performance is only marginally 

impaired even for widely varying con- 
ductances (U* = 0.5). If nodes are 
pulled accidentally to ground, the 
line processes in their immediate 
neighborhood turn on because of the 
high voltage gradient, isolating these 
nodes and preventing error propaga- 
tion. The saturation characteristic of 
our resistive elements outside their 
linear range (see Figure 7b) serves to 
prevent high current flows, because 
high voltage gradients between 
neighboring nodes induce only a 
constant maximal current: 

I 

vision-using the fine-grained, mesh-type, 
single-instruction, multiple-data parallel 
Connection Machine instead of resistive 
networks-is being pioneered at MIT’s 
Artificial Intelligence Laboratory in the 
Vision Machine pr~ ject . ’ ”~  

These networks share several features 
with biological neuronal networks. Specif- 
ically, they do not require a system-wide 
clock, they rely on many connections 
between simple computational nodes, they 
converge rapidly (within several time cons- 
tants), and they are quite robust to hard- 
ware errors. (See the sidebar “Fault 
tolerance. ”) 

Our networks consume moderate 
amounts of power, because each resistive zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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element operates in the millivolt and 10 
nanoampere range. The entire retina 
chip13 requires about 100 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApW (the domi- 
nant power consumption lies in the pho- 
toconversion stage). 

These features-real-time performance, 
low power consumption, robustness, and 
small spatial dimensions-make these cir- 
cuits attractive for a variety of deep space 
missions. In collaboration with the Jet 
Propulsion Laboratory, we are currently 
evaluating the feasibility of such resistive 
network-based vision systems for autono- 
mous vehicles to be used in the exploration 
of planetary surfaces, such as that of 
Mars. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 
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