
 Open access Journal Article DOI:10.1080/10556780801996244

Computing non-negative tensor factorizations — Source link

Michael P. Friedlander, Kathrin Hatz

Institutions: University of British Columbia, Heidelberg University

Published on: 01 Aug 2008 - Optimization Methods & Software (Taylor & Francis, Inc.)

Topics: Non-negative matrix factorization and Matrix decomposition

Related papers:

 Tensor Decompositions and Applications

 Learning the parts of objects by non-negative matrix factorization

 Non-negative tensor factorization with applications to statistics and computer vision

 Foundations of the PARAFAC procedure: Models and conditions for an "explanatory" multi-model factor analysis

 Positive tensor factorization

Share this paper:

View more about this paper here: https://typeset.io/papers/computing-non-negative-tensor-factorizations-
38lfezf52a

https://typeset.io/
https://www.doi.org/10.1080/10556780801996244
https://typeset.io/papers/computing-non-negative-tensor-factorizations-38lfezf52a
https://typeset.io/authors/michael-p-friedlander-3wpqaffn51
https://typeset.io/authors/kathrin-hatz-3ofhxrd038
https://typeset.io/institutions/university-of-british-columbia-l5jo8jda
https://typeset.io/institutions/heidelberg-university-ygd8bfk2
https://typeset.io/journals/optimization-methods-software-3kdj9fmi
https://typeset.io/topics/non-negative-matrix-factorization-m73i758y
https://typeset.io/topics/matrix-decomposition-2bl87ic3
https://typeset.io/papers/tensor-decompositions-and-applications-46vl2ih5gn
https://typeset.io/papers/learning-the-parts-of-objects-by-non-negative-matrix-518q2p8fmk
https://typeset.io/papers/non-negative-tensor-factorization-with-applications-to-3gkyte67zs
https://typeset.io/papers/foundations-of-the-parafac-procedure-models-and-conditions-4hwy0qyl1q
https://typeset.io/papers/positive-tensor-factorization-2r1kpcdeyk
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/computing-non-negative-tensor-factorizations-38lfezf52a
https://twitter.com/intent/tweet?text=Computing%20non-negative%20tensor%20factorizations&url=https://typeset.io/papers/computing-non-negative-tensor-factorizations-38lfezf52a
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/computing-non-negative-tensor-factorizations-38lfezf52a
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/computing-non-negative-tensor-factorizations-38lfezf52a
https://typeset.io/papers/computing-non-negative-tensor-factorizations-38lfezf52a

Department of Computer Science Technical Report TR-2006-21

October 2006, University of British Columbia

Computing nonnegative tensor factorizations

Michael P. Friedlander∗ Kathrin Hatz†

October 19, 2006

Abstract

Nonnegative tensor factorization (NTF) is a technique for computing a parts-based
representation of high-dimensional data. NTF excels at exposing latent structures in
datasets, and at finding good low-rank approximations to the data. We describe an ap-
proach for computing the NTF of a dataset that relies only on iterative linear-algebra
techniques and that is comparable in cost to the nonnegative matrix factorization.
(The better-known nonnegative matrix factorization is a special case of NTF and is
also handled by our implementation.) Some important features of our implementation
include mechanisms for encouraging sparse factors and for ensuring that they are equi-
librated in norm. The complete Matlab software package is available under the GPL
license.

Keywords N -dimensional arrays, tensors, nonnegative tensor factorization, alternating
least squares, block Gauss-Seidel, sparse solutions, regularization, nonnegative least-squares

1 Introduction

A fundamental problem in the analysis of large datasets is the identification of components
that capture important features and filter less explanatory ones. A notable approach to
this problem is principal component analysis (PCA) [HTF02]. In cases where the data
are nonnegative (such as in images), nonnegative matrix factorization (NMF) has proven
a successful approach for detecting the essential features of the data [LS99, PT94]. A
generalization of the latter approach to include tensors (i.e., multidimensional arrays that
may have order greater than two) can often represent the structure of the data more naturally
than matrices; this approach results in a nonnegative tensor factorization (NTF) [WW01,
SH05]. Several algorithms and implementations exist for the NMF case, but we are not
aware of efficient implementations that have been extended to the more general tensor case.
In this paper we describe an algorithm and its implementation for computing the NTF of a
dataset. An important feature of our implementation is that it maintains factors that are
equilibrated and have unit-norm columns. The resulting modified PARAFAC decomposition
has a diagonal core tensor that captures the scale of the problem (see, e.g., [FBH03] and
[Kol06, §5.3] for a definition of the PARAFAC decomposition). Also, the implementation
provides a mechanism, based on ℓ1-norm regularization, that encourages sparse factors.

Consider the N -dimensional data tensor V ∈ R
I1×···×IN , where I1, . . . , IN are integers

that describe the size of each of the tensor’s dimensions. Of particular interest to us is
the case in which each component of V is nonnegative. We henceforth use the shorthand

∗Department of Computer Science, University of British Columbia, Vancouver V6T 1Z4, BC, Canada
(mpf@cs.ubc.ca). Research supported in part by the National Science and Engineering Council of Canada.

†The work of this author was done as a visiting student at the Department of Computer Science, Univer-
sity of British Columbia, Vancouver V6T 1Z4, BC, Canada. Permanent address: Interdisciplinary Center for
Scientific Computing of the Ruprecht-Karls-University of Heidelberg (khatz@ix.urz.uni-heidelberg.de).

