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ABSTRACT 

The purpose of this note is to provide a brief account of available FORTRAN 
routines for computing nonparametric functional estimates, frequently used in 
semiparametric problems, evaluated at each data point. Then semipararnetric 
estimates can be computed employing the user-favored econometric software. 

1. INTRODUCTION 

The nonpararnetric functionals more frequently used in semiparametric 

estimation of econometric models are density functions and their derivatives, 

and regression curves. Different semipa;ametr' ~ problems require different 

nonparametric estimation methods. Densities aná their derivatives are usually 

estimated by the kernel method. Regression curves are estimated by either 

kernels or nearest neighbors. 

Given n observations {(X.,Y.), i=l, ... ,n} of a random variable (X,Y), where 
1 1 

Y is scalar and X is a p-dimensional random vector, nonpararnetric estimates of 

the regression function m(a:)=E(Y I X=a:) can be defined as 

m(a:)= 'f;=l Yi Wi(a:J, 

where {W.(a:), i=l, ... ,n} is a sequence of weights. Kernel weights are 
1 

defined as W.(a:)= n-1 K (a:- X.)lf (a:), where f (a:)= n-l~ K (H-1(a:- X.)) is 
1 H 1 H :H Li=l H 1 
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the density function estimate of X evaluated at a:, and K (u)= detCH)-¡ K(H-lu) 
- H 

is the kernel with scale smoothing matrix H. The function K(.) integrates to 

one. Nearest neighbor weights are defined as ·W.(a:)= cL (a:, k), where 
1 i 

~ c.(a:, k)= 1, c.(a:,k» O when i:s k, and L. is the rank of Xl' according to Li =1 1 1 1 

increasing distances p(X., a:), where p(.,.) is sorne distance function (if 
1 

p(X. ,a:) = p(X., xl, then we arbitrarily call X. c10ser to a: if i< jl. This 
1 J 1 

tie-breaking-rule was suggested by Devroye (1978) and is computationally 

convenient. 

The routines described below compute regression estimates and many other 

related functionals like density estimates, robust conditional M-estimates, 

and conditional quantile estimates. 50ft copies of the code and detailed 

documentation on the routines can be obtained by e-mail from 

DELGADO@ECO.UC3M.ES, or sending a formatted floppy disk and a self-address 

stamped envelope to the author. 

2. ROUTINES FOR NONPARAMETRIC FUNCTIONAL ESTIMATION 

The output of the routines consists of a vector containing m(X.l, i=l, .. ,n, 
1 

or other related functionals (conditional robust regression and conditional 

quantiles estimatesl when required. Kernel routines al so provide f (X.) and 
H 1 

P (X.) = m(X.)f (X.l, i=l, .. ,n, by default. 
H 1 1 H 1 

The ihput for kernel estimation consists of the kernel function and the 

bandwidth matrix. Different option parameters allow to choose H diagonal or 

H= h t, where h is scalar and f: is the sample covariance matrix of X. The user 

can choose whether or not employ the own observation when computing the 

kernels. If instead of the kernel function, kernel derivatives are- provided, 

the output will consist of the derivative density estimates evaluated at each 

data point. An efficient algorithm, respect to storage space and time, is 

employed when the kernel is symmetric. 

The input for nearest neighbor estimation consists of the number of nearest 

neighbors k and the weight function. The user can choose whether or not employ 

the own observation when computing the weights and the distance function. The 

nearest neighbors are found using the algoritnm proposed by Friedman et al 

(1985). This algorithm is pretty fast compared with a brute force method. 
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3. APPLlCATIONS TO SEMIPARt\METRIC PROBLEMS 

Many semiparametric estimates appearing in the recent econometric literature 

can be computed using these routines and standard econometric software. We 

mention only a few. 

Generalized least squares (GLS) estimators in the presence of 

heteroskedasticity of unknown form, proposed by Carrol! (1982) and Robinson 

(1987) among others, are straightforward to compute using standard econometric 

software (TSP, SAS, PC-GIVE etc). Once ordinary least squares (OLS) residuals 

are obtained, their squares and the set of regressors observations is the 

input of the routines and the output is the vector of weights in the GLS 

procedure. 

The kernel routines are suitable for computing semiparametric estimates of 

the parameter vector (3 in the partial linear regression model 

E(Y I X ,X )= X' (3+ 9(X ). Once E(Y IX) and E(X IX) evaluated at each data point 
121 2 2 12 

are estimated, (3 can be estimated as suggested by Robinson (1988) by linear 

regression. 

Optimal instrumental variables (IV) estimates in nonlinear equation systems, 

proposed by Newey (1990), are obtained by computing the optimal instruments 

using our routines. The input, in this case, is the vector of derivatives of 

the error function evaluated at sorne root-n-consistent preliminary estimate, 

and the regressors observations. The output is the vector of optimal 

instruments. Our program also includes a routine for computing optimal 

instruments by resampling, as proposed bv RC)binson (1990). Once optimal 

instruments are available, instrumental variables estimates can be computed 

using TSP. 

Density derivative estimates are needed when computing average derivatives 

of regression functions as suggested by Powell et al (1989). 

Sorne nonparametric and semiparametric test procedures, e.g. Robinson (1989), 

require fH(X
i
), PH(X

i
), and their derivatives. 
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