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Abstract

Cyber-Physical Systems (CPS) are integrations of computation and 

physical processes. Embedded computers and networks monitor and 

control the physical processes, usually with feedback loops where 

physical processes affect computations and vice versa. The prevailing 

abstractions used in computing, however, do not mesh well with the 

physical world. Most critically, software systems speak about the 

passage of time only very indirectly and in non-compositional ways. 

This talk examines the obstacles in software technologies that are 

impeding progress, and in particular raises the question of whether 

today's computing and networking technologies provide an adequate 

foundation for CPS. It argues that it will not be sufficient to improve 

design processes, raise the level of abstraction, or verify (formally or 

otherwise) designs that are built on today's abstractions. To realize the 

full potential of CPS, we will have to rebuild software abstractions. 

These abstractions will have to embrace physical dynamics and 

computation in a unified way. This talk will discuss research challenges 

and potential solutions.
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Cyber-Physical Systems (CPS):
Orchestrating networked computational 

resources with physical systems

Courtesy of Doug SchmidtCourtesy of Doug Schmidt
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(Air traffic 
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Avionics

Telecommunications

Factory automation

Instrumentation

(Soleil Synchrotron)

Daimler-Chrysler

Automotive

Building Systems
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CPS Example – Printing Press 

• High‐speed, high precision
• Speed: 1 inch/ms

• Precision: 0.01 inch

‐> Time accuracy: 10us

• Open standards (Ethernet)
• Synchronous, Time‐Triggered

• IEEE 1588  time‐sync protocol

• Application aspects
• local (control)
• distributed (coordination)

• global (modes)
Bosch‐Rexroth
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Where CPS Differs from

the traditional embedded systems problem:

 The traditional embedded systems problem:

Embedded software is software on small computers. The 
technical problem is one of optimization (coping with 
limited resources).

 The CPS problem:

Computation and networking integrated with physical 
processes. The technical problem is managing dynamics, 
time, and concurrency in networked computational + 
physical systems.
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A Key Challenge on the Cyber Side:

Real-Time Software

Correct execution of a program in C, C#, Java, 

Haskell, etc. has nothing to do with how long it 

takes to do anything. All our computation and 

networking abstractions are built on this premise.

Timing of programs is not repeatable, 

except at very coarse granularity. 

Programmers have to step outside the 

programming abstractions to specify 
timing behavior.
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Techniques Exploiting

the Fact that 

Time is Irrelevant

 Programming languages
 Virtual memory
 Caches
 Dynamic dispatch
 Speculative execution
 Power management (voltage scaling)
 Memory management (garbage collection)
 Just-in-time (JIT) compilation
 Multitasking (threads and processes)
 Component technologies (OO design)
 Networking (TCP)
 …
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A Story

A “fly by wire” aircraft, expected to be made for 
50 years, requires a 50-year stockpile of the 
hardware components that execute the software.

All must be made from the same mask set on the 

same production line. Even a slight change or 
“improvement” might affect timing and require 

the software to be re-certified.
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Abstraction Layers

The purpose for an 
abstraction is to 
hide details of the 

implementation 
below and provide a 

platform for design 
from above.
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Abstraction Layers

Every abstraction 
layer has failed for 
time-sensitive 

applications.
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Is the problem intrinsic 

in the technology?

Electronics technology 

delivers highly repeatable and 
precise timing…

… and the overlaying software 

abstractions discard it.

20.000 MHz (± 100 ppm)
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The Berkeley Solution

Time and concurrency in the core abstractions:

 Foundations: Timed computational semantics.

 Bottom up: Make timing repeatable.

 Top down: Timed, concurrent components.

 Holistic: Model engineering.
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A Part of Our Proposed Solution:

PRET Machines

 PREcision-Timed processors = PRET

 Predictable, REpeatable Timing = PRET

 Performance with REpeatable Timing = PRET

= PRET+

Image: John Harrison’s H4, first clock 

to solve longitude problem
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Case in point: What is an 

Instruction Set Architecture (ISA)?

 A collection of instructions.

 Each one changes the state of the processor in a well-defined way.

 The ISA strong guarantee:

 Given a known initial state of the machine.

 Execute a sequence of instructions.

 Next execute an instruction that observes the processor state.

 The observed state is equivalent to one produced by a 

sequential execution of exactly every instruction that preceded 

it in the sequence.

 Architects are very clever at preserving this guarantee without 

precisely doing sequential execution.

 And the guarantee says nothing about timing.
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Definitions

 Correct execution: preserves semantics (strong guarantee).

 Repeatable property of a program: every correct execution 
has the property, given the same inputs (this requires a 
model of "inputs").

 Conventional Turing-Church (CTC) computation:

 inputs included in the initial state of the processor

 sequence of instructions

 outputs are included in the final state

 Outputs of a CTC computation are repeatable in today's 
processors

 Note that before the IBM 360, even many CTC programs ran 

correctly on only one computer.
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How Many Apps are Conventional 
Turing-Church (CTC) Computations?