1

2 Michael P. Friedlander and Kathrin Hatz

notation V ≥ 0 to denote componentwise nonnegativity. The goal of NTF is to decompose
V into a set of N + 1 constitutive factors G, A(1), . . . , A(N) that can be combined to form
an approximation of V. A vital property of the NTF is that each factor is also nonnegative.
(Each A(n), indexed over n = 1, . . . , N , is a matrix; G is called the core tensor.) The
factorization then satisfies

V ≈ G ×1 A(1) ×2 · · · ×N A(N) with G, A(1), . . . , A(N) ≥ 0. (1.1)

The properties of these factors and the operators ×1,×2, . . . are described in detail in §4.
In particular, the factors are chosen as the solution of the nonlinear least-squares problem

(NTF) minimize
G,A(1),...,A(N)

1
2

∥

∥G ×1 A(1) ×2 · · · ×N A(N) − V
∥

∥

2

F

subject to G, A(1), . . . , A(N) ≥ 0.

The nonnegativity constraint in (NTF) can be motivated in several ways. Based on
intuition, the parts of a dataset (represented by the factors in (1.1)) are thought to generally
combine additively. It is also known that in many applications the quantities involved must
be nonnegative; in such cases it can be difficult to interpret the results of a decomposition
such as PCA that does not constrain the factors to also be nonnegative.

There are a variety of applications for nonnegative matrix and tensor factorizations,
the most popular of which is image compression. In this application, one approach is to
transform each image of a set into a vector; the set of vectors are then assembled into a
matrix. NMF is then applied to this matrix. An alternative approach based on tensors has
the advantage of treating the data in a more natural way: a set of two-dimensional images
(each represented by a matrix) can be stacked one behind the other into a three-dimensional
tensor. This construction preserves the two-dimensional character of an image and avoids a
loss of information [HPS05]. Shashua and Levin [SL01] demonstrate that the compression
of a tensor representation via NTF can be more efficient than the compression of a matrix
representation.

Two different types of algorithms are commonly used for computing nonnegative matrix
and tensor factorizations. The first, and more popular, approach is based on the multi-
plicative update rule [LS99]. The method is simple to implement, but has been observed
to converge slowly in practice. The second approach is based on alternating least squares
(ALS), which is a special case of the block Gauss-Seidel method for more general nonlinear
optimization problems. Applied to (NTF), the ALS approach holds all variables fixed except
for one; this results in a linear least-squares subproblem for each variable. The Gauss-Seidel
approach solves each subproblem in turn and updates the variables before solving the next
subproblem.

Throughout our algorithm development, we consider the most general case where (NTF)
is optimized over a general tensor G, and each of the N factors A(n). However, our imple-
mentation is restricted to the situation that generally arises in practice: G is a diagonal
3-mode tensor (implying N = 3). Moreover, we do not explicitly optimize over G. Instead,
we exploit the diagonal elements of G as a device for equilibrating the scalings of the tensor
factors A(1), . . . , A(N). We note that our implementation can be easily extended to handle
the case where N > 3 and G is optimized explicitly, as shown in (NTF). It turns out that
keeping the factors equilibrated is critical for the efficiency of this method.

We choose ALS as the basis for our approach because it allows us to apply an efficient
bound-constrained linear least-squares solver for each subproblem. We describe this solver
in §5.2.

Computing nonnegative tensor factorizations 3

2 Alternating least squares

The alternating least squares (ALS) approach is a special case of the block coordinate-
descent method, also knows as the block Gauss-Seidel (BGS) method. At each iteration of
the block Gauss-Seidel method, a subset of the variables are held fixed while the problem
is minimized over the remaining variables. In the NMF and NTF cases, this partitioning
leads to nonnegative linear least-squares subproblems.

We describe some of the main features of this approach in terms of the general optimiza-
tion problem

minimize
x

f(x) subject to x ∈ X, (2.1)

where f : R
n → R is a continuously differentiable function and the feasible set X = X1 ×

· · ·×Xm ⊆ R
n is the Cartesian product of closed, nonempty, and convex subsets Xi ⊆ R

ni ,

for i = 1, . . . ,m, with
∑m

i=1 ni = n. Let x ∈ R
n be partitioned into m component subvectors

xi ∈ R
ni . Each iteration of the BGS method is then defined by

xk+1
i = arg min

y∈Xi

f(xk+1
1 , . . . , xk+1

i−1 , y, xk
i+1, . . . , x

k
m), (2.2)

for i = 1, . . . ,m. These subproblem solution generate a sequence {xk} with xk = (xk
1 , . . . , xk

m).
If the solution xk+1

i of each subproblem (2.2) is uniquely attained, then it is possible to show
that every limit point of {xk} is a stationary point for (2.2). (See, e.g., [Ber99, §2.7] for a
more detailed presentation of BGS methods.) The convergence rate of BGS is linear [LT92].
No convexity assumption on f is needed.

In the particular case where (2.1) is taken as (NTF), then (2.2) reduces to a linear
least-squares problem and each Xi is the nonnegative orthant. The “uniquely attained”
assumption is then equivalent to the requirement that the matrices of the least-squares
problems have full rank. One possible way to safeguard against a lack of uniqueness is to
augment the subproblems with a proximal-point term, and instead to solve

xk+1
i = arg min

y∈Xi

f(xk+1
1 , . . . , xk+1

i−1 , y, xk
i+1, . . . , x

k
m) + 1

2τi‖y − xk
i ‖

2
2, (2.3)

i = 1, . . . ,m, at each iteration, where each τi is a positive scalar. The proximal-point
term serves to convexify the objective and ensure that the subproblem solutions are unique.
Every limit point of the sequence of vectors {xk} generated by (2.3) is a critical point of
(2.1) [GS99].

We experimented with the proximal-point term but found that in practice it could slow
down the convergence rate of the algorithm. Instead, our implementation relies on the ℓ1
regularization function which is not strictly convex, and thus does not guarantee uniqueness
of the solution. However, this heuristic has the added benefit that it can help encourage
sparse solutions to the overall problem. We discuss this further in §5.

