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A s the feature size of semiconductors ap-
proaches 1 nm, both Moore’s1 and Dennard’s2

laws, which have described transistor den-
sity and power scaling for many decades, 

are reaching an endpoint. Tonti3 described many of the 
process tweaks and improvements in the work of Moore1

and Dennard2 in semiconductor technology, for ex-
ample, the change of the switch from bipolar to CMOS 
technology, silicon-on-insulator devices, mobility en-
hancement using film stress, 3D multigated transistors, 
high-k dielectrics, and the ever-increasing active and 
standby chip power.

One outcome is related to semi-
conductor device lithography: the 
rate of decline in the minimum fea-
ture size, typically coined the node, 
is slowing. This slowing down1,2

creates new challenges for process-
ing data. At the same time, the de-
mand for data processing for big 
data applications, such as artificial 
intelligence (AI) and the growth 
of data generation, are creating 
greater demands for processing.

With a conventional von Neu-
mann computing architecture, data processing involves 
moving large volumes of data, typically in and out of a 
computing unit. This movement of data generally con-
strains the system performance and requires ever-in-
creasing power. Constraints on the capability and per-
formance of CPU-based processing have resulted in new 
approaches for the design of computing systems that may 
cost-effectively meet the growing demand for processing 
data in data centers, at the network edge, and in endpoint 
devices. One of the earlier techniques to manage this com-
plexity is the rise of the multicore CPU (MCPU), clocked at 
a frequency that is typically lower than that used when 
one tries to do the same with a single-core CPU (SCPU).

Other new approaches also include the increas-
i ng use of doma i n-speci f ic processors, wh ich a re 
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proliferating in many computing 
scenarios, including, for example, 
data center systems on chip (SoCs).4

These new approaches include off-
load processing from an MCPU to re-
duce data movement and latency for 
particular types of data processing. 
Domain-specific processors are of-
ten located close to the memory and/
or storage that hold the data they are 
processing. Newer storage and mem-
ory system architectures based upon 
Nonvolatile Memory express (NVMe) 
and Compute Express Link (CXL) are 
helping to bring processing closer 
to where the data live. In-memory 
computing using large random-ac-
cess memory (RAM) shared blocks 
is also a new technique to maximize 
MCPU e f f ic ie nc y a n d m i n i m i z e 
power requirements.

COMPUTATIONAL STORAGE
The increasing use of NAND-flash-
based solid-state drives (SSDs) has en-
abled faster storage, especially with 
SSDs using the NVMe interface run-
ning on a peripheral component in-
terconnect express (PCIe) bus. NVMe 
may soon be a universal storage in-
terface with hard disk drives also 
being built with a native NVMe inter-
face.5 NVMe can also be transported 
over fabrics, enabling NVMe over 
Fabrics (NVMe-oF). NVMe-oF allows 
pooling of NVMe storage devices and 
also supports the use of domain-spe-
cific processors near to the NVMe 
storage devices for various applica-
tions, including data reduction (de-
duplication and compression), data 
security, and some other types of 
local data processing. Figure 1 shows 
a computational storage device with 
an advanced processor built into the 
drive [Figure 1(a)] as well as a compu-
tational storage array that includes 
computational storage processors 
(CSPs) in a network, such as NVMe-oF 
[Figure 1(b)].

COMPUTING NEAR MEMORY
The CXL interconnect for memory is 
also built on the PCIe bus and provides 
a way for a processing device (such 
as an SCPU, MCPU, or GPU) to access 
additional shared memory or to in-
clude domain-specific processors in a 
memory pool, close to the data being 
processed.7 This allows one to process 
data faster, using less power than for a 
CPU or GPU. CXL enables computing 
near memory as well as memory tier-
ing, including tiering with nonvolatile 
memories.

Both NVMe-oF and CXL are en-
abling pooling of storage and memory 
as well as data center disaggregation 
and the ability to compose virtual 
comput i ng s ys tem s w it h sh a red 
processing, storage, memor y, and 
network systems. These virtual sys-
tems can effectively use domain-spe-
cific processing and CPUs to achieve 
the most efficient and cost-effec-
tive solutions to meet the needs 
of various applications. CXL-based 

components have been presented, 
and the first CXL-based  computer 
systems should be introduced by the 
end of 2022.

