
Computing Needs Time

Edward A. Lee
Robert S. Pepper Distinguished Professor

UC Berkeley

Invited Talk

IIS 2009/2010 Distinguished Lecture Series

Institute of Information Science, Academia Sinica

Taipei, Taiwan, December 7, 2009

Lee, Berkeley 2

Abstract

Cyber-Physical Systems (CPS) are integrations of computation and

physical processes. Embedded computers and networks monitor and

control the physical processes, usually with feedback loops where

physical processes affect computations and vice versa. The prevailing

abstractions used in computing, however, do not mesh well with the

physical world. Most critically, software systems speak about the

passage of time only very indirectly and in non-compositional ways.

This talk examines the obstacles in software technologies that are

impeding progress, and in particular raises the question of whether

today's computing and networking technologies provide an adequate

foundation for CPS. It argues that it will not be sufficient to improve

design processes, raise the level of abstraction, or verify (formally or

otherwise) designs that are built on today's abstractions. To realize the

full potential of CPS, we will have to rebuild software abstractions.

These abstractions will have to embrace physical dynamics and

computation in a unified way. This talk will discuss research challenges

and potential solutions.

Lee, Berkeley 3Courtesy of Kuka Robotics Corp.

Cyber-Physical Systems (CPS):
Orchestrating networked computational

resources with physical systems

Courtesy of Doug SchmidtCourtesy of Doug Schmidt

Power

generation and

distribution

Courtesy of

General Electric

Military systems:

E-Corner, Siemens

Transportation

(Air traffic

control at

SFO)
Avionics

Telecommunications

Factory automation

Instrumentation

(Soleil Synchrotron)

Daimler-Chrysler

Automotive

Building Systems

Lee, Berkeley 4

CPS Example – Printing Press

• High‐speed, high precision
• Speed: 1 inch/ms

• Precision: 0.01 inch

‐> Time accuracy: 10us

• Open standards (Ethernet)
• Synchronous, Time‐Triggered

• IEEE 1588 time‐sync protocol

• Application aspects
• local (control)
• distributed (coordination)

• global (modes)
Bosch‐Rexroth

Lee, Berkeley 5

Where CPS Differs from

the traditional embedded systems problem:

 The traditional embedded systems problem:

Embedded software is software on small computers. The
technical problem is one of optimization (coping with
limited resources).

 The CPS problem:

Computation and networking integrated with physical
processes. The technical problem is managing dynamics,
time, and concurrency in networked computational +
physical systems.

Lee, Berkeley 6

A Key Challenge on the Cyber Side:

Real-Time Software

Correct execution of a program in C, C#, Java,

Haskell, etc. has nothing to do with how long it

takes to do anything. All our computation and

networking abstractions are built on this premise.

Timing of programs is not repeatable,

except at very coarse granularity.

Programmers have to step outside the

programming abstractions to specify
timing behavior.

Lee, Berkeley 7

Techniques Exploiting

the Fact that

Time is Irrelevant

 Programming languages
 Virtual memory
 Caches
 Dynamic dispatch
 Speculative execution
 Power management (voltage scaling)
 Memory management (garbage collection)
 Just-in-time (JIT) compilation
 Multitasking (threads and processes)
 Component technologies (OO design)
 Networking (TCP)
 …

Lee, Berkeley 8

A Story

A “fly by wire” aircraft, expected to be made for
50 years, requires a 50-year stockpile of the
hardware components that execute the software.

All must be made from the same mask set on the

same production line. Even a slight change or
“improvement” might affect timing and require

the software to be re-certified.

Lee, Berkeley 9

Abstraction Layers

The purpose for an
abstraction is to
hide details of the

implementation
below and provide a

platform for design
from above.

Lee, Berkeley 10

Abstraction Layers

Every abstraction
layer has failed for
time-sensitive

applications.

Lee, Berkeley 11

Is the problem intrinsic

in the technology?

Electronics technology

delivers highly repeatable and
precise timing…

… and the overlaying software

abstractions discard it.