 No multithreading.

 No I/O during execution.

How many applications?

... not many ...

Yet that's what we've designed computers to do!
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Our stab at a solution:

Precision-Time (PRET) Machines

Make temporal behavior as important as logical function. 

Timing precision with performance: Challenges:

 ISAs with timing (repeatable instr. timing? deadline instructions?)

 Deep pipelines (interleaving?)

 Memory hierarchy (scratchpads? DRAM banks?)

 Predictable memory management (Metronome?)

 Languages with timing (discrete events? Giotto?)

 Predictable concurrency (synchronous languages?)

 Composable timed components (actor-oriented?)

 Precision networks (TTA? Time synchronization?)

Edwards and Lee, "The Case for the Precision Timed (PRET) Machine,”

Wild and Crazy Ideas Track, Design Automation Conference (DAC), June 2007.
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Timing in the ISA

Add to the strong guarantee:

 Repeatable timing of each instruction. 

This need not be fixed across 
realizations of the ISA, but it must be 
specified for each realization, so that 
tools can analyze timing.

Add timing instructions:

 Force a block to take a minimum 
amount of time.

 Branch and/or exception on  
exceeding this minimum.

Block 1

Block 2
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Our stab at a solution:

Precision-Time (PRET) Machines

Make temporal behavior as important as logical function. 

Timing precision with performance: Challenges:

 ISAs with timing (repeatable instr. timing? deadline instructions?)

 Deep pipelines (interleaving?)

 Memory hierarchy (scratchpads? DRAM banks?)

 Predictable memory management (Metronome?)

 Languages with timing (discrete events? Giotto?)

 Predictable concurrency (synchronous languages?)

 Composable timed components (actor-oriented?)

 Precision networks (TTA? Time synchronization?)

Edwards and Lee, "The Case for the Precision Timed (PRET) Machine,”

Wild and Crazy Ideas Track, Design Automation Conference (DAC), June 2007.
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Pipelining

Hennessey and Patterson, Computer Architecture: A Quantitative Approach, 4th edition, 2007.
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Pipeline Hazards

Hennessey and Patterson, Computer Architecture: A Quantitative Approach, 4th edition, 2007.
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Forwarding reduces stalls, but complicates 

hardware, and makes timing non-repeatable 

and hard to analyze.

Example execution time analysis of:
• Motorola ColdFire

• Two coupled pipelines (7-stage)

• Shared instruction & data cache
• Artificial example from Airbus

• Twelve independent tasks
• Simple control structures

• Cache/Pipeline interaction

leads to large integer linear 
programming problem

And the result is valid only for that exact

Hardware and software!

Fundamentally, the ISA of the processor 
has failed to provide an adequate abstraction.

C. Ferdinand et al., “Reliable and 
precise WCET determination for a 
real-life processor.” EMSOFT 2001.
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An Alternative: Pipeline Interleaving

Stall pipeline Dependencies result in complex 

timing behaviors

Repeatable 
timing 

behavior of 
instructions

Thread-interleaved pipeline:

Traditional pipeline:

Lee, Berkeley 24

Pipeline Interleaving

An old idea:

 1960s:

 CDC 6600

 Denelcore HEP

 ...

 2000s

 Sandbridge Sandblaster 
(John Glossner, et al.)

 XMOS
(David May, et al.)

There are various detractors. See Ungerer, T., B. Robic and J. Silc (2003). "A survey 

of processors with explicit multithreading." Computing Surveys 35(1): 29-63.

Lee and Messerschmitt, Pipeline 

Interleaved Programmable DSPs, 

ASSP-35(9), 1987.
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Our stab at a solution:

Precision-Time (PRET) Machines

Make temporal behavior as important as logical function. 

Timing precision with performance: Challenges:

 ISAs with timing (repeatable instr. timing? deadline instructions?)

 Deep pipelines (interleaving?)

 Memory hierarchy (scratchpads? DRAM banks?)

 Predictable memory management (Metronome?)

 Languages with timing (discrete events? Giotto?)

 Predictable concurrency (synchronous languages?)

 Composable timed components (actor-oriented?)

 Precision networks (TTA? Time synchronization?)

Edwards and Lee, "The Case for the Precision Timed (PRET) Machine,”

Wild and Crazy Ideas Track, Design Automation Conference (DAC), June 2007.
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Forget the datapath…

“It’s the Memory, Stupid!”

R. Sites. Microprocessor Report, Aug. 1996.
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Memory Hierarchy

 Register file is a temporary memory under program control.

 Why is it so small?

 Cache is a temporary memory under hardware control.

 Why is replacement strategy is application independent?

PRET principle: any temporary memory is under program 
control.