IN-MEMORY COMPUTING
In addition to enabling computing 
near memory and storage, there are ef-
forts to include processing very close to 
or within a memory device itself. This 
may be done using conventional digi-
tal memory technologies, but it could 
also involve the use of new approaches, 
such as analog neuromorphic process-
ing with various memory technolo-
gies. Different types of in-memory 
computing may be better for solving 
different types of problems. Let’s look 
at various ways to do in-memory com-
puting, assess in-memory computing 
products, and determine where they 
may be most useful.

In-memory computing encom-
passes a great many products and 
concepts. It is sometimes also referred 
to as compute in memory. Processing 

FIGURE 1. Examples of computational storage (a) in a drive and (b) in an array. CSD: 
computational storage drive; CSP: computational storage processor; MGNT: Manage-
ment; CSS: computational storage service; I/O: input/output. (Source: Storage Network-
ing Industry Association; used with permission.6)
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in memory (PIM) is an older concept 
that integrates RAM and a processor 
on a single PIM chip (somewhat simi-
lar to putting a processor in a storage 
device for computational storage, as 
discussed previously). Both PIM and 
in-memory computing offload pro-
cessing from the CPU, reducing energy 
consumption and processor latency 
and leaving the CPU to do other tasks.

Putting a processor and memory 
on a single chip allows faster pro-
cessing of the data and reduces the 
movement of data. This approach 
also reduces the power budget as the 

largest topology requiring power, the 
input–output drivers, are no longer 
required to move data on and off chip. 
PIM chips can be used to increase re-
lational database processing speeds 
when the data are loaded directly 
into the RAM or into a flash memory 
device with computational capabili-
ties. PIM chips are also used for mon-
itoring and predictive maintenance, 
financial transactions, and fraud de-
tection. PIM chips are faster but much 
more expensive than computational 
storage devices. Figure 2 illustrates 
the difference of data movement for 

conventional computation in a pro-
cessor and for in-memory computing, 
where the computation is done in the 
memory itself.

In the future, various methods of 
stacking and connecting die, known 
as 3D integration (3DI), will become 
more common, bringing computation 
and memory into close proximity.9 
Eventually, 3DI could become the new 
SoC standard. This would make near 
and in-memory computing even more 
common and powerful and result in 
denser and more powerful electronic 
packages. 3DI methodolog y could 
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become the new scaling law for denser 
and faster data processing.

In-memory computing performs 
certain computation tasks by exploit-
ing the physical attributes of memory 
devices, which can be charged-based 
or resistance-based devices, as shown 
in Figure 2. Charge-based devices in-
clude common volatile memory tech-
nologies [static RAM (SRAM) and dy-
namic RAM (DRAM)] as well as flash 
memory. The resistance-based mem-
ories enable interesting computing 
modes that mimic some of the oper-
ations of neurons in living creatures 
and are often referred to as neural net-
works. All of the resistive memory de-
vices shown are nonvolatile memories; 
that is, the data remain on the device 
even after the power is removed.

PATHS TOWARD IN-MEMORY 
COMPUTING
Let’s look at some examples of in-mem-
ory computing, starting with devices 
using phase-change memory (PCM). 
PCM has a low-resistance crystalline 
state and a high-resistance amorphous 
state. Writing is done by applying a 
voltage pulse to the crystalline ma-
terial to make some of it amorphous 
and thus increase the resistance of 
the device. Data are read from the 
memory cell using lower currents that 
don’t write on the cell. The amount of 
amorphous material written in the cell 
depends upon how high the voltage 
pulse is and how long it is applied. This 
means that writing can create various 
levels of resistance, depending upon 
the voltage applied.

In addition, if pulses are applied 
repeatedly with the same amplitude 
to a higher resistive cell, the resis-
tance drops with the repeated pulses. 
So, PCM can store various analog val-
ues and also integrate applied pulses. 
These capabilities allow the creation 
of a crosspoint array of such memory 
cells (or synapses) that can perform 
mathematical functions (computing) 
in a neuromorphic network, mimick-
ing some of the operations of neurons 
in a brain.