20.000 MHz (± 100 ppm)

Lee, Berkeley 12

The Berkeley Solution

Time and concurrency in the core abstractions:

 Foundations: Timed computational semantics.

 Bottom up: Make timing repeatable.

 Top down: Timed, concurrent components.

 Holistic: Model engineering.

Lee, Berkeley 13

A Part of Our Proposed Solution:

PRET Machines

 PREcision-Timed processors = PRET

 Predictable, REpeatable Timing = PRET

 Performance with REpeatable Timing = PRET

= PRET+

Image: John Harrison’s H4, first clock

to solve longitude problem

Lee, Berkeley 14

Case in point: What is an

Instruction Set Architecture (ISA)?

 A collection of instructions.

 Each one changes the state of the processor in a well-defined way.

 The ISA strong guarantee:

 Given a known initial state of the machine.

 Execute a sequence of instructions.

 Next execute an instruction that observes the processor state.

 The observed state is equivalent to one produced by a

sequential execution of exactly every instruction that preceded

it in the sequence.

 Architects are very clever at preserving this guarantee without

precisely doing sequential execution.

 And the guarantee says nothing about timing.

Lee, Berkeley 15

Definitions

 Correct execution: preserves semantics (strong guarantee).

 Repeatable property of a program: every correct execution
has the property, given the same inputs (this requires a
model of "inputs").

 Conventional Turing-Church (CTC) computation:

 inputs included in the initial state of the processor

 sequence of instructions

 outputs are included in the final state

 Outputs of a CTC computation are repeatable in today's
processors

 Note that before the IBM 360, even many CTC programs ran

correctly on only one computer.

Lee, Berkeley 16

How Many Apps are Conventional
Turing-Church (CTC) Computations?

 No multithreading.

 No I/O during execution.

How many applications?

... not many ...

Yet that's what we've designed computers to do!

Lee, Berkeley 17

Our stab at a solution:

Precision-Time (PRET) Machines

Make temporal behavior as important as logical function.

Timing precision with performance: Challenges:

 ISAs with timing (repeatable instr. timing? deadline instructions?)

 Deep pipelines (interleaving?)

 Memory hierarchy (scratchpads? DRAM banks?)

 Predictable memory management (Metronome?)

 Languages with timing (discrete events? Giotto?)

 Predictable concurrency (synchronous languages?)

 Composable timed components (actor-oriented?)

 Precision networks (TTA? Time synchronization?)

Edwards and Lee, "The Case for the Precision Timed (PRET) Machine,”

Wild and Crazy Ideas Track, Design Automation Conference (DAC), June 2007.

Lee, Berkeley 18

Timing in the ISA

Add to the strong guarantee:

 Repeatable timing of each instruction.

This need not be fixed across
realizations of the ISA, but it must be
specified for each realization, so that
tools can analyze timing.

Add timing instructions:

 Force a block to take a minimum
amount of time.

 Branch and/or exception on
exceeding this minimum.

Block 1

Block 2

Lee, Berkeley 19

Our stab at a solution:

Precision-Time (PRET) Machines

Make temporal behavior as important as logical function.

Timing precision with performance: Challenges:

 ISAs with timing (repeatable instr. timing? deadline instructions?)

 Deep pipelines (interleaving?)

 Memory hierarchy (scratchpads? DRAM banks?)

 Predictable memory management (Metronome?)

 Languages with timing (discrete events? Giotto?)

 Predictable concurrency (synchronous languages?)

 Composable timed components (actor-oriented?)

 Precision networks (TTA? Time synchronization?)

Edwards and Lee, "The Case for the Precision Timed (PRET) Machine,”

Wild and Crazy Ideas Track, Design Automation Conference (DAC), June 2007.

Lee, Berkeley 20

Pipelining

Hennessey and Patterson, Computer Architecture: A Quantitative Approach, 4th edition, 2007.

Lee, Berkeley 21

Pipeline Hazards

Hennessey and Patterson, Computer Architecture: A Quantitative Approach, 4th edition, 2007.

Lee, Berkeley 22

Forwarding reduces stalls, but complicates

hardware, and makes timing non-repeatable

and hard to analyze.