3 Tensors

The core of our implementation relies on two main tensor operations: the n-mode product
and the n-mode matricization. We follow Kolda’s description [Kol06] of these operations
and briefly summarize below the needed notation. See also [dLdMV01] for background on
tensors and their operations.

Let G ∈ R
J1×···×JN be an N -dimensional tensor and let A(n) be a matrix of size In×Jn,

for each n = 1, . . . , N . (Note that we use n as an index variable throughout the remainder
of the paper.)

4 Michael P. Friedlander and Kathrin Hatz

3.1 The n-mode product

The n-mode product defines the multiplication of a tensor with a matrix. The product of
the N -mode tensor G with the matrix A(n) is denoted by G ×n A(n). The result is of size
J1 × · · · × Jn−1 × In × Jn+1 × · · · × JN .

We may also define this product elementwise. Denote the (i1i2 . . . iN)th element of the
tensor G by gi1i2...iN

. In the case when G is a matrix, for example, gij denotes the (i, j)th
element of G, as usual. The n-mode product can then be expressed by

(G ×n A(n))j1...jn−1ijn+1...jN
=

Jn
∑

jn=1

gj1j2...jN
aijn

.

The number of columns in A(n) must be equal to the size of nth mode of G.

3.2 The n-mode matricization

The n-mode matricization transforms the tensor G into a matrix G(n) defined by

G(n) ∈ R
Jn×K with K =

N
∏

i=1
i6=n

Ji,

for each n = 1, . . . , N . Note that the number of rows of G(n) is equal to the size of the nth
dimension of the tensor; the number of columns is expanded to accommodate all the other
dimensions of the tensor. The matrix G(n) can be expressed elementwise as

(G(n))ink = gi1i2...iN
with k = 1 +

N
∑

m=1
m 6=n






(im − 1)

m
∏

m′=1
m′ 6=n

Im′






.

3.3 Notation

The symbol A (and any version of A modified by superscripts or superscripts) always denotes
a matrix. The symbols G and V always denote n-mode tensors. Lower case roman letters
always denote vectors, and lower case Greek letters always denote scalars. The In × In

identity matrix is denoted by I(In). A vector of all ones is denoted by e, and its size is
implied by its context.

We often make use of transformations that change tensors into matrices (n-mode ma-
tricization), and matrices into vectors (vectorization). We find it useful to use a lower case
version of an upper case letter to denote the vectorizations of some matrices and of some
n-mode tensor matricizations. Define vectorizations as follows:

matrix A a = vec A,
matrix AT ā = vec AT ,
matrix A(n) an = vec A(n),
matrix A(n)T ān = vec A(n)T ,
n-mode matricization of the tensor G gn = vec G(n),
. . . and its transpose ḡn = vec GT

(n).

The Kronecker product (denoted by ⊗) and the Khatri-Rao product (denoted by ⊙; see
[Kol06, §3.1]) of N − 1 matrices (skipping the nth matrix A(n)), are defined as

An
⊗ = A(N) ⊗ · · · ⊗A(n+1) ⊗A(n−1) ⊗ · · · ⊗A(1),

An
⊙ = A(N) ⊙ · · · ⊙A(n+1) ⊙A(n−1) ⊙ · · · ⊙A(1);

Computing nonnegative tensor factorizations 5

in both cases the result is a matrix. The Kronecker product of the N matrices A(N), . . . , A(1)

is given by
A⊗ = A(N) ⊗ · · · ⊗A(1).

4 The NTF algorithm

Given a nonnegative tensor V ∈ R
I1×···×IN , NTF computes an approximate factorization

V ≈ G ×1 A(1) ×2 · · · ×N A(N)

into the N nonnegative matrix factors A(n) ∈ R
In×Jn , n = 1, . . . , N , and the nonnegative

tensor G ∈ R
J1×···×JN . These factors are chosen to solve the constrained nonlinear least-

squares problem (NTF).
The ALS approach transforms (NTF) into a sequence of N + 1 subproblems. In order

to formulate each linear least-squares subproblem, we need to develop two transformations
that allow us to isolate each factor A(n) and the core tensor G.

The matrix An
⊗GT

(n) arises at several key points in our implementation. This overall
product

An
⊗GT

(n) has dimensions

N
∏

i=1
i6=n

Ii × Jn (4.1)

(where typically Jn ≪ Ii), whereas the intermediate matrix

An
⊗ has dimensions

N
∏

i=1
i6=n

Ii ×

N
∏

i=1
i6=n

Ji,

which can be much larger than (4.1) and prohibitively large to store. If we make the
assumption that G is diagonal, then we can use the Khatri-Rao product [Kol06, §3.1] to
derive an equivalent expression that does not involve the large matrix An

⊗. In particular, if
G is diagonal, then

An
⊗GT

(n) = An
⊙DT ,

where the diagonal (and possibly rectangular) matrix D has elements (D)ii = (G)i...i, i =
1, . . . ,mink{Jk}. Importantly, the intermediate matrix

An
⊙ has dimensions

N
∏

i=1
i6=n

Ii × Jn,

which is the same as the overall matrix shown in (4.1). Our general algorithmic development
does not assume that G is diagonal, and so we continue to use An

⊗GT
(n); we make the switch

to An
⊙DT in §5, where we assume that G is diagonal.

In order to verify optimality of a current solution estimate, we need an expression for
the derivatives of the objective

φ(G, A(1), . . . , A(N)) := 1
2

∥

∥

∥
G ×1 A(1) ×2 · · · ×N A(N) − V

∥

∥

∥

2

F

of (NTF) with respect to each A(n) and G. These derivatives are given by

∂φ(·)

∂A(n)
= R(n)A

n
⊗GT

(n) and
∂φ(·)

∂G
= R×1 A(1)T ×2 · · · ×N A(N)T ,

6 Michael P. Friedlander and Kathrin Hatz

where
R := G ×1 A(1) ×2 · · · ×N A(N) − V (4.2)

is the residual. The reduced gradients (components corresponding to variables that are
positive) must be small at an approximation solution.