Hennessey and Patterson, Computer Architecture: A Quantitative Approach, 4th edition, 2007.

Instruction word size.

Separation of concerns.
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Hardware

thread

Hardware

threadHardware

thread

Hardware

threadHardware

thread

Hardware

thread

One Possible PRET Architecture

Hardware

thread

Hardware

thread

registersregisters

scratc

h

pad

scratc

h

pad
memorymemory I/O devicesI/O devices

Interleaved 

pipeline with one 

set of registers 

per thread

SRAM 

scratchpad 

shared among 

threads

DRAM main 

memory
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What about Main Memory?

Modern DRAMs:

Micron corp.

DDR2: Four pipelined banks

DDR3: Eight pipelined banks

DDRn: 2n pipelined banks?
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Hardware

thread

Hardware

threadHardware

thread

Hardware

threadHardware

thread

Hardware

thread

One Possible PRET Architecture

Hardware

thread

Hardware

thread

registersregisters

scratc

h

pad

scratc

h

pad

memorymemory

I/O devicesI/O devices

Interleaved 

pipeline with one 

set of registers 

per thread

SRAM 

scratchpad 

shared among 

threads

DRAM main 

memory, 

separate banks 

per thread

memorymemory
memorymemory

memorymemory

Note inverted memory 

compared to multicore! 

Fast, close memory is 

shared, slow remote 

memory is private!
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A Few of the (Many) Remaining 

Challenges and Opportunities

 DRAM designs today foil timing repeatability even 
with private banks (e.g. write-after-read latencies)

 Interleaved pipelines may not be the best choice 
for power optimization

 Need I/O mechanisms that do not disrupt 

repeatable timing

 Multicore networks-on-chip may benefit 

dramatically from repeatable timing

 …
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The Berkeley Solution

Time and concurrency in the core abstractions:

 Foundations: Timed computational semantics.

 Bottom up: Make timing repeatable.

 Top down: Timed, concurrent components.

 Holistic: Model engineering.
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Programming Models

 Conventional Real-Time Operating Systems

 Time-Triggered Models

 Distributed Event-Triggered Models

Our emphasis is on preserving determinacy, 
meaning that if inputs arrive at the same 
(relative) times in different runs, the same 

outputs will be produced at the same (relative) 
times.
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Conventional Real-Time Operating 

Systems Have a Critical Flaw

Nontrivial software written with threads, 

semaphores, and mutexes are 

incomprehensible to humans.

See: Lee, E. A. (2006). "The Problem with Threads." 
IEEE Computer 39(5): 33-42.
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Alternative 1: Time-Triggered Models
Logical Execution Time (LET), Periodic Tasks, and 
Modal Behaviors

t+10ms

t+10mst t t+5ms t+5ms

Higher frequency Task

Lower frequency task:In time-triggered 

models (e.g. 

Giotto, TDL, 

Simulink/RTW), 

each actor has a 

logical execution 

time (LET). Its 

actual execution 

time always 

appears to have 

taken the time of 

the LET.
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Alternative 2: Distributed Event-Triggered Models
Built on Discrete Event (DE) Models

DE Director implements 
timed semantics using an 
event queue

Event source

Time line

Reactive actors

Signal

Components send time-

stamped events to other 

components, and components 

react in chronological order.

See: Zhao, Lee and Liu (2007). 

A Programming Model for Time-

Synchronized Distributed Real-

Time Systems. (RTAS 07).



Lee, Berkeley 37

PTIDES: Programming Temporally 

Integrated Distributed Embedded Systems

Distributed execution under discrete-event semantics, with 

“model time” and “real time” bound at sensors and actuators.

Input time stamps are 

≥ real time

Input time stamps are 

≥ real time

Output time stamps 

are ≤ real time

Output time stamps 

are ≤ real time
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PTIDES: Programming Temporally 

Integrated Distributed Embedded Systems

… and being explicit about time delays means that we can 
analyze control system dynamics…

Feedback through the physical world
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Experimental

Setup

HW PlatformHW PlatformSoftware 

Component 

Library

Software 

Component 

Library

Ptides ModelPtides Model Code 

Generator

PtidyOSPtidyOS

CodeCode

Plant ModelPlant Model

Network ModelNetwork Model

HW in the 

Loop 

Simulator

HW in the 

Loop 

Simulator

Causality 

Analysis

Causality 

Analysis
Program 

Analysis

Program 

Analysis

Schedulability 

Analysis

Schedulability 

Analysis

Analysis

Mixed 

Simulator

Mixed 

Simulator

Ptolemy II Ptides domain

Ptolemy II Discrete-event,

Continuous, and

Wireless domains

Luminary 

Micro 

8962
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Beyond Embedded to

Cyber-Physical Systems
The Berkeley Approach

 Foundations

 Concurrency and time

 Bottom up

 PRET machines

 Top down

 Ptides model of computation

 Holistic

 Model engineering
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