Example execution time analysis of:
• Motorola ColdFire

• Two coupled pipelines (7-stage)

• Shared instruction & data cache
• Artificial example from Airbus

• Twelve independent tasks
• Simple control structures

• Cache/Pipeline interaction

leads to large integer linear
programming problem

And the result is valid only for that exact

Hardware and software!

Fundamentally, the ISA of the processor
has failed to provide an adequate abstraction.

C. Ferdinand et al., “Reliable and
precise WCET determination for a
real-life processor.” EMSOFT 2001.

Lee, Berkeley 23

An Alternative: Pipeline Interleaving

Stall pipeline Dependencies result in complex

timing behaviors

Repeatable
timing

behavior of
instructions

Thread-interleaved pipeline:

Traditional pipeline:

Lee, Berkeley 24

Pipeline Interleaving

An old idea:

 1960s:

 CDC 6600

 Denelcore HEP

 ...

 2000s

 Sandbridge Sandblaster
(John Glossner, et al.)

 XMOS
(David May, et al.)

There are various detractors. See Ungerer, T., B. Robic and J. Silc (2003). "A survey

of processors with explicit multithreading." Computing Surveys 35(1): 29-63.

Lee and Messerschmitt, Pipeline

Interleaved Programmable DSPs,

ASSP-35(9), 1987.

Lee, Berkeley 25

Our stab at a solution:

Precision-Time (PRET) Machines

Make temporal behavior as important as logical function.

Timing precision with performance: Challenges:

 ISAs with timing (repeatable instr. timing? deadline instructions?)

 Deep pipelines (interleaving?)

 Memory hierarchy (scratchpads? DRAM banks?)

 Predictable memory management (Metronome?)

 Languages with timing (discrete events? Giotto?)

 Predictable concurrency (synchronous languages?)

 Composable timed components (actor-oriented?)

 Precision networks (TTA? Time synchronization?)

Edwards and Lee, "The Case for the Precision Timed (PRET) Machine,”

Wild and Crazy Ideas Track, Design Automation Conference (DAC), June 2007.

Lee, Berkeley 26

Forget the datapath…

“It’s the Memory, Stupid!”

R. Sites. Microprocessor Report, Aug. 1996.

Lee, Berkeley 27

Memory Hierarchy

 Register file is a temporary memory under program control.

 Why is it so small?

 Cache is a temporary memory under hardware control.

 Why is replacement strategy is application independent?

PRET principle: any temporary memory is under program
control.

Hennessey and Patterson, Computer Architecture: A Quantitative Approach, 4th edition, 2007.

Instruction word size.

Separation of concerns.

Lee, Berkeley 28

Hardware

thread

Hardware

threadHardware

thread

Hardware

threadHardware

thread

Hardware

thread

One Possible PRET Architecture

Hardware

thread

Hardware

thread

registersregisters

scratc

h

pad

scratc

h

pad
memorymemory I/O devicesI/O devices

Interleaved

pipeline with one

set of registers

per thread

SRAM

scratchpad

shared among

threads

DRAM main

memory

Lee, Berkeley 29

What about Main Memory?

Modern DRAMs:

Micron corp.

DDR2: Four pipelined banks

DDR3: Eight pipelined banks

DDRn: 2n pipelined banks?

Lee, Berkeley 30

Hardware

thread

Hardware

threadHardware

thread

Hardware

threadHardware

thread

Hardware

thread

One Possible PRET Architecture

Hardware

thread

Hardware

thread

registersregisters

scratc

h

pad

scratc

h

pad

memorymemory

I/O devicesI/O devices

Interleaved

pipeline with one

set of registers

per thread

SRAM

scratchpad

shared among

threads

DRAM main

memory,

separate banks

per thread

memorymemory
memorymemory

memorymemory

Note inverted memory

compared to multicore!

Fast, close memory is

shared, slow remote

memory is private!