4.1 The linear least-squares subproblems

At each iteration of the ALS method, we need to isolate one of the factors in order to derive
a linear least-squares subproblem. We use two properties of n-mode matricization for this
purpose. It follows from [Kol06, Proposition 3.7] that if

X = G ×1 A(1) ×2 · · · ×N A(N),

then
X(n) = A(n)G(n)(A

n
⊗)T (4.3)

and
x1 ≡ vec X(1) = A⊗g1. (4.4)

In order to isolate any given factor A(n), n = 1, . . . , N , we use (4.3) to rewrite the
objective of (NTF) as

φ(G, A(1), . . . , A(N)) ≡ 1
2

∥

∥

∥
G ×1 A(1) ×2 · · · ×N A(N) − V

∥

∥

∥

2

F

= 1
2

∥

∥

∥
A(n)G(n)(A

n
⊗)T − V(n)

∥

∥

∥

2

F

= 1
2

∥

∥

∥
An

⊗GT
(n)A

(n)T − V T
(n)

∥

∥

∥

2

F
.

(4.5)

From (4.5) we see that the optimization of φ over A(n) reduces to In independent linear
least-squares problems: each involves the same matrix An

⊗GT
(n), but In different right-hand-

side vectors that constitute the rows of V(n); the solution of each of these least-squares

problems corresponds to a row of A(n). In principal, each of the rows of A(n) can be solved
for in parallel.

In our implementation, we use An
⊗GT

(n) as an operator and solve for all of A(n) simul-

taneously. We do this by vectorizing the term within the norm of (4.5) and rewriting φ

as
φ(G, A(1), . . . , A(N)) = 1

2‖diag(An
⊗GT

(n), . . . , A
n
⊗GT

(n))ā
n − v̄n‖

2
2

= 1
2‖
(

I(In) ⊗ (An
⊗GT

(n))
)

ān − v̄n‖
2
2

(recall that ān = vec A(n)T and v̄n = vec V T
(n); cf. §3.3). The resulting N subproblems (one

for each A(n)) are standard nonnegative linear least-squares problems over the vector ān:

(NTFA(n)) minimize
ān

‖
(

I(In) ⊗ (An
⊗GT

(n))
)

ān − v̄n‖2 subject to ān ≥ 0.

Note that each I(In)⊗(An
⊗GT

(n)) in (NTFA(n)) is a block diagonal matrix, with the submatrix

An
⊗GT

(n) appearing at each block entry. Because An
⊗GT

(n) is only used as an operator, it is
not necessary to form this matrix explicitly.

To isolate G for the (N + 1)st subproblem, we use (4.4) to transform the objective as

φ(G, A(1), . . . , A(N)) = 1
2 ‖A⊗g1 − v1‖

2
2 . (4.6)

Computing nonnegative tensor factorizations 7

Algorithm 1: The alternating least-squares algorithm for (NTF)

Input: V ∈ R
I1×···×IN

Output: G∗ ∈ R
J1×···×JN , A

(n)
∗ ∈ R

In×Jn for n = 1, . . . , N

Initialize A
(1)
0 , . . . , A

(n)
0 , G0 ≥ 0, k ← 0

repeat
for n = 1, . . . , N do

A
(n)
k+1 ← solve (NTFA(n))

Gk+1 ← solve (NTFG)
k ← k + 1

until converged

G∗ ← Gk, and A
(n)
∗ ← A

(n)
k for n = 1, . . . , N

The optimization over G is then reduced to the nonnegative linear least-squares problem
over the vector g1:

(NTFG) minimize
g1

‖A⊗g1 − v1‖2 subject to g1 ≥ 0.

Algorithm 1 describes the basic ALS method for (NTF) that is based on solving a
sequence of subproblems defined by (NTFA(n)) and (NTFG). The “vec” operator is then
inverted to derive A(1), . . . , A(n) and G from the solutions ā1, . . . , ān and g1, respectively, of
(NTFA(n)) and (NTFG).

4.2 Regularizing for sparseness

An important feature of NTF is that it can decompose data into parts that have intuitive
meaning and can easily be interpreted in terms of the original data. Hoyer [Hoy04] has
observed that NMF tends to produce parts that are sparse—that is, the factors tend to
have many small or zero entries. With the idea that a parsimonious representation of
the data yields parts that are well defined, we introduce a mechanism for encouraging the
sparsity of the factors obtained via NTF.

Our approach is based on regularizing (NTF) with an ℓ1-norm penalty function. This
nondifferentiable function has a well-observed property of pushing small values exactly to
zero while leaving large (and significant) entries relatively undisturbed. Similar applications
of ℓ1 regularization include signal processing for the recovery of sparse signals; see, e.g.,
[CDS01, CRT04, CRT05, DT05].

An important side effect of regularizing the NTF problem is that it can help to keep the
solution bounded. As we discuss in §5.1, the solution set of (NTF) is necessarily unbounded,
which can be a source of numerical difficulties. We describe there a mechanism for ensuring
that the computed factors are well scaled.