Training of these cells is an accu-
mulation (or integration) function 
based upon applied voltages, and infer-
ence involves applying lower voltages 
through the array of memory cells and 
detecting the current levels at the out-
put nodes of the trained memory array, 
as illustrated in Figure 3.

A crossbar PCM network config-
uration, such as the one in Figure 3, 
can be replicated into “tiles” of such 
networks. Each of these tiles can be 
used in a deep neural network (DNN) 
to store trained weights for a layer of 
the DNN at the memory cells as con-
ductance values. The tiles perform the 
matrix–vector multiply operations 
that correspond to each layer in the 
DNN. Once trained, lower applied volt-
ages can be used to do inference, look-
ing for matches to the trained weights 
stored in the memory cells. Compa-
nies such as IBM and Intel have made 
neuromorphic DNN chips to develop 
this technology.

Forward and backward propaga-
tion are possible using such an analog 
in-memory computer. Accumulation is 
possible at high precision with weights 
being updated using accumulative 
behavior. The same hardware can be 
used for inference once trained. Fig-
ure 4 shows a block diagram of the op-
eration of DNN training using in-mem-
ory computing with PCM.

There are challenges to making 
these devices work well, for example, 

imprecision arising from factors such 
as conductance fluctuation and drift. 
Despite these challenges, PCM array 
chips have been built with on-chip 
matrix–vector–multiply operating at 
more than 1 GHz and with measured 
energy efficiencies of 10.5 trillion op-
erations per second (TOPS)/W with 
a performance density of 1.59 TOPS/
mm2.12 Shrinking these neuromor-
phic arrays could provide faster de-
vices with energy efficiencies and 
performance densities of 262 TOPS/W 
and 655 TOPS/mm2.13

In addition to using PCM for neu-
romorphic arrays, there have been 
neuromorphic computing devices de-
signed with resistive memories and 
magnetorestrictive RAM (MRAM) 
memories.14,15 There is also a body of 
work on spintronic computation using 
spins rather than electric currents,16 
which can be in close proximity to 
MRAM memories. Higher speed ana-
log computing, such as image recog-
nition, is also possible using photonic 
in-memory computing.17 Neural net-
works also can be combined with an 
external memory, which may assist in 
relearning and adapting to new data.18 
Neural networks made with spiking 
neurons in spiking neural networks 
(SNNs) provide even more brain-like 
computation that provide high levels 
of asynchronous parallel process-
ing and very high energy efficiencies. 
SNN chips have been made and used 
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for DNN acceleration,19 although 
SSNs are not yet available in commer-
cial products.

The demand for data process-
ing is increasing to support In-
ternet of things, AI, machine 

learning, and other big data applica-
tions. To keep costs and energy con-
sumption at acceptable levels, com-
puting is evolving from von Neumann 
architectures that require lots of data 
movement to and from a CPU to a more 
distributed computing model, partic-
ularly where processing is done much 
closer to data.

New interface technologies like 
NVMe are enabling computational 
computing, where some data process-
ing is done in the storage device or in 
an NVMe-oF network to offload pro-
cessing from the CPU. CXL is enabling 
similar networking of “far” memory 
devices that may include PIM and 
heterogeneous memory technologies. 
NVMe and CXL enable the creation 
of storage and memory pools. These 
technologies will transform the design 
of data centers.

In addition to PIM, in-memory com-
puting solutions are creating even 
more distributed computing that off-
loads traditional CPUs. This includes 

various approaches using memory for 
processing with neuromorphic mem-
ories. These neuromorphic memories 
can perform analog mathematical 
functions and will play important 
roles in data processing in data cen-
ters, at the network edge, and in end-
point devices.

3DI enablement will make integra-
tion of computing, memory, and stor-
age technologies even more effective 
and will allow a designer the freedom 
to choose the best MCPU, memory, and 
storage technologies for a particular 
application. 
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