Lee, Berkeley 31

A Few of the (Many) Remaining

Challenges and Opportunities

 DRAM designs today foil timing repeatability even
with private banks (e.g. write-after-read latencies)

 Interleaved pipelines may not be the best choice
for power optimization

 Need I/O mechanisms that do not disrupt

repeatable timing

 Multicore networks-on-chip may benefit

dramatically from repeatable timing

 …

Lee, Berkeley 32

The Berkeley Solution

Time and concurrency in the core abstractions:

 Foundations: Timed computational semantics.

 Bottom up: Make timing repeatable.

 Top down: Timed, concurrent components.

 Holistic: Model engineering.

Lee, Berkeley 33

Programming Models

 Conventional Real-Time Operating Systems

 Time-Triggered Models

 Distributed Event-Triggered Models

Our emphasis is on preserving determinacy,
meaning that if inputs arrive at the same
(relative) times in different runs, the same

outputs will be produced at the same (relative)
times.

Lee, Berkeley 34

Conventional Real-Time Operating

Systems Have a Critical Flaw

Nontrivial software written with threads,

semaphores, and mutexes are

incomprehensible to humans.

See: Lee, E. A. (2006). "The Problem with Threads."
IEEE Computer 39(5): 33-42.

Lee, Berkeley 35

Alternative 1: Time-Triggered Models
Logical Execution Time (LET), Periodic Tasks, and
Modal Behaviors

t+10ms

t+10mst t t+5ms t+5ms

Higher frequency Task

Lower frequency task:In time-triggered

models (e.g.

Giotto, TDL,

Simulink/RTW),

each actor has a

logical execution

time (LET). Its

actual execution

time always

appears to have

taken the time of

the LET.

Lee, Berkeley 36

Alternative 2: Distributed Event-Triggered Models
Built on Discrete Event (DE) Models

DE Director implements
timed semantics using an
event queue

Event source

Time line

Reactive actors

Signal

Components send time-

stamped events to other

components, and components

react in chronological order.

See: Zhao, Lee and Liu (2007).

A Programming Model for Time-

Synchronized Distributed Real-

Time Systems. (RTAS 07).

Lee, Berkeley 37

PTIDES: Programming Temporally

Integrated Distributed Embedded Systems

Distributed execution under discrete-event semantics, with

“model time” and “real time” bound at sensors and actuators.

Input time stamps are

≥ real time

Input time stamps are

≥ real time

Output time stamps

are ≤ real time

Output time stamps

are ≤ real time

Lee, Berkeley 38

PTIDES: Programming Temporally

Integrated Distributed Embedded Systems

… and being explicit about time delays means that we can
analyze control system dynamics…

Feedback through the physical world

Lee, Berkeley 39

Experimental

Setup

HW PlatformHW PlatformSoftware

Component

Library

Software

Component

Library

Ptides ModelPtides Model Code

Generator

PtidyOSPtidyOS

CodeCode

Plant ModelPlant Model

Network ModelNetwork Model

HW in the

Loop

Simulator

HW in the

Loop

Simulator

Causality

Analysis

Causality

Analysis
Program

Analysis

Program

Analysis

Schedulability

Analysis

Schedulability

Analysis

Analysis

Mixed

Simulator

Mixed

Simulator

Ptolemy II Ptides domain

Ptolemy II Discrete-event,

Continuous, and

Wireless domains

Luminary

Micro

8962

Lee, Berkeley 40

Beyond Embedded to

Cyber-Physical Systems
The Berkeley Approach

 Foundations

 Concurrency and time

 Bottom up

 PRET machines

 Top down

 Ptides model of computation

 Holistic

 Model engineering

Lee, Berkeley 41

The Ptolemy Pteam

John

Eidson

Isaac Liu

Christopher Brooks

Jia Zou

Edward

Lee

Ben

Lickly

Thomas

Huining

Feng

Jackie

Mankit

Leung

Jeff

Jensen

Bert Rodiers Hiren Patel

Yasemin

Demir

Shanna-

Shaye

Forbes

Thomas

Mandl

Elefterios

Matsikoudis

PatriciaPatricia

DerlerDerler

HugoHugo

AndradeAndrade
StefanStefan

ResmeritaResmerita

SlobodanSlobodan

MaticMatic