We define the regularized NTF problem as

(NTFsp) minimize
G,A(1),...,A(N)

φ(G, A(1), . . . , A(N)) + γ

(

N
∑

n=1

‖an‖1 + ‖g1‖1

)

subject to G, A(1), . . . , A(N) ≥ 0,

where γ is a nonnegative regularization parameter. (Recall that an ≡ vec A(n), and so

the term
∑N

n=1 ‖a
n‖1 can be interpreted as an ℓ1-norm penalty on the columns of the

8 Michael P. Friedlander and Kathrin Hatz

factors A(n).) Importantly, the nonnegativity constraints can be leveraged to re-express the
nondifferentiable ℓ1 norm as a linear function. Note that for any vector x,

‖x‖1 = eTx if x ≥ 0. (4.7)

The alternating least-squares approach derived in §4.1 extends easily to the regularized
problem (NTFsp). With (4.7), we can write the linear least-squares subproblems (NTFA(n))
and (NTFG), respectively, as

minimize
ān

1
2‖
(

I(In) ⊗ (An
⊗GT

(n))
)

ān − v̄n‖
2
2 + γeTān subject to ān ≥ 0, (4.8a)

and
minimize

g1

1
2‖A⊗g1 − v‖22 + γeTg1 subject to g1 ≥ 0. (4.8b)

Each subproblem now has an additional linear term. Note that we discard the constant linear
terms that correspond to the other fixed variables. Also, we use the fact that ‖ān‖1 = ‖an‖1.

4.3 Specialization to matrices (NMF)

When N = 2, the NTF problem reduces to the well-known matrix factorization problem.
We find that specializing our development of the tensor factorization problem to the special
matrix case clarifies our approach, and leads to a nonnegative matrix factorization that is
slightly different from what typically appears in the literature.

For this section only, let

W := A(1), H := A(2), G := G, and V := V;

recall that with N = 2, G and V are simply 2-mode tensors—i.e., matrices. Therefore,

G×1 W ×2 H = WGHT, (4.9)

and the NTF problem reduces to

(NMF) minimize
G,W,H

1
2

∥

∥WGHT − V
∥

∥

2

F

subject to G, W, H ≥ 0.

We note that in the literature, (NMF) typically appears with the objective 1
2‖WH−V ‖2F ;

the implication is that the core matrix G ≡ I. However, our formulation keeps G explicit. A
second, apparently small, difference is the transpose on the factor H. These two differences
have a crucial implication for our implementation, as we discuss in §5.1.

The linear least-squares subproblems that correspond to (NTFA(n)) and (NTFG) are

(NMFW) minimize
w̄

1
2 ‖(I ⊗HG)w̄ − v̄‖ subject to w̄ ≥ 0,

(NMFH) minimize
h̄

1
2

∥

∥(I ⊗WG)h̄− v
∥

∥ subject to h̄ ≥ 0,

(NMFG) minimize
g

1
2 ‖(H ⊗W)g − v‖ subject to g ≥ 0,

and analogous to the definitions in §3.3, we set v := vec V , v̄ := vec V T , w̄ := vec WT , and
g := vec G.

As discussed in the context of (NTFA(n)), the analogous problems (NMFW) and (NMFG)
can each be solved as a set of independent linear least-squares problems with a different right-
hand-side vector that corresponds to a row (or column) of V . Also, the ℓ1-regularization
approach discussed in §4.2 extends immediately to the matrix case with the addition of a
linear term to each of the subproblems.

Computing nonnegative tensor factorizations 9

5 Implementation

Our algorithm development up to this point has allowed for a general core tensor G and an
arbitrary number of factors N . For our implementation of the NTF algorithm, we make the
simplifying assumption that N = 3, which is the situation that arises most often in practice.
However, we note that our implementation can be generalized to any N with only trivial
modifications, although the subproblems will grow as more matrix factors are added (cf.
(4.1)).

We discuss below a method for keeping the factors A(n) well scaled. It turns out that
maintaining factors that are equilibrated is vital for the efficiency of our approach. We also
briefly describe the algorithm used for solving the bound-constrained linear-least-squares
subproblems.

5.1 Scaling

In the implementation of our NTF method, we maintain G diagonal and remove the sub-
problem (NTFG) from the loop in Algorithm 1. Having removed G as one of the optimization
variables, we may then use it as a degree of freedom to keep the factors equilibrated. This
device is needed because the solution set of (NTF) is necessarily unbounded. To see this,
note that if {G, A(1), . . . , A(n)} is any solution of (NTF), then

{

G, αA(1),
1

α
A(2), A(3), . . . , A(N)

}

,

for example, is also a solution of (NTF) for every α > 0. This is true for any scaling of
the factor A(n) or of the core tensor G. On first glance, it would seem that this property of
(NTF) would be a significant obstacle for the convergence of any algorithm. However, we
can use this extra degree of freedom as a device for maintaining iterates with a scale most
favourable for an efficient solution of the underlying linear least-squares subproblems (cf.
§4.1). In particular, we are at liberty to choose a scaling of each factor A(n) in order to ensure
that every column of A(n) has unit norm, which is especially useful in our implementation,
as we describe below. A further advantage of maintaining factors that have unit norm is
that it ensures that the iterates stay away from zero, which is necessarily a nonoptimal
stationary point.

The role of G as a scaling device is most easily understood in the matrix case where G
is a diagonal matrix (and not necessarily the identity). Let G := DW DH be a product of
diagonal matrices DW and DH , and rewrite (4.9) as

WGHT = WDW DHHT = (WDW)(HDH)T = W̄ H̄T, (5.1)

where and W̄ := WDW and H̄ := HDH . The diagonal operators Dw and Dh simply rescale
the columns of W and H. Given factors W̄ and H̄, the freedom to choose G in (5.1)
implies that we can choose any scale we like for the columns of W and H, and instead
absorb the scales of W̄ and H̄ into the core matrix G. In some sense, this is analogous to
the singular value decomposition, which has orthogonal factors and a “core” matrix (the
singular values) that express the scale of the matrix. The transpose on H is an important
ingredient in making the transformation in (5.1) possible.

In the tensor case, the core tensor G can be similarly used to ensure that the factors
have a chosen scale. For each n = 1, . . . , N , we rescale the columns of the factors A(n) with
diagonal matrices D(n) as follows: define the diagonal tensor

G := I ×1 D(1) ×2 · · · ×N D(N),

10 Michael P. Friedlander and Kathrin Hatz

Algorithm 2: The alternating least-squares algorithm (with scaling) for (NTF)

Input: V ∈ R
I1×···×IN

Output: G∗ ∈ R
J1×···×JN , A

(n)
∗ ∈ R

In×Jn for n = 1, . . . , N

Initialize A
(1)
0 , . . . , A

(n)
0 ≥ 0, G0 = I, k ← 0

repeat
for n = 1, 2, . . . , N do

A(n) ← solve (NTFA(n))

Compute D
(n)
k+1 for A(n) [compute column scales; see (5.3)]

A
(n)
k+1 ← A(n)D

(n)
k+1 [compute scaled factor]

Gk+1 ← Gk ×n (D
(n)
k+1)

−1 [update diagonal core tensor]

k ← k + 1
until converged

G∗ ← Gk, and A
(n)
∗ ← A

(n)
k for n = 1, . . . , N

(with I as the identity tensor), so that

G ×1 A(1) ×2 · · · ×N A(N)

=
[

I ×1 D(1) ×2 · · · ×N D(N)
]

×1

[

A(1) ×2 · · · ×N A(N)
]

= I ×1

[

A(1)D(1) ×2 · · · ×N A(N)D(N)
]

= I ×1 Ā(1) ×2 · · · ×N Ā(N),

(5.2)

where each Ā(n) := A(n)D(n). We define scaling matrices D(n) that ensure each A(n) is well
scaled. Thus G ×1 A(1) ×2 · · · ×N A(N) is in fact a PARAFAC decomposition [FBH03] with
scaled matrix factors; it is exactly analogous to (5.1).

After a linear least-squares subproblem is solved at iteration k, the solution A
(n)
k is

rescaled by

D(n) = diag
(

eT A(n)
)−1

, (5.3)

so that the resulting columns of the scaled matrix A(n)D(n) each sum to one. Thus,
∥

∥A(n)D(n)
∥

∥

1
= 1. We can interpret this rescaling as a projection of each of the Gauss-

Seidel iterates onto the convex set of nonnegative matrices with induced ℓ1-matrix norm.
(We might be tempted to simply scale the entire matrix so that vec A(n) would have unit
ℓ2-norm, but then we could not interpret the rescaling as a projection onto a convex set.)
It can be shown that the Gauss-Seidel iterations still converge under projections to convex
sets. Algorithm 2 describes our implementation of this scaling strategy.

5.2 Solving the least-squares subproblems

The computational kernel of the alternating least-squares algorithm is the solution of the
nonnegative linear least-squares problems (NTFA(n)) and (NTFG) described in §4.1. The
efficiency of the overall method ultimately depends on the efficient solution of the large-scale
subproblems that can arise in this context. In the context of the large datasets that can
arise in applications of NTF, we must be prepared to apply optimization methods that do
not rely on matrix factorizations, which can be prohibitively expensive. Our approach is
based on an implementation that uses matrices only as operators.

We give here a brief description of the software package BCLS used to solve the nonnega-
tive least-squares subproblems. BCLS is a separate implementation for solving least-squares

Computing nonnegative tensor factorizations 11

problems with bound constraints. We describe the BCLS algorithm in context of the generic
problem

minimize
x∈Rn

1
2‖Ax− b‖22 + cTx + 1

2γ2‖x‖22

subject to ℓ ≤ x ≤ u,
(5.4)

where A is an m × n matrix and b and c are m- and n-vectors. The n-vectors ℓ and u are
lower and upper bounds on the variables x; γ is a nonnegative regularization parameter that
can be used to control the norm of the final solution. A value of γ = 0 is permitted in the
implementation and simply eliminates the regularization term.

The BCLS algorithm is based on a two-metric projection method (see, e.g., [Ber82,
Chapter 2]). A partitioning of the variables is maintained at all times; variables that are
well within the interior of the feasible set are labeled free, and variables that are at (or near)
one of their bounds are labeled fixed. Conceptually, the variables x and the data A and c

are correspondingly partitioned into their free (B) and fixed (N) components:

x =
[

xB xN

]

, c =
[

cB cN

]

, and A =
[

AB AN

]

. (5.5)

At each iteration, the two-metric projection method generates independent descent di-
rections ∆xB and ∆xN for the free and fixed components of x; these are generated from an
approximate solution of the block-diagonal linear system

[

AT
B

AB + γ2I 0
0 D

] [

∆xB

∆xN

]

= ATr − c− γ2x, (5.6)

where r = b− Ax is the current residual, and D is a diagonal matrix with strictly positive
entries. The right-hand side of the above equation is the negative of the gradient of (5.4).
Thus a Newton step is generated for the free variables xB, and a scaled steepest-descent step
is generated for the fixed variables xN . The aggregate step (∆xB,∆xN) is then projected into
the feasible region and the first minimizer is computed along the piecewise linear projected-
search direction (see, e.g., [CGT00] for a detailed description on projected search methods).

The linear system (5.6) is never formed explicitly. Instead, ∆xB is computed equivalently
as a solution of the least-squares problem

minimize
∆xB

1
2‖AB∆xB − r‖22 + cT

B
∆xB + 1

2γ2‖xB + ∆xB‖
2
2. (5.7)

We find an approximate solution to (5.7) by applying the conjugate-gradient-type solver
LSQR [PS82] to the problem

minimize
∆xB

∥

∥

∥

∥

∥

[

AB

βI

]

∆xB −

[

r
1
β
cB −

γ2

β
xB

]∥

∥

∥

∥

∥

, (5.8)

where β = max{γ, γ̄} and γ̄ is a small positive constant. If γ < γ̄ (as it is with the
ALS subproblems of §4.1), then the resulting step is effectively a modified Newton step.
Although this can lead to slower convergence, it has the side effect of safeguarding against
rank-deficient systems.

The scaling strategy described in §5.1 implies that the solution ∆xB will be well scaled.
This is an especially favorable circumstance for CG-type solvers.

6 Numerical experiments

We implemented Algorithm 2 in Matlab. Two separate interfaces are available. The first
interface (lsNTF) implements the nonnegative tensor factorization for N = 3 and relies on

12 Michael P. Friedlander and Kathrin Hatz

Algorithm Iterations Optimality Total time (sec)

lsNTF 6 4.9e−04 315
lsNMF 3 2.2e−04 357
projGradNMF 47 9.9e−01 260
multUpdateNMF (1000) (9.0e+00) (320)

Table 1: Performance of four algorithms on the nonnegative factorization of 1000 images

with 15 leading factors

the Matlab Tensor Toolbox [BK06b, BK06a]. The second interface (lsNMF) implements
the nonnegative matrix factorization (e.g., N = 2) and does not rely on the Tensor Toolbox.

We illustrate the performance of lsNTF and lsNMF on a set of images from the CBCL
Face Database [BL06]. For the tensor case, we assemble 1000 grayscale images, each 19×19
pixels, into a tensor V with dimensions 19 × 19 × 1000. For the matrix case, we assemble
the same images into a matrix V with dimensions 192 × 1000. For both cases we choose a
fixed inner dimension of 15, which corresponds to J1 = J2 = J3 = 15 in the tensor case and
J1 = J2 = 15 in the matrix case.

Table 1 shows the relative performance of our matrix and tensor factorization implemen-
tations (lsNMF and lsNTF, respectively). Importantly, we are able to solve the NTF and
NMF problems with very similar computing times.

For interest, we also show in Table 1 the results of solving the same NMF problem with
a projected gradient method [Lin05] and multiplicative update method [LS01] (these are
the rows labeled projGradNMF and multUpdateNMF). The numbers of iterations are not
comparable across algorithms, but are shown only for interest. Most relevant are the last
two columns, which show the optimality achieved (the norm of the reduced gradient) and
the solution time to achieve that level of optimality. The multiplicative update method
failed to converge within its allotted maximum of 1000 iterations. All runs were conducted
on a 3.2 GHz Intel Pentium 4 running Linux 2.6.16 and Matlab 7.2.

Our entire Matlab implementation, including the scripts needed to reproduce Table 1
and Figure 1 on the facing page, can be obtained at http://www.cs.ubc.ca/∼mpf/lsntf.

7 Discussion

We outline some of the important ingredients that need to be considered for the efficient
implementation of an algorithm for computing the nonnegative tensor factorization. The
techniques we use for regularizing (§4.2) and scaling (§5.1) play important dual roles: they
are useful for ensuring the efficiency of the method and also for encouraging solutions have
desirable properties. Importantly, it seems that the tensor factorization can be computed
without much more effort than is needed to compute the matrix factorization.

7.1 A Gauss-Newton approach

The alternating least-squares method given in Algorithm 1 has the attractive property that
it decomposes the nonlinear problem into a sequence of well-structured subproblems for
which there are effective solution methods. Although the asymptotic convergence rate of
Gauss-Seidel methods is at most linear, the ALS algorithm still seems to perform effectively.
An alternative to the ALS algorithm is to apply a Gauss-Newton method to (NTF), and
optimize over all factors simultaneously (as opposed to one factor at a time).

The NTF problem can be reformulated as a generic nonlinear least-squares problem:

minimize
x

1
2‖c(x)‖22 subject to x ≥ 0.

Computing nonnegative tensor factorizations 13

Original
images

NTF
basis

NMF
basis

NTF
reconstruction

NMF
reconstruction

Figure 1: The first row shows six of the original images in the CBCL test set. The

second and third rows show the bases computed from 1000 images in the dataset using

the NTF and NMF methods. The last two rows show reconstructions of the original faces

using the tensor and matrix factorizations.

In this case, c(x) is an appropriate vectorization of R defined by (4.2). A variant of the
Gauss-Newton method could be based on obtaining a correction ∆x for the current iterate
x via the solution of the regularized least-squares subproblem

minimize
∆x

1
2‖c(x) + J(x)∆x‖22 + 1

2λ‖∆x‖22 subject to x + ∆x ≥ 0,

where J is the Jacobian of c, and λ is a positive damping parameter. Standard Levenberg-
Marquadt rules can be used to update λ (see, e.g., [DS96]). With the simplifying assumption
that Jn ≡ J for each n = 1, . . . , N , then the Jacobian for the NTF problem is

J(x) =











D1 R1 B1

D2 R2 B2

...
...

...
DI3 RI3 BI3











,

14 Michael P. Friedlander and Kathrin Hatz

where

Xℓ =













X1ℓ1 X1ℓ2 · · · X1ℓJ

X2ℓ1
. . . X2ℓJ

...
. . .

...
XI2ℓ1 · · · XI2ℓJ













, ℓ = 1, . . . , I3, X = (D,R, B),

and the matrices Dijk, Rijk, and Bijk are defined by

Dijk = gkkka2
ika3

jkI(I1), Rijk = gkkka3
jkA

(1)
(:,k)e

T
i , Bijk = gkkka2

ikA
(1)
(:,k)e

T
j .

The Jacobian J is a large matrix, but its regular structure makes it amenable to the efficient
implementation of a matrix-vector product routine.

7.2 Multiple right-hand sides

As commented in §4.1, the ALS subproblem (NTFA(n)) is actually a set of independent linear
least-squares problems that can in pricinple be solved in parallel. If the subproblems did not
have nonnegativity constraints, then it would be possible to compute a QR factorization of
An

⊗GT
(n) and reuse it to solve for each row of A(n). However, the nonnegativity constraints

imply that only subsets of the columns of An
⊗GT

(n) participate in the solution of each least-
squares problem. Because these subsets cannot be known in advance, such an approach
is not viable. Still, we can consider applying the same bound-constrained least-squares
technique described in §5.2 to solve each of these problems in parallel.

Acknowledgments

We are indebted to Tammy Kolda, who introduced us to the tensor factorization problem
during her visit to UBC as a distinguished lecturer, and whos papers in this subject were
invaluable for our work.

References

[Ber82] D. P. Bertsekas. Constrained Optimization and Lagrange Multiplier Methods.
Academic Press, New York, 1982.

[Ber99] D. P. Bertsekas. Nonlinear Programming. Athena Scientific, Belmont, MA,
second edition, 1999.

[BK06a] B. W. Bader and T. G. Kolda. MATLAB tensor classes for fast algorithm
prototyping. ACM Trans. Math. Software, 2006.

[BK06b] B. W. Bader and T. G. Kolda. MATLAB tensor toolbox version 2.0. http:

//csmr.ca.sandia.gov/∼tgkolda/TensorToolbox/, 2006.

[BL06] MIT Center For Biological and Computation Learning. CBCL Face Database
#1. http://www.ai.mit.edu/projects/cbcl, 2006.

[CDS01] S. S. Chen, D. L. Donoho, and M. A. Saunders. Atomic decomposition by basis
pursuit. SIAM Rev., 43(1):129–159, 2001.

[CGT00] A. R. Conn, N. I. M. Gould, and Ph. L. Toint. Trust-Region Methods. MPS-
SIAM Series on Optimization. Society of Industrial and Applied Mathematics,
Philadelphia, 2000.

Computing nonnegative tensor factorizations 15

[CRT04] E. J. Candés, J. Romberg, and T. Tao. Robust uncertainty principles: Exact
signal reconstruction from highly incomplete frequency information. Technical
report, Applied and Computational Analysis, California Institute of Technol-
ogy, 2004.

[CRT05] E. J. Candés, J. Romberg, and T. Tao. Stable signal recovery from incomplete
and inaccurate measurements. To appear in Comm. Pure Appl. Math., 2005.

[dLdMV01] L. de Lathauwer, B. de Moor, and J. Vandewalle. A multilinear singular value
decomposition. SIAM J. Matrix Anal. Appl., 21:1253–1278, 2001.

[DS96] J. E. Dennis and R. B. Schnabel. Numerical Methods for Unconstrained Opti-

mization and Nonlinear Equations. Classics in Applied Mathematics. Society of
Industrial and Applied Mathematics, Philadelphia, 1996. Originally published:
Prentice-Hall, New Jersey, 1983.

[DT05] D. L. Donoho and J. Tanner. Sparse nonnegative solution of underdeter-
mined linear equations by linear programming. Proc. Nat. Acad. Sci. USA,
102(27):9446–9451, 2005.

[FBH03] N. K. M. Faber, R. Bro, and P. K. Hopke. Recent developments in CAN-
DECOMP/PARAFAC algorithms: a critical review. Chemometr. Intell. Lab.,
65:119–137, 2003.

[GS99] L. Grippo and M. Sciandrone. On the convergence of the block nonlinear gauss-
seidel method under convex constraints. Operations Research Letter 26, pages
127–136, 1999.

[Hoy04] P. O. Hoyer. Non-negative matrix factorization with sparseness constraints.
Journal of Machine Learning Research, 5:1457–1469, 2004.

[HPS05] T. Hazan, S. Polak, and A. Shashua. Sparse image coding using a 3d non-
negative tensor factorization. Technical report, The Hebrew University, 2005.

[HTF02] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning.
Springer-Verlag, 2002.

[Kol06] T. G. Kolda. Multilinear operators for higher-order decompositions. Technical
report, Sandia National Laboratories, 2006.

[Lin05] C.-J. Lin. Projected gradient methods for non-negative matrix factorization.
Technical report, Department of Computer Science, National Taiwan Univer-
sity, 2005.

[LS99] D. D. Lee and H. S. Seung. Learning the parts of objects by non-negative
matrix factorization. Nature, 401:788–791, 1999.

[LS01] D. D. Lee and H. S. Seung. Algorithms for non-negative matrix factorization.
In Todd K.Leen, Thomas G. Dietterich, and Volker Tresp, editors, Advances in

Neural Information Processing Systems 13, pages 556–562. MIT Press, 2001.

[LT92] Z. Q. Luo and P. Tseng. On the convergence of the coordinate descent method
for convex differentiable minimization. Journal of Optimization Theory ans

Applications, 72:7–35, 1992.

[PS82] C. C. Paige and M. A. Saunders. LSQR: An algorithm for sparse linear equa-
tions and sparse least squares. ACM Trans. Math. Software, 8:43–71, 1982.

16 Michael P. Friedlander and Kathrin Hatz

[PT94] P. Paatero and U. Tapper. Positive matrix factorization: A non-negative factor
model with optimal utilization of error. Envirometrics, 5:111–126, 1994.

[SH05] A. Shashua and T. Hazan. Non-negative tensor factorization with applications
to statistics and computer vision. In In Proceedings of ICCV, 2005.

[SL01] A. Shashua and A. Levin. Linear image coding for regression and classification
using the tensor-rank principle. In In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, 2001.

[WW01] M. Welling and M. Weber. Positive tensor factorization. Pattern Recog. Letters,
22:1255–1261, 2001